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The transition from a liquid to a gas filled tubular network is the prerequisite for normal function of
vertebrate lungs and invertebrate tracheal systems. However, the mechanisms underlying the process of
gas filling remain obscure. Here we show that waterproof, encoding a fatty acyl-CoA reductase (FAR), is
essential for the gas filling of the tracheal tubes during Drosophila embryogenesis, and does not affect
branch network formation or key tracheal maturation processes. However, electron microscopic analysis
reveals that in waterproof mutant embryos the formation of the outermost tracheal cuticle sublayer, the
envelope, is disrupted and the hydrophobic tracheal coating is damaged. Genetic and gain-of-function
experiments indicate a non-cell-autonomous waterproof function for the beginning of the tracheal gas
filling process. Interestingly, Waterproof reduces very long chain fatty acids of 24 and 26 carbon atoms to
fatty alcohols. Thus, we propose that Waterproof plays a key role in tracheal gas filling by providing very
long chain fatty alcohols that serve as potential substrates for wax ester synthesis or related hydrophobic
substances that ultimately coat the inner lining of the trachea. The hydrophobicity in turn reduces the
tensile strength of the liquid inside the trachea, leading to the formation of a gas bubble, the focal point
for subsequent gas filling. Waterproof represents the first enzyme described to date that is necessary for
tracheal gas filling without affecting branch morphology. Considering its conservation throughout

evolution, Waterproof orthologues may play a similar role in the vertebrate lung.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The vertebrate lung and the tracheal system of insects are
specialised organs for gas transport. Both systems develop during
embryogenesis via a stereotypic branching pattern that gives rise
to well-ordered three-dimensional tubular networks (Ghabrial
et al., 2003; Metzger et al, 2008). During these maturation
processes the tubes are liquid filled, a prerequisite for organ
development. However, shortly before birth (vertebrates) or
hatching of larvae (insects) the liquid is absorbed by the surround-
ing tissue and both organs, the lung and the tracheal system,
become competent to mediate their physiological role, the trans-
port of gases (Elias and O'brodovich, 2006; Forster and Woods,
2012; Hooper et al., 2007).
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The tracheal system development of Drosophila is both an
excellent system to study branching morphogenesis of tubular
networks and also to analyse the maturation of networks to
functional organs (reviewed in Affolter et al, 2009; Ghabrial
et al, 2003; Uv et al, 2003). Tracheal system development is
initiated by the differentiation of tracheal cell groups, the tracheal
placodes, from ectodermal cells. These tracheal cells form tubes
and branch out in a stereotyped pattern. Specific branches fuse
and form the main anterior-posterior tubes, the dorsal trunks, one
on either side of the embryo. Smaller tubes fuse at the lateral sides
and the two halves of the tracheal system are interconnected by
dorsal and ventral anastomoses. Thus, a three-dimensional liquid-
filled tubular network is formed during embryogenesis. Normal
tube maturation requires the formation of a chitinous luminal
cable within the trachea, which is removed after branch morpho-
genesis during mid-stage 17 (Devine et al., 2005; Luschnig et al.,
2006; Tonning et al., 2005). About two hours before the larvae
hatch the liquid is cleared from the tubes and the trachea matures
into functional gas-filled airways. Liquid clearance (LC) is initiated
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stochastically in either of the dorsal trunks by the formation of a
gas bubble. The bubble extends within the dorsal trunk and
reaches the contralateral dorsal trunk via the posterior anastomo-
sis. After the dorsal trunks are cleared of liquid the residual
tracheal tubes are gas filled within 20 min (Tsarouhas et al.,
2007; Supplementary movie 1). Elaborate cuticle ridges facing
the tracheal lumen prevent luminal collapse during the transition
from liquid to gas filled tubes. These rigid cuticle structures, also
called taenidial folds, are built from procuticular material that
assembles perpendicular to the tube length and form annular
rings surrounding the tracheal lumen (Moussian, 2010). Thus, a
gas filled tubular system is established during the end of embry-
ogenesis and the larvae hatch with a functional tracheal system.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ydbio.2013.10.022.

In the last 20 years extensive insight has been gained into the
cellular and molecular mechanisms that lead to tracheal placode
formation, guided branch outgrowth, branch interconnection and
tracheole differentiation (for review see Affolter et al., 2003;
Lubarsky and Krasnow, 2003; Neumann and Affolter, 2006). In
contrast, only superficial knowledge is available about the mole-
cular processes and molecules that are involved in tracheal gas
filling. Preliminary results by RNA interference experiments show,
that pickpocket (ppk) family members, which encode epithelial
Na™ channels (ENaCs), reveal defects in the LC of the tracheal
tubes (Liu et al., 2003). Interestingly, ENaCs also seem to be crucial
for LC of the vertebrate lung, since alpha-ENaC knockout mice
despite exhibiting normal foetal lung development, die shortly
after birth as they fail to clear their lungs of fluid (Hummler et al.,
1996). In Drosophila ppkl1l may represent cargo for clathrin-
mediated endocytosis, a process also essential for LC (Behr et al.,
2007). ENaCs possibly participate in the establishment of an
osmotic gradient between the tracheal lumen and the epithelial
cells or the haemolymph. This gradient is similarly disrupted in
mutants for septate junction (S]J) components, also leading to
impaired gas filling (Behr et al, 2003). SJs are apicolateral
membrane protein complexes in epithelial sheets and they estab-
lish an epithelial barrier function by controlling the transepithelial
flow of solutes and ions (Wu and Beitel, 2004). Furthermore,
exocytosis of the chitin deacetylases Serpentine (Serp) and Vermi-
form (Verm) and their chitin modifications within the tracheal
lumen are also crucial for the subsequent normal gas filling of the
tracheal tubes (Luschnig et al., 2006). However, defects in those
genes essential for chitin modification, clathrin-mediated endocy-
tosis or the transepithelial barrier reveal additional morphological
defects of the tracheal system, ie. tortuous and elongated
branches, indicating that these processes participate in cellular
mechanisms distinct from gas filling of the tubes (Behr et al., 2003,
2007; Luschnig et al., 2006; Wu and Beitel, 2004).

Here we describe the identification and functional character-
isation of waterproof (wat; CG1443), which is involved in tracheal
gas filling, without affecting tracheal network formation or mor-
phology. wat Encodes a fatty acyl-CoA reductase and reduces very
long chain, saturated fatty acids of 24 and 26 carbon atoms to fatty
alcohols, which may serve as substrates for biosynthesis of wax or
related hydrophobic substances. wat Is expressed in tracheal cells
and it is essential for the formation of the outermost tracheal
cuticle layer in a non-cell-autonomous manner.

Materials and methods

Gas chromatography/mass spectrometry

The Wat coding sequence was cloned in the yeast expression
vector pYES2/NTc using the gene-specific primers 5'-ACGCTCGAGA

TGGATGATCCCAAAATAATGAACA-3’ (with attached Xhol restriction
site) and 5-ACGTCTAGACTATAAGAATAGCTTGAGCAGGGC-3’ (with
attached Xbal restriction site). The resulting plasmid was named
pYES2/NT-Wat. Saccharomyces cerevisiae strain H1246 (Sandager
et al., 2002), transformed with either pYES2/NTc as negative
control or pYES2/NT-Wat were grown in 20 ml synthetic dropout
(SD)-media containing 6.7 g/l yeast nitrogen base, 5.0 g/l
(NH4)2S04, 2 g/l AS-dropout-powder lacking uracil and 2% (w/v)
of galactose (for induction of Wat-expression) or 2% (w/v) of
glucose (for non-inducing conditions). After five days of growth,
twenty ODggo units of each culture were taken for analysis of fatty
alcohols produced by the putative FAR. After centrifugation of
respective amounts of cultures, 1 ml methanol was added to the
pellets together with ~500 ul of glass beads. The samples were
vortexed for 15 min at room temperature. Subsequently, 2 ml
hexane-diethylether-acetic acid (80:20:2, per volume) were
added, samples were vortexed for another 15 min and centrifuged
for 15 min at 1500g in order to separate the organic from the
aqueous phase. The organic phase was recovered, evaporated
under a steam of nitrogen and resolved in 150 pul acetonitrile.
Afterwards, 10ul of the samples were mixed with 10 ul BSTFA. The
analysis was carried out using an Agilent 5973 mass selective
detector connected to an Agilent 6890 gas chromatograph
equipped with a capillary DB-23 column (30 m x 0.25 mm;
0.25 pym coating thickness; J&W Scientific, Agilent, Waldbronn,
Germany). Helium was used as carrier gas at a flow rate of 1 ml/
min. The temperature gradient was 150 °C for 1 min, 150-200 °C at
8 K/min, 200-250 °C at 25 K/min and 250 °C for 6 min. For the MS
analysis an electron energy of 70 eV, an ion source temperature of
230 °C, and a temperature of 260 °C for the transfer line were used.
The ions were detected in scan mode in a m/z range from 50 to 650
(Heilmann et al., 2012). Fatty alcohols were identified using the
NIST MS Search 2.0 library.

Immunochemistry

Whole-mount immunostainings of fixed embryos were performed
as described previously (Goldstein and Fyrberg, 1994). The following
primary antibodies were used: guinea pig anti-Wat antibodies directed
against the peptides CRNKYETPPIYNYVPD and CRFDNDNVRK
LTEKLDDR were generated by PSL GmbH (Heidelberg, Germany)
and used in a 1:50 dilution; mouse monoclonal anti-Mega antibody
1:20 dilution (Jaspers et al., 2012); anti-Verm 1:100 dilution and anti-
Serp 1:200 dilution (Luschnig et al., 2006); anti-Faslll 1:50 dilution
(Patel et al., 1987). The following secondary antibodies were used
in 1:500 dilutions: goat anti-mouse IgG-Alexa568; goat anti-rabbit
IgG-Alexa568; goat anti-guinea pig IgG-Alexa568; goat anti-mouse
IgG-Alexa488; goat anti-guinea pig IgG-Alexa488; goat anti-rabbit
IgGAlexa488 (Invitrogen). Image acquisitions were performed with a
Leica TCS SP2 AOBS (Leica, Mannheim, Germany) confocal microscope.
Each fluorochrome was scanned individually in sequential mode using
standard settings and a HC PL APO 20 x 0.7 or a HCX PL APO CS
40 x 1.25 oil immersions objective.

Cell culture

The peroxisomal marker tagRFP-SKL was cloned via PCR by adding
the targeting sequence to tagRFP. The PCR was performed with
the template tagRFP-T and the oligos CCACCATGGTGTCTAAGGGCGAA-
GAGCTG and TCCTCTAGACTAGAGTTTTGACTTGTACAGCTCGTCCATGCC
(Shaner et al.,, 2008). The PCR product was cloned into pUbiP (a gift
from A. Herzig) using Ncol and Xbal to generate pUbiTagRFP-SKL.
Wat-GFP was cloned by amplifying the open reading frame of
wat via PCR using plasmid LP06017 (BDGP; Berkeley Drosophila
Genome Project) and the oligos AAAACTAGTATGGATGATCCCAAAA-
TAATGAAC and AAAGCTAGCTAAGAATAGCTTGAGCAGGGCATAG. The
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PCR product was cloned into pUbi-C-EGFP using Nhel and Spel to
generate pUbiWat-C-EGFP. pUbiKDELR-TAT was a gift from M. Beller
(Thiel et al., 2013). pUbiTagRFP-SKL, pUbiKDELR-TAT and pUbiWat-C-
EGFP were cotransfected by Effectene (Qiagen, Hamburg, Germany)
according to the manufacturer's protocol into S2 cells. 48 h after
transfection cells were resuspended, seeded onto coverslips and fixed
after 2 h of adhesion using 4% formaldehyde in PBS. After fixation
cover slips were washed in PBS and mounted onto slides using
ProLong Gold (Invitrogen, Darmstadt, Germany) as an embedding
media. Cells were imaged on a Leica SP2 TCS-AOBS confocal micro-
scope with a HCX PL APO CS 40.0 x 1.25 OIL immersion objective
(Leica, Mannheim, Germany). Raw images were combined into RGB
files using Image]. Intensity profiles were generated by the Image] plug
in “RGB Profile Plot”.

Dextran red permeability experiments

We crossed wat*®/TM3, dfd-eYFP flies with wat*%/TM3, dfd-eYFP
flies and identified mutant watAR/WatAG embryos by the lack of
YFP fluorescence mediated by the marked balancer chromosome
(Le et al., 2006). Dechorionated watAR/watAG mutant or wild-type
embryos at stage 16 were covered with Voltalev 10S oil for
injection. Rhodamine labelled dextran (MW 10,000; Molecular
Probes, Eugene, OR) was purified and injected into the haemocoel
of embryos as described (Lamb et al., 1998). The embryos were
analysed by confocal microscopy.

Fly stocks

We used the viable P-element insertion line P{XP}d01446 for
P-element jump-out experiments (Hartenstein and Jan, 1992). The
generated DNA deletions of the wat alleles wat*® and wat*® were
analysed by DNA sequencing after PCR amplification of genomic
DNA. The Gal4 driver lines salTE-Gal4 and kniTE-Gal4 were
established by cloning salTSE1000 (Kiihnlein et al., 1997) and
AE20 kni enhancer (Weiss et al., 2010), respectively, into the vector
pGal4. The transgene constructs were used for P element-
mediated germline transformation (Rubin and Spradling, 1982).

Electron microscopy

Drosophila embryos were mechanically dechorinated and
placed on a 150 um flat embedding specimen holder (Engineering
Office M. Wohlwend GmbH, Sennwald, Switzerland) and frozen in
a Leica HBM 100 high pressure freezer (Leica Microsystems,
Wetzlar, Germany). The embedding of the vitrified samples was
performed using an Automatic Freeze Substitution Unit (AFS)
(Leica). Substitution was done at —90 °C in a solution containing
anhydrous acetone, 0.1% tannic acid and 0.5% glutaraldehyde for
72 h and in anhydrous acetone, 2% 0s04, 0.5% glutaraldehyde for
additional 8 h. After a further incubation for 18 h at —20°C
samples were warmed up to +4 °C and subsequently washed
with anhydrous acetone. The samples were embedded at room
temperature in Agar 100 (Epon 812 equivalent) and polymerised
at 60 °C for 24 h. Images were taken in a Philips CM120 electron
microscope (Philips Inc.) using a TemCam 224 A slow scan CCD
camera (TVIPS, Gauting, Germany).

Results
waterproof is essential for liquid clearance of the tracheal tubes
We identified the gene (CG1443, henceforth referred to as

waterproof (wat), in an RNA interference (RNAi) screen for genes
required for gas filling, i.e. liquid clearance (LC) of the tracheal

tubes. Particularly, we found, in contrast to wild-type (Fig. 1A),
that the UAS/Gal4 mediated (Brand and Perrimon, 1993) pan-
tracheal expression of an RNAi-transgene targeting wat (btl-Gal4;
UAS-RNAIi-VDR(C1333; (Dietzl et al., 2007) led to the complete lack
of tracheal LC during embryonic development (Fig. 1B). Such
embryos hatch but die during the first instar larval stage. In
contrast, mesodermal (mef2-Gal4) or endodermal (Y48-Gal4)
RNAi-mediated wat knock-down led to normal fertile flies (not
shown). These results indicate that the RNAi-mediated tracheal
phenotype is specific for the proper function of this organ.

The homozygous viable P-element insertion P(XP)d01446,
which resides in the first intron of wat (Fig. 1C), was used to
generate the lethal P-element jump out lines, R4(d01446) and G4
(d01446) (see Fig. 1C; Materials and methods). Both of these lines
failed to complement each other or the chromosomal deletion Df
(3R)Exel6211, which removes the region 98F5 that includes the wat
gene. Furthermore, R4(d01446) and G4(d01446) mutant embryos
lack the LC of the tracheal tubes in homozygous as well as in
hemizygous conditions in the background of the Df{3R)Exel6211
(Fig. 1D; not shown). This indicates that R4(d01446) and G4
(d01446) represent alleles of the wat gene and, thus, we refer to
them wat*® and wat*. Both alleles were molecularly charac-
terised and they contain deletions of the entire wat coding region
(Fig. 1C). Ectopic tracheal wat expression by the UAS/Gal4 expres-
sion system in wat mutant embryos rescues the lack of LG, i.e. the
tracheal system fills normally with gas (Fig. 1E). Moreover, such
rescued embryos develop into adult and fertile flies. Thus, our
results show that wat encodes an essential function for the normal
gas filling of the tracheal tubes and that its activity is essential in
tracheal cells.

The embryonic development of the Drosophila tracheal system
is a sequential maturation process that ends with the replacement
of luminal liquid by gas. Normal tracheal maturation is a pre-
condition for the gas filling of the tracheal tubes (Tsarouhas et al.,
2007). Thus, we next sought to determine the particular aspect of
tracheal development that is affected in wat mutant embryos.
Analysis of tracheal morphogenesis by visualisation of the luminal
chitin matrix revealed normal tracheal morphogenesis of wat
mutant embryos (compare Fig. 2A with B). The components of
septate junctions, localised at the apicolateral membrane of
tracheal cells, were also comparable between wild-type and wat
mutant embryos (Fig. 2C and F). Furthermore, the transepithelial
barrier mediated by septate junctions is not affected in wat mutant
embryos as revealed by red dextran injection experiments (Fig. 2G
and H) and exocytosis of the chitin deacetylases Serp and Verm
(Luschnig et al., 2006) into the tracheal lumen of wat mutant
embryos is also normal (Fig. 2I and L). These results therefore
indicate that key processes of tracheal maturation are not affected
in wat mutant embryos but rather suggest that wat activity is
specifically required for the tracheal LC.

waterproof reveals a restricted expression pattern during
embryogenesis

We then performed in situ hybridisation on whole mount
embryos to visualise wat transcript expression during embryogen-
esis. wat RNA is first detectable during stage 13 in the developing
tracheal system and the hindgut (Fig. 3A and B). During subsequent
embryonic development wat transcripts accumulate apically in the
cells of these organs (Fig. 3C and D). To analyse the Wat protein
distribution we produced an antibody against Wat (Materials and
methods). The antibody is specific for Wat as revealed by the lack of
Wiat staining in wat mutant embryos (compare Fig. 3E with F). Wat
protein expression was found to coincide with the spatial aspects of
wat transcription as revealed by the anti-Wat antibody stainings of
wild-type embryos (not shown). The subcellular analysis reveals an
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Fig. 1. The waterproof gene is essential for tracheal liquid clearance. Bright field light microscopic pictures of stage 17 wild-type (A) and btl-Gal4; UAS-RNAi-VDRC1333
(B) embryos. Wild-type embryos show gas filled tracheal tubes at the end of embryogenesis (arrow in A). In contrast, tracheal knock-down of the wat gene leads to a lack of
tracheal gas filling (arrow in B). (C) Physical map of the genomic region 98F5 containing the wat gene (CG1443) according to McQuilton et al. (2012). The P-element insertion
P(XP)d01446 was used for P-element jump out experiments (Materials and methods). The genomic DNA deletions (Materials and methods) of the wat alleles R4(d01446)
(wat*®) and G4(d01446) (wat*®) are indicated. Bright field light microscopic pictures of stage 17 wat**/wat*® (D) and btl-Gal4/UAS-wat; wat**/wat*® (E) mutant embryos. wat
mutant embryos lack gas filling (arrow in D) while wat mutant embryos that express wat in the tracheal cells have a normal gas filling of the tracheal system (arrow in E).

apically enriched cytoplasmic distribution of Wat (Fig. 3E), similar to
that found for the wat transcript (Fig. 3D). Thus, wat expression and
Wat protein localisation is restricted to the hindgut and the tracheal
system during late embryonic development, consistent with a
function of wat in LC of the tracheal tubes.

waterproof encodes a fatty acyl CoA reductase

The wat gene encodes a single 517 amino acid large protein and in
silico analysis identified two human homologous proteins, the fatty
acyl-CoA reductasel (FAR1) and the fatty acyl-CoA reductase2 (FAR2;
Supplementary Fig. 1). For the FAR enzymes from mouse it has been
shown, that they reduce fatty acids to fatty alcohols by using the
reducing equivalents of the NADPH cofactor (Cheng and Russell,
2004). Predicted binding sites for the NADPH cofactor are indicated
in the sequence of FAR1, FAR2 and Wat (Supplementary Fig. 1). FAR1
from mouse reduces both saturated and unsaturated fatty acids of 16
or 18 carbon atoms as substrates, while FAR2 prefers saturated fatty
acids of the same lengths. Both enzymes are localised to peroxisomes
as shown by cell culture experiments (Cheng and Russell, 2004) and
transient expression in onion epidermal cells (Heilmann et al., 2012).
We expressed Wat and the peroxisomal marker mRFP-SKL in
Drosophila S2 cells (see Materials and methods) to assess where
these proteins were colocalised; these experiments revealed, in
contrast to FAR1 and FAR2, no specific colocalisation of Wat with
the peroxisomal marker SKL (Supplementary Fig. 2A and C). Rather,
Wat appears similarly distributed as the endoplasmic reticulum
marker, KDELR (Supplementary Fig. 2D and F).

To analyse the enzymatic activity of Wat, the putative Droso-
phila FAR protein, we expressed Wat in yeast cultures and analysed
the fatty alcohols produced from the endogenous acyl-CoA pool

by gas chromatography/mass spectrometry (GC/MS). In yeast
cultures expressing Wat, tetracosanoyl-alcohol (24:0-OH) and
hexacosanoyl-alcohol (26:0-OH) were identified by GC/MS analy-
sis; unsaturated alcohols or alcohols of shorter chain-lengths are
either absent or below the detection limit. Neither of these fatty
alcohols was detected in the vector control yeast culture or the wat
gene containing culture grown under non-inducing conditions
(Table 1; Supplementary Fig. 3). These results indicate that Wat is
a Drosophila FAR with a preference for very long chain, saturated
fatty acids of 24 and 26 carbons.

Waterproof is essential for outer envelope formation of the tracheal
cuticle

The Drosophila FAR protein, Wat, reduces very long chain fatty
acids to fatty alcohols, which may be key components in the metabolic
pathway of wax ester biosynthesis. Waxes are integral parts of the
envelope, the outermost sublayer of the tracheal cuticle (Locke, 1961;
Moussian, 2010; Moussian et al., 2006). The envelope faces the
tracheal lumen and due to its hydrophobic nature this surface layer
protects the fly from swelling and dehydration (Gibbs, 1998). To
examine whether the lack of the FAR enzyme Wat affects cuticle
formation we analysed the tracheal cuticle ultrastructure in wild-type
and wat mutant embryos by transmission electron microscopy (Fig. 4).
The tracheal lumen of wild-type embryos shows an unstructured
uniform appearance (arrows in Fig. 4A). In contrast, wat mutants have
membranous structures within the embryonic trachea (arrows in
Fig. 4B). Furthermore, such structures are occasionally associated with
the outermost cuticle sublayer of the tracheal taenidial folds (Fig. 4B’
and B”), suggesting that the membrane structures originate from the
envelope. In contrast, the procuticle, the epicuticle (Moussian et al.,
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Fig. 2. Key processes for tracheal maturation are not affected in waterproof mutant embryos. Stage 17 wild-type (A) and WatAR/watAC mutant (B) embryos were stained with
CY2 labelled chitin binding protein (CBP). CBP binds the luminal chitin matrix during tracheal development and outlines the tracheal network during embryogenesis. The
tracheal morphogenesis of wat mutant embryos (B) is indistinguishable from wild-type embryos (A). Stage 17 wild-type (C, E) and wat”®/wat”~ ¢ mutant (D, F) embryos were
stained with CBP (C-F, green) and anti-Mega (C, D) or anti-FasllI (E, F) antibodies. The septate junction markers Mega (red in C, D) and FasllI (red in E, F) exhibit normal
apical-lateral membrane localisation in wat mutant embryos (D, F) as found in wild-type embryos (C, E). Confocal images of tracheal dorsal trunk branches of wild-type
(G) and WatAR/watAG (F) stage 17 mutant embryos after rhodamine-dextran injection into the haemocoel (Materials and methods). Rhodamine-dextran is not found in the
dorsal trunk lumen of wild-type (arrowhead in G) and wat*®/wat“*® mutant (arrowhead in H) embryos. Stage 17 wild-type (I, K) and wat*?/wat*¢ mutant (J, L) embryos were

stained with anti-Serp (I, ], green) or anti-Verm (K, L, green) antibodies. The exocytosis of Serp and Verm into the tracheal lumen of wat mutant embryos is indistinguishable
from wild-type embryos (compare [ and K with J and L).

A ....\ B
cast”

" b

Fig. 3. Waterproof expression pattern during embryonic development. Whole-mount in situ hybridisation of wild-type embryos at stage 13 (A, B) and stage 16 (C, D) with a
wat antisense RNA probe (Materials and methods); lateral view (B, D), dorsal view (A, C). Embryonic wat expression is restricted to the tracheal system (arrow in C) and the
hindgut (arrowhead in C). wat Expression is not detectable before stage 13 (not shown). Arrowhead in inset D points to the apical cellular wat transcript accumulation. Stage
17 wild-type (E) and wat*®/wat*® mutant (F) embryos were stained with CBP (green) and anti-Wat antibodies (red). The anti-Wat antibodies detect Wat protein specifically
in the cytoplasm of wild-type tracheal cells (red in E), while no Wat protein is detectable in wat mutant embryos (F) using identical imaging parameters.

2006) and also taenidial fold morphology in wat mutant embryos is biosynthesis. In addition, our experiments provide evidence suggest-
similar to wild-type (compare Fig. 4A with B). Our results suggest that ing that wat is involved in the proper formation of the outermost
Wat represents a central enzyme in the metabolic pathway of cuticle tracheal sublayer, the cuticle envelope.
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Table 1
Waterproof represents a fatty acyl CoA reductase.

Construct/condition Fatty alcohols

PYES2/NT-empty (induced)
pPYES2/NT-Wat (induced)

None detected
24:0-0H, 26:0-OH

PYES2/NT-empty vector control and pYES2/NT-Wat were
transformed into Saccharomyces cerevisiae H1246 and fatty
alcohol production was measured in inducing conditions.
Long chain saturated fatty alcohols (tetracosanoyl-alcohol
(24:0-0H) and hexacosanoyl-alcohol (26:0-OH) could only
be detected in cultures expressing the putative Drosophila
FAR Wat, whereas cultures transformed with pYES2/NT-
empty vector control growing under inducing conditions
did not produce any detectable amounts of fatty alcohols
(for details see Supplementary Fig. 3).

Waterproof acts in a non-cell-autonomous manner

To elucidate the function of wat for LC of the tracheal tubes in
more detail we asked whether wat acts cell-autonomously or in a
non-cell-autonomous fashion. It has been proposed that both of
these different mechanisms mediating gene activity play a role in
tube dilation processes. For example, ion-transport that results in
increased luminal pressure followed by tube dilation is a non-cell-
autonomous process (Bryant and Mostov, 2007; Jayaram et al,,
2008), while Sec24-dependent secretion drives cell-autonomous
tube expansion (Forster et al,, 2010). To analyse whether locally
restricted wat activity causes normal LC of the tracheal tubes we
performed region restricted tracheal wat expression in wat
mutants using the UAS/Gal4 system. To achieve region specific
tracheal Gal4 expression we established transgenic fly lines, which
express Gal4 controlled by the spalt (sal) (Kiihnlein et al., 1997)
and the knirps (kni) (Chen et al., 1998; Vincent et al., 1997) tracheal
enhancers, respectively (Materials and methods). The sal-tracheal
enhancer (salTE) Gal4 fly line expresses Gal4 in the embryonic
dorsal trunk, while the kni-tracheal enhancer (kniTE) Gal4 shows
expression in dorsal branches and cells of the lateral trunk as
expected (Supplementary Fig. 4). These region specific tracheal
drivers and the well established pan-tracheal driver btl-Gal4
(Shiga et al., 1996) were used to achieve localised ectopic wat
expression in wat mutant embryos (Fig. 5A and D). Pan-tracheal
wat expression (btl-Gal4/UAS-wat) in wat mutant embryos results
in normal LC in more than 90% of the embryos. Interestingly, wat
expression limited to the dorsal trunk cells (salTE-Gal4/UAS-wat)
still gave rise to a normal wild-type like LC in about 50% of wat
mutant embryos. Even more strikingly, low wat expression in the
dorsal branch and lateral trunk cells of the tracheal system (kniTE-
Gal4/UAS-wat) resulted in normal LC in about 4% of wat mutant
embryos. In contrast, neither wat mutant embryos nor RNAi
mediated pan-tracheal wat knock-down embryos (btl-Gal4/UAS-
watRNAI) produced gas filled tracheal systems at all (Fig. 5E). Also,
restricted branch-specific RNAi mediated wat knock-down by the
salTE-Gal4 or kniTE-Gal4 driver results in normal gas filling and
viable flies (not shown). Thus, these results indicate that region
specific tracheal wat expression is sufficient to rescue the lack of
tracheal gas-filling phenotype of wat mutant embryos.

At the beginning of the LC process of wild-type embryos bubble
formation is initiated stochastically in one of the two dorsal trunk
branches in the central metameres 4-6 (Tsarouhas et al., 2007;
Supplementary movie 1). Also wat embryos rescued by wat
expression in the dorsal trunk (salTE-Gal4/UAS-wat) show initial
bubble formation in dorsal trunk central metameres as found in
wild-type embryos. More interestingly, even in the cases of wat
mutant gas filling rescued by wat expression in dorsal branch and
lateral trunk cells (kniTE-Gal4/UAS-wat), we observed initial

0,2um

0,2um

Fig. 4. waterproof mutant embryos display a disrupted envelope of the tracheal
cuticle. Transmission electron microscopy of early stage 17 wild-type (A) and wat*®/
wat*® mutant (B) tracheal dorsal trunk branches. Arrowheads in A and B point to
the taenidial folds lining the lumen of the tracheal system. Arrows point to the
unstructured uniform tracheal lumen in wild-type trachea (A) and to the mem-
brane-like structures in the tracheal lumen of wat mutant embryos. The insets (B, B")
show the close association of taenidial folds and membranous structures in the wat
mutant trachea.

bubble formation exclusively in the dorsal trunk (not shown).
The spreading of the gas through the continuous tracheal system
also followed the same stereotyped course as in wild-type
embryos and we never observed partial gas filling after initiation
of LC. From these results we conclude that wat acts in a non-cell-
autonomous manner to mediate gas filling of the tracheal tubes
during embryogenesis.
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Fig. 5. Waterproof acts non-cell-autonomously. Stage 17 wild-type (A), btl-Gal4/UAS-wat; wat*f/wat*® (B), salTE-Gal4/UAS-wat; wat*f/wat*® (C) and kniTE-Gal4/UAS-wat;
wat*®/wat*® (D) embryos were stained with CBP (green) and anti-Wat antibodies (red). Wat is expressed throughout the tracheal system in wild-type (arrows in A) and after
pan-tracheal wat expression in wat mutant embryos (arrows in B). Wat is expressed exclusively in the dorsal trunk (arrow in C) after salTE mediated wat expression in wat
mutant embryos. Wat is not detectable in the dorsal branches and the lateral branches (arrowheads in C). Wat is expressed in the dorsal branches and the lateral branches
(arrows in D) but not in the dorsal trunk (arrowhead in D) after kniTE mediated wat expression in wat mutant embryos. Note, that kniTE dependent expression is weaker
than btl and salTE dependent expression. Extracellular unspecific staining of the anti-Wat antiserum is indicated by asterisks. This staining is also present in wat mutant
embryos, indicating unspecifity of the anti-Wat antiserum. (E) Quantification of the rescue efficiency. The diagram shows the tracheal liquid clearance (LC) of embryos
bearing various genetic backgrounds as indicated. Numbers refer to: embryos with LC/total number of embryos. Note: we never observed partial LC, i.e. the tracheal systems
were filled entirely with either gas or liquid at the end of embryogenesis. Schema in E illustrates the tracheal Gal4 expression of btl-Gal4 (blue), salTE-Gal4 (orange) and

kniTE-Gal4 (green).

Discussion

Airway liquid clearance is a critical developmental step to
mature the liquid filled tubular branches of vertebrate lungs and
invertebrate tracheal systems into functional organs. Here we
present evidence that the Drosophila fatty acyl CoA reductase
Waterproof mediates the hydrophobic surface coating of the
outermost tracheal sublayer. This coating is essential for the initial
gas bubble formation within the dorsal trunk of the tracheal

system. The rupturing of the liquid column is the prerequisite for
normal gas filling of the tracheal tubes and, thus, a functional
tracheal system.

waterproof encodes an acyl CoA reductase
Wat shows sequence similarities to the vertebrate fatty acyl CoA

reductases, FAR1 and FAR2. Both human and mouse enzymes are
localised to peroxisomes distributed throughout the cytoplasm, as
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revealed after transfection of these genes into Chinese hamster
ovary-K1 cells and onion epidermal cells (Cheng and Russell, 2004;
Heilmann et al., 2012). In contrast, Wat reveals an apically enriched
cytoplasmic localisation in fly embryos and cell culture expression
and localisation studies indicate no specific association of Wat with
peroxisomes, but rather the endoplasmic reticulum. With regard to
enzyme characteristics, FAR1 and FAR2 preferred fatty acids of 16
and 18 carbons as substrates (Cheng and Russell, 2004), but when
FAR1 was expressed in the seeds of the plant Arabidopsis thaliana
that harbour a different acyl-CoA pool, the enzyme also reduced
unsaturated fatty acids of 18 and 20 carbons (Heilmann et al., 2012).
We found that Wat expressed in yeast exclusively processes very
long chain fatty acids of 24 and 26 carbons as substrates; Wat did
not reduce fatty acids of 16 and 18 carbons even though these are
present in large excess in the yeast system. Thus, while Wat is
involved in lipid metabolism, it has distinct biochemical properties
and a different intracellular localisation - indeed FAR1 and FAR2 do
not rescue wat mutants (data not shown). Therefore Wat and the
human FARs perform different functions in lipid metabolism. Wat
localisation at the endoplasmic reticulum is consistent with the
assumption that Wat is involved in wax biosynthesis, since the
endoplasmic reticulum also associates with the wax synthase,
which produces wax monoesters by trans-esterification of the fatty
alcohol to a fatty acid (Cheng and Russell, 2004).

Waterproof mediates hydrophobic coating of the tracheal envelope

The cuticle of the tracheal system is composed of different
horizontal layers with distinct biochemical and functional proper-
ties (Moussian, 2010). The hydrophobic nature of the tracheal
envelope, the outermost layer of the cuticle, probably originates
from the deposition of waxes. Here we present molecular and
morphological evidence that the fatty acyl CoA reductase Wat is
essential for the morphogenesis of the tracheal envelope. We
further provide evidence that in embryos lacking wat the outer-
most layer of the tracheal envelope disintegrates and fragments of
the layer are found detached from the cuticle inside the tracheal
lumen. The observation that some fragments are still connected to
the underlying cuticle suggests that the layer is initially formed
but becomes disconnected from the cuticle during further devel-
opment. The biochemical products of Wat activity are very long
chain fatty alcohols, which occur naturally in free form as
components of the cuticular lipids but more usually they are
esterified into wax esters. Thus, our results indicate that the
hydrophobic coating of the tracheal cuticle envelope with long
chain alcohols and/or waxes is essential for normal tracheal
morphogenesis and gas filling of the tracheal system at the end
of embryogenesis.

How are these hydrophobic coating materials transported and
deposited to their final target positions in the Drosophila cuticle?
Larvae of the wax moth Galleria mellonella and the beetle Tenebrio
molitor produce pore canals, which pass through the epidermal
cuticle and might be the pathway by which the movement of wax
precursors to the surface is achieved. Furthermore, the last step of
wax ester biosynthesis is probably completed by an extracellular
esterase activity close to the cuticle surface (Locke, 1959, 1961).
Such canals and extracellular esterases have not been described in
the Drosophila tracheal system. However, based on our results that
wat mediates its function non-cell-autonomously, we also propose
an extracellular wax assembly near its target positions. In our
rescue experiments of wat mutant embryos by localised tracheal
wat activity we exclusively observe initial bubble formation
similar to wild-type embryos. Even when wat is merely expressed
in dorsal branch and lateral trunk cells of the tracheal system,
bubble formation is initiated stochastically in one of the two
dorsal trunk branches of central metameres 4-6 as found in

wild-type embryos. Thus, hydrophobic envelope formation is also
established at the apical side of tracheal cells, which lack Wat
expression. Since rapid diffusion of molecules has been described
in the developing tracheal system (Forster et al., 2010) we propose
diffusion of the wax precursors within the tracheal tubes. The
insolubility, high molecular weight and inertness of the hydro-
phobic coating components suggest final assembly of these pre-
cursors at the site of deposition.

Hydrophobic coating of the tracheal system is essential for gas filling
of the tubes

The initial gas bubble formation in the tracheal tube is very fast
and, thus, it has been proposed that the underlying physical
process of its formation is cavitation of the tracheal liquid i.e.
generation of gas bubbles at constant temperature while pressure
is decreased (Woods et al., 2009). Furthermore, the necessary
pressure to cause cavitation, also called the tensile strength of the
liquid, depends on several parameters of the liquid and its
interaction with the solid wall (Brennen, 1995; Forster and
Woods, 2012). An important parameter is the hydrophobicity of
the wall: a more hydrophobic wall structure causes weaker tensile
strength of the liquid. By this mechanism, air bubbles form on a
wax coated glass rod held into water from cold trap, which is
supersaturated with air. In contrast, no bubbles of gas are liberated
from uncoated glass rods in such water (Wigglesworth, 1953).
Thus, we suppose that wat activity generates a hydrophobic wax/
lipid layer in the tracheal lumen, which decreases the tensile
strength of the tracheal liquid and ultimately causes bubble
formation by cavitation. We have no indication that the pressure
inside the tracheal system of wat mutant embryos is different from
wild-type embryos and, thus, cavitation may exclusively be caused
by decreasing the tensile strength of the tracheal liquid. Indeed,
the transepithelial barrier function of the tracheal epithelium is
normal in wat embryos, a prerequisite for a wild-type like pressure
inside the tubes of such embryos. After initiation of bubble
formation the gas spreads throughout the whole tracheal system
- no partial gas filling was observed in any of our experiments.
Thus, initial bubble formation mediated by a hydrophobic layer
invariably leads to a functional air filled tracheal system.
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