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SUMMARY

The decay of mRNAs is a key step in eukaryotic gene
expression. The cytoplasmic Lsm1-7-Pat1 complex
is a conserved component of the 50-to-30 mRNA
decay pathway, linking deadenylation to decapping.
Lsm1-7 is similar to the nuclear Sm complexes that
bind oligo-uridine tracts in snRNAs. The 2.3 Å resolu-
tion structure ofS. cerevisiaeLsm1-7 shows thepres-
ence of a heptameric ring with Lsm1-2-3-6-5-7-4
topology. A distinct structural feature of the cyto-
plasmic Lsm ring is the C-terminal extension of
Lsm1, which plugs the exit site of the central channel
and approaches the RNA binding pockets. The 3.7 Å
resolution structure of Lsm1-7 bound to the C-termi-
nal domain of Pat1 reveals that Pat1 recognition is not
mediated by the distinguishing cytoplasmic subunit,
Lsm1, but by Lsm2 and Lsm3. These results show
how the auxiliary domains and the canonical Sm folds
of the Lsm1-7 complex are organized in order to
mediate and modulate macromolecular interactions.
INTRODUCTION

RNA degradation modulates the steady-state levels of cellular

transcripts and has emerged as a powerful mechanism for

altering the abundance of proteins in response to changes in

physiological conditions (reviewed in Schoenberg and Maquat,

2012). In eukaryotes, cytoplasmic mRNA turnover generally

starts with the shortening of the poly(A) tail at the 30 end of the

message (reviewed in Chen and Shyu, 2011). The short stretch

of adenosines that is left by the action of the deadenylases

(Ccr4-Not and Pan2-Pan3) is the foothold for initiating two alter-

native decay pathways: the degradation of the RNA body in the

30-to-50 direction (via the exosome-Ski complex) or the removal

of the 50 cap structure and degradation in the 50-to-30 direction
(via the decapping factors and Xrn1) (reviewed in Garneau

et al., 2007). Genetic, biochemical, and structural data have

shown that the core enzymes and regulators in mRNA turnover

are evolutionarily conserved and have revealed the presence

of intricate interaction networks (see the reviews above).

The conserved Lsm1-7-Pat1 complex plays an important role

in coupling deadenylation and decapping in the 50-to-30 decay
C

pathway (Bouveret et al., 2000; Tharun et al., 2000, Tharun,

2009; Haas et al., 2010; Ozgur et al., 2010; Totaro et al., 2011).

Lsm1-7-Pat1 preferentially associates with the 30 end of oligoa-

denylated mRNAs in vivo (Tharun et al., 2000; Tharun and

Parker, 2001), protecting the last 20–30 nucleotides of the mes-

sage (He and Parker, 2001). Lsm1-7-Pat1 subunits are required

for normal rates of decapping in vivo (Bouveret et al., 2000;

Tharun et al., 2000) and colocalize to discrete cytoplasmic foci

known as P bodies along with all other 50-to-30 decay factors

(Tharun et al., 2000; Pilkington and Parker, 2008; Haas et al.,

2010; Ozgur et al., 2010). Lsm1-7 is composed of seven Sm-

like proteins (numbered 1–7) and is related to the nuclear Sm

complexes involved in binding small nuclear RNAs (snRNAs) (re-

viewed inWilusz andWilusz, 2005). Pat1 is a multifunctional pro-

tein. It binds the decapping complex Dcp1-Dcp2 (Pilkington and

Parker, 2008; Braun et al., 2010; Nissan et al., 2010; Ozgur et al.,

2010) as well as another decapping activator, Dhh1 (DDX6)

(Braun et al., 2010; Haas et al., 2010; Nissan et al., 2010; Ozgur

et al., 2010; Sharif et al., 2013). Pat1 has also been shown to

interact with the Xrn1 exoribonuclease in yeast (Bouveret

et al., 2000; Nissan et al., 2010) and with the Ccr4-Not deadeny-

lase in Drosophila (Haas et al., 2010). Although many of these in-

teractions are likely to be transient, the association of Pat1 with

Lsm1-7 is sufficiently stable to allow the purification of the

endogenous octameric complex from yeast (Bouveret et al.,

2000; Chowdhury et al., 2007). In vitro, Lsm1-7-Pat1 binds

directly polyuridine oligonucleotides with enhanced affinity

when flanked by a short oligo-adenosine tail (Chowdhury et al.,

2007). In yeast, Lsm1-7-Pat1 preferentially binds short oligo-uri-

dine stretches located close to the 30 end of endogenous

mRNAs (Chowdhury et al., 2007; Mitchell et al., 2013).

Sm folds are uridine-specific RNA binding domains (Achsel

et al., 2001). Structural studies have revealed how nuclear Sm

complexes assemble into heteroheptameric rings around

specific U-rich sequences of the U1 and U4 snRNAs (Pomeranz

Krummel et al., 2009; Weber et al., 2010; Leung et al., 2011). In

contrast to the spliceosomal Sm proteins, the two canonical

Lsm complexes (Lsm1-7 and Lsm2-8) form rings spontaneously

in the absence of RNA (Achsel et al., 1999; Salgado-Garrido

et al., 1999). The cytoplasmic Lsm1-7 and the nuclear Lsm2-8

complexes share six of their seven subunits (reviewed in Wilusz

and Wilusz, 2005). The distinguishing cytoplasmic subunit

Lsm1 harbors critical determinants for the RNA binding

properties of the complex not only in the canonical Sm domain

but also in the distinctive C-terminal domain (Tharun et al.,
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Figure 1. Structural Analysis of Lsm1-7 and

Lsm1-7-Pat1 Complexes

(A) A schematic representation of the domain ar-

rangements of the yeast Lsm1-7 and Pat1 pro-

teins. Color-filled rectangles highlight the Sm folds

of the Lsm proteins and the folded domain of Pat1.

Dashed rectangles highlight the C-terminal ex-

tensions of Lsm1 and Lsm2. The residue numbers

indicate the constructs used in this study.

(B) A table with data collection and refinement

statistics. Values for the highest-resolution shell

are given in parenthesis. Structure validation was

carried out with Molprobity (Chen et al., 2010).
2005; Chowdhury and Tharun, 2008; Chowdhury et al., 2012).

The expectation is that Lsm1 might also specify other cyto-

plasmic-specific interactions. In this work, we address how the

Sm folds and the distinct auxiliary domains of Lsm1-7 are struc-

tured and how they mediate the interaction with Pat1.

RESULTS AND DISCUSSION

Reconstitution of a Recombinant Lsm1-7-Pat1 Core
Complex
The Lsm1–Lsm7 proteins contain a central Sm-like domain

flanked by N-terminal and C-terminal extensions (Figure 1A).
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The Lsm1-7 complex is expected to be

formed by hetero-oligomeric building

blocks similar to those of the nuclear

Sm complex, and Lsm2-3 corresponds

to SmD1-D2, Lsm6-5-7 to SmF-E-G,

and Lsm4-1 to SmD3/B (Kambach et al.,

1999; Raker et al., 1999; Salgado-Garrido

et al., 1999; Bouveret et al., 2000; Zaric

et al., 2005; Mund et al., 2011). We

obtained recombinant S. cerevisiae

Lsm2-3 and Lsm5-6-7 from coexpres-

sion constructs (a gift of K. Nagai and Y.

Kondo). S. cerevisiae Lsm1 and Lsm4

were expressed individually. In the latter

case, the polypeptide (residues 1–114,

hereby referred to as Lsm4) lacked the

long Q- and N-rich C-terminal extension

(Figure 1A). This region of Lsm4 is proteo-

lytically sensitive in vitro (K. Nagai and

Y. Kondo, personal communication) and

is not required for normal mRNA decay

rates in vivo (Decker et al., 2007). Recon-

stitution of the Lsm1-7 complex included

a mild denaturing step (Zaric et al., 2005)

that most likely overcomes the tendency

of these proteins to oligomerize unspe-

cifically when at high concentrations

in vitro.

S. cerevisiae Pat1 (796 residues) is a

multidomain protein with N-terminal, pro-

line-rich, Mid, and C-terminal domains
(Figure 1A) (Haas et al., 2010; Nissan et al., 2010). The C-terminal

domain is required and sufficient to bind Lsm1-7 in both yeast

(Nissan et al., 2010) and humans (Braun et al., 2010). The Mid

domain has also been shown to contribute to Lsm1-7 binding

(Pilkington and Parker, 2008; Braun et al., 2010) and, in the

case of the Drosophila ortholog, provides a major interaction

site (Haas et al., 2010). We expressed and purified a portion

of S. cerevisiae Pat1 including both the Mid and C-terminal

domains (residues 220–796), formed a complex with the recon-

stituted Lsm1-7, and subjected the octameric assembly to

limited proteolysis (Figure S1A). Treatment with the protease

elastase resulted in the accumulation of truncated Pat1 and



Lsm1 proteins, whereas all other subunits of the complex re-

mained stable (Figure S1A). N-terminal sequencing and mass

spectrometry analysis mapped the proteolytic fragment of Pat1

to the C-terminal domain (residues 450–796, hereby referred to

as Pat1C). Full-length Lsm1 (172 residues) was proteolyzed

into different fragments that started at residues 27 or 45 and

ended at residues 145 or 159. Previous studies have shown

that the N-terminal extension of Lsm1 is functionally dispensable

in yeast (Tharun et al., 2005). In contrast, the conserved C-termi-

nal extension (also known as C-terminal domain or CTD) is

required for RNA binding in vitro and for Lsm1 function in vivo

(Tharun et al., 2005; Chowdhury et al., 2012). Therefore, we

engineered a construct of Lsm1 containing residues 27–172

(referred to as Lsm1A) and purified the corresponding Lsm1A-7

and Lsm1A-7-Pat1C complexes for structural analysis.

Lsm1-7 Is an Sm-like Heptameric Ring
We obtained crystals of yeast Lsm1A-7 diffracting at 2.3 Å reso-

lution and solved the structure by molecular replacement with

the coordinates of known Sm-like rings (Leung et al., 2011;

Mund et al., 2011). The final model is refined to an Rfree of

25.8% and an Rwork of 21.1% with good stereochemistry (Fig-

ures 1B and S1B). The model includes most of the polypeptide

chains (see the Supplemental Information) and, in addition, in-

cludes ten residues of the tag engineered in Lsm2 for purification

purposes (Figure 2A). Each of the seven Lsm proteins contains

the characteristic Sm fold, a b barrel of five antiparallel and highly

bent b strands with an N-terminal a helix (helix a1) on top. The

seven Sm domains pack side by side in a ring-like architecture

with a flat surface on top (the so-called proximal face, where

the a helix is positioned) and the so-called tapered or distal

surface at the bottom (Figure 2A). The overall oligomeric struc-

ture of the Lsm1-7 ring is generally similar to that of the nuclear

U4 snRNP core (Leung et al., 2011). The oligomerization is based

on the same repeating principle, namely the b4 strand of one

subunit packing against the b5 strand of the neighboring subunit

(Figure 2A, left). This results in an intermolecular b sheet that

scaffolds the ring via extensive hydrophobic contacts.

The order of the subunits in the ring is Lsm1-2-3-6-5-7-4, as

predicted previously (Kambach et al., 1999; Raker et al., 1999;

Salgado-Garrido et al., 1999; Bouveret et al., 2000; Zaric et al.,

2005; Mund et al., 2011) (Figure 2A, left). Specificity in the

hetero-oligomerization is dictated by subunit-specific inter-

actions, typically electrostatic contacts along the outer and inner

circumferences of the ring. Several conserved electrostatic pairs

are observed within the Lsm2-3 and Lsm6-5-7 building blocks

(for example, Glu18Lsm2-Arg61Lsm3, Asp22Lsm2-Arg24Lsm3, and

Glu29Lsm5-Arg87Lsm7) (Figures 2B and S2). In addition,

conserved electrostatic pairs also occur between building

blocks (for example, Lys19Lsm3-Glu54Lsm6, Lys41Lsm7-

Glu23Lsm4, and Arg62Lsm1-Glu48Lsm4) (Figures 2B and S2) and

most likely contribute to the ability of the Lsm subunits to

assemble in a preformed ring without the need of an RNA mole-

cule to nucleate hetero-oligomerization (Achsel et al., 1999; Sal-

gado-Garrido et al., 1999). We note that the corresponding Sm

building blocks lack some of the charged pairs at the equivalent

positions, suggesting why mixed assemblies of Sm and Lsm

proteins might not be favored.
C

The Lsm1-7 Ring Is Complemented by the Distinct
C-Terminal Extensions of Lsm1 and Lsm2
The Lsm1-7 ring has distinct structural features in comparison to

known Sm rings. First, the C-terminal extension of Lsm2 (resi-

dues 72–94) forms a short a helix (a2) that lies on the proximal

face of the ring between the a1 helices of Lsm2 and Lsm3 (Fig-

ure 2A, right). The second and most striking feature is the C-ter-

minal extension of Lsm1 (residues 115–172). This domain starts

at the proximal face of the ring, wraps around the outer surface of

the Lsm1 b barrel with a short a helix (a2), and reaches the distal

face (Figure 2A, right). Here, it forms a long a helix (a3) that tra-

verses the diameter of the ring, interacting with Lsm1 and

Lsm4 on one side and with Lsm3 and Lsm6 on the other (Fig-

ure 2A, left). Then, the polypeptide makes a sharp bend (at the

conserved Gly162) and stretches in an antiparallel fashion on

top of helix a3 (Figure 3, left). Several evolutionarily conserved in-

teractions hook the very C terminus of Lsm1 inside the ring;

Tyr172Lsm1 fits in a pocket created between Lsm1 and Lsm4,

whereas Asp170Lsm1 interacts electrostatically with Arg59Lsm1.

The extensive interactions we observe in the structure rationalize

why the C-terminal extension of Lsm1 is able to function even

when in trans (Chowdhury et al., 2012).

Deletion of the C-terminal extension of Lsm1 has been shown

to decrease the RNA binding affinity of the complex but not to

prevent the specific recognition of U tracts (Chowdhury et al.,

2012). Superposition of the Lsm1A-7 structure with that of the

U4 snRNP core (Leung et al., 2011) allowed us to examine the

putative RNA binding path (Figure 3). In the nuclear Sm complex,

RNA binds at the consecutive uridine binding pockets that line

the inner circumference of the ring and then threads through

the entire central channel to exit with the 30 end at the distal

surface (Leung et al., 2011) (Figure 3, right). The uridine-binding

pockets are created by the so-called Sm1 and Sm2 sequence

motifs and are also present in Lsm1-7 (Figure 2B). Therefore,

the Lsm proteins are expected to engage U bases with stacking

and hydrogen-bonding interactions similar to those observed in

the nuclear Sm complex (Leung et al., 2011). In contrast, RNA

cannot exit the Lsm1-7 ring with the same path observed in

the U4 snRNP structure because it would clash against the

C-terminal extension of Lsm1 (Figures 3 and S3). It is possible

that, although it poses considerable steric hindrance at the exit

site of the channel, the Lsm1 extension might still allow the

RNA 30 end to thread through a narrow hole leading to the distal

face of the ring. However, it is also possible that the C-terminal

extension prevents the RNA from threading through the entire

channel. In this case, we note that the unhindered part of the

channel would be able to fit two to three additional nucleotides

after the last uridine expected from the U4 snRNP structure

(U836) (Figure 3).

The Pat1 C-Terminal Domain Protrudes on the Side of
the Lsm1-7 Ring
Next, we addressed how Lsm1-7 binds Pat1. The Lsm1A-7-

Pat1C complex yielded diffracting crystals, but we found that

only Lsm1A-7 was present in the asymmetric unit. Inspection of

the lattice suggested the presence of a possibly unfavorable

crystal contact involving the C-terminal extension of Lsm1.

Given that the Lsm1 C-terminal extension is not required for
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Figure 3. The C-Terminal Extension of Lsm1 Obstructs the RNA Exit Site

The C-terminal extension of Lsm1 binds in the central channel. On the left, a zoom-in of the Lsm1A-7 structure is shown in the same orientation as in the left panel

of Figure 2A. On the right is the corresponding zoom-in view of the U4 snRNP core structure (Leung et al., 2011) after optimal superposition of the Sm subunits,

and RNA is shown in black. The Asp and Asn residues of the Sm1motif and the Arg residue of the Sm2motif indicate the position of the uridine-binding pocket of

Lsm7 (left) and SmG (right). Lsm2-3 and SmD1-D2 have been removed for clarity. The Lsm1 C-terminal extension is 12–15 Å away from the corresponding

position of U836 in the U4 snRNP structure and would clash against a nucleotide at the corresponding position of A840.
the assembly of the Lsm ring or Pat1 binding (Chowdhury et al.,

2012), we generated an Lsm1 construct encompassing residues

45–145 (referred to as Lsm1B), which corresponds to its smallest

proteolytic fragment (Figure S1A). The Lsm1B-7-Pat1C complex

yielded crystals diffracting to 3.7 Å resolution. We solved the

structure bymolecular replacement using Lsm1A-7 and a homol-

ogy model of Pat1C based on the crystal structure of the human

ortholog previously crystallized in isolation (Braun et al., 2010).

The structure is refined to an Rfree of 29.5% and an Rwork of

24.9% with good stereochemistry (Figures 1B and S1B). The

final model includes essentially all the residues of Lsm1B-7 and

residues 471–783 of Pat1.

S. cerevisiae Pat1C is an elongated domain formed by helical

hairpins related to the ARM repeat and HEAT repeat family of
Figure 2. Canonical and Idiosyncratic Features of the Lsm1-7 Ring

(A) The crystal structure of S. cerevisiae Lsm1A-7 is shown in two orientations rela

viewed on the distal face. The b4 and b5 strands of each subunit are labeled. The ri

C-terminal extension of Lsm2 are labeled as well as the helices in the C-termina

highlighted in gray in the right panel.

(B) Structure-based sequence alignment of Lsm1-7 orthologs from S. cerevisiae

colored boxes. In black are the central residues of the Sm1 motif (the D-x-F-

sequence). The canonical secondary structures of the Sm cores are above the se

around the corresponding sequences.

C

proteins (Figures 4A and S4A). Each hairpin is composed of

two antiparallel a helices (termed A and B) connected by loops

or additional helical segments (Andrade et al., 2001). The hair-

pins pack side by sidewith a right-handed twist, forming a super-

helix with a layer of six A helices on one side and a layer of five B

helices on the other. However, the hairpins of PatC are rather

irregular in both length and curvature. A comparison of the struc-

ture of yeast Pat1C with that of the human ortholog (Braun et al.,

2010) shows that the first four hairpins are very similar, whereas

the last two differ substantially in the position and orientation of

the individual helices (Figure S4B). The Pat1C superhelix binds

with the N-terminal repeats to the outer surface of Lsm1-7 and

projects into solvent, the last hairpin being positioned more

than 40 Å away from Lsm1-7 (Figure 4A).
ted by a 90� rotation around a horizontal axis. In the left panel, the complex is

ght panel is a side view of the complex. The N-terminal helices (a1 and a2) in the

l extension of Lsm1 (a2 and a3). The additional residues of the Lsm2 tag are

(Sc), H. sapiens (Hs), and D. melanogaster (Dm). Conserved residues are in

x-N sequence, F being a hydrophobic residue) and the Sm2 motif (the R-G

quences. The additional helices in the extensions of Lsm1 and Lsm2 are boxed

ell Reports 5, 283–291, October 31, 2013 ª2013 The Authors 287



Figure 4. Pat1C Binds the Lsm1-7 Ring at Lsm2 and Lsm3

(A) Structure of Lsm1B-7-Pat1C viewed with the ring in the same orientation and colors as in Figure 2A, left. Pat1 is shown in green, and the interacting helices of

the HEAT-repeat-like superhelix is indicated.

(B) A zoom-in view of the interaction interface between Pat1, Lsm2, and Lsm3 with conserved interacting residues highlighted and indicated.

(C) Evolutionary conservation of the Lsm2-3 binding region of Pat1C (helices 1A and 2A).

(D) Pull-down experiments of GST-tagged Pat1 residues (Mid + C-terminal domains) with untagged Lsm2-3, Lsm5-6-7, Lsm4, and Lsm1. Input samples (top) and

samples precipitated on glutathione-agarose beads (bottom) were analyzed on 4%–12% Bis-Tris NuPage gel with 2-(N-morpholino)ethanesulfonic acid running

buffer. The proteins corresponding to the bands are indicated on the right side of both panels. Asterisks indicate the precipitated bands.

(E) Pull-down experiments of GST-tagged Lsm2-3 (WT andmutants) withWT Pat1C and of GST-tagged Pat1CWT andmutants withWT Lsm2-3. The experiments

were carried out and are shown as described in (C).

288 Cell Reports 5, 283–291, October 31, 2013 ª2013 The Authors



Conserved Interactions of Pat1 with Lsm2 and Lsm3
Pat1C binds Lsm1-7 at the Lsm2 and Lsm3 subunits (Figure 4A).

Helices 1A and 2A of Pat1C dock onto the C-terminal extension

of Lsm2 (helix a2) and onto the canonical helix of the Lsm3 core

(a1) (Figure 4B). A comparison of the yeast Lsm1B-7-Pat1C struc-

ture with that of human Pat1C and of yeast Lsm1A-7 in isolation

shows that the interacting regions do not undergo significant

conformational changes upon binding. Pat1, Lsm2, and Lsm3

are involved in an intricate set of electrostatic interactions.

Glu483Pat1 interacts with Arg87Lsm2 and Lys9Lsm3. Salt bridges

also occur between Arg538Pat1-Asp84Lsm2 and Lys534Pat1-

Asp13Lsm3. In addition, hydrophobic contacts engage

Leu479 Pat1, Tyr486Pat1, and Leu490Pat1 with Arg87Lsm2 and

Leu10Lsm3. All these residues are evolutionarily conserved (Fig-

ures 2B and 4C), suggesting that the metazoan orthologs share

a similar recognition mechanism. Indeed, substitution of some of

the equivalent residues in quadruple mutations of human Pat1

have been shown to impair Lsm1 binding in coimmunoprecipita-

tion assays (Braun et al., 2010).

The structural analysis predicts that the Lsm2-Lsm3 subcom-

plex is sufficient for Pat1C binding. We tested this hypothesis in

GST pull-down assays. A GST-Pat1 polypeptide encompassing

both the Mid and C-terminal domains was indeed able to precip-

itate Lsm2-3 and not Lsm1, Lsm4, or Lsm5-6-7 (Figure 4D). Next,

we engineered specific mutations. Consistent with the structure,

GST-Pat1C was unable to precipitate Lsm2-3 upon mutation of

Lsm2 Lys9Glu, Leu10Asp. Furthermore, mutation of Leu479Ala,

Glu483Lys in GST-Pat1C impaired the interaction with wild-type

(WT) Lsm2-3 (Figure 4E). The structural analysis also suggests a

possible mechanism for the recognition of the Mid domain of

Pat1. In both Lsm1-7 structures, part of the tag of Lsm2 is well

ordered and wedges between the a1 and a2 helices of Lsm2

(Figures 2A, 4A, and S1B). The Asn-Leu-Tyr-Phe-Gln sequence

of the tag interacts with evolutionarily conserved residues of

Lsm2 (Leu2, Lys8, and Thr9 on a1 and Leu82 and Ala85 on

a2). Interestingly, the Mid domain of Pat1 contains a similar

stretch of amino acids (Asp-Phe-Tyr-Phe-Gln, residues 304–

308 in S. cerevisiae Pat1) that are highly conserved and

embedded in a predicted unstructured region, both of which

are typical features of short linear motifs (Davey et al., 2012).

Thus, it is possible that the tag serendipitously mimics a short

linear motif in the Mid domain of Pat1.

Concluding Remarks
The Lsm1-7 complex contains an Sm ring with auxiliary struc-

tural features. The C-terminal extension that is characteristic of

Lsm1 partially occupies the internal channel of the Sm-like

ring. This extension approaches the RNA binding pockets of

Lsm1-7, providing a rationale for the observation that it en-

hances the RNA binding properties of the core (Chowdhury

et al., 2012). However, the basis for the specific recognition of

U tract RNAs presenting a short oligo-A tail is currently unclear

and an important question for future studies. The C-terminal

extension that is characteristic of Lsm2, and the canonical Sm

domains of Lsm2-Lsm3 create preformed protein-protein inter-

action sites. The C-terminal domain of Pat1 binds a composite

surface of Lsm2 and Lsm3 with a rather rigid recognition mech-

anism between folded domains. We speculate that the unstruc-
C

tured Mid domain of Pat1 (Braun et al., 2010) might flexibly dock

to an adjacent pocket of Lsm2 and enhance binding affinity.

Counterintuitively, the binding determinants for Pat1 are not

provided by Lsm1, the subunit of the cytoplasmic Lsm1-7 com-

plex that differs from the nuclear Lsm2-8 complex. This finding

has several implications. First, the localization of these proteins

to distinct subcellular compartments (Reijns et al., 2009) is likely

to provide a key contribution to binding specificity. Second, the

interaction surfaces of Lsm2-3 that we identified for the cyto-

plasmic Lsm1-7-Pat1 complex might also be involved in

protein-protein recognition in the nucleus in the context of the

nuclear Lsm2-8 complex. An interesting candidate for Lsm2-8

binding is the splicing factor Prp8, which appears to contain a

sequence similar to the Lsm2-Lsm3 binding region of Pat1

(data not shown). Given that, in human cells, Pat1 is a shuttling

protein with transient nuclear localization (Marnef et al., 2012),

it is also possible that Pat1 itself might interact with Lsm2-8,

rationalizing how Pat1 might exert its nuclear functions.

EXPERIMENTAL PROCEDURES

Protein Purification and Binding Assays

S. cerevisiae Lsm1-7 complexes were formed by mixing purified Lsm1, Lsm4,

Lsm2-3, and Lsm5-6-7 in a 2:2:1:1 ratio and reconstituted essentially as

described previously (Zaric et al., 2005). All Pat1 fragments were cloned as

either TEV-cleavable His6-ZZ-tagged or His6-GST-tagged proteins and puri-

fied with standard procedures. The octameric complex was reconstituted by

incubating the individually purified proteins in a 1:1.5 molar ratio of Lsm1-7

and Pat1 for 1 hr at 4�C. The complex was purified further by size-exclusion

chromatography (Superdex 200) in a buffer containing 20 mM Tris (pH 7.4),

150 mM NaCl, and 1 mM dithiothreitol. For in vitro pull-down experiments,

point mutations were introduced with QuikChange site-directed mutagenesis

according to the manufacturer’s instruction (Stratagene). Mutants were puri-

fied by similar protocol as for the WT Lsm1-7 and Lsm2-3. The pull-down

assays were carried out as described previously (Sharif et al., 2013). Protocols

are detailed in the Supplemental Information.

Crystal Structure Determination

Lsm1A-7 and LsmB1-7-Pat1C yielded crystals (conditions are detailed in the

Supplemental Information) that diffracted to 2.3 Å and 3.7 Å resolution, respec-

tively, with Swiss Light Source and European Synchrotron Radiation Facility

synchrotron radiation. Data were processed with XDS (Kabsch, 2010), and

the structures were solved by molecular replacement with Phaser (McCoy

et al., 2007). The atomic models were built with Coot (Emsley et al., 2010)

and refined with PHENIX (Adams et al., 2010). The data collection and refine-

ment statistics are summarized in Figure 1B.

ACCESSION NUMBERS

The coordinates and structure factors have been deposited in the Protein Data

Bank under accession numbers 4C92 for Lsm1A-7 and 4C8Q for Lsm1B-7-

Pat1C.

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures
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