
Supplementary data 

 

Phosphorylation of human Tau protein by the microtubule affinity regulating 

kinase 2 
 

Martin Schwalbe#, Jacek Biernat†, Stefan Bibow§, Valéry Ozenne�, Malene 

Ringkjøbing Jensen�, Harindranath Kadavath§, Martin Blackledge�, Eckhard 

Mandelkow†,‡ and Markus Zweckstetter#,§*
 

 

#German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany, 

†German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany, 

‡CAESAR Research Center, Ludwig–Erhard–Allee 2, 53175 Bonn, Germany, 

§Department for NMR-based Structural Biology, Max Planck Institute for 

Biophysical Chemistry, 37077 Göttingen, Germany, and �Protein Dynamics and 

Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, 38027 

Grenoble, France. 

 

  



EXPERIMENTAL PROCEDURES 

Protein preparation 

The longest 441-residue splice-isoform of human Tau protein, 2N4R Tau, was 

recombinantly expressed and purified in 
15

N and 
13

C,
15

N-labeled form as described 

previously.
1,2

 Purification of wild-type (MARK2cat) and the constitutively active 

T208E mutant of the catalytic domain of MARK2 (MARK2cat-T208E) was described 

elsewhere.
3,4

 

 

Peptide synthesis 

Tau(254-284) peptides, roughly equivalent to the second half of R1 plus the first half 

of R2 and containing either a non-phosphorylated or phosphorylated Ser-262 residue, 

were produced by standard Fmoc-solid-phase peptide synthesis using an ABI 433A 

synthesizer (Applied Biosystems). Peptides were synthesized with acetyl- and amide 

protection groups at the N- and C-termini, respectively. Peptides were further purified 

by reversed-phase HPLC and the pure product was lyophilized. 

 

Sequential resonance assignment of 2N4R Tau 

As described previously,
5
 assignment was performed in an automated way using 

automated projection spectroscopy
6
 and the assignment software MARS.

7
 5D APSY-

HNCOCACB
8
 and 7D HNCO(CA)CBCANH

9
 spectra were acquired on a Bruker 

1.7 mm cryogenic, triple resonance probe at 800 MHz. The sample contained 280 µM 

MARK2cat-T208E-phosphorylated 
13

C,
15

N-labeled 2N4R Tau in 50 mM 

NaH2PO4/Na2HPO4, pH 6.8, 10% (
v
/v) D2O. The sweep widths for the 5D and 7D 

APSY were 8.0 kHz (
1
H, F5/F7 direct dimension), 1.4 kHz (

1
H, F1 dimension in 7D), 

2.2 kHz (
15

N), 2.0 kHz (C’) and 14.0 kHz (C
α
 and C

β
). The offset in the direct 



dimension was set to the resonance of water, to 8.2 ppm (
1
H, F1 dimension in 7D), 

117.5 or 118 ppm (
15

N, 5D or 7D), 173 or 174 ppm (C’), and 42 ppm (C
α
 and C

β
). 

The projections were acquired with 16 transients (24 for 7D), 1024 x 320 total points 

(1024 x 260 for 7D). For GAPRO processing of the 5D APSY spectrum, 28 

projections were analyzed using the parameters: Rmin =4.0, ∆νmin = 5.0 Hz, 

rmin = 15 Hz, and Smin1/2 =6. Fifty-six projections from the 7D spectrum were analyzed 

with Rmin =3.3, ∆νmin = 6.0 Hz, rmin = 13 Hz, and Smin1/2 =10. Due to sensitivity 

problems, minor phosphorylation sites (less than 50% phosphorylation for a particular 

serine) were manually assigned using 3D (HA)CANNH
10

 and 3D HNN
11

 spectra. 

Both spectra were acquired on a sample containing 100 µM MARK2cat-T208E-

phosphorylated 
13

C,
15

N-labeled 2N4R Tau in 50 mM NaH2PO4/Na2HPO4, pH 6.8, 

10% (
v
/v) D2O. The 3D (HA)CANN was recorded at 800 MHz with 8 transients, 

sweep widths of 9.0 x 2.1 x 5.0 kHz (
1
H x 

15
N x 

13
C) and 1024 x 192 x 80 total points 

(
1
H x 

15
N x 

13
C). The 3D HNN was acquired at 900 MHz and used 12 transients, 

sweep widths of 9.0 x 2.1 x 2.1 kHz (
1
H x 

15
N x 

15
N) and 1024 x 120 x 120 total 

points (
1
H x 

15
N x 

15
N). Spectra were processed using Topspin (Bruker Biospin, 

Rheinstetten, Germany) or NMRPipe,
12

 and analyzed using CcpNmr.
13

 Normalized 

weighted average chemical shift differences for the amide proton and nitrogen were 

calculated according to ∆δ (HN) = [∆δH
2
 + (0.2*∆δN)

2
]

1/2
. 

 

Paramagnetic relaxation enhancement (PRE) 

15
N-labeled 2N4R Tau was labeled with MTSL (S-(2,2,5,5-tetramethyl-2,5-dihydro-

1H-pyrrol-3-yl)methyl methane-sulfonothioate) at the native cysteines Cys-291 and 

Cys-322 as described previously 
14

. 
1
H,

15
N-HSQC spectra of MARK2cat-

phosphorylated 2N4R Tau labeled with MTSL were acquired at a concentration of 



15 µM in 50 mM NaH2PO4/Na2HPO4, pH 6.8, 5% D2O. To acquire spectra in the 

diamagnetic state, the MTSL label was cleaved off from 2N4R Tau through the 

addition of 4 mM DTT to the same sample and subsequent incubation at 45 ºC for 

15 min. Spectra were acquired at field strengths of 800 MHz with 128 transients, 

sweep widths of 8.0 x 2.0 kHz (
1
H x 

15
N) and 1024 x 600 total points (

1
H x 

15
N). 

Carrier frequencies were set to the water resonance in the 
1
H and to 118 ppm in the 

15
N dimension. PRE ratios were calculated from the ratio of the peak intensities in the 

paramagnetic and diamagnetic state. PRE ratios are reported as three residue 

averages. 

 

Peptide assignment 

Tau(254-284) peptides with and without phosphorylation at Ser-262 were assigned at 

5 ºC using two-dimensional 
1
H,

1
H-TOCSY and 

1
H,

1
H-NOESY spectra. Samples 

typically had a concentration of 3 mM and the buffer contained 50 mM 

NaH2PO4/Na2HPO4, pH 6.8, 5% (
v
/v) D2O. Acquisition parameters were commonly 

set to 32 transients, sweep widths of 7.0 x 7.0 kHz (F2 x F1), 2048 x 512 total points 

(F2 x F1), and mixing times of 40 ms (TOCSY) or 150 ms (NOESY). Carbon and 

nitrogen chemical shifts were derived from natural abundance 
1
H,

13
C-HSQC and 

1
H,

15
N-SOFAST-HMQC

15
 spectra. Secondary chemical shifts for 

13
C
α
 were 

calculated in reference to the neighbor corrected IDP chemical shift library.
16

 No 

corrections for the phosphorylated serine were applied. 

Isotropic couplings were determined from the same samples used for assignment. 

Weakly aligned samples were prepared at peptide concentrations of 4 mM dissolved 

in 50 mM NaH2PO4/Na2HPO4, pH 6.8, 10% (
v
/v) D2O and 5% (

w
/v) 

pentaethyleneglycolmonooctylether (C8E5)/n-octanol.
17

 One bond 
1
DNH RDCs 



(residual dipolar couplings) were determined from BSD-IPAP-HSQC spectra
18

 at 5 ºC 

and 600 MHz with 256 transients, sweep widths of 6.0 x 1.3 kHz (
1
H x 

15
N) and 2048 

x 512 total points (
1
H x 

15
N). Carrier frequencies were set to the water resonance in 

the 
1
H and to 117.5 ppm in the 

15
N dimension. Band-selective 

1
H decoupling pulses 

were centered at 2.4 ppm and covered a bandwith of 3.4 kHz. 

One bond 
1
DCaHa RDCs were determined from J-modulated CT-HSQC

19
 spectra. 

To this end, samples with 2 mM peptide were prepared in D2O. The peptides were 

first dissolved in 50 mM NaH2PO4/Na2HPO4, pH 6.8 and then twice lyophilized and 

dissolved in 99.9% D2O. After dissolution in D2O the pD was measured and if 

necessary adjusted to 6.8. Weakly aligned samples were obtained by adding 5% (
w
/v) 

C8E5/n-octanol. Spectra were acquired at 5 ºC and 700 MHz with 48 transients, 

sweep widths of 6.0 x 5.0 kHz (
1
H x 

13
C) and 2048 x 270 total points (

1
H x 

13
C). 

Carrier frequencies were set to the water resonance in the 
1
H and to 47.5 ppm in the 

13
C dimension. 

1
JCH evolution delays were set to 23.48, 23.80, 24.12, 24.82, 25.18, 

25.92, 26.20 and 27.992 ms. 

 

Ensemble Description 

Ensemble descriptions of the phosphorylated and non-phosphorylated Tau(254-284) 

peptides were generated using a recently described protocol combining experimental 

NMR data, Monte-Carlo-based statistical coil sampling and ensemble selection.
20

 The 

approach is briefly outlined below. 20000 conformers of phosphorylated and non-

phosphorylated Tau(254-284) peptides that broadly sample the conformational space 

defined by amino acid-specific potential wells, using the statistical coil model 

proposed by flexible-meccano. Chemical shifts were calculated for each member of 

the ensemble using the program SPARTA as previously described.
21,22

 RDCs were 



calculated for each member of the ensemble by calculating the alignment tensor of 

each member of the ensemble. Optimal ensemble size was estimated using cross-

validation of experimental data not included in the analysis to be approximately 200. 

This number was used for all ensembles shown. The specifically designed genetic 

algorithm ASTEROIDS,
23

 was then used to select conformational sub-ensembles in 

agreement with the experimental data (
13

C
α
, 

13
C
β
, 

1
H

N
 and 

15
N chemical shifts and 

1
DNH and 

1
DCaHa RDCs) within the limits of estimated experimental uncertainty. 

Secondary shifts were calculated using random coil values taken from RefDB.
24

 

Chemical shifts from Tau(254-284) peptides were shifted to match measured 

chemical shifts from the K18 domain of Tau at 25 °C, as the chemical shift prediction 

algorithm is calibrated against proteins measured at this temperature. Chemical shifts 

from the phosphorylated amino acid were not included in the selection approach. 
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