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Abstract

In this thesis I develop a new 1D thermodynamic sea-ice model with parametrized
brine dynamics to study brine movement inside sea ice and the evolution of sea-ice
salinity. Brine dynamics, which have never been measured directly, are poorly under-
stood and determine the evolution of sea-ice salinity which in turn influences the phase
composition and thermodynamic properties of sea ice as well as the stratification of
the ocean. The newly developed 1D Semi-adaptive Multi-phase Sea-Ice Model SAM-
SIM has many unique properties, such as a semi-adaptive grid, a gas volume fraction,
different densities of ice and brine, and slush formation during snow melt. The ther-
modynamic properties and phase composition are calculated according to mushy-layer
theory. SASMIM uses a finite volume approach to explicitly conserve enthalpy and
mass.
I introduce parametrizations for each of the three desalination processes which oc-
cur in sea ice, namely gravity drainage, flushing, and flooding. Our gravity drainage
parametrization takes the convective nature of the process into account and is able to
reproduce laboratory measurements and fulfill theoretical expectations, a feat unac-
complished by previously proposed parametrizations. In contrast to other attempts,
my flushing parametrization explicitly accounts for horizontal flows close to the ice
surface. Flooding is the least well understood of the three processes, and no data or
theory are available to evaluate the performance of the model. SAMSIM’s parametrized
salinity evolution agrees well with sea-ice characteristics derived from ice-core data.
By forcing SAMSIM with atmospheric reanalysis data from the Arctic I learn that the
depth of gravity drainage varies strongly over time and can span the full ice depth. I
also discover that gravity drainage is not restricted to the growth season as previously
thought, but is also present as the ice warms and begins to melt. While gravity drainage
is most effective in the lower half of warming sea ice, flushing desalinates the upper half
of sea ice once surface melt sets in. By comparing the reanalysis forced runs with and
without salinity parametrizations I find that prescribing a depth dependent salinity
profile characteristic of multi-year ice leads to deviations below 5 % on average. I also
introduce a second set of parametrizations which aim to imitate the salinity profile
of the original more complex parametrizations but at a reduced computational cost.
These simplified parametrizations only reduce the absolute error of the prescribed
salinity profile by approximately 1 %.
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Chapter 1

Introduction

Sea ice is a multi-phase material consisting of almost pure fresh water ice, salty brine,
and entrapped gas bubbles (Weeks, 2010). It forms a thin and brittle skin on the
polar ocean’s surface spread across approximately 5 % of our planet. Although sea
ice was traditionally only of interest to those who lived and travelled in the coastal
regions of the Arctic, scientists quickly recognized the critical role sea ice plays in our
global climate system. Sea ice severely dampens the heat flux from the ocean to the
atmosphere in winter, and the ice surface reflects the majority of incoming short wave
radiation in spring. Sea ice has such a large impact on ocean-atmosphere fluxes and the
surface albedo that all atmosphere-ocean models need to include sea ice in some way
if they hope to simulate the global ocean and atmosphere circulation with any degree
of precision. Aside from these two major effects sea ice also plays a significant role
in many other aspects, such as the freshwater and salinity cycle, ocean-atmospheric
momentum transfer, biogeochemical processes, and ocean waves.

Public and economic interest in sea ice are increasing. The strong decline of summer
sea ice in the Arctic is one of the most visible consequences of anthropogenic greenhouse
gas emissions and opens the resources of the Arctic to human development. In the last
decade commercial ships have begun sailing the Northern Sea Route and the Northwest
Passage. Both routes are expected to become economically viable for shipping over the
next decades as sea ice decreases further. Populations along the Arctic coasts are
faced with changing sea-ice and climate conditions. Especially hunters and fishers are
affected by the rapid decline of sea ice.

1.1 Sea-ice research

There are, broadly speaking, five possible approaches to study sea ice. Field mea-
surements are the most direct and comprehensive approach, as no simplifications or
approximations affect the results. However, the logistical, technical, and legal obstacles
which need to be overcome in the Arctic and Antarctic make field work costly, dan-
gerous, and unpredictable. A further hindrance is that it is difficult to measure what
happens inside sea ice. While the internal temperature profile of ice can be measured
with various thermometers, the only common method used to measure the small-scale
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physical and chemical properties of sea-ice is ice coring. Taking ice cores is a highly
invasive process which is non-repeatable and has not been automated. As a result of
these limitations and the general difficulties of conducting sea-ice research in the field,
the observational record of ice cores is sparse in both time and space. The quality of
the observational record is further degraded by the high heterogeneity of sea ice which
requires multiple cores to deduce representative values (as described by Gough et al.,
2012). As a result of these issues, much of what occurs inside and below sea ice and the
scale of many processes can not be deduced from available field data. A fundamental
limitation of field measurements as a tool for scientific inquiry is its irreproducibility
and the inability of the investigator to set boundary conditions. This is where the
second approach truly shines, namely laboratory studies.

In a laboratory experiments can be repeated and the boundary conditions controlled to
accommodate the needs of the investigator. However, even under laboratory conditions
sea ice is a difficult substance to sample, and the time and length scales over which
sea-ice processes occur make many processes unfeasible to study. For example, it can
require months to grow sea ice a meter thick, and individual ice flows can be kilometers
wide. An additional limitation is that many common field conditions are difficult to
reproduce in a laboratory. Snow for example is of fundamental importance to sea ice,
but can not be easily recreated and applied in a controlled fashion.

The third approach used to study sea ice is by analysing satellite retrievals. Researchers
have derived sea-ice concentrations from satellite measurements since the late seventies
onwards, from which they can compute ice location, drift, extent, and area in both the
Arctic and Antarctic (Carsey, 1992). Over the last decade advances have been made to
deduce ice thickness from remote sensing data, which is much more difficult to measure
than concentration (e.g. Kwok et al., 2004; Kaleschke et al., 2012; Maas et al., 2013).
Although satellites are invaluable tools to gain a comprehensive overview of sea-ice
conditions in the Arctic and Antarctic, they are plagued by retrieval uncertainty, have
a limited resolution, and can only measure radiative properties.

The remaining two approaches are theory and simulation, and sea ice has proven itself
to be rather resistant to both. The only aspect of sea ice fully captured theoretically is
the thermodynamics of a small mass integral of ice large enough to contain a balanced
sample of ice and salty brine. The thermodynamics on this scale are well captured
by mushy layer theory, which assumes that the temperature and solid fraction are in
balance via the freezing point of the brine (Feltham et al., 2006). Simulations of sea-
ice aspects other than thermodynamics are very dependent on parametrizations and
approximations. For ice dynamics, a further complication is that even on large scales
sea ice becomes very stiff and brakes when sufficiently compressed. This behavior
is very difficult to capture numerically, and requires large amounts of iterations and
computational resources to solve (e.g. Lemieux et al., 2010; Losch and Danilov, 2012).
These theoretical and numerical issues have led to sea ice being represented as simply
as possible in climate models. The first and still widely used method of representing
sea ice in coupled atmosphere-ocean models is to assign each ocean cell an ice cover
fraction and thickness. If no ice is present, both are zero. When ice is present, the
ice fraction defines how much of the ocean cell surface is covered by a vertically and
horizontally homogeneous slab of ice with a constant salinity. The amount of ice is
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given by the ice fraction times the thickness. Ice melt, growth, horizontal transport,
and compression are derived from the atmospheric and oceanic boundary conditions
in accordance with the ice state, leading to a new thickness and fraction for each new
time step. Over the last decades climate models have begun increasing the complexity
of the sea-ice components of climate models in the hope of better simulating the Arctic
and Antarctic. One proposed method to advance sea-ice models is to move away from
the assumption that sea-ice salinity is constant over time (e.g. Vancoppenolle et al.,
2007).

That sea-ice salinity varies over time and depth has been well known for a long time
(Malmgren, 1927). However, only relatively recently were the processes which desali-
nate ice clearly identified (Notz and Worster, 2009). Changes of bulk salinity in sea ice
are all caused by brine movements in the ice which advect salt. These brine movements
are collectively referred to as brine dynamics and are one of the aspects of sea ice which
is poorly understood, as brine movements can not be measured directly and can only
be inferred indirectly from salinity measurements. Field measurements of salinity are
scarce as they require ice coring, and laboratory studies of salinity are mostly restricted
to small-scale ice growth experiments which do not capture the full salinity evolution
(Cox and Weeks, 1974; Cottier et al., 1999; Notz, 2005). 2D numerical simulations
and analytical models of brine fluxes exist, but only for growing sea ice under ideal-
ized conditions (e.g. Oertling and Watts, 2004; Petrich et al., 2004; Wells et al., 2010;
Rees Jones and Worster, 2013a).

1.2 Thesis outline

In this thesis I study brine fluxes in sea ice and the resulting salinity evolution by
parametrizing brine dynamics in a 1D model based on the mushy-layer theory. The
new model and parametrizations I develop are used to quantify and analyze the salinity
evolution and the brine dynamics. The insights I gain from these studies allow me to
quantify the impact the salinity evolution has on sea-ice characteristics relevant to
climate models, from which I can deduce which level of salinity representation is ideal
for climate models. The insights into brine dynamics are also of great importance to
sea-ice biogeochemistry, as the chemical composition in sea ice is highly dependent on
the advection of dissolved tracers in the brine. The three key questions my thesis seeks
to answer are:

1. How and with which precision can brine fluxes be parametrized in a 1D sea-ice
model?

2. When and how do brine movements occur in sea ice, and how does sea-ice salinity
evolve over time as a result?

3. How much could climate models benefit from fully parametrizing salinity, and
which salinity approach provides the best improvement at a reasonable compu-
tational cost?
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My PhD research consists of two main components. The first is model and parametriza-
tion development, and the second is using the newly developed tools to analyze and
study the resulting salinity evolution and its effects. Instead of separating these two
components I decided to split the thesis thematically. Chapter 2 focuses on sea ice dur-
ing growth, and chapter 3 focuses on surface melt and the full salinity cycle. In chapter
2 only the technical aspects and model description are introduced which are needed to
simulate sea-ice growth. The remaining model description follows in chapter 3. As a
result both chapters consist of equal parts model description and results. Chapters 2
and 3 are written in the style of journal publications. Accordingly, they contain their
own abstracts, introductions, and conclusions. Chapter 2 was already published and
chapter 3 which is an extension of chapter 2 is currently being prepared for submission.

� In chapter 2 I focus on gravity drainage during ice growth, the most thoroughly
studied and strongest desalination process. Gravity drainage is the convective
exchange of cold and dense brine with fresher seawater and occurs mostly in
growing sea ice close to ice-ocean interface. Gravity drainage is crucial to the
biogeochemistry of sea ice as it replenishes the ice with nutrients. In chapter 2 I
introduce SAMSIM, the 1D Semi-Adaptive Multi-phase Sea-Ice Model along with
two parametrizations of gravity drainage. I use laboratory salinity measurements
to tune my parametrizations and show that my salinity simulations are in better
agreement with numerical, theoretical, and observational findings than previous
attempts. SAMSIM is then used to study how gravity drainage behaves under
a range of conditions. This chapter was published in the Journal of Geophysical
Research: Ocean in 2013 and will be referred to as (Griewank and Notz, 2013)
in chapter 3.

� In chapter 3 I implement surface melt and parametrizations of flooding and
flushing into SAMSIM and use the newly expanded model to study the salinity of
Arctic sea ice. Flooding occurs when enough snow accumulates on the ice surface
to push the ice underwater so that ocean water floods the snow. Flushing occurs
when melt water percolates downward or flows horizontally into flaws or melt
ponds. The inclusion of surface melt, flooding, and flushing, enables SAMSIM to
simulate the complete sea-ice evolution. I use SAMSIM to simulate many years
of simulated Arctic sea ice, from which I draw conclusions on the transformation
of first-year to multi-year ice, on the relationship between bulk salinity and sea-
ice thickness, on the characteristics of flushing and gravity drainage, and on
the variability of sea-ice salinity. I choose to focus on Arctic sea ice because
the newly-developed flooding parametrization poorly reproduces strong flooding
events, which are very widespread in the Antarctic. Finally, I study how various
salinity approaches implemented in SAMSIM affect sea-ice properties relevant
to climate models to asses the impact fully parametrizing the temporal salinity
evolution would have on climate models.

� In the final chapter 4 I summarize the results of chapters 2 and 3 to answer the
three questions of my thesis and provide a brief outlook.
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Chapter 2

Insights into brine dynamics and
sea-ice desalination from a 1D
model study of gravity drainage

We study gravity drainage using a new one-dimensional, multi-phase sea-ice model. A
parametrization of gravity drainage based on the convective nature of gravity drainage
is introduced, whose free parameters are determined by optimizing model output
against laboratory measurements of sea-ice salinity evolution. Optimal estimates of
the free parameters as well as the parametrization performance remain stable for ver-
tical grid resolutions from 1 to 30 mm. We find a strong link between sea-ice growth
rate and bulk salinity for constant boundary conditions, but only a weak link for
more realistic boundary conditions. We also demonstrate that surface warming can
trigger brine convection over the whole ice layer. Over a growth season, replacing
the convective parametrization with constant initial salinities leads to an overall 3
% discrepancy of stored energy, thermal resistance, and salt release. We also de-
rive from our convective parametrization a simplified, numerically cheap and stable
gravity-drainage parametrization. This parametrization results in an approximately 1
% discrepancy of stored energy, thermal resistance, and salt release compared to the
convective parametrization. A similarly low discrepancy to our complex parametriza-
tion can be reached by simply prescribing a depth-dependent salinity profile.

2.1 Introduction

Gravity drainage, which is the convective exchange of cold and dense brine with fresher
seawater, is the dominant desalination process in sea ice (Notz and Worster, 2006, 2009)
and plays a crucial role in sea-ice biogeochemistry by replenishing the ice with nutri-
ents (Vancoppenolle et al., 2010). Gravity drainage can also be used to efficiently
desalinate sea water (Gu et al., 2012). In this paper, we study gravity drainage us-
ing the newly developed 1D thermodynamic sea-ice model SAMSIM (Semi-Adaptive
Multi-phase Sea-Ice Model) with a convective gravity-drainage parametrization. The
model is used in particular to quantify how gravity drainage affects the thermodynamic
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properties of sea ice. We also present a simplified salinity parametrization based on
our convective parametrization that is suitable for climate models.

Our current understanding of gravity drainage is far from complete, partly because
detailed measurements of brine flow in sea ice are largely lacking. Most of our cur-
rent understanding stems from evaluating salinity measurements from ice cores and
laboratory studies of growing multi-phase materials (e.g. Chen, 1995; Wettlaufer et al.,
1997; Cottier et al., 1999). However, growing and measuring sea ice in the laboratory
over many weeks is a practical challenge, and (to our knowledge) no laboratory sea-ice
experiments lasting longer than a month have been conducted.

Detailed field studies of growing sea ice through ice core series are rare owing to the
severe logistical issues of taking and processing ice cores under inhospitable climate con-
ditions. Hence, only few such studies exist, most notably those conducted by Nakawo
and Sinha (1981), Lei et al. (2010) and Gough et al. (2012). Unfortunately, measuring
salinity by ice cores has many drawbacks. These include brine loss from cores, low tem-
poral resolution, and the inability to sample repeatedly due to the destructive nature
of core extraction. Gough et al. (2012) conducted a very thorough analysis of their core
data showcasing that multiple cores are necessary to obtain representative values. This
is due to the high horizontal variability of sea ice, and because salinity measurements
from the same core at different heights can not be treated as independent due to a high
vertical correlation of measured salinity anomalies.

In this paper, we study gravity drainage numerically. Previous numerical studies can
be split into 2D approaches, which simulate the flow field of brine in a vertical slice of
growing sea ice, and 1D approaches, which parametrize the brine flow and its effects
on the vertical sea-ice profile. 2D models have the drawback of being computationally
expensive and/or limited to well defined test cases (see Oertling and Watts, 2004;
Petrich et al., 2004; Wells et al., 2010). Proposed 1D parametrizations are either based
on the quantitative estimates of Cox and Weeks (1988), or treat gravity drainage
as a diffusive process similar to turbulent diffusion in a mixed layer (Vancoppenolle
et al., 2010; Jeffery et al., 2011). However, both of these 1D methods are inconsistent
with laboratory experiments and 2D simulations from which we know that gravity
drainage is not a turbulent process. Saenz and Arrigo (2012) were the first to take the
convective nature of gravity drainage partially into account, but their gravity drainage
parametrization is still based on the simplified estimates of Cox and Weeks (1988). Our
approach extends the findings of small-scale laboratory experiments and 2D numerical
simulations to large and longer scales using a 1D thermodynamic model based on
mushy-layer theory and a convective gravity drainage parametrization derived from
research on brine fluxes from solidifying binary alloys (Wells et al., 2010). A key
property of the newly developed thermodynamic multi-phase model SAMSIM is a
semi-adaptive grid, which gives us an advantage over previous attempts to parametrize
gravity drainage. Instead of prescribing an explicit ice-ocean front, as in the Maykut
and Untersteiner model (Maykut and Untersteiner, 1971) and all its descendants (e.g.
Semtner, 1976; Bitz and Lipscomb, 1999; Huwald et al., 2005a), the grid ensures that
the ice-ocean interface is always well approximated without imposing any assumptions
of salinity, temperature or growth rate. Open questions we address in this paper are
the link between sea-ice growth speed and bulk salinity, whether gravity drainage can
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penetrate deep into the ice, and how gravity drainage can be represented in climate
models.

Our new convective parametrization is ill-suited for earth system models as it requires a
small time step to avoid instabilities. As an alternative we derive a simpler parametriza-
tion from the convective parametrization which can improve sea-ice thermodynamics
and salt release into the ocean for climate models. In this paper we refer to the sim-
pler salinity parametrization as the simple parametrization and to the more complex
parametrization that calculates brine fluxes as the convective parametrization.

Section 2.2 provides a brief description of SAMSIM. In section 2.3 we introduce the full
convective parametrization. Based on it, we also devise the simple salinity parametriza-
tion. Section 2.4 contains a description of the Levenberg-Marquadt optimization al-
gorithm and data used to determine the free parameters of our parametrizations. In
section 2.5 we conduct our first experiments using idealized boundary conditions. Here
we study how growth speeds influence bulk salinity and how deep convection can be
triggered. These findings are then compared to a more realistic growth season simu-
lated by forcing the model with three-hourly ERA-reanalysis data in section 2.6. Using
this growth season, we study how the thermal properties of the sea ice vary when the
salinity is either prescribed, or simulated using the simple parametrization that we in-
troduced in section 2.3. Finally, in section 2.7, we present a summary of our results and
conclusions, and discuss how gravity drainage can be represented in climate models.

2.2 SAMSIM description

In the following section we provide a brief overview of SAMSIM, our semi-adaptive
multi-phase sea-ice model. The thermodynamic core of SAMSIM is derived from the
mushy-layer equations of sea ice (Feltham et al., 2006). Our approach is similar to that
of Notz and Worster (2006), but was extended to also include a gas phase and gravity
drainage. For an in depth discussion on multi-phase sea-ice models see Hunke et al.
(2011).

In contrast to commonly used front tracking models (see Maykut and Untersteiner,
1971; Semtner, 1976; Bitz and Lipscomb, 1999; Huwald et al., 2005a; Saenz and Ar-
rigo, 2012), SAMSIM has no prescribed ice-ocean front. In a front tracking method ice
grows by changing the position of the ice-ocean interface at each time step. In contrast,
in SAMSIM the solid fraction increases in a grid layer which has a constant thickness at
each time step. Although there are many reasons to prefer the front-tracking approach,
our approach grants us some additional freedom which we exploit when parametrizing
brine dynamics. Additionally, there is a simple theoretical elegance in directly repre-
senting sea ice and water as a continuum of varying solid fraction, consistent with the
mushy layer nature of sea ice.

SAMSIM is a finite-volume model to allow simple conservation of all conserved prop-
erties, such as mass, energy, and tracers. Currently, the spatial and temporal discreti-
sation schemes that are used to solve the heat transport equation
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q = −k∂T
∂z

are explicit and of first-order. The time integrated heat flux between the layer i and
i+ 1 over a time step of length dt is∫ t+dt

t

q dt = −kT
i − T i−1

4zi+4zi−1

2

· dt

which requires a small time step to satisfy the CFL condition for heat diffusion

k dt

ρc4z2 < 0.5

. Higher order and implicit schemes can be implemented if a longer time step is needed,
but were unnecessary for this study as we require a small time step to resolve the brine
dynamics.

2.2.1 Layer properties

SAMSIM is a 1D finite-volume model, in which each layer is horizontally and vertically
homogeneous and all phases are in local thermal equilibrium with each other. Each
layer is defined by four core variables: absolute salinity Sabs, absolute enthalpy Habs,
mass m, and thickness 4z. The absolute enthalpy is the total Joules of enthalpy, and
the absolute salinity is the total salt content in the layer in grams. From the absolute
salinity, absolute enthalpy, and mass we derive temperature T and solid mass fraction
ψ by numerically solving the following set of equations for enthalpy (H), bulk salinity
(Sbu), brine salinity (Sbr), and ψ:

H = Habs

m
= −ψL+ f(T ) (2.1)

Sbu = Sabs

m
= Sbr(1− ψ) (2.2)

Sbr = g(T ) (2.3)

The appropriate value of latent heat (L), the integral of the heat capacity with respect
to temperature (f(T )), and the brine salinity as a function of temperature (g(T )) are
material specific and their accuracy can be varied as desired. By approximating gas as
massless, we can derive the solid, liquid, and gas phase volume fractions (φs, φl, and
φg) from ψ, 4z, and m.

Salt is treated as a massless tracer but brine density is a function of brine salinity.
When brine moves between layers, salt advection is calculated via the simple upstream
method. The simple upstream method is artificially diffusive, especially when the
tracer concentration has steep gradients. Since the brine salinity is determined by the
temperature and since the temperature profile in sea ice is rather smooth, the artificial
diffusion for salinity is small. If passive tracers were introduced, a more sophisticated
advection method might be needed.

The thermal conductivity of each layer is simply the volume weighted sum of the solid
and liquid fractions k = φsks + φlkl. The gas fraction is treated as a perfect insulator
and does not contribute to the layer’s conductivity.
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Figure 2.1: Semi-adaptive grid evolution during growth for N=5, Ntop=1, Nmid=2, Nbot=2
(see subsection 2.2.2).

2.2.2 Semi-adaptive grid

SAMSIM employs an irregular 1D grid which we refer to as a semi-adaptive grid for
lack of a better term. This grid consists of a set number of top and bottom layers (Ntop

and Nbot) with a constant thickness of 4z0, and a variable number of adaptive middle
layers (Nmid) which grow and shrink in steps of 4z0/Nmid as needed. When the ice is
so thin that not all layers are needed surplus layers are deactivated. When the number
of active layers (n) is less than the maximum number of layers (N=Ntop +Nmid +Nbot),
all active layers share the thickness 4z0. If no ice is present at all, SAMSIM shrinks to
a single layer. The layers are indexed from top to bottom. This means that the index
i of the top layer is 1, the lowest active layer has the index n, and when all layers are
active the lowest layer has the index N .

Figure 2.1 shows how SAMSIM’s semi-adaptive grid evolves during growth for N=5,
Ntop=1, Nmid=2, Nbot=2. Starting from a single layer of open water (n=1), the grid
grows to ensure that the solid volume fraction φn

s in the lowest active layer always lies
below a certain fixed value (φn

s < φmin
s ). When φn

s increases beyond the limit value
φmin
s a new layer of underlying ocean water is added. If not all layers are activated

(n < N) the new layer is created by activating one of the previously deactivated layers.
If n = N then the uppermost bottom layer is merged into the middle layers, and all
the bottom layers are shifted downwards by one. When this occurs all middle layers
grow thicker by 4z0/Nmid. The resulting changes of the core variables in the middle
layers is calculated using simple upstream advection. For example, if only two middle
layers exist both layers grow by 4z0/2, and a mass of 4z0/2 times the density of the
lower middle layers is reallocated to the upper middle layer. Conversely, the lowest
layer is dissolved when φn

s=0 and φn−1
s < φmin

s /2. The lowest layer is dissolved only
when φn−1

s < φmin
s /2 to ensure that new layers are not dissolved shortly after forming,

when φn
s=0 and φn−1

s ≈ φmin
s . It is possible to set φmin

s to zero, but under certain
conditions this can lead to many bottom layers with very low solid fractions. In nature
these very low solid fractions would indicate free floating ice crystals. φmin

s can be
understood physically as the minimum amount of ice needed for the ice crystals to
form a connected mushy layer.

All tests performed in this paper use a value of 0.05 for φmin
s , which results in a slight

artificial cut off at vertical resolutions of 1 or 2 mm. Raising φmin
s up to 0.10 barely

effects results, but instabilities occurred at values lower than 0.03.

The semi-adaptive grid has three major advantages. First, it allows SAMSIM to keep
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the spatial resolution constantly high at the ice-ocean and ice-atmosphere boundaries
without exceeding a set maximum amount of layers. The second advantage is that no
numerical diffusion occurs in the bottom layers due to moving layer boundaries. In-
stead, newly formed bottom layers retain their salinity, enthalpy and mass as they are
shifted upwards in steps until they are merged into the middle layers. The final advan-
tage is that the lowest layer —which represents the water at the ice-ocean interface—
can evolve freely, which lets SAMSIM imitate processes such as underplating to a cer-
tain extent. Underplating refers to the collection of relatively light freshwater below
the ice and above the denser underlying ocean water.

For the aims of this study, these advantages of the semi-adaptive grid far outweigh
its disadvantages. These disadvantages include temporal discontinuities in the simula-
tions caused by the finite-size, step-wise addition and removal of layers. Additionally,
vertical tracer advection across the transition from thin to thicker layers can cause
nonphysical tracer transport. However, these numerical artifacts are small and can
safely be neglected in this paper, since gravity drainage is mostly localized to the thin
bottom layers. A further disadvantage of SAMSIM’s grid are possible difficulties in
its horizontal advection, which, again, is irrelevant for our one-dimensional study. Fi-
nally, SAMSIM’s grid causes a somewhat larger computational burden compared to
traditional grids, because the thin top and bottom layers limit the time step.

For specific purposes, such as calculating the ice thickness, we require a defined ice-
ocean front which is not provided a-priori by SAMSIM’s grid. For such purposes we
linearly interpolate a value from the solid volume fraction of the lowest layer. For ex-
ample, if φn

s = φmin
s /3, we would assume the upper third of the bottom layer to contain

sea ice. The diagnosed ice-ocean front does not move smoothly, especially during melt.
The impact of these steps on the Rayleigh number is discussed in subsection 2.5.2.

For the purpose of this paper, snow is treated as a single layer of varying thickness
with constant density and constant thermal conductivity. Although this simple setup
is still standard for sea-ice components of earth system models, there have been recent
efforts to include more sophisticated representations of snow in climate models since
the snow has such a low and varying thermal conductivity (Lecomte et al., 2011).

2.2.3 Brine expulsion

Because the density of ice is lower than that of water, freezing sea ice expels excess brine.
This process is known as brine expulsion and was once believed to be an important
desalination process in thin ice (Cox and Weeks, 1975). Notz and Worster (2006, 2009)
have demonstrated that although brine expulsion redistributes salt in the sea ice, the
amount of salt that leaves the ice is negligibly small. However, brine expulsion is crucial
to the density evolution of sea ice.

SAMSIM determines the amount of brine which is expelled by checking if the summed
volume of liquid brine and solid ice exceeds the volume of the layer at each time step.
If the volume does exceed the layer volume SAMSIM assumes that the excess brine
is always moved to the layer below, regardless of the properties of the lower layers.
The same approach was used in the 1D model of Maksym and Jeffries (2000). In
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reality, brine can move upwards as well. Upward displaced brine can cause thin skins of
extremely salty brine on top of the sea ice, a behavior Roscoe et al. (2011) captured with
time-lapse photography. However, since it has been shown analytically and numerically
that the total amount of salt transported downward by expulsion leads to maximum
deviations of roughly 1 ppt (Chiareli and Worster, 1995; Notz, 2005) and the amount of
upward displaced brine is likely much smaller than the amount of downward displaced
brine, we expect the bulk salinity errors in SAMSIM introduced by our unidirectional
implementation of brine expulsion to be far below 1 ppt.

2.3 Gravity drainage parametrizations

In contrast to 2D or 3D models, a 1D model is incapable of resolving a convective
process and gravity drainage can only be parametrized. Previous one-dimensional
parametrizations of gravity drainage were presented by Cox and Weeks (1988),Van-
coppenolle et al. (2010),Jeffery et al. (2011), and Saenz and Arrigo (2012). The em-
pirical approach of Cox and Weeks (1988) calculates desalination in growing ice as a
combination of initial salt entrapment, brine expulsion and gravity drainage. However,
we know now from experiments and theory that both initial salt entrapment and brine
expulsion do not desalinate the ice (Notz and Worster, 2009). Both Vancoppenolle
et al. (2010) and Jeffery et al. (2011) treat gravity drainage as a diffusion caused by
brine mixing, similar to turbulent mixing in boundary layers. However, both of these
approaches are in contrast to studies of growing mushy layers which have shown that
gravity drainage is a convective process linked to chimney formation (e.g. Tait and Jau-
part, 1992; Chen, 1995; Wettlaufer et al., 1997; Notz and Worster, 2008). In sea ice,
these chimneys are commonly referred to as brine channels. Saenz and Arrigo (2012)
were the first to incorporate some limited convective aspects of gravity drainage into
a 1D parametrization. However, the parametrization of Saenz and Arrigo (2012) re-
lies heavily on empirical values, both to determine initial desalination and stable solid
fractions. We have developed two new one-dimensional parametrizations of gravity
drainage; a convective parametrization and, derived from it, a simple parametrization.
The convective parametrization attempts to simulate brine movement as accurately as
possible based on a few core assumptions. The simple parametrization is an attempt
to produce a realistic salinity evolution at a lower computational cost.

2.3.1 Rayleigh number

Following previous studies (e.g. Tait and Jaupart, 1992; Wettlaufer et al., 1997), the
onset and strength of gravity drainage in our parametrizations is linked to a porous-
medium/mushy-layer Rayleigh number (R). In general, such a Rayleigh number de-
scribes the ratio of driving buoyancy to both thermal diffusion and viscous resistance
in a porous medium. However, the specific formulations used to calculate R vary
considerably and are highly dependent on the assumed permeability. Due to this high
variability in definitions, it is difficult to compare Rayleigh number values from different
studies. A clear distinction should be made between Rayleigh numbers that represent
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the whole vertical sea-ice profile, and discretized local Rayleigh numbers that represent
the convective flow from a specific single horizontal layer to the underlying ocean. We
use Ri to refer to the Rayleigh number of the layer i. As many of our assumptions
are based on the results of Wells et al. (2010), we strive to keep our definition of the
Rayleigh number qualitatively similar to their definition.

Ri can be regarded as the ratio of two representative timescales; the advective timescale
tiA and the diffusive timescale tiD. The advective timescale is defined by the amount of
time that the buoyancy driven brine in layer i needs to reach the ice-ocean interface.
According to Darcy’s law the brine moves at a characteristic speed of

v =
g4ρΠ

µ

in which g is the gravitational acceleration, 4ρ is the density difference between the
brine and the underlying ocean water, µ the dynamic viscosity of the brine, and Π
the sea-ice permeability which is discussed in subsection 2.3.4. Accordingly, the time
needed for brine to move the distance hi from layer i to the ice-ocean interface equals

tiA =
hiµ

Π̃ig4ρi
.

Instead of the permeability of the layer i we use the minimal permeability of the layers
beneath i,

Π̃i = min(Πi,Πi+1, ...,Πn),

as the most impermeable layer acts as a bottleneck to the flow. Using the minimal
permeability is a simplification of the harmonic mean, which is the correct approach
to determine the bulk permeability for a Darcy flow through a stack of layers.

The diffusive timescale

tiD =
(hi)2

κ

represents the diffusion time of thermal anomalies over the distance hi for a given
thermal diffusivity κ. The diffusive timescale reflects the time necessary for the rela-
tively cold brine traveling downward in the channels to warm to the temperature of
the surrounding sea-ice.

To calculate the thermal diffusivity representative values of thermal conductivity, ther-
mal capacity, and density must be chosen κ = k/(ρc). Often the phase-averaged values
of sea-ice are chosen in accordance with mushy-layer theory (e.g Vancoppenolle et al.,
2006; Wells et al., 2010, 2011). However, as mushy-layer theory is based on the phase
liquidus relation at thermal equilibrium, it can not capture the non-equilibrium ther-
mal interactions between the cold brine in the channels and the warmer surrounding
sea ice. The heat flux from the sea ice to the brine channels depends on the geometry
of the brine channels, the flow field in the channels, and the speed with which the
salty brine dissolves the channel walls. Instead of the phase-averaged values of sea ice
we use the thermal conductivity, capacity, and density of the brine to calculate the
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thermal diffusivity for the following reasons. Firstly, due to the fact that the mass of
the surrounding sea-ice is much greater than the mass of the brine flowing through
the channels, the surrounding sea ice cools much less than the brine in the channels
warms and can be considered thermally inert. Secondly, as the thermal diffusivity of
the brine in the channels is up to eight times smaller than the phase-averaged values
of the surrounding sea-ice, thermal anomalies in the brine channel persist longer than
in the surrounding sea ice. Both of these considerations indicate that the heat flux
from the surrounding sea ice to the cold brine in the channels is limited by the thermal
diffusivity of the brine itself and not by the thermal diffusivity of the surrounding sea
ice. Our reasoning focuses on the thermal imbalance in the brine channels, but it is
possible that the thermal dissipation of the upwelling brine in the surrounding mush
dominates. However, until a more detailed 2-D or 3-D analysis of gravity drainage can
conclusively resolve the issue, we will use the brine thermal diffusivity as a working
assumption.

By computing density differences via the difference of brine salinity to the salinity
of the lowest active layer n which represents the water at the ice-ocean interface,
4ρi = ρlβ4Si = ρlβ4(Si

br − Sn
br), the resulting Rayleigh number is

Ri =
tiD
tiA

=
g4ρiΠ̃ihi

κµ
=
gρlβ4SiΠ̃ihi

κµ
. (2.4)

A high Rayleigh number indicates that the moving brine flows quicker than thermal dif-
fusion can enforce thermal equilibrium. As long as the moving brine is colder than the
surrounding brine, it remains saltier and heavier and keeps descending. A low Rayleigh
number indicates that thermal diffusion acts quicker than advection, returning the brine
to thermal equilibrium and negating its buoyancy. Assuming both timescales are iden-
tical, brine in the ice would be brought into thermal (and salinity) equilibrium just as
quickly as it moves, resulting in a neutral buoyancy. This dependence of the convective
strength on the Rayleigh number is the core of the convective parametrization we now
turn to.

2.3.2 Convective parametrization

The convective parametrization strives to simulate the convective brine fluxes as accu-
rately as possible. Our approach was heavily inspired by the 2D numerical studies of
growing mushy layers conducted by Petrich et al. (2004) and Wells et al. (2010). By
assuming that chimney spacing in growing mushy layers maximizes potential energy
transport, Wells et al. (2010) linked solute flux to the Rayleigh number of the convect-
ing mushy layer. They concluded that the solute flux increases approximately linearly
with the Rayleigh number when the Rayleigh number is above a critical value. Below
that value the circulation breaks down. Rees Jones and Worster (2013a) found an
analytically derived linear relationship of solute flux to Rayleigh number for 2D planar
flows. Rees Jones and Worster (2013a) numerically extended their approach to 3D
flows to discover some nonlinear behavior between solute flux and Rayleigh number.
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However, despite these nonlinear effects Rees Jones and Worster (2013b) still recom-
mend parametrizing gravity drainage using a linear relationship of Rayleigh number to
solute flux.

Wells et al. (2010) imitate a growing mushy layer with constant and well defined bound-
aries using a quasi-steady-state approach. As SAMSIM aims to simulate sea ice under
all the variable conditions of the Arctic and Antarctic, our 1D parametrization must be
able to deal with a much wider range of changing boundary conditions. We adopt the
Wells et al. (2010) 2D results to a 1D parametrization using the following assumptions:

1. If the Rayleigh number of a layer is above a critical value, brine leaves the ice via
brine channels into the underlying ocean.

2. The amount of brine leaving each layer i is proportional to Ri −Rcrit.

3. All brine which leaves through channels is replaced by brine moving upward
through the mush from the ocean.

4. Brine moving upward transports salt and thermal energy from layer to layer.

5. Brine leaving the sea ice downward through channels moves quickly enough that
thermal interactions with the surrounding ice can be neglected.

Although we have strong support for all of these assumptions from 2D simulations
and experiments, the more the conditions in the 1D model differ from the conditions
simulated by Wells et al. (2010), the less confident we are in our assumptions. This
is especially relevant for deep convection in thick ice. The first assumption implies
that brine channels always exist when the Rayleigh number exceeds the critical value.
Although this can be safely assumed near the ice-ocean interface, we have no evidence
this assumption is always valid in thick ice. Cole and Shapiro (1998) found that brine
channels typically extended 30 to 50 centimeters into 1.4 meter thick slices of first-
year ice taken from two locations near Barrow. However, no channels were found
that extended completely through the ice sheet. To truly validate or invalidate our
assumption a much more thorough study of brine channels would be necessary.

The second assumption results in two free parameters, the critical Rayleigh number
Rcrit and a proportionality constant α which has the physical dimension of kg/(m3s).
How we estimate these parameters is described in section 2.4. This second assumption
is not identical to the findings of Wells et al. (2010), because Wells et al. (2010) linked
the total brine flux to a non-local Rayleigh number and we link the brine flux of each
layer to a local Rayleigh number. As no data or theory exists on how gravity drainage
interacts with entrapped gas bubbles, our gravity drainage parametrization simply
ignores the gas fraction.

Assumptions three and four are similar to those of the channel-active-passive-zone
model proposed by Rees Jones and Worster (2013b) and are justified by the results of
Wells et al. (2010) and Rees Jones and Worster (2013a). Figure 2.2 contains a sketch
of the resulting brine and salt fluxes at the bottom of growing sea ice. In the sketch,
the second to fourth lowest layers are equally unstable (Rn−1 = Rn−2 = Rn−3 > Rcrit)
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Figure 2.2: Sketch of brine fluxes (blue) and resulting salinity fluxes (green) of the convective
gravity drainage parametrization in the bottom ice layers during growth (see subsection 2.3.2).
The blue arrows leaving the column represent brine leaving the ice through brine channels
and entering the ocean. The short blue arrows represent the upwelling brine which replaces
the brine leaving the ice. Arrow thickness indicates flux strength. Although the brine fluxes
are of the same strength, the resulting salt flux are stronger from the colder upper layers as
the brine salinity is higher.

which leads to identical mass fluxes. Although the brine fluxes are of the same strength,
the resulting salt flux are stronger from the colder upper layers because the brine
salinity is higher. The resulting heat fluxes would be opposite to the salt fluxes, with
the warmer lower layers moving heat upward into the colder layers.

The model calculates the temperature, volume fractions and brine salinity of all active
layers from 1 to n at the beginning of each time step according to equations (2.1), (2.2),
and (2.3). Using those values the Rayleigh number of each layer (besides the lowest)
is calculated. If Ri > Rcrit we consider the layer i convectively unstable. The mass of
brine that flows from layer i (bri↓) into the ocean in a time step of length dt is

bri↓ = α(Ri −Rcrit)4zi · dt.

The downward flowing brine is scaled by the time step dt and the layer thickness 4z,
and has the temperature and salinity of the layer it originated from. Note that what
we refer to as brine mass flow is synonymous with liquid mass flow. After br↓ has been
computed for all layers, the resulting upward brine fluxes from layer i + 1 to layer i
resulting from mass conservation are

bri↑ = bri−1↑ + bri↓ =
k=i∑
k=1

brk↓

The amount of brine entering the layer i from below is bri↑ which equals the sum of
brine leaving that layer. Since we advect salt with the upstream method, the amount
of salt which enters the layer i per time step is bri↑ ·Si+1

br and the amount of salt leaving

the layer i is (bri−1↑ + bri↓) · Si
br. The resulting change in absolute salinity is

4Si
abs = bri↑ · Si+1

br − (bri−1↑ + bri↓) · Si
br = bri↑ · (Si+1

br − Si
br). (2.5)
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An implication of these assumptions is that brine movement occurs in convectively
stable layers when a higher layer is convectively unstable. The physical rationale
behind this is that preexisting brine channels through the stable layers allows brine
from the unstable layers to flow downwards without interacting with the stable layers.
However, the resulting upward welling brine fluxes through the mush advect salt and
heat. As long as the temperature decreases towards the ice surface, the upwelling
brine leads to a desalination of the stable layers, which in turn reduces the convective
instability of the layers above.

This convective parametrization requires a small time step, especially since the bottom
layers of SAMSIM are thin. In this paper the bottom layers vary from 2 mm to 5
cm. A basic numerical rule of thumb for 1D advection is that the distance traveled
by the fluid per time step should not be larger than a tenth of the grid spacing.
Translated to SAMSIM this rule states that the volume of brine moving from layer
to layer per time step should not be larger than a tenth of the brine volume in those
layers. The brine volume of each layer and the flow are extremely variable, so a
small time step is necessary to avoid numerical instabilities. Although a simple flux
correction is implemented to ensure that the salt advection remains positive definite,
the computational cost of the stand-alone model is small enough that we can chose the
time step to be as small as we need.

Recently, a scheme which shares some of our assumptions was successfully implemented
into the Los Alamos Sea Ice Model (Turner et al., 2013).

2.3.3 Simple parametrization

The convective parametrization is ill-suited for earth system models as it requires
a small time step to avoid instabilities. As an alternative we propose a simpler
parametrization as a tool to improve sea-ice thermodynamics and salt release into the
ocean for climate models. In this paper we refer to the simpler salinity parametrization
as the simple parametrization and to the more complex parametrization that calculates
brine fluxes as the convective parametrization.

The simple parametrization is based on the assumption that convectively unstable lay-
ers lose salinity until they are stable. This assumption is a simplification of the convec-
tive parametrization in which convectively unstable layers lose salt through convection.
Instead of losing salt via convection, the simple parametrization directly reduces the
amount of salt in the layer until the layer is stable. The simple parametrization always
produces a stable salinity profile while the convective parametrization slowly evolves
towards a stable salinity profile. Since the simple salinity parametrization does not
determine any brine fluxes, it is of very limited use to model biogeochemistry in the
ice.

The first step of the simple parametrization is identical to the convective parametriza-
tion, the Rayleigh numbers of all layers are calculated. If the Rayleigh number is higher
than the critical value, the layer is considered convectively unstable. But instead of
calculating brine fluxes and resulting salt transport, in the simple parametrization we
reduce the salinity by a certain fraction. So if Ri > Rcrit, then the salinity will be
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multiplied with a fixed constant γ < 1 leading to Si
abs in the following time step being

γSi
abs. The resulting parametrization is unconditionally stable and can be summarized

in the following line:

If at time step t: Ri > Rcrit Then: Si
abs

t+1
= γ · Si

abs

t
(2.6)

Again we have a parametrization with two free parameters: Rcrit and γ. For Rcrit we
use the same value as the convective parametrization. γ must have a value between 0
and 1. The closer γ is to 1 the smoother the salinity evolution, but γ must be small
enough to ensure that the salinity decreases faster than the surrounding ice conditions
evolve. The smaller the time step, the closer γ can be to 1. We recommend keeping
γ above 0.9, as large jumps in salinity lead to sudden temperature changes. Our
experience indicates that slight changes of γ do not affect the results much.

We expect the largest differences between the two schemes to occur when sea ice grows
rapidly, because the simple parametrization forces the salinity profile into equilibrium
much quicker than the brine circulation of the convective parametrization. Another
difference is that a convectively stable layer below unstable layers can desalinate in the
convective parametrization, but not in the simple parametrization.

2.3.4 Permeability

In porous media, permeability is part of the proportionality constant in Darcy’s law
which relates flow rate to a pressure gradient. In contrast to static materials (such
as sandstone) the permeability of sea ice is continuously evolving and is affected by
temperature, ice structure, salinity, and flow direction. Brine movement in sea ice
causes heat and salt transport, which leads to a change in permeability, which in turn
affects the brine movement. This behavior leads to highly non-linear effects which can
be exceedingly difficult to capture in numerical models.

The permeability of sea ice is an extremely complex ongoing research topic which has
been studied extensively (e.g. Petrich et al., 2006; Golden et al., 2007; Pringle et al.,
2009; Büttner, 2011; Jones et al., 2012). In SAMSIM we define permeability as an
empirical function of the fluid volume fraction. This commonly used approach neglects
the ice structure, which seems justified for our purposes because Gough et al. (2012)
concluded that desalination processes are mostly unaffected by the ice structure.

All tests in this paper were conducted using the relationship proposed by Freitag (1999):

Πi(φi
l) = 10−17(103φi

l)
3.1.

We believe this empirically derived relationship is similar enough to the Π = Π0(φl)
3

used by Wells et al. (2010) to avoid issues when transferring the results of Wells et al.
(2010) to SAMSIM.

At low liquid fractions sea-ice can become impermeable, and φlcrit = 0.05 is often
used as threshold value under which the remaining brine pockets are assumed to be
isolated from each other (e.g Golden et al., 1998; Petrich et al., 2006; Golden et al.,
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2007; Vancoppenolle et al., 2010). As SAMSIM attempts to represent a spatial average
of possibly highly heterogeneous sea-ice, we believe that small permeabilities at low
liquid fractions are justifiable. Also, if a low permeability results in a Rayleigh number
below Rcrit, our gravity drainage parametrizations predict no changes. So as long as
R < Rcrit, it is irrelevant if the ice is truly impermeable or not. This does not change
the fact that the gravity drainage parametrizations react strongly to changes in the
assumed permeability as it directly affects the Rayleigh number, and therefore also the
values of α and Rcrit.

2.4 Parameter estimation and evaluation

The convective parametrization introduced in subsection 2.3.2 contains two free pa-
rameters, the dimensionless Rcrit and α with the physical dimension of kg/(m3s). In
this section we detail how we derived α and Rcrit from laboratory salinity measure-
ments, and how we determined that both parameters are independent of the vertical
resolution of the model.

2.4.1 Salinity measurements

The salinity measurements we use stem from a laboratory experiment that was de-
scribed in section 8.4 of Notz (2005). In this experiment, an NaCl solution was cooled
from above by a cooling plate that was switched from −5◦ to −10◦ C every 12 hours.
The ice grew to almost 15 cm over the 72 hours of the experiment, which was repeated
once under identical conditions. Throughout the experiment, solid fraction and tem-
perature were measured in situ at fixed depths at a high temporal resolution using
a so-called wireharp (Notz and Worster, 2008). The measured solid fraction is used
to calculate the liquid fraction, and the brine salinity is derived from the measured
temperature. Multiplying the liquid fraction with the brine salinity then allows us to
calculate the bulk salinity.

Although the precision of the wireharp was never determined thoroughly, tests with
solid fractions below 0.8 agreed very well with theoretical expectations. However, at
low liquid fractions slight measurement errors of the solid fraction lead to large errors
in the bulk salinity. As a rule of thumb we assume that for liquid fractions above 0.2
the total error of bulk salinity is below 5 ppt, and that the relative error of bulk salinity
increases with 1/φl as the liquid fraction approaches zero.

The three sub panels of figure 2.3 show salinity measurements at three points in time.
To what extent the differences between the two experiment repetitions (one marked by
black dots, the other by white dots) are due to measurement errors or actual physical
differences is impossible to tell. Cottier et al. (1999) showed that growing sea ice can
have a high horizontal gradient in salinity linked to the location and morphology of
the brine channels. We assume that the experiments were conducted under identical
conditions and the differences result from the sampling size of ice between the wires
and measurement errors.
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Figure 2.3: Bulk salinity measurements (dots) at different depths and corresponding model
profiles at a) t=24h, b) t=48h, c) t=72h. The free parameters of the gravity drainage
parametrization of Setup 1 were optimized to fit Data 1, of Setup 2 to fit Data 2, and of
Setup 1+2 to fit the average of Data 1 and Data 2. Grid parameters: N=90, 4z0=0.2 cm
See subsection 2.4.1 for details on experimental setup and instrumentation.

We choose this experiment for multiple reasons. The first, and arguably the most
important reason, is the high spatial resolution of the data. Also of great advantage is
that the experiment was conducted twice, and that the controlled environment of the
experiment can be easily translated to boundary conditions for the model. In contrast,
field studies of sea ice contain many unknowns, such as precise heat fluxes and dynamic
effects, which makes field measurements difficult to reproduce with a high degree of
accuracy.

Although a similar laboratory experiment was conducted with a fixed cooling temper-
ature of −10◦ C the results are unsuitable for a quantitative evaluation of the model.
This results from of a combination of measurement uncertainty and the fact that the
experiment was only conducted once. Additionally, inspecting the data uncovered
multiple artifacts which further hinder a quantitative evaluation.

The final reason for using this experiment is that the temperature of the cooling plate
alternated between -5◦ and -10◦ C. Our convective parametrization is based on the
results of (Wells et al., 2010), in which a steady cooling temperature was assumed. If
SAMSIM can reproduce the experiments, we have shown that our approach can deal
with more complex conditions than those of Wells et al. (2010).

A limitation of the data is the rather short duration of the experiment. Also, the
experiment would ideally have been conducted more than twice.

2.4.2 Parameter optimization

We use the Levenberg-Marquardt algorithm to determine the optimal values of α and
Rcrit (Levenberg, 1944). The metric which the algorithm seeks to minimize is the
difference between the measured and the modeled salinity every twelve hours. If a
measurement lies inside a model layer, it is directly compared to that layer. If the
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Figure 2.4: a) Values of Rcrit and α derived by the Levenberg-Marquardt optimization algo-
rithm for given sets of salinity measurements (’1+2’ is the average of sets ’1’ and ’2’). For
all initial parameter values (marked by an x) the optimization results were identical. (b)
Optimization results of Rcrit and α from a separate experiment for different vertical grid
spacing dz. dz increases from 2 to 20 mm in 1 mm steps. Neighboring gird spacings (e.g., 3
mm and 4 mm) are connected by a line. Note the different scales of subfigure a & b.

measurement lies between two layers, it is compared against the arithmetic mean of
those two layers.

We optimize the parameters separately for the first and second experiments measured
by Notz (2005). To ensure that the optimization results are not local minima, we chose
four different initial estimations of α and Rcrit. All four initial values result in almost
identical values for all the data sets, which is by itself a promising sign (figure 2.4a).
The differences resulting from using other initial values are smaller than the precision
criterion required to stop the algorithm. The two parameters vary by roughly a factor
of two from set 1 (α=1.93 ·10−3kg/(m3s), Rcrit=0.67) to set 2 (α=1.28 ·10−3kg/(m3s),
Rcrit=1.48).

To get an indication of how sensitive the optimization process reacts to small changes in
the data, we create an additional artificial data set by averaging the two experiments
(figure 2.4a). Using this artificial data, set the optimization process returns values
which lie between the two previous results (α=1.56 · 10−3kg/(m3s), Rcrit=1.01). We
use these values as the default setting for SAMSIM.

2.4.3 Resolution dependency

To test the dependency of the parameters on the vertical resolution we conducted a
simulation with a reference run at a vertical grid spacing of 1 cm, in which ice was
grown from a NaCl solution at a fixed cooling temperature over 6 days. A relatively
high salinity of 70 ppt was chosen to increase the strength of gravity drainage and the
resulting freshwater signal. Every 12 hours the freshwater content of all layers was
saved. The Levenberg-Marquardt algorithm was used to optimize the model with dif-
ferent vertical resolutions to reach the same total freshwater content each 12 hours. In
contrast to the previous subsection in which the salinity profile was used to determine
the model performance, we choose to compare the freshwater content instead of com-
paring vertical profiles. This was done because comparing vertical profiles at different
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resolutions requires interpolation, and results would depend on the interpolation tech-
nique used. We also choose to keep the cooling temperature steady to ensure a linear
temperature profile, which minimizes thermodynamic differences due to the changing
resolution.

The spacing of the model varied from 2 mm to 2 cm in steps of 1 mm, a range that
covers most of the values used in this paper. We find that the variations of α and Rcrit

are smaller than 10 % and show no trend (figure 2.4b). From this we conclude that
our parameters α and Rcrit —which we determined using a 2 mm grid— do not seem
to depend on resolution and are valid for vertical resolutions up to at least 2 cm.

2.4.4 Parametrization evaluation

Although we have determined our free parameters by optimizing the model using salin-
ity measurements, parameter fitting only reduces the model error as much as the struc-
ture of the parametrization allows. To determine if the parametrization can reproduce
the measurements we compare the resulting salinity profiles of the model for the dif-
ferent values of α and Rcrit against the measurements (figure 2.3). The model output
generally agrees very well with measurements, with almost all deviations being smaller
than the measured uncertainty. This good agreement indicates that the assumptions
on which our convective parametrization is based yield an appropriate model. Ad-
ditionally, SAMSIM proves itself capable of reproducing the thermodynamics of the
experiment.

We cannot verify if the high salinity values directly at the cooling plate predicted by
the model occurred during the experiments. But it is to be expected that the ice crystal
formation at the beginning of the experiment includes crystalline processes which can
not be captured using mushy layer theory. It is also difficult to keep the cooling plate
at a constant negative temperature when initially brought in contact with the NaCl
solution because of the very rapid initial exchange of latent heat. The resulting initial
temperature fluctuations are not included in the boundary conditions of the model
simulations.

It is remarkable that despite the rather large spread of α and Rcrit the model setups
1, 2, and 1+2 behave very similarly. This similar behavior can be attributed to the
fact that gravity drainage is a relatively stable process. Increased convection leads to
increased salt loss, which results in lower liquid fractions and permeability, which in
turn reduces convection. Slow convection leads to ice with a higher permeability, which
leads to increased convection.

Although we determined in the previous subsection that the optimal parameter es-
timates of α and Rcrit were insensitive to grid size, a further test is conducted to
determine the sensitivity of the parametrization and the model to changes in vertical
resolution. This test again uses half-daily alternating temperatures of -5◦ and -10◦ C
as a boundary condition. Comparing the salinity profiles after 10 days for six different
vertical resolutions against each other shows two very important results (figure 2.5).
Firstly, the bulk salinity values change very little even though the vertical resolution
changes by a factor of 32. And secondly, the profiles change only very little once
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Figure 2.5: Bulk salinity model profiles for six different vertical resolutions after 10 days.
Beware that the x-axis of each profile is shifted by 20 ppt to improve visibility, i.e. the 5
ppt line of the 16 mm profile is also the 25 ppt line of the 32 mm profile. Grid parameters:
N=300, 4z0=1-32 mm

the vertical resolution is sufficient to fully resolve the curves of the salinity profile.
This test further demonstrates that the convective gravity drainage parametrization is
insensitive to grid sizes.

In conclusion, we derived estimations of α and Rcrit which are independent of grid
resolution. More data from longer experiments is needed to further improve the es-
timations of α and Rcrit, which are highly dependent on the assumed permeability.
Using these values of α and Rcrit in the convective parametrization enables the model
to reproduce measured salinity profiles.

2.5 Idealized tests

After developing, tuning, and evaluating our convective gravity drainage parametriza-
tion with small-scale laboratory data, we now study gravity drainage under various
idealized conditions. The tests with idealized boundary conditions are used to study
the depth and strength of gravity drainage, to quantify the desalination caused by
gravity drainage, and to investigate the relationship between growth speed and the
final bulk salinity of sea ice. The conclusions we draw from the idealized test cases
are then tested under more realistic conditions in the next section, in which we force
SAMSIM with reanalysis data.

2.5.1 Constant cooling

Our first test case is the freezing of a NaCl solution from a constant cooling tempera-
ture, which is the most often used setup for laboratory studies (e.g. Tait and Jaupart,
1992; Chen, 1995; Wettlaufer et al., 1997; Notz and Worster, 2009).

We conduct simulations of a NaCl solution freezing at four different cooling tempera-
tures ranging from -5◦ to -35◦ C to cover the full range of growth speeds which occur
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Figure 2.6: a) Bulk salinity, b) solid fraction, and c) Rayleigh number profiles of freezing
NaCl from a fixed surface temperature. Simulations were run until the ice thickness reached
50 cm. Please notice that the scale of the x-axis in subfigure c) changes above 2 (marked
by dashed line). All layers with R greater than the critical Rayleigh number of 1.01 are
convectively unstable. Grid parameters: N=25, Ntop=5, Nbot=10, 4z0=1cm

in the Arctic and Antarctic. For these tests SAMSIM’s grid is set to Ntop=5, Nmid=10,
Nbot=10, and 4z0=1.0 cm with a time step of 5 s. We wait until the ice grows to a
thickness of 50 cm and then compare the resulting profiles of salinity, solid fraction
and Rayleigh number. These test cases provide a frame of reference on how the bulk
salinity of sea ice is related to growth speed.

We find that more salt is retained in the ice the colder the cooling temperature (figure
2.6a), as was also found in the laboratory experiments of Cox and Weeks (1975) and
Wettlaufer et al. (1997). Based on the salinity profiles, we conclude that a layer of
growing sea ice cannot retain more than 10 ppt salt once convection has ceased.

Despite the higher salinity, the colder experiments have a slightly higher solid fraction
(figure 2.6b). This can easily be understood: because the colder experiments have
higher brine salinities, the solid fraction must be higher than in the warmer experiment
to inhibit convection and retain salt. In all simulations almost all the convection occurs
in the lowest 10 cm regardless of growth speed (figure 2.6c).

The Rayleigh number of the slower-growing ice remains close to the critical value of
1.01 in the top 40 cm of the ice, while the faster-growing ice is more stable there.
In contrast, the faster-growing ice is much more unstable in the lowest 10 cm. All
simulations remain slightly unstable in the top 5 cm, driving a very weak circulation
over the complete 50 cm. Here we can see a clear signature of the semi-adaptive
grid, where the depth of the top instability is determined by the amount of thin top
layers. This top instability is maintained by the constant surface temperature. Slight
fluctuations of this temperature would remove the instability by first increasing the
Rayleigh number and convection. The slight increase in convection would desalinate
the lower layers enough so that when the top temperature returns to the initial value
the reduced permeability would stabilize the flow.

To summarize these results, we find that slow-growing warm ice desalinates more
strongly and results in a marginally stable Rayleigh number profile. In contrast, faster-
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growing colder ice retains more salt, and the ice becomes convectively stable once grav-
ity drainage ceases. As almost all convection occurs in the lowest 10 cm, we conclude
that multiple layers in the lowest 10-20 cm are necessary to properly simulate gravity
drainage numerically. The relationship of higher salinity for fast growth speed and
lower salinity for lower growth speed was also found in laboratory experiments by Cox
and Weeks (1974). These experiments were used to derive a fractionation coefficient
based on growth velocity that describes the incorporation of salt into the advancing
front. However, our results agree with the findings of Notz and Worster (2009) that
such fractionation coefficient does not reflect the underlying physics of the measured
relationship between growth speed and sea-ice bulk salinity. We will further examine
this relationship for more realistic boundary conditions in section 6.1.

2.5.2 Warming triggered convection

It is currently unclear if gravity drainage can occur in warming sea ice. Measurements
of salt fluxes below sea ice (Widell et al., 2006) and of algae behavior in sea ice during
autumn (Fritsen et al., 1994) indicate that convection may occur, as do recent observa-
tions of short-lived salinity anomalies under warming sea ice (Jardon et al., 2013). In
this subsection we introduce an experiment designed to test if it is possible to trigger
gravity drainage in sea ice by warming the ice from above and/or below. A secondary
goal is to study how gravity drainage affects the sea ice.

In principle, warming sea ice can lead to gravity drainage by increasing the permeability
of the ice. However, warming sea ice also causes the brine salinity to fall, which
reduces the buoyancy between brine and underlying ocean water which inhibits gravity
drainage. If the permeability increase outweighs the buoyancy reduction depends on
the nonlinear dependence of the two quantities to temperature. Also, melting at the
ice-ocean boundary can increase the buoyancy of the brine. This buoyancy increase is
caused by the reduction of the salinity below the ice due to melting ice at the ice-ocean
boundary.

To maximize our chance of triggering convection we create initial conditions which are
just stable. These initial conditions are reached by growing ice from a fixed temperature
of -16.7◦ C from salt water with a salinity of 34 ppt. The sea ice grows until it reaches
a thickness at which the prescribed ocean heat flux of 20 W/m2 balances the growth.
Over the roughly 18 months simulated to reach the equilibrium state, gravity drainage
slowly desalinates the ice until the Rayleigh numbers are just below the critical value.

Three different experiments were applied using the stable initial conditions to trigger
deep convection. Experiment I raises the top temperature from -16.7◦ to -5◦ C to
increase permeability while reducing buoyancy. Experiment II increases the oceanic
heat flux from 20 to 100 W to increase buoyancy by melting ice at the ice-ocean
boundary. Experiment III is a combination of the atmospheric and the oceanic forcing
in experiments I and II.

All three experiments succeeded in triggering convection in SAMSIM, with each ex-
periment resulting in different convection patterns and salinity profiles (figure 2.7).
Experiment I mostly destabilizes the upper half of the ice (figure 2.7-I-C), but the
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Figure 2.7: (A) Temperature, (B) bulk salinity, and (C) liquid volume fraction over one week.
The blue line in row C encloses convectively unstable layers. Beginning from identical stable
initial conditions: experiment I raises the top temperature from -16.7◦ to -5◦ C, experiment
II increases the oceanic heat flux from 20 to 100W, and experiment III combines experiment
I and II. Grid parameters: N=70, Ntop=5, Nbot=5, 4z0=1cm

strongest desalination occurs in the bottom half of the ice (figure 2.7-I-B). The in-
creased oceanic heat flux of forcing II destabilizes the lowest 50 cm and the top 10 cm
(figure 2.7-II-C). The desalination caused in experiment II is weaker than the desalina-
tion of experiment I and is mostly confined to the lowest 40 cm (figure 2.7-II-B). This
desalination caused by an increased oceanic heat flux is possibly what was observed by
Widell et al. (2006), who linked salt release to upward oceanic heat fluxes.

The convection and desalination results of experiment III can be interpreted as an
accelerated linear combination of the convection and desalination of experiment I and
II. The resulting desalination is strong enough that it leads to a visible warming in the
lower 40 cm after four days, as the ice solidifies and warms at the same time (figure
2.7-III).

From these three experiments we conclude that gravity drainage can occur during top
warming and bottom melt under ideal conditions. Warming the ice from above creates
a stronger effect than melting the ice from below, and a combination of both leads to
the strongest effects. In contrast to the gravity drainage that occurs during growth,
the resulting deeper convection can span the whole ice layer. The desalination caused
by the deep convection is strongest in the lower half for two reasons. Firstly, as the
amount of upwelling brine in each layer n equals the sum of all brine flowing downward
from above the layer n, the amount of upwelling is always largest in the lowest layer
and decreases upward. Secondly, the temperature gradient is steeper in the lower
than in the upper half due to the top warming. The combination of more upwelling
and a higher gradient leads to a stronger salt advection, which results in a stronger
desalination in the lower layers (equation 2.5).

In nature, atmospheric and oceanic forcing could easily be as strong or stronger than
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Figure 2.8: Reanalysis-forced daily model values of bulk salinity vs ice thickness (dots) and
empirical relation of Kovacs (1997).

the idealized forcings we used in this experiment. However, it is highly unlikely that
the initial ice conditions of the idealized experiments occur naturally. From these two
statements we conclude that deep convection is possible in reality, but the resulting
convection will likely be weaker than in the idealized experiments. The desalination
of the lower half of sea ice after the onset of flushing, which was already noted by
Malmgren (1927) and Holt and Digby (1985), could be the result of such warming-
induced deep convection.

2.6 Seasonal growth under reanalysis forcing

To examine how gravity drainage occurs under more realistic conditions, we conduct
a case study of a single growth season using reanalysis data. We use this test case to
determine which of our results from the idealized tests (such as those concerning deep
convection and the link between growth speed and final salinity) are also valid under
realistic conditions (subsection 2.6.1). This test case is also used to compare the simple
against the convective gravity drainage parametrization and to quantify the effect of
gravity drainage on the thermal properties of sea ice (subsections 2.6.2 and 2.6.3).

To force SAMSIM with reanalysis data, the surface temperature is derived by balancing
outgoing long wave radiation with three-hourly ERA-interim fluxes. Both the fluxes
and precipitation were taken from a grid point close to where the SHEBA campaign was
conducted (Perovich et al., 1999), namely at 75 N and 217.5 E. We randomly chose
the year 2005 to simulate the total growth season from ice formation to maximum
thickness. Snow accumulates over time in the single snow layer of variable thickness
(see subsection 2.2.2). To avoid numerical instabilities the comparatively small heat
flux into the snow and the sensible heat flux to the atmosphere are not included in the
surface energy balance.

As we have no reanalysis data of oceanic heat fluxes we approximate the oceanic heat
flux as a simple sine curve with a period of 1 year, which is based loosely on the values
Huwald et al. (2005b) derived from the SHEBA measurements. The oceanic heat flux
reaches 14 W/m2 in Autumn and sinks to 0 W/m2 in Spring. For SAMSIM’s grid we
choose Ntop=10, Nmid=40, Nbot=20, and 4z0=1.0 cm to highly resolve the bottom 20
cm of the ice. To avoid numerical issues in these small layers we use a time step of
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Figure 2.9: a) Temperature, b) bulk salinity, c) and liquid volume fraction over a growth
season (see section 2.6). In subfigure c) the blue line encloses convectively unstable layers,
and the black line encloses regions with a liquid fraction below 2.5 %. The single snow layer
on top of the sea ice lies above z = 0. Grid parameters: N=70, Ntop=10, Nbot=20, 4z0=1cm

10 seconds. Aspects we neglect in this simulation are the initial formation of frazil ice
and the feedbacks of the sea ice on oceanic, sensible, and latent heat fluxes.

To determine if the model output is realistic, we evaluate the test case against data
from the SHEBA Baltimore site and against the empirical relationship derived from
over 400 Arctic ice cores by Kovacs (1997). Our model produces a similar dependence
of mean bulk salinity on ice thickness as given by the empirical function of Kovacs
(1997) (figure 2.8). In thin ice, modeled bulk salinity is slightly higher, which could
also be related to the outflow of brine during sampling, which causes an underestimate
of sampled bulk salinity in thin sea ice.

A comparison with buoy data of first year ice from the SHEBA Baltimore site (Per-
ovich et al., 2009) shows a good general agreement between simulated and measured
temperature profiles (not shown). In the case study, the model grows 1.8 m of ice
and accumulates approximately 30 cm of snow (figure 2.9). The simulated sea ice is
somewhat thicker than the maximum thickness of 1.5 m measured at the Baltimore
site, but the Baltimore site is likely somewhat thinner due to the thicker snow cover of
50 cm compared to the 30 cm of snow in our case study. From the general similarities
of the model with the SHEBA data and the empirical salinity-thickness relationship of
Kovacs (1997) we conclude that the model results fulfill basic expectations.

2.6.1 Gravity drainage under reanalysis forcing

The high spatial and temporal resolution of the case study simulation supplies a wealth
of information on how gravity drainage, salinity, and temperature interact (figure 2.9).
From this data we draw conclusions on the depth and variability of gravity drainage,
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the salinity evolution in growing sea ice, how gravity drainage responds to temperature,
and how salinity is linked to growth speed.

From the blue line in subfigure 2.9c we can see that although gravity drainage occurs
mostly in the lowest 20 cm, there is a great amount of variation. Not only does the
convection depth at the bottom vary, but also additional layers separated from the lower
convection become unstable now and then. Most notable is the full depth convection
after six months when top warming destabilizes the top 50 cm of ice. Similar events
of smaller magnitude occur shortly after two months and after roughly three and a
half months. This variance of gravity drainage is not a simple reaction to temperature
forcing or random model behavior. Instead, this variance results from the complicated
interplay of salinity, buoyancy, and permeability.

Comparing the 6 ppt salt contour of subfigure 2.9b to the blue line of subfigure 2.9c
shows that the 6 ppt contour roughly outlines the lower convective ice layers. The
6 ppt contour shows a stepwise shape at approximately 1.2, 1.6, 2.2, 3.3, 5.2, and 6
months. These steps all coincide with a warming of the ice, as can be seen in subfigure
2.9a. At the same time, the depth of gravity drainage increases for a short time and
then collapses. From this behavior we conclude that gravity drainage reacts in cycles
to the temperature evolution. The cycle begins when the surface temperature drops
and ice grows faster at the ice-ocean boundary. While the ice continues to grow, the
newly formed ice remains convectively unstable. At some point in time the surface
temperature rises again. As the ice warms, the convection depth increases or remains
constant. When the ice once again begins to cool, most of the convectively unstable
regions stabilize and the cycle repeats itself. Such a cycle in figure 2.9 begins shortly
before and ends slightly after two months, during which the top temperature drops
from above -5◦ C to below -20◦ C and returns above -10◦ C. These cycles are visible as
slight kinks or jumps when the bulk salinity is compared against the thickness (figure
2.8).

We will now turn to comparing these results to those from the idealized test case
described in section 2.5. Doing so, it is interesting to note that in the simulation under
realistic forcing, gravity drainage reduces the salinity to a stable value below 6 ppt.
This value of 6 ppt lies below the upper threshold of 10 ppt which we determined from
idealized experiments in section 2.5 to be the absolute maximum salinity possible in
stable sea ice. In addition, the link between faster growth speed and higher salinity
that we found in section 2.5 no longer holds: Such a link would result in a nonlinear
relationship of salt flux to growth rate, which we do not find for the realistic forcing
(figure 2.10). The cyclic interaction of temperature and convection discussed in the
above paragraph both disrupts the link between growth speed and salinity and causes
a reduced stable bulk salinity in comparison to the experiments with a constant cooling
temperature (figure 2.6).

In section 2.5 we concluded from idealized experiments that top warming can lead to
gravity drainage over the whole ice layer. We also concluded that such convection
would lead to a desalination which is strongest in the lower ice layers. The full depth
convection which occurs after six months in the reanalysis-forced test case shows that
both of these conclusions still hold for realistic boundary conditions. The resulting
desalination is clearly visualized by the 3 ppt contour of salinity (subfigure 2.9b).
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Figure 2.10: Reanalysis-forced weekly summed values of modeled salt flux vs growth speed.

Comparing the 2.5 % contour (subfigure 2.9c) before and after the event highlights the
reduction in liquid fraction caused by the desalination.

2.6.2 Convective versus simple parametrization

To study how closely the simple parametrization (introduced in subsection 2.3.3) mim-
ics the convective parametrization we compare salinity profiles resulting from both
parametrizations for the reanalysis-forced case study. As the simple parametrization
is intended for use in coupled models in which using 70 levels is unthinkable, we also
run SAMSIM at a lower resolution for this analysis. For the high-resolution case, we
chose Ntop=10, Nmid=40, Nbot=20, and 4z0=1.0 cm (figure 2.11a). The low-resolution
is based on Ntop=3, Nmid=3, Nbot=4, and 4z0=5 cm (figure 2.11b).

The simple convection provides a reasonable salinity profile approximation, especially
at low resolution (figure 2.11b and d). Although the convective parametrization de-
salinates growing sea ice somewhat slower, the differences are rather small. Two char-
acteristics of the high resolution convective parametrization are not reproduced by the
simple parametrization: the high salinity in the top layer, and the desalination caused
by deep convection after six months. The high salinity in the top layer can not be
reproduced by the simple parametrization because it has no sense of the speed of de-
salination and stabilizes the salinity profile almost immediately. The deep convection
can not be captured by the simple parametrization as it arises from the convective
nature of gravity drainage.

2.6.3 Relevance to climate models

In this subsection we seek to quantify how relevant gravity drainage is for climate mod-
els. To achieve this, we compare the reanalysis-forced simulations using the convective
and simple parametrization against simulations without gravity drainage. Due to their
relevance in climate models we choose to evaluate ice thickness, enthalpy, thermal
resistance, and freshwater column.

The freshwater column describes the amount of freshwater contained in the sea ice
and snow. It is calculated by melting the ice and snow and separating the resulting
meltwater into freshwater and ocean water with a salinity of 34 ppt. For example, two
meter thick sea ice with a bulk salinity of 8 ppt has a freshwater column of about one
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Figure 2.11: Case study salinity profiles of the convective and simple parametrization for two
different vertical grids at two different times. The prescribed profile used in subsection 2.6.3
is also included. a) and b) t ≈ 3 months, c) and d) t ≈ 9 months. a) and c) Grid parameters:
N=70, Ntop=5, Nbot=5, 4z0=1cm. b) and d) Grid parameters: N=10, Ntop=3, Nbot=4,
4z0=5cm

and a half meters. The freshwater column grows when salt leaves sea ice and enters the
ocean. Thermal resistance is the reciprocal of thermal conductance and is a measure
of how strongly the sea ice resists the flow of heat between the ocean and atmosphere.

The salinity of the comparison runs are determined by setting the salinity of the lowest
layer where ice forms to 4 or 7 ppt because these are plausible values of the bulk
salinity of first-year ice. However, setting an initial salinity is not identical to the
constant salinity approach often used in front tracking models. The most significant
difference is that in our model the freezing temperature at the ice-ocean interface is
determined by the salinity of the water in the lowest layer into which the ice grows
(4 or 7 ppt in this case), while front-tracking models can set the ice-ocean interface
temperature independently of the sea-ice and ocean salinity. Also, brine expulsion
redistributes small amounts of salt.

An additional comparison run is computed using a prescribed salinity profile which can
be seen in figure 2.11. In the lowest 15 cm the salinity decreases linearly from 34 too
4 ppt, and above that the salinity decreases to 0 ppt at the surface. This setup is an
imitation of prescribing a multi-year salinity profile in a front tracking thermodynamic
model, as is currently done in the Los Alamos Sea Ice Model (Bitz and Lipscomb,
1999).

The brine fluxes from the ocean to the ice of the convective gravity drainage parametriza-
tion transport heat, which leads to a slight increase of oceanic heat flux. To ensure
that the runs are comparable, the amount of heat transported by the moving brine is
subtracted from the prescribed oceanic heat flux at each time step.

In the rest of this subsection we will refer to the run using the full convective parametriza-
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Griewank & Notz Vancoppenolle et al. (2006)
forcing three-hourly reanalysis idealized climatological
comparison period growth season first year &

equilibrium annual cycle
model SAMSIM Bitz and Lipscomb (1999)
vertical layers 70 5-10
metrics total enthalpy, thickness & salt flux

thermal resistance
freshwater column

desalination gravity drainage gravity drainage
processes included & flushing

Table 2.1: Comparison of our approach against the approach of Vancoppenolle et al. (2006)
to determine the effect of the salinity evolution on the thermal properties of sea ice.

tion as the convec run, the run using the simple parametrization as the simple run, the
run with the prescribed profile as prescribe, and the comparison runs as 4 and 7 ppt
run in reference to their initial salinities. The same terminology is used in figure 2.12.

Vancoppenolle et al. (2006) conducted a similar experiment to quantify the effect of
the full salinity evolution on the thermodynamic properties of the sea ice using a 1D
model with a parametrized salinity evolution. Although the aims of Vancoppenolle
et al. (2006) were similar, our approaches differ in many crucial aspects detailed in ta-
ble 2.1. We believe the most important differences are that Vancoppenolle et al. (2006)
forced their runs with idealized climatological data, and that they ran their simula-
tions until they reached an equilibrium, i.e. a constant annual cycle. Vancoppenolle
et al. (2006) conclude that including a dynamic salinity component would significantly
improve large-scale sea-ice models. ? studied the effects of adding a dynamic sea-ice
salinity component to the coupled NEMO-LIM3 ice-ocean model, and concluded that
the impact is similar to a 10 % change of sea-ice albedo, and advised accounting for
varying sea-ice salinity when simulating possible future climates.

As expected, the 4 and 7 ppt runs produce thicker ice than the full convective run, in
part owing to the higher freezing temperature and the higher thermal conductivity of
fresher ice (figure 2.12a). In the simulations with the simple parametrization and in
those with a prescribed salinity profile, the ice grows slightly slower during the first
month, but reaches the same thickness as simulated by the complex parametrization
over the remaining 7 months.

To study both short-term variations and long-term trends of the evaluated quantities,
we subtract the running monthly mean of the convec run from all five runs. These
differences are then smoothed by a weekly running average and plotted in subfigure b
to e of figure 2.12. The short-term variations of all runs agree well with two exceptions.
The first exception occurs during ice formation because the constant salinity runs freeze
sooner and quicker. The second exception is visible in subfigure 2.12e after six months
when the deep convection occurs. Only the convec run shows a short-term freshening.

At the end of the growth season the evaluated quantities of the simple run are 0-3 %
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lower than the convec run. The prescribed and simple run are very similar, with the
exception that the prescribed run has a higher freshwater column, which is reasonable
since the prescribed profile is an approximation of a multi-year profile and saltless at
the surface. Although the 4 and 7 ppt runs have a similar thickness, the 4 ppt run’s
thermal resistance is in better agreement with the convec run. In contrast, the enthalpy
of the 7 ppt run agrees better than the 4 ppt run with the convec run. This shows that
although the initial salinity can be varied to fit one quantity, no value can fit all. At
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Figure 2.12: a) Thickness, and differences b) of thickness, c) of total enthalpy, d) of thermal
resistance, and e) of fresh water column for the four salinity approaches. ’Convec’: convective
parametrization, ’Simple’: simple parametrization, ’4 ppt’: initial salinity of 4 ppt, ’7 ppt’:
initial salinity of 7 ppt. Differences are calculated by first subtracting a moving monthly
average of the convective parametrization, and then applying a moving weekly average to
reduce the noise. The percentages marked on the right y-axis of subfigures b) to e) are the
left y-axis values divided by the end values of ’convec’.
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the end of the growth season the average of all discrepancies over both the 4 and 7 ppt
salinity runs is approximately 3 % compared to the convec run.

In conclusion, in our test case the short-term variations of all approaches are similar,
with the notable exception of the deep convection which only occurs in the simulation
with the complex parametrization. The total effect of gravity drainage on the thermo-
dynamic properties of the ice is rather modest, and differences between all runs and
compared properties seldom exceed 4 % (figure 2.12).

2.7 Summary & Discussion

2.7.1 Summary

In this paper we have studied gravity drainage using a convective parametrization
with two free parameters, namely the critical Rayleigh number and a proportionality
constant α. Values for these two parameters were determined using the Levenberg-
Marquadt optimization algorithm and salinity measurements from laboratory experi-
ments. The optimization results were robust against changes in the initial values but
the uncertainties should be reduced with more data, especially from longer experiments.
Our derived value of the critical Rayleigh number (1 ± 0.5) agrees well with theoret-
ical expectations but is difficult to compare to the value of 5 used by Vancoppenolle
et al. (2010) or the values of 0.5-2 which Gough et al. (2012) derived from ice-core
measurements because slightly different definitions of the Rayleigh number were used.
Vancoppenolle et al. (2010) and Gough et al. (2012) both use the thermal diffusivity
of sea ice which is highly temperature and salinity dependent instead of the thermal
diffusivity of brine we use in our definition of the Rayleigh number (Schwerdtfeger,
1963).

The link between growth speed and resulting bulk salinity as indicated from laboratory
experiments (Cox and Weeks, 1975; Wettlaufer et al., 1997) and field studies (Gough
et al., 2012) is simulated by SAMSIM for sea ice growing from a fixed surface tem-
perature. In contrast to the findings of these measurements, comparing salt release
versus growth rate of a reanalysis-forced test case shows no indication that more salt
is retained at faster growth speeds. In our model the strong temperature variations of
the test case and the resulting destabilization of stable layers disrupt the link between
growth speed and resulting bulk salinity.

We show that SAMSIM allows for deep convection in sea ice, and deep convection
can be found in both idealized and more realistic runs. The strongest salinity signal
from deep convection is found in the lower and middle ice layers, which could explain
observations of desalination near the ice-ocean interface during the melt season (Malm-
gren, 1927; Holt and Digby, 1985). However, all results related to deep convection are
somewhat speculative because deep convection is very sensitive to various model as-
sumptions (e.g. permeability) and no direct measurements are available to compare
SAMSIM’s results against reality. We also show that under idealized conditions a fresh-
ening of the water directly under the ice caused by an increased oceanic heat flux can
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lead to gravity drainage near the ice-ocean interface. This mechanism could explain the
link between salt flux and oceanic heat measured in the field by Widell et al. (2006).

We compared a model run using the full convective gravity drainage parametrization
against runs with fixed salinities and showed that the total enthalpy, thermal resistance,
and freshwater column differ over the growth season (by ≈ 3 %) but have similar short-
term variations. Only at ice formation and during deep convection —the processes
most difficult to reproduce correctly in a 1D model— does model behavior diverge.
As gravity drainage is the dominant but not sole desalination processes in sea ice, the
effect of the total salinity evolution has yet to be assessed. Also, since the ocean and
incoming atmospheric heat fluxes were prescribed, possible feedbacks were not included
in this study.

As a computationally cheap alternative to the convective parametrization we also de-
veloped an unconditionally stable and numerically cheap parametrization referred to
as the simple parametrization. It is based on the assumption that the salinity profile
evolves to reduce convective instability. The simple parametrization is capable of re-
producing the general salinity profile of the convective parametrization and leads to an
approximately 1 % discrepancy of total enthalpy, thermal resistance, and freshwater
column compared to the complex parametrization.

An additional reference run was generated by prescribing a crude approximation of
a multi-year salinity profile. The resulting thickness, total enthalpy, and thermal re-
sistance evolution are very similar to those produced by the simple parametrization.
However, the freshwater column is roughly 4 % higher, which is to be expected since
the prescribed profile is more similar to multi-year than first-year ice.

2.7.2 Discussion

The convective parametrization of gravity drainage we presented provides a 1D estimate
of brine fluxes that is consistent with our physical understanding of the underlying
processes. As such, it can aid researchers conducting detailed process studies of sea-ice
biogeochemistry and ice-ocean interaction.

Our results provide insight into the relevance of gravity-drainage parameterizations for
coupled climate models, but they can not quantify the effect of the full salinity cycle
including ice-ocean-atmosphere feedbacks. Given these limitations, our test case indi-
cates that large-scale models would not profit greatly from the inclusion of a gravity
drainage parametrization. The complex parametrization is much too computationally
demanding to be included in a large-scale model, and the effect on the thermal proper-
ties is rather small. The simple parametrization which was designed as a numerically
effective alternative for large-scale models produces results achievable by directly pre-
scribing a salinity profile. Especially for models with few layers (such as those proposed
by Semtner (1976) and Winton (2000)) possible improvements are small compared to
the overall model uncertainties (Wilkins, 2010).
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Chapter 3

A 1D model study of Arctic sea-ice
salinity

In this paper we explore how sea-ice surface melt can be incorporated into 1D models
and how the salinity evolves in Arctic sea ice. We also quantify the relevance of
explicitly parametrizing the temporal evolution of sea-ice salinity for climate models
and use model simulations to gain general insight on desalination processes, sources of
inter-annual salinity variability, the link between bulk salinity and ice thickness, and
the transformation of first-year to multi-year ice. We incorporate surface melt into the
1D thermodynamic SAMSIM sea-ice model presented by Griewank and Notz (2013)
and introduce a flushing parametrization which treats sea ice as a hydraulic network
of horizontal and vertical fluxes. Flooding is also parametrized, allowing SAMSIM to
simulate the full salinity evolution. Idealized experiments reveal that in SAMSIM the
ratio of horizontal to vertical flushing oscillates over time. We investigate the sea-ice
salinity evolution over 36 years by forcing SAMSIM with reanalysis data taken from
throughout the Arctic. We show that the modeled salinity agrees well with ice-core
data, and that the brine fluxes close to the ice surface are the least well captured.
After ice growth has ceased 1.5-4 g/kg of bulk salinity are transported to the ocean via
gravity drainage before flushing sets in. Most of the salinity variability of first-year ice
is restricted to the top 20 cm. In assessing the impact of parametrizing salinity on the
ice thickness, thermal resistivity, freshwater column, and stored energy we find that
runs with a prescribed salinity profile differ from the full parametrization by less than
5 % on average, with maximum differences up to 11 %. We conclude that the impact
of fully parametrizing the temporal salinity evolution in an earth system model is too
small to justify the necessary additional computational cost.

3.1 Introduction

Sea ice is a multi-phase material consisting of salty brine, fresh ice, and gas bubbles and
is far from static. Brine moves through the ice and across the ice-ocean interface trans-
porting dissolved tracers such as salt. The thermal properties of sea ice change along
with the phase composition, bubbles form, dissolve, and escape into the atmosphere
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while chemical and biologic processes occur in the brine. Salt is a core component of
sea ice as it determines the liquidus point of the brine which along with temperature
dictates the phase composition of sea ice through the liquidus relationship. It also
influences the brine density, the chemical properties, the small scale sea-ice structure,
and the vertical stratification of the underlying ocean via salt transport to the mixed
layer. Unfortunately, the salinity of sea-ice is an elusive quantity which is difficult to
observe. Many open questions related to the salinity evolution can not be answered
due to the limited amount and the isolated nature of ice-core measurements, such as
to what extent gravity drainage occurs during ice melt, what causes inter-annual salin-
ity variability, how first-year ice transforms to multi-year ice, and how bulk salinity is
linked to ice thickness. To fill these gaps in our understanding we study the salinity
evolution of Arctic sea ice and quantify the impact of the salinity evolution on vari-
ous sea-ice properties using an expanded version of the 1D SAMSIM thermodynamic
sea-ice model introduced in Griewank and Notz (2013).

The surface of melting sea ice is complex and highly heterogeneous. Melt water flows
horizontally through snow and ice into melt ponds and cracks or percolates vertically
through the ice. The properties of melting wet snow differ strongly from those of dry
fresh snow, and the ice surface also deteriorates during melt and can form a layer
of with white deteriorated ice which is visually similar to snow (Eicken et al., 2002).
Due to the large influence the ice albedo has in climate models, the sea-ice modelling
community has produced many albedo and melt pond parametrizations (e.g. Flocco
and Feltham, 2007; Pedersen et al., 2009), but otherwise surface melt has received very
little attention. All 1D thermodynamic models since Maykut and Untersteiner (1971)
have disregarded the physical structure and high gas fraction of the surface during
melt, and treat melting sea ice as freshwater ice with modified thermal properties.

Surface melt is linked to the salinity evolution via flushing. Over the last decade
researchers have begun to parametrize the sea-ice salinity evolution (e.g. Vancoppenolle
et al., 2006, 2007, 2009; ?; Wells et al., 2011; Rees Jones and Worster, 2013a; Turner
et al., 2013) to study the biogeochemical and physical processes in and below sea ice
(e.g. Vancoppenolle et al., 2010; Tedesco et al., 2010; Saenz and Arrigo, 2012; Tedesco
et al., 2012; Jardon et al., 2013). Despite these developments, the only sea-ice model
with a fully parameterized salinity evolution is the LIM 1D model of Vancoppenolle
et al. (2007) based on the 1D thermodynamic model of Bitz and Lipscomb (1999).
Accordingly, many possible approaches to model surface melt and parametrize salinity
remain unexplored in 1D sea-ice models. After the implementation of surface melt,
flooding, and flushing, SAMSIM is capable of simulating the full growth and melt
cycle of sea ice including the salinity evolution.

We force SAMSIM with Arctic reanalysis data to study the desalination processes and
the resulting salinity evolution in the Arctic. This is the first general multi-year model
study of sea-ice salinity throughout the Arctic. The only previous model study of sea-
ice salinity is the study by Vancoppenolle et al. (2007) which focuses on two ice-core
sites of land fast ice from 1999-2001. Model studies are necessary as measurement
campaigns can only provide brief glimpses of the full salinity evolution, whereas we
can easily explore a far greater diversity of conditions over a longer time frame. The
simulated salinity profiles are compared to ice-core measurements to evaluate the model
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performance and to determine which processes are not well represented.

The final topic we address is how parametrizing the salinity effects various sea-ice
properties important to climate models. This is a highly relevant question as sea-ice
components of climate-models are slowly becoming more sophisticated and modelers
have begun to treat sea-ice salinity as a variable instead of a prescribed value or profile
(e.g Vancoppenolle et al., 2009; Turner et al., 2013). It remains unclear how much model
performance can be improved by fully parametrizing the temporal salinity evolution,
and how sophisticated the parametrizations should be to balance the improvements
against the increase in computational cost.

This paper is organized as follows. In section 3.2 we detail how surface melt, flooding,
and flushing are implemented in SAMSIM. The section ends with a description of the
three separate approaches used to parametrize salinity in SAMSIM and a discussion
of the relative numerical costs associated with these approaches. In section 3.3 we
conduct an idealized melting experiment to study flushing and to determine how sen-
sitive SAMSIM responds to changes of key parameters. In section 3.4 we study the
salinity evolution of 36 years of simulated sea ice forced with ERA-interim reanalysis
data taken from throughout the Arctic. The simulations are split into first-year and
multi-year ice which are analyzed separately and compared to ice-core data. The final
section 3.5 uses the same atmospheric forcing as section 3.4 to quantify the impact
of the various salinity approaches on quantities relevant to climate-models in order to
evaluate if climate models would benefit from a fully parametrized temporal salinity
evolution in their sea-ice sub models.

3.2 Model description

For the purpose of this paper, we expand the SAMSIM model which we first described in
Griewank and Notz (2013). SAMSIM (Semi-Adaptive Multi-phase Sea-Ice Model) is a
1D column model which employs a semi-adaptive grid. In this section we will introduce
how SAMSIM treats surface ablation and processes related to surface melting as well
as flooding.

We provide a very brief description of the fundamentals of SAMSIM in subsection
3.2.1, a detailed description can be found in Griewank and Notz (2013). Following the
brief description of SAMSIM we address how sea-ice melts in reality and in SAMSIM
in subsection 3.2.2. The last addition to SAMSIM are the parametrizations of flushing
and flooding in subsection 3.2.3. In subsection 3.2.4 we describe the three salinity
setups used in SAMSIM. Subsection 3.2.4 includes a discussion of the numerical costs
and merits of each of the salinity approaches.

3.2.1 SAMSIM

Each layer of SAMSIM is defined by the four fundamental variables mass m, absolute
salinity Sabs, absolute enthalpy Habs, and thickness 4z. Absolute values are simply the
integral over the mass weighted bulk salinity Sbu and enthalpy H. The solid and liquid
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Figure 3.1: Sketch of SAMSIM grid evolution for three top layers during snow melt and
following surface ablation as explained in subsection 3.4.1

.

mass fractions ψs and ψl, as well as the solid, liquid, and gas volume fraction φs, φl,
and φg are derived from the fundamental variables. A salt-free snow layer can exist
on the ice, which has a variable density that affects the snow thermal conductivity.
However, the only process currently implemented in SAMSIM which affects the snow
density is rainfall into snow. In this paper, we refer to a specific layer by an upper
right index counting from top to bottom, with the exception of the snow layer which
is marked with snow. E.g. m6 is the mass of the sixth layer from the surface, m1 is
the mass of the top layer, and msnow is the mass of the snow layer.

SAMSIM employs a unique semi-adaptive grid which grows and shrinks in discrete
steps of 4z0 at the ice-ocean interface (Griewank and Notz, 2013). However, at the
ice-atmosphere boundary it is necessary to have a freely adjustable boundary to deal
with incremental surface ablation and snow to ice conversion. This is addressed by
letting the top layer thickness vary freely between 1/2 4z0 and 3/2 4z0. Once the
top layer grows thicker than 3/2 4z0 it is split into two layers, the lower layer of the
two with a thickness of 4z0. Similarly when the top layer shrinks below 1/2 4z0 it is
merged together with the second layer. A sketch of how a grid with three top layers
evolves during melt is shown in figure 3.1.

The short wave radiation properties of the ice are set with a number of parameters.
These parameters are the albedo alb, the fraction of penetrating short wave radia-
tion pen, and the optical thickness of the ice κ. Various parametrizations have been
proposed which define the optical properties based on the surface temperature, ice
thickness, and ablation rates. In SAMSIM the gas volume fraction could also be used
to parametrize the optical properties, as the amount of air bubbles has a large impact
on the optical properties of the ice (Light et al., 2008). However, because the focus of
this paper is on the salinity evolution we will use constant values of alb, pen, and κ
for sea ice to remove a source of variability in the model results (values shown in table
3.1).
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Table 3.1: Default model settings and free parameter values of salinity parametrizations.

4z0 1 cm
dt 10 s
Ntop 20
Nmid 60
Nbot 20
φs,min 0.05
φs,melt 0.4
φg,melt 0.2
alb 0.75
pen 0.3
κ 2 1/m

α 1.56 · 10−3kg/m3s
Rcrit 1.01
γ 0.99
β 1
δ 0.5
ε 0.1
ζmax 5 cm

3.2.2 Sea-ice surface melt

There are two main difficulties which complicate simulating surface melt in a 1D ther-
modynamic sea-ice model. The first is the strong spatial heterogeneity of melting sea
ice. Although certain aspects such as melt ponds can be parametrized, there is no way
to overcome the fact that a 1D approximation is less valid for melting sea ice than for
growing sea ice. The second major difficulty is that many physical processes which oc-
cur at the surface during sea-ice melt are poorly understood. This is especially true for
processes which occur at the snow-ice boundary and processes which involve capillary
forces in snow or ice.

We have decided against separating the 1D column into a ponded and non-ponded frac-
tion, as this is impossible without sacrificing physical consistency in a number of ways.
A possible compromise is to couple a 1D column with a melt pond cover to another
1D column with no pond. A melt pond and albedo parametrization could be intro-
duced to modify short-wave radiation penetration and reflectance without any effect
on sea-ice permeability, freeboard, or melt water formation. However, we have decided
to not introduce such an albedo parametrization for two reasons. Firstly, most albedo
parametrizations are not suitable for SAMSIM. For example, some parametrizations
change the albedo as an empirical function of surface temperature. If the parametriza-
tion assumes that the surface layer is salt free, the parametrization will assume that
the surface temperature during melt will always be at 0 ◦C. However in SAMSIM,
the surface temperature varies during melt depending on the salinity of the top layer.
Other parametrizations rely on the surface melt speed, which is not a variable in SAM-
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SIM. Instead SAMSIM has melt water formation and surface ablation, which are linked
but not identical. The second reason is that slight albedo changes would overshadow
the effects of the sea-ice salinity. If the albedo parametrization were fully physically
consistent with SAMSIM this would be acceptable. However, albedo parametrizations
mostly rely on empirical measurements and are intended to improve large-scale models
and are ill-suited to determine how the albedo would react to a 5% increase of gas
volume fraction or a 0.1 ◦C increase of temperature in the top ice layer of SAMSIM.
Including an albedo parametrization would result in a high non-physical source of vari-
ability which would greatly complicate interpreting the results. Extending SAMSIM by
an albedo parametrization that is compatible with SAMSIM physics remains, however,
desirable and will be subject to future work.

From the measurements taken at the SHEBA site, Eicken et al. (2002) identified three
stages of melt for Arctic multi-year ice. During stage I melt ponds form, fed by hor-
izontally transport of melting snow. The snow cover still persists and while most of
the melt water movement is horizontal, some melt water drains to the bottom of the
ice through cracks and flaws in the ice. Stage II begins when the snow cover has com-
pletely melted away. During stage II melt water flows horizontally to reach flaws as
well as vertically through the ice. In stage III the flaws have enlarged to the point of
ice disintegration. Melt water moves vertically through the ice as well as horizontally
to reach cracks and the edge of the ice flows, and convective overturning occurs close
to the ice-ocean interface.

In SAMSIM, surface melt is implemented by separating melt into two separate stages.
The first stage is snow melt, in which snow is converted to slush. This process thins
the snow layer by transforming a fraction of the snow into slush, which is then added
to the top sea ice layer as described in subsection 3.2.2.1. The second stage is surface
ablation in which a fraction of the liquid volume of the top ice layer is designated as
melt water as described in subsection 3.2.2.1. This melt water is either transported
directly into the ocean, or flows through the ice and cracks according to the flushing
parametrization introduced in subsection 3.2.3.2.

3.2.2.1 Snow melt

The physics of snow is very complex and a scientific field of its own. The snow layer
in SAMSIM is intended to simulate only the most basic aspects of snow on sea ice.
In contrast to the widely used 1D thermodynamic sea-ice model of Bitz and Lipscomb
(1999) which is implemented in both the Los Alamos (CICE) and the Louvain-la-Neuve
(LIM) sea-ice models, snow does not turn directly into melt water in SAMSIM. Instead,
melted snow from the snow surface percolates downward and accumulates on the sea-
ice surface forming a slush layer of depth B as illustrated in figure 3.2. This snow to
slush conversion in SAMSIM is based on two core assumptions. The first assumption
is that the snow can only retain a maximum liquid mass fraction (ψl,max) which is a
function of the snow solid mass fraction. The function we use is

ψl,max = 0.057
(1− ψsnow

s )

ψsnow
s

+ 0.017,
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Figure 3.2: Sketch of snow melt by snow to slush conversion as described in subsection 3.2.2.1.
B is the thickness of the slush layer, and A is the thickness lost by snow to slush conversion.
At the end of the time step the top ice layer thickness increases by B while the snow layer
thickness is reduced by A + B. The white, blue, and grey areas represent the solid, liquid,
and gas volume fractions of each model layer.

which we take from the laboratory study of Coleou and Lesaffre (1998). In figure
3.2 the volume fractions are shown instead of the mass fractions, because the volume
fractions are proportional to the area depicted. The second core assumption is that
when the liquid water content surpasses the retainable amount, the excess water pools
at the bottom of the snow layer forming a layer of slush. At each time step the depth
of the slush layer is determined and then the slush layer is added to the top ice layer.

Two additional assumptions are required to determine the slush depth which is marked
as B in figure 3.2, namely the gas fraction of the slush φg,melt, and the solid fraction
of the slush layer and remaining snow layer. We assume that the solid volume fraction
equals the solid fraction of the previous time step, and that φg,melt is a constant. In this
paper we set φg,melt to 20 %, which we base on the measured surface sea-ice densities
of Eicken et al. (1995).

Following these assumptions, when the liquid volume fraction of the snow layer exceeds
φl,max the slush depth B is calculated from the snow solid fraction of the last time step
(φsnow

s ) and the gas content as

B = 4z φsnow
l − φl,max

1− φl,max − φsnow
s − φg,melt

.

As a result the top ice layer grows thicker by B, and mass and enthalpy are transfered
according to the composition of the slush layer. To maintain the solid fraction of the
last time step the snow needs to be compacted by A as illustrated in figure 3.2. In
total the snow to slush conversion shrinks the snow layer by A+B, the total snow and
ice column shrinks by A, and the top ice layer grows by B.

To our current knowledge, the approach of converting snow into slush before it can
run off as melt water is unique. Compared to the standard approach in which melted
snow is directly removed as melt water, our approach leads to a slight delay in the
onset of flushing. In reality sea-ice has a varying surface height, which causes the melt
water in the slush to flow into melt ponds. In SAMSIM, by the time the snow layer
has melted away, the top model layers which were formed by snow to slush conversion
are predominantly liquid and salt free but also contain the solid fraction of the flooded
snow. These top layers can be interpreted as a spatial average over melt ponds and



42 A 1D model study of Arctic sea-ice salinity

{

Figure 3.3: Sketch of melt water formation caused by surface melting as described in sub-
section 3.2.2.2. The white, blue, and grey areas represent the solid, liquid, and gas volume
fractions of each model layer (φs, φl, and φg). 4zmelt is determined by the amount of latent
heat release necessary to balance the energy difference between the atmospheric heat flux to
the surface ~qatmos and the flux from the surface into the top ice layer ~q1.

snow remnants. As a result the snow melt stage of SAMSIM is shorter than the first
melt stage of Eicken et al. (2002). Although the implemented snow to slush conversion
neglects many of the finer aspects of snow physics, we trust that it captures snow melt
more realistically than the standard approach of turning snow directly into melt water.

Two additional processes also convert snow to slush, flooding as introduced in subsec-
tion 3.2.3.4 and melt water wicking. Wicking occurs when the top ice layer is so liquid
that excess brine seeps into the snow. This process is incorporated into the model as
introduced in the following subsection.

3.2.2.2 Surface ablation

Surface ablation begins once the snow layer has been completely transformed to slush
and the top ice layer is in direct contact with the atmosphere. Surface ablation in
SAMSIM requires deciding how much of the liquid fraction runs off as melt water and
how much of the departing melt water is replaced by gas. In reality the ice surface
varies immensely in space and time, from dark deep melt ponds to deteriorated white
ice which looks like snow from afar (Eicken et al., 2002). In contrast, the ice surface in
SAMSIM is solely represented by the phase composition of the top ice layer.

Melt water runoff in SAMSIM is restricted to the top ice layer and is based on three
assumptions. The first is that ice melted at the ice surface directly turns into melt
water. The second is that if the solid fraction of the top ice layer sinks below a
minimal low value, excess brine is free to flow off as melt water. The third is that over
time the gas fraction increases until it reaches the value of φg,melt.

Melt water can form by surface melting as soon as the surface temperature surpasses the
freezing temperature of the top layer. The amount of melt water formed is determined
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by the amount of latent heat release necessary to balance the atmospheric heat flux
to the surface and the diffusive heat flux from the surface into the top layer (depicted
in figure 3.3). This approach is commonly used in sea-ice thermodynamic models (e.g.
Bitz and Lipscomb, 1999) but needs to be adapted to incorporate the varying density
and gas fraction of SAMSIM. The discretized diffusive heat flux from the ice surface
into the top layer is

~q1 = −k12T
freeze − T 1

4z1 .

The thermal conductivity of the top layer k1 is a linear combination of the liquid and
solid phases, while the gas phase is treated as an insulator. The depth of the melt
water film for a given atmospheric energy flux ~qatmos is then

4zmelt =
~qatmos − ~q1
φ1
sρsL

.

The second way melt water can form is when the solid fraction of the top layer φ1
s to

fall below a minimal low value φs,melt. When this occurs the solid fraction is compacted
by 4zmelt until the solid fraction reaches φs,melt as shown in figure 3.4. From volume
conservation it follows that

4zmelt = 4z1
(

1− φ1
s

φs,melt

)
.

This extreme simplification ensures that melt water forms before the top layer is fully
liquid. Not shown in the figure is that a similar limit exists on the gas fraction. If
the gas fraction exceeds φg,melt then the top layer is compacted to reduce φ1

g to φg,melt.
φg,melt is the same parameter which determines the amount of air captured in the slush
during snow melt, and is set to 0.2 based on density measurements at the surface of
Eicken et al. (1995). To our knowledge there are no measurements from which to
estimate φs,melt. A range of values will be explored later in this paper, but as a first
guess we assume a value of 0.4, which is slightly above the solid fraction assigned to
fresh snow in SAMSIM. If the ice melts primarily through compacting due to low solid
fractions, the top layer will approach the given values of φg,melt and φs,melt over time.

If the melt water forms due to a low solid fraction while snow is present, the melt water
is assumed to wick up into the snow and creates a slush layer which is then added to
the top layer again. We refer to this as wicking which is similar to snow melt (figure
3.2), except that the amount of water available to form slush is given by the amount
of melt water present in the top layer.

3.2.3 Salinity parametrizations

There are three known relevant desalination processes in sea ice: gravity drainage,
flushing, and flooding (Notz and Worster, 2009). We addressed how gravity drainage
is implemented into SAMSIM in our previous publication (Griewank and Notz, 2013).
In this subsection we introduce parametrizations for flushing and flooding, making
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Figure 3.4: Formation of melt water in the top layer when φ1s < φs,melt as described in
subsection 3.2.2.2. 4zmelt is determined by how much the solid fraction has to be raised to
equal φs,melt. The white, blue, and grey areas represent the solid, liquid, and gas volume
fractions of each model layer.

SAMSIM the second 1D model capable of capturing the full salinity evolution. The
first model capable of capturing the full salinity cycle is the 1D LIM sea-ice model of
Vancoppenolle et al. (2006).

Parametrizing flushing faces the same challenges that modeling surface melting faces,
namely high horizontal heterogeneity, insufficient data, and a lack of theoretical under-
standing. No quantitative laboratory studies of flushing have been published to this
date, and due to sampling issues and difficult conditions field studies have been limited
to studies of dye dispersion and ice-core salinity (Eicken et al., 2002). The understand-
ing of flooding is even poorer, and is limited to the analysis of ice cores which contain
flooded snow-ice.

3.2.3.1 Flushing

The first and only published flushing parametrization incorporated in a full thermody-
namic sea-ice model by Vancoppenolle et al. (2006) assumes that once the ice reaches
a certain permeability, a fraction of the melt water flows downward through the sea ice
and into the ocean below. Although this approach neglects many aspects of flushing,
it is able to reproduce field measurements of salinity (Vancoppenolle et al., 2007). In
this subsection we will introduce two parametrizations. The complex parametrization
attempts to model flushing as a physically consistent hydraulic system, and the simple
parametrization is a numerically cheap alternative based on the assumption that the
liquid fraction increases towards the surface during surface melt.

3.2.3.2 Complex flushing

It is known from the field observations of Eicken et al. (2002) that much of the brine
movement during flushing occurs horizontally in the upper layers. The horizontal
flows drain through flaws and cracks beneath the sea-ice which can lead to underwater
ice formation. The parametrization of Vancoppenolle et al. (2006) has no explicit



3.2 Model description 45

treatment of horizontal fluxes. Our goal is to design a flushing parametrization which
is as physically consistent as possible in a 1D model and includes horizontal brine
fluxes which are highest close to the ice surface. Additionally the parametrization
should have as few free parameters as possible. The resulting parametrization (sketched
in figure 3.5) treats sea ice as a hydraulic network in which each model layer has a
vertical and horizontal hydraulic resistance (Rv and Rh). The assumptions on which
the parametrization is based are:

1. Cracks always exist in the ice, and the average horizontal distance between these
flaws grows linearly with ice thickness.

2. Once brine reaches such a crack it drains away to the ice-ocean interface without
interacting with the underlying ice layers.

3. The vertical resistance represents the resistance to brine flowing from the top to
the bottom of a layer. The horizontal resistance represents the resistance which
brine needs to overcome to reach a crack.

4. Flushing melt water flows vertically from layer to layer and horizontally to the
cracks. The specific amount for each layer are determined by the hydraulic resis-
tances and the hydraulic head.

5. The hydraulic head is assumed to be equal to the freeboard ζ, resulting in a
pressure difference of4p = ζρg for the brine density ρ and gravitational constant
g.

The resulting parametrization has only a single free parameter β which determines the
average distance x to the nearest crack for a given ice thickness h through x = β · h.

The Darcy flow in a porous medium with a hydraulic resistance of R leads to a mass
flux f of

f =
4p · A
R

ρ

for the pressure difference 4p and liquid density ρ. In SAMSIM, for each layer i the
vertical hydraulic resistance

Ri
v =

µ

Π(φi
l)A
4zi

is defined by the permeability Π which is a function of the layer’s liquid fraction φi
l,

the brine viscosity µ, the column area A, and the layer thickness 4z.

To define the horizontal hydraulic resistance we take the average distance to the next
crack from our assumptions resulting in

Ri
h =

µ

Π(φi
l)A

i
v

x.

In contrast to the vertical flow area A which is always 1 m2 in the column model, the
horizontal flow area Ai

v varies with layer thickness as well as with the geometry of the
cracks and resulting flow field. As a working assumption we take Ai

v to be equal to the
vertical layer surface with an area of 4zi · 1 m.
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Figure 3.5: Brine fluxes of the complex flushing parametrization resulting from melt water
formation at the surface as described in subsection 3.2.3.2. The horizontal fluxes ~fh transport
heat and salt to the lowest layer directly via cracks in the ice, while the vertical fluxes ~fv
advect heat and salt from layer to layer. ζ is the freeboard of the ice and 4zmelt is the depth
of the melt water.

The resulting horizontal and vertical brine fluxes (~fh and ~fv as shown in figure 3.5) are
then computed from hydraulic head and resistance. The total resistance over multiple
layers is calculated as a sum of parallel and serial resistances, the same method used in
resistor ladder circuits. The total flux is limited by the amount of melt water present
in the top layer.

Vertical fluxes advect salt and heat from layer to layer using the upstream method,
while horizontal fluxes transport both salt and heat directly to the lowest model layer,
i.e. the ice-ocean interface. As the thermal profile in melting ice is almost uniform, the
vertical fluxes lead to a smaller desalination than the horizontal fluxes.

Although the top layer can accumulate melt water faster than it can flush away, a
fully liquid layer is impossible. As the top layer becomes more and more liquid, the
permeability increases and the horizontal hydraulic resistance of the top layer decreases,
resulting in a strong horizontal flushing in the top layer.

As brine movement always leads to a heat transport, flushing cold brine into the ocean
produces a heat sink in the model. Because flushing mostly occurs in ice close to the
freezing temperature the energy lost due to flushing is small. When comparing runs
using different salinity approaches the amount of heat lost by flushing is added to the
oceanic heat flux to keep the runs as comparable as possible. The same approach is
applied to the gravity drainage parametrization as discussed in Griewank and Notz
(2013).
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3.2.3.3 Simple flushing

We propose a second numerically cheaper parametrization which we will refer to as
the simple flushing parametrization. In contrast to the complex parametrization which
calculates brine fluxes which affect salinity via advection, the simple parametrization
directly modifies the salinity to fulfil a stability criterion. This stability criterion is
based on the simple assumption that the liquid fraction is highest in the top layer
during melt, and decreases into the ice.

The implementation is as follows. At each time step the melt water which forms in
the top layer as explained in subsection 3.2.2.2 is removed. As the salinity of the melt
water given by the ice-brine liquidus relationship is higher than the bulk salinity of
the top layer, the melt water removal desalinates the top layer. At each time step it
is checked if φ1

l > φ2
l . Given that the temperature differences between the top layers

is small during surface melt, the second saltier layer gradually become more liquid
than the fresher top layer. When this occurs, the salinity of the second layer is simply
reduced by a fixed fraction ε. The same procedure is then applied the next lower layer
as long as φi

l > φi+1
l . For example if φ1

l < φ2
l < φ3

l > φ4
l < φ5

l , the salinity of the second
and third layer are reduced.

3.2.3.4 Flooding

Flooding can occur when snow pushes the ice below the ocean surface, causing ocean
water to well up and flood the snow. The resulting frozen mix of snow and ocean
water called snow ice can be identified by various means in ice cores, from which we
know that flooding occurs mainly in the Antarctic and contributes up to 25 % of ice
production in certain areas (Jeffries et al., 2001; Maksym and Jeffries, 2001). We base
our understanding and treatment of flooding on the work of Ted Maksym and Martin
O. Jeffries (Maksym and Jeffries, 2000; Jeffries et al., 2001; Maksym and Jeffries, 2001).
To readers interested in flooding we recommend the PhD thesis by Maksym (2001).

Although at first glance flooding seems to be the same process as flushing but with
a reversed pressure gradient, there are a number of additional uncertainties. Field
measurements have shown that a negative freeboard does not automatically lead to
flooding, although the chance of flooding is higher the lower the freeboard. Addition-
ally, very little is known about what happens to the flooded brine once it reaches the
ice surface. As flooding occurs at the bottom of the snow mantel, direct observations of
flooding are extremely difficult to obtain. Snow metamorphism is by itself a complex
process, but the interactions between flooding brine and snow are even more complex
and little research has been devoted to this specific issue. Brine movement must occur
at the ice surface after or during flooding, because otherwise snow-ice salinities would
be higher than the measured values.

As for flushing and gravity drainage we again developed two separate parametriza-
tions for flooding. However, the two flooding parametrizations are rather similar. We
will simply refer to the slightly more sophisticated parametrization as the complex
parametrization and the simpler one as the simple flooding parametrization.
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3.2.3.5 Complex flooding

The complex parametrization assumes that during flooding ocean water passes through
cracks and channels in the ice to flood the snow layer. The flooding ocean water does
not interact with the brine in the sea ice, because Maksym and Jeffries (2001) showed
that if flooding resulted in an upward brine displacement through the whole ice the
resulting desalination would quickly turn the ice impermeable. The flux of ocean water
to the surface is calculated as a Darcy flow driven by the negative freeboard and limited
by the permeability of the least permeable model layer. This approach can lead to a
large negative freeboard if the ice layer is impermeable. To avoid this a maximum
negative freeboard ζmax is defined. If the freeboard sinks below this threshold, the
flux of ocean water necessary to raise the freeboard to the threshold is determined and
applied.

The ocean water which is transported to the ice surface forms a slush layer which is
added to the top ice layer. This is the same approach SAMSIM uses to imitate snow
melt and melt water wicking into the snow layer (described in subsection 3.2.2.1 and
3.2.2.2). However, given a snow solid volume fraction of approximately 30-40 % this
approach would result in the flooded slush layer having a very high salinity of roughly
20 g/kg, inconsistent with measurements. To avoid this high salinity, we assume that
the ocean water which floods the snow simultaneously wicks upward and dissolves
additional snow into the slush which leads to a freshening of the slush. The ratio of
dissolved to flooded snow is assumed to be constant, and is defined by an additional
free parameter δ.

In this paper we use a value of 5 cm for ζmax, which is based on the freeboard mea-
surements analyzed in Maksym and Jeffries (2000) and for δ we use a value of 0.5 as a
preliminary best guess.

3.2.3.6 Simple flooding

The simple parametrization is simply the complex parametrization stripped of the
permeability dependent flooding speed and without snow dissolving into the slush
layer. The simple parametrization is identical to the complex parametrization if the
free parameters are set accordingly, ζmax = 0 m and δ = 0. This means that as soon as
a negative freeboard develops flooding sets in right away, and that no snow is dissolved
into the forming slush.

3.2.4 Salinity setups

In subsection 3.2.3 we have presented four parametrizations, two for flushing and two
for flooding. Together with the two gravity drainage parametrizations introduced in
Griewank and Notz (2013) SAMSIM now has two complete sets of desalination pro-
cesses. The first set consists of the complex flushing, the complex flooding, and the
complex gravity drainage parametrization. The second set of parametrizations consists
of the simple flushing, the simple flooding, and the simple gravity drainage parametriza-
tion. The parametrizations of the first set all compute brine fluxes which result in
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salt and heat advection. Accordingly, the rate of salinity change is determined by
the strength of brine flow and the salinity gradients between layers. In contrast, the
parametrizations of the second set directly adjust the salinity profile to fulfill defined
stability criteria.

We will refer to the first set of parametrizations as the complex salinity approach,
as it consists of the more sophisticated parametrizations which were designed to be
as close to reality as possible. The second set will be referred to as the simple ap-
proach, as the parametrizations included were developed as simpler alternatives to the
parametrizations of the complex approach.

The third and final salinity approach employed in this paper is to prescribe a depth
dependent salinity profile which is completely independent of the ice properties. The
profile used is the same introduced in Griewank and Notz (2013), which consists of a
linear decrease from 34 to 4 g/kg in the lowest 15 cm, and a second linear decrease from
4 to 0 g/kg at the surface. This approach is referred to as the prescribed approach.
The prescribed profile is by choice highly idealized. A more realistic profile could have
been derived from simulations using the complex approach, but we prefer the idealized
profile as it is independent of SAMSIM and the simulation forcing.

An important aspect of the complex parametrisation set is that the simulated brine
fluxes result in heat fluxes both in the ice and into the ocean. This is most relevant
during growth when gravity drainage continually moves colder brine to the ocean while
taking up relatively warm ocean water, resulting in a small but steady increase of
oceanic heat flux in our limited model domain. To keep the results of the three salinity
approaches as comparable as possible, the heat fluxes resulting from gravity drainage
and flushing are subtracted from the lowest layer at each time step.

Numerically, the complex approach is much more expensive than the simple approach
because the brine dynamics and resulting salt advection require a much smaller time
step at the same spatial resolution. If the amount of brine flowing into a layer is close
to the liquid volume of the layer, sudden salinity changes can lead to layers becoming
impermeable and choking off all further flow. As the brine flows and the brine volume
in the layers are continuously changing, there is no easy way to predict beforehand
what time step is needed for a specific experiment.

In comparison to the prescribed approach, the simple approach is not much more
expensive in the 1D model for the same amount of layers. However, because the simple
approach is dependent on the vertical structure of the ice column its quality degrades
if very few layers are used. Also, while the prescribed approach is only dependent on
the total ice thickness, the simple approach also depends on the amount of salt in each
layer. This is not of great importance in 1D models, but if implemented in a model with
horizontal ice advection the amount of tracers which need to be advected would lead to
a large increase of computational demands. In summary, the computational advantage
of the prescribed approach over the simple approach is that the number of layers can
be smaller and it requires no tracer advection, while the computational advantage of
the simple approach over the complex approach is the ability to use longer time steps.
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3.3 Idealized flushing experiments

In this section we take a closer look at the complex flushing parametrization and
how sensitively it reacts to various parameters. To do so, we use a highly idealized
experiment which aims to remove all feedbacks and processes other than flushing. As
a full exploration of possible initial and boundary conditions and the parameter space
would be a very expensive exercise, we limit ourselves to a single experiment and choose
the three parameters which have the greatest influence and vary them independently of
one another. The first parameter is the minimum amount of solid fraction φs,melt which
can be present in the top layer before melt water forms. φs,melt affects how permeable
the top layer is when melt water forms. The second parameter we vary is β which
determines the linear relationship of average horizontal flow distance to ice thickness.
The third parameter is the layer thickness 4z0. For the idealized experiment we set
the total number of layers high enough so that all layers have the uniform thickness of
4z0.
The idealized experiment begins with a two meter thick homogeneous slab of ice with
a bulk salinity of 5 g/kg and a temperature of roughly -1.3◦ C. A constant oceanic heat
flux of 15 W/m2 is applied to the bottom while a constant heat influx of 380 W/m2 is
applied to the surface. After subtracting the outgoing thermal radiation at 0◦ C at the
surface, the net heat input into the surface is slightly below 70 W/m2. All brine fluxes
which occur in the experiment are caused by flushing as gravity drainage is deactivated
and no flooding occurs. The setup of the idealized experiment was chosen to produce
a strong flushing signature with chosen values not too far away from field conditions.

We will first make some general observation of how flushing occurs in the idealized ex-
periment in subsection 3.3.1 before analysing how sensitively the flushing parametriza-
tion reacts to the three parameters in subsection 3.3.2, 3.3.3 and 3.3.4.

3.3.1 General observations

In the idealized experiment the homogeneous sea-ice slab melts away over two months
(figure 3.6). The constant surface heat input should lead to a constant rate of surface
ablation, however SAMSIM’s semi-adaptive grid results in a step wise surface ablation,
especially at lower resolution (see subfigure 3.7 d). One of two striking features of this
idealized experiment is that while flushing reduces the bulk salinity close to the surface
it also leads to a high increase of salinity at the bottom (figures 3.6, 3.7 b-d, and 3.8).
This is caused by the positive temperature gradient near the ice-ocean interface, which
leads to the vertically flushing brine to move from colder to warmer layers. As the
brine is saltier in the colder layers due to the liquidus relationship, salt advection leads
to a bulk salinity increase in the lowest ice layers. This effect disappears if gravity
drainage is activated (figure 3.7 a), which explains why this salinity increase due to
flushing has not been observed to our knowledge. To determine if flushing could in
principle lead to such an increase in salinity if gravity drainage is absent would require
experiments with a multi-phase material in which both phases have a similar density to
inhibit convection. An additional requirement needed to generate these high salinities
close to the ice-ocean interface is that the oceanic heat flux is relatively small so that
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Figure 3.6: Temperature (a) and bulk salinity (b) evolution of the idealized flushing exper-
iment using the default model setup (experiment setup in section 3.3, model setup in table
3.1). Temperature color bar is white at the freezing temperature of the initial ice salinity of
5 g/kg. Plot background is grey.

the salt has time to accumulate in the lower layers before they melt away. The low
oceanic heat flux also allows melt water to accumulate in the very lowest layer where
melt water is transported by flushing (figure 3.7 b and c).

The second most striking feature is that the desalination near the surface occurs in
waves, which can be seen by following the 3 g/kg contour in figures 3.6 and 3.7. As
the rate of melt water formation is nearly constant over time, this oscillation shows
that the ratio of horizontal to vertical flushing oscillates over time. The speed, form,
and strength of these oscillations are dependent on the chosen values of φtop

s , β, and
4z0, which indicates that the complex flushing parametrization does not reach an
equilibrium and is dependent on model parameters (figure 3.7 b-d). The oscillation is
also visible when comparing the salinity profiles of the experiment at 30 and 34 days
(figure 3.8). At 30 days there is almost no visible difference between β = 1, 5, and 25.
Four days later a smooth progression is visible. Similarly, all the grid spacing 4, 8,
and 16 mm are almost identical at 34 days, but at 30 days this is not the case. Such
an oscillatory behavior is physically plausible. At the beginning of the experiment
flushing penetrates deep into the still saline ice and desalinates the upper layers. The
desalination leads to an increase of the solid fraction and a slight warming. The
underlying layers which have not yet been desalinated remain cooler. At some point
the lowest desalinated layer is cooled enough by the lower layers so that the liquid
reduces enough to make the ice totally solid. The now impermeable layer shields the
lower layers from vertical flushing and the melt water flows horizontally into cracks
and flaws. Over time the surface melt away until the impermeable layer which shielded
the lower layers reaches the surface. Once the fresh layer is melted away, flushing melt
water penetrates deep into the ice desalinating the upper layers, and the cycle repeats
itself.

Local short-term flushing events have been detected in the temperature profiles of both
field data (Pringle et al., 2007) and laboratory experiments (Wiese, 2012). However,
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averaging horizontally over a large area should average out the local flushing events
to a gradual and smooth desalination. Accordingly, to get a representative salinity
profile from SAMSIM it is best to perform a short temporal average over one or two
oscillations.

3.3.2 Minimal surface solid fraction

The range of possible values of φs,melt is constrained by physical and model limitations
to be between 0 and 1-φg,melt. We choose to vary φs,melt between 0.2 and 0.5, which
we trust to span the range of realistic values with a default value of 0.4. The effect
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Figure 3.7: Salinity evolution of the idealized melting experiments in which one specific
parameter or setting has been changed from the default values (default model results shown
in figure 3.6, experiment description can be found in section 3.3, default settings are listed in
table 3.1). The white line is the 3 g/kg salinity contour. Subfigure a includes gravity drainage
which is otherwise disabled in the experiment. In subfigure b the minimal solid fraction of
the top layer φs,melt is 0.2 instead of 0.4. In subfigure c the ratio of horizontal to vertical
hydraulic resistance β is 0.2 instead of 1.0. In subfigure d the vertical spatial resolution 4z0
is 12.8 cm instead of 1 cm. The dashed black lines in subfigure b, c, and d mark the times
at which the profiles in figure 3.8 are shown.
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Figure 3.8: Salinity profiles of the idealized melting experiments after 30 days (subfigures a,
c, and e) and after 34 days (subfigures b, d, and f). Profiles are shown at two separate times
to visualize the short-term variations due to oscillations. The experiment description can be
found in section 3.3 and the point of time of the profiles are marked in figure 3.7 by dashed
lines. In subfigures a and b the minimal solid fraction of the top layer φs,melt is varied (see
subsection 3.3.2), in subfigures c and d the ratio of horizontal to vertical hydraulic resistance
β is varied (see subsection 3.3.3), and in subfigures e and f the vertical spatial resolution
4z0 is changed (see subsection 3.3.4). The subfigures above and below each other share their
legend (e.g. a & b).

of φs,melt on the complex flushing parametrization seems to be rather small, with only
slight differences visible in the resulting salinity profiles (figure 3.8 a & b). In the
idealized experiment, lower values of φs,melt cause slightly stronger salinity changes
in the idealized experiment (figures 3.6 b vs figure 3.7 b and figure 3.8 a & b). As
φs,melt also affects snow to slush transformation, it is possible that the effect of φs,melt

is stronger when snow is present.

3.3.3 Free parameter β

In contrast to φs,melt we have no definitive physical or model limits on the possible value
of β. Based on tracer studies of Eicken et al. (2002), we expect horizontal flows to be
on the order of meters. Accordingly, we expect β to be in the single digits. However,
to account for unknown biases in the model and parametrization (e.g. permeability)
we chose a very wide spread of values from 0.04 to 25 to err on the side of caution. As
a working assumption we use 1 as the default value.

As a high β increases the horizontal hydraulic resistance, the higher β is the weaker
the horizontal fluxes are and vice versa. In the idealized experiment the low value of β
= 0.04 leads to the flushing brine only penetrating a short distance into the ice (figure
3.8 c and d). Higher values of β cause an increased salinity at the ice-ocean interface,
which results from vertical brine fluxes in the lowest layers. The results for β = 1, 5,
and 25 differ only slightly, indicating that most melt water flows vertically through the
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ice. From the idealized experiment we conclude that changing β has the anticipated
effect. A wide spread of values was used for β, and the parametrization has a low
sensitivity to changes of β close to the default value of 1. This low sensitivity is an
advantage for us because although we lack the data to derive the optimal value of β,
having a poor estimate of β will only impact our results slightly.

3.3.4 Vertical resolution

The impact of changing the vertical resolution is manifold. 4z0 affects melt water
formation, the accuracy of the spatial discretizations, and salinity advection. However,
the most direct effect of the resolution on the complex flushing parametrization is that
changing 4z0 changes the distance between parallel connected hydraulic resistances in
the ladder circuit, enabling a more refined flow separation.

In the idealized experiment higher resolution leads to a quicker onset of flushing, faster
oscillations of the 3 g/kg contour, and a shallower desalination at the surface (see
figures 3.6 b, and 3.7 d, and 3.8 e & f). No strict convergence like behavior is visible,
but at vertical spacings below 2 cm the simulations change only slightly. Given the
lack of experimental data or theoretical expectation we can not validate our decision
to use a 4z0 of 1 cm as our default value, but we expect small changes in resolution
to not substantially affect results.

3.3.5 Summary

In the idealized experiment the ratio of deeper penetrating vertical fluxes versus shal-
lower horizontal fluxes oscillates, which is clearly visible in the 3 g/kg salinity contour.
In the absence of gravity drainage salt accumulates in the lowest layers leading to high
salinities of up to 20 g/kg.

The complex flushing parametrization responds weakly to changes of the parameter β,
and the parameter φs,melt only has a minor effect. Changing β has the expected effect,
but no theoretical expectations or data are available to determine the optimal value.
Accordingly, the chosen default value of 1.0 is highly uncertain and may be off by more
than an order of magnitude. However, given the low sensitivity to β even a change of
magnitude would not qualitatively change our results. The vertical model resolution
has a strong influence on the parametrized flushing with higher resolution leading to
quicker oscillations and a shallower desalination at the surface. It is possible that the
complex parametrization performs most realistically at a specific layer thickness or that
the optimal value of β is resolution dependent, but this can not be determined until
more precise data is available.

3.4 Arctic sea ice

In this section we study how SAMSIM simulates the salinity evolution in the Arctic
using the complex salinity approach, and compare the model output with ice-core data.
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We have decided to limit the study to the Arctic because flooding and the correspond-
ing snow ice formation play a large role in the Antarctic. As explained in subsection
3.2.3.4, we treat the flooding parametrizations currently implemented in SAMSIM as
ad hoc solutions only suitable for dealing with isolated and sporadic flooding events.
Accordingly, we will refrain from studying Antarctic ice until flooding is better under-
stood.

Although a basic understanding of the salinity evolution has existed for many decades,
the main processes driving this desalination still pose many unanswered questions.
Using a model has the major advantage of being able to track the evolution consistently
over long periods of time, while sea-ice cores can only provide snapshots. Simulating
the salinity evolution with SAMSIM is an exercise of reproducing a vaguely known
result of poorly understood origin. We aim to understand the impact and interactions
of the various processes better, while at the same time discovering the limitations of
the developed parametrizations or the existence of neglected relevant processes.

3.4.1 Model setup

To imitate Arctic conditions we use three-hourly ERA-interim radiative fluxes and
precipitation to provide the surface conditions for SAMSIM. Nine simulations, each
forced with ERA-interim reanalysis data taken from one of nine locations spread over
the Arctic, are run from July 2005 till December 2009. The coordinates of the chosen
locations from South to North are: 70◦ N & 0◦ W, 72◦N & 155◦ E, 75◦ N & 180◦ E,
75◦ N & 0◦ E, 75◦ N & 145◦ W, 80◦ N & 0◦ E, 80◦ N & 90◦ E, 85◦ N & 180◦ E, and 90◦

N. A simulation period of 4.5 years was chosen because it enables four yearly cycles of
growth and melt, which covers the age of most Arctic sea ice (Lietaer et al., 2011).

SAMSIM also requires oceanic boundary conditions in the form of ocean salinity and
oceanic heat flux. Due to the scarcity of oceanic heat flux measurements and for
simplicity’s sake all runs share the same prescribed yearly heat-flux cycle, based loosely
on the heat fluxes Huwald et al. (2005b) derived from the SHEBA measurements.
Similarly, a standard ocean salinity of 34 g/kg is used for all runs. The model settings
and parameters used are listed in table 3.1.

It is important to state that the boundary conditions we use are not necessarily a
realistic approximation of the true conditions at the specific locations and time from
which we chose the reanalysis data. Not only are the oceanic heat fluxes a strong
approximation, the precision of the reanalysis data is limited by the lack of observations
in the Arctic. Additionally, the influences of dynamic processes such as frazil formation,
lead opening, melt ponds, and ice drift can not be accounted for in the 1-D SAMSIM
model. Given the lack of melt pond formation and lead openings SAMSIM will tend
to underestimate the amount of melt compared to reality.

3.4.2 Ice-core data

We begin analyzing the SAMSIM salinity evolution by comparing the output against
salinity traits derived from ice-core measurements. Despite its drawbacks, taking ice
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cores is by far the oldest and most wide spread method of measuring sea ice salinity.
Gough et al. (2012) provide a thorough overview of statistical and physical sampling
issues associated with ice-core salinity measurements. Due to the high horizontal het-
erogeneity of sea ice we will only use means over multiple ice-cores. It is to be expected
that the core measurements underestimate the salinity near the ocean interface due to
brine loss (Notz and Worster, 2008).

After over a century of sporadic measurement campaigns beginning with Nansen’s Fram
expedition, the observational record of Arctic sea-ice salinity is sparse in time and space
and no comprehensive compilation of the conducted measurements has been published
in the last decades (e.g. Weeks and Lee, 1958; Cox and Weeks, 1974; Nakawo and Sinha,
1981; Eicken et al., 1995). We do not attempt to provide a rigorous model versus field
data comparison in this paper. Instead, we select three characteristic traits of sea-ice
salinity to compare SAMSIM’s results against. The three traits we compare against
are the link between bulk salinity and ice thickness, the first-year salinity evolution
from January to June, and the multi-year salinity profile.

3.4.2.1 Bulk salinity against thickness

The first trait we selected is the link between salinity and thickness which was studied
by Cox and Weeks (1974) and Kovacs (1997). For the single growth season studied in
Griewank and Notz (2013) the model results agreed well with the fit of Kovacs (1997)
for first-year ice up to two meters.

We separate first-year from multi-year ice before comparing the bulk salinity against
thickness (figure 3.9). A single simulation was singled out and highlighted allowing the
reader to track the progress over 4 years as the first-year ice turns into multi-year ice
and becomes less saline and thicker each further year. Both first-year and multi-year
ice show a distinctly different behavior during growth and melt. The gradual transition
from growth to melt is visible as a drop in bulk salinity at a constant thickness. A closer
examination reveals that a slight thickness increase is visible in many simulations before
ablation sets in. This bump in ice thickness arises from SAMSIM’s definition of sea-
ice which includes melting snow that has turned into slush (for details see subsection
3.2.2.1). That this little bump appears at the end of the downward drop signals that
until then no flushing has occurred. From that we can conclude that gravity drainage
is what causes the drop in salinity.

Ice thinner than 20 cm has a wide spread in bulk salinity caused by melting and flooding
at the onset of the growth season. First-year ice thicker than 20 cm agrees well with the
empirical results of Cox and Weeks (1974) and Kovacs (1997) during growth, although
the model tends to have a higher salinity. This bias is especially high for ice thinner
than 0.5 m, which may be partially due to the fact that the underestimation of bulk
salinity due to brine loss is higher for thin cores. After melt sets in the bulk salinities
are comparable to the estimates of Cox and Weeks (1974), which were based on a
limited amount of cores which were at least a meter thick.

As expected multi-year sea ice shows a much smaller range of bulk salinities. During
growth the bulk salinities show no coherent dependence on thickness, but during melt
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there appears to be a linear dependence on thickness going from 1 g/kg at 0.5 m to 2
g/kg at 2.5 m. This is not far off from the estimation of Cox and Weeks (1974).

In conclusion, the thickness-salinity relationship of growing first-year ice agrees well
with the empirical fits to measurements of both Cox and Weeks (1974) and Kovacs
(1997). Although growing multi-year ice tends to be less salty when thicker, there is
no uniform dependence on thickness. Both melting first-year and multi-year ice show
a linear dependence of salinity on thickness. The transition from growing to melting
ice leads to a loss in bulk salinity at a constant thickness which is caused by gravity
drainage in the warming ice.
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Figure 3.9: The vertically integrated vertical bulk salinity as a function of ice thickness for all
reanalysis forced runs as described in 3.4.1. Each grey dot represents a 12-hourly snapshot.
Subfigure a contains all 15 years of first-year ice and subfigure b contains all 21 years of
multi-year ice in grey. Of all nine simulations a single simulation is plotted in black (80◦

N, 90◦ E) to enable tracking the evolution over time. The blue curve in subfigure a is the
empirical relationship for first-year ice published by Kovacs (1997) for ice up to 2 meters.
The red dashed lines mark the empirical linear relationships found by Cox and Weeks (1974)
for growing (upper lines) and melting Arctic ice (lower line).
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3.4.2.2 First-year salinity evolution

The second trait we evaluate with core data is the evolution of first-year ice salinity from
January until June. A longer time frame was not possible due to data availability, but
none the less the period allows us to study the salinity changes after gravity drainage
is mostly restricted to the lower layers. We use the ice-core data taken as part of the
Seasonal Ice Zone Observing Network and the Alaska Ocean Observing System by the
sea-ice research group at the Geophysical Institute at the University of Fairbanks from
1999-2011 (Eicken et al., 2012). The great advantage of these measurements other than
the shear number of cores taken is that by measuring repeatedly over a decade a large
spread of conditions were captured. After rejecting all cores which did not include
an ice thickness measurement or contained gaps in the salinity profile, a total of 86
first-year profiles remained between January and June.

The comparison of the model salinity against the Barrow cores is not ideal because
SAMSIM is forced with conditions from throughout the Arctic while the cores where
all taken close to the Alaskan coast as part of an ongoing effort to understand and
alleviate the impact of changing sea-ice on the human settlements along the coast
(Druckenmiller et al., 2009). However, as we will show in the following subsection
on inter-annual salinity variability the salinity variations resulting from atmospheric
conditions are strongest in the upper most 20 cm (subsection 3.4.4). Because of this,
we believe that the comparison should work well for the rest of the ice.

To compare the core profiles against the model profiles both are first normalized to a
depth of 0 to 1 before averaging over time. Often the salinity measurements did not
extend all the way to the bottom of the ice, in which case the lowest measurement was
extrapolated downwards. This extrapolation will contribute to the underestimation
of salinity at the ice-ocean interface common to ice cores. We group the 86 core
measurements into three bins of similar size based on the dates they were taken. The
first bin spans from January to March (27 cores), the second from April to Mai (29
cores), and the final bin contains the remaining 29 cores taken in June.

As expected, even though the core profiles have a sharp increase of salinity at the
ice-ocean interface they are still less saline at the ice-ocean boundary than SAMSIM
(figure 3.10). In the upper 90 % SAMSIM and the Barrow cores never differ by more
than 2 g/kg, which is in itself a mentionable model feat. Especially the June profiles
share a very similar shape.

Other than the general agreement this comparison highlights some limitations of SAM-
SIM’s complex salinity approach. One of these limitations is that flushing and snow
melt by design lead to a zero salinity at the surface, which is clearly not present in the
core data (figure 3.10). However, it is likely that core values at the surface would be
lower if the sampling resolution were higher than the 2.5 to 5 cm used.

This total desalination at the surface is rooted in two of SAMSIM’s design choices. The
first design choice is that the snow layer in SAMSIM has zero salinity, and that melting
snow forms slush which is treated as sea ice. Accordingly, when snow melts the top
layer will consist of melted snow slush and be absolutely salt free. The second design
choice which leads to zero salinity at the surface is the implementation of flushing in
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Figure 3.10: Time-averaged and vertically-normalized salinity profiles from first-year ice cores
(described in subsection 3.4.2 and shown in subfigure a) and first year ice from reanalysis
forced simulations using the complex brine dynamic parametrizations (subfigure b). Both
were averaged from January to March (1-3), April to May (4-5), and over June (6).

SAMSIM. One of the core assumptions of the complex flushing parametrization is that
the melt water leaving the top layer has a brine salinity determined by the liquidus
relationship. Accordingly, as the brine salinity of the top layer is by definition always
higher than the bulk salinity of the top layer, flushing always results in zero salinity at
the surface over time as shown by the idealized flushing experiments (section 3.3).

The second distinct difference between model and core salinity is that SAMSIM has
a high surface salinity with a very strong salinity gradient (figure 3.10 b). The sharp
salinity gradient could be a numerical artifact arising from SAMSIM’s semi-adaptive
grid. The first centimeters of ice are formed when only few layers are active, which
might be insufficient to parametrize gravity drainage. A different explanation is snow
wicking, a process which transfers some of the surface salinity into the snow layer. In
the model wicking only occurs when melt water forms in the top layer beneath snow.

The third discrepancy between the cores and SAMSIM is that the bulk salinity in the
upper 40 % is higher in January-March. There are many possible explanations for
this discrepancy, such as the non-ideal comparison itself, insufficient simulations or
core measurements, and errors of the core salinity measurements. Another explanation
is that the model is unable to simulate the salinity evolution correctly close to the
surface during winter. A likely candidate to explain that the salinity remains constant
near the surface is that the gravity drainage parametrization desalinates too quickly.
The modeled salinity is quickly reduced to 5 g/kg after which it stabilizes, instead of
a less strong initial desalination followed by a gradual desalination over time (figure
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3.10). The discrepancy between model and data could also arise from the neglect
of frazil or pancake ice formation in SAMSIM. It is also possible that the freeboard
plays an important role, and that brine from above the waterline drains away by an
unknown mixture of gravity drainage or flushing. The differences between the cores and
SAMSIM as well as our poor understanding of what happens during flooding indicates
that unknown yet relevant brine movements may occur at the ice-snow interface.

3.4.2.3 Multi-year salinity profile

The final and most well documented trait we selected to compare is the mean multi-year
salinity profile. The most widely used multi-year profile in the sea-ice modelling com-
munity is based on 40 ice cores taken at the drifting ice station A in 1958 (Schwarzacher,
1959). Although later studies have incorporated additional measurements (e.g. Cox and
Weeks, 1974; Eicken et al., 1995), the basic shape has remained similar. The fitted bulk
salinity profile of Schwarzacher (1959) on a normalized vertical coordinate z from zero
to one

Sbu(z) = 1.6(1− cos)(πz
0.407

0.573+z ))

is used in the 1D models of Maykut and Untersteiner (1971) and Bitz and Lipscomb
(1999). Although the fitted profile has a 3.2 g/kg salinity at the ice-ocean interface
(figure 3.11), in the measurements an increase is clearly visible, similar to the salinity
increase of the eight multi-year salinity cores taken at Barrow. Due to this ignored
increase and the repeatedly mentioned salinity loss in cores we only compare against
the upper 80 % the Schwarzacher profile.

We compare the mean of all normalized multi-year profiles, and find that in the upper 50
% of the ice the multi-year mean and the profile of Schwarzacher (1959) agree very well
(figure 3.11 b). This indicates that the complex flushing parametrization predicts the
desalination depth and strength reasonably correctly. Given that the complex flushing
parametrization contains large parameter uncertainties and was developed without any
data or underlying theory, this comparison to field data is the closest we can come to
evaluating the flushing parametrization until controlled laboratory measurements are
available. In the lower 50 % of the ice SAMSIM gradually becomes more and more
saline, until the two profiles diverge in the lowest 20 %. How much of this is due to
core sampling issues (location and season) or the previously mentioned loss of salt is
unknown.

3.4.2.4 Summary

According to SAMSIM there is a clear link between ice thickness and bulk salinity in
growing first-year ice as described by Kovacs (1997). However, after the ice stops grow-
ing, gravity drainage in the warming ice causes a thickness independent desalination.
Both melting first-year and multi-year ice show an approximately linear dependence
of bulk salinity on ice thickness as suggested by Cox and Weeks (1974). The mean
multi-year salinity profile of SAMSIM agrees well with the core data of Schwarzacher
(1959) and the evolution of salinity in first-year ice measured at Barrow is comparable
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Figure 3.11: Yearly mean of vertically-normalized salinity profiles of reanalysis forced simula-
tions using the complex brine dynamic parametrizations, the simple salinity parametrizations,
and the prescribed SAMSIM salinity profile. Schwarzacher 59 refers to the fitted profile of
Schwarzacher (1959). The simulations were split into first-year ice (subfigure a) and multi-
year ice (subfigure b).

to model results (Eicken et al., 2012). However, the modeled salinity close to the ice
surface in first-year ice desalinates faster than the Barrow core data, indicating that
brine fluxes occur close to the surface which are poorly captured by the complex set of
parametrizations.

All comparisons between SAMSIM and ice cores show that SAMSIM captures the
general salinity evolution well, both qualitatively and quantitatively. Keep in mind
that no tuning was used to reach these results and that all parametrizations were
developed without any field data. Additionally, all parametrizations were developed
separately, with no regard to possible interactions. From the comparison to ice cores
we conclude that our parametrizations and understanding of desalination processes are
sufficient to use SAMSIM as a valuable tool to study Arctic sea ice.

3.4.3 Mean salinity profile

In this subsection we analyze the mean salinity evolution of the complex approach.
In total the model simulations yield 36 years of sea-ice growth and melt. Of those 36
years 21 years are multi-year ice and 15 are first-year ice. Of the 15 years of first-year
ice 8 years end in open water while 7 form multi-year ice in the following year.
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To process and visualize the salinity evolution we first normalize all salinity profiles
of the model output between 0 and 1. This allows averaging over multiple normalized
profiles and simplifies comparing profiles of varying thicknesses. To resolve the mean
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Figure 3.12: Monthly mean of vertically-normalized salinity profiles of reanalysis forced sim-
ulations using the complex brine dynamic parametrizations as described in subsection 3.4.1.
The simulations were split into annual cycles beginning in September (month 9) and sorted
into 15 years of first-year ice (subfigures a & b) and 21 years of multi-year ice (subfigures c
and d). The corresponding ice thickness of the monthly means are shown in figure 3.13.
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Figure 3.13: The white columns show he thickness of all monthly mean salinity profiles shown
in figure 3.12. The black columns represent only first-year ice which evolves into multi-year
ice the following year. To be included in the monthly average ice must be present, meaning
that model output of ice-free water with an ice thickness of zero is excluded from the mean.

annual cycle we sort all first-year and multi-year profiles into monthly bins beginning
in September, which we then average (figure 3.12). A side effect of this averaging
approach is that when there is no ice in the model output this output does not affect
the mean salinity profile. This is especially important for the August profiles of first-
year ice when many of the first-year simulations are already ice free. As a consequence
the mean August profile consists mostly of first-year ice which will turn into multi-year
ice the following year. An advantage of this averaging effect is that there is a smooth
transition from the August first-year profile to the September multi-year profile. The
effect of this selection is clearly visible when comparing the mean ice thickness of all
first-year simulations excluding ice free output against the mean thickness of first-year
ice which turns into multi-year ice next September (figure 3.13).

During the growth season the salinity of the first-year ice decreases to 5 g/kg after
about two months with a sharp increase to 10 g/kg in the upper 5 % of the ice thickness
(figure 3.12 a). As the ice grows thicker the lower layers retain less salt, indicating that
on average the lower growth speed of thicker ice does lead to a reduced amount of
salt being retained as was proposed by Cox and Weeks (1975) and Wettlaufer et al.
(1997). In contrast, in our previous study using the same parametrization of gravity
drainage this behaviour of retaining less salt at slower growth speeds was only present
in idealized experiments but not in the single growth season studied (Griewank and
Notz, 2013).

The salinity profile remains pretty stable between February and April, followed by a
slight desalination in May at the onset of melt. The desalination accelerates during
June and July until the lowest 80 % of the ice have an almost uniform salinity of
approximately 2 g/kg (subfigure 3.12 b). The influence of flushing is clearly visible by
the total loss of salt at the surface from June onwards. Given that the maximal salinity
occurs between an ice-depth fraction of 0.2 and 0.4, the desalination caused by flushing
in the model occurs mostly in the top third of the ice. Although there is little indirect
experimental evidence of gravity drainage occurring as the ice warms (e.g Widell et al.,
2006; Jardon et al., 2013) the salinity reduction in the lower half of the ice from April
to June shows that gravity drainage is active in SAMSIM during the onset of melt.
This desalination is consistent with results from idealized experiments we conducted
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that show a reduction of bulk salinity from above 5 g/kg to below 3 g/kg from gravity
drainage when sea-ice begins to warm (Griewank and Notz, 2013).

At the end of the melt season the multi-year ice salinity is lowest. While the surface
salinity remains low the newly formed ice at the bottom retains up to 5 g/kg. During
the melt season the lower half of the ice is desalinated by gravity drainage while flushing
maintains the low surface salinity. That this desalination is not only due to the loss of
the saltier lower layers through melt is visible in the curve that develops in the lower
half of the normalized profile. With the exception of the gravity drainage during melt
the overall multi-year salinity agrees well with expectations already voiced by Cox and
Weeks (1974).

For readers interested in analytical approximations of the mean first-year and multi-
year profile as shown in figure 3.11 we chose two functions Sbu,fy(z) and Sbu,my(z). Both
are a function of the normalized ice depth 0 ≤ z ≤ 1 and are shown in figure 3.14. The
fitted first-year ice profile is

Sbu,fy(z) = a+
b

(b− z)2

for a = 4.17, b = 0.170, c = 1.08 and the fitted multi-year ice profile is

Sbu,my(z) = a(1− ebz) + c(1− edx)

with a = −1.284 · 10−17, b = 42.07, c = 5.411, d = −15.56.

The transition from first-year to multi-year ice over the melt season can be approxi-
mated by a time dependent combination of the two profiles, in the form

Sbu(z, t) = (1− t) · Sbu,my(z) + t · Sbu,my(z)

for t = 0 at the beginning of the melt season in June and t = 1 at the onset of growth
in September.

3.4.4 Variability

While the last subsection studied the mean salinity properties, in this subsection we will
take a brief look at the salinity variability in SAMSIM using the complex approach.
The model variability arises from two sources, the main one being the atmospheric
forcing. Although the location at which the reanalysis data was selected has the largest
impact, interannual variability ensures that all 36 years of simulated sea ice have a
unique forcing. The second source for variability is the initial ice conditions at the
beginning of the growth season. This second source only applies to the 21 years of
multi-year ice, since all first-year ice grows from ice-free water. The variance of the
model can not be directly compared to ice-core variability, because the variability in ice
cores additionally contains a large amount of variability due to small scale horizontal
heterogeneity (Gough et al., 2012).

To visualize the variability we have plotted all normalized salinity profiles at two dates
in time, as well as the mean over all profiles at that time point in figure 3.15. With few
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Figure 3.14: Fitted salinity profiles to the yearly mean complex first-year and multi-year
sea-ice profiles as shown in figure 3.11. The profile of Schwarzacher (1959) is included as a
reference. The fitted functions are listed in subsection 3.4.3.

exceptions the first-year ice only deviates a few g/kg from the mean in the lowest 80
% of the ice. However, at the surface the spread is much higher, with values reaching
from 0 to above 10 g/kg (see figures 3.15 a & b). There are two main reasons for the
higher variability at the surface. The first is that after 10 to 20 cm of ice has formed,
the variability of the atmospheric forcing is severely dampened before it reaches the
ice-ocean interface. As a result, the ice formed after the initial 10-20 cm grows under
roughly similar conditions in all simulations. The second reason is that flooding and
flushing both occur mainly at the surface of the ice. That such a similar high variability
near the surface is not visible in the multi-year ice is because both processes are far
less likely to occur in multi-year ice during the winter than in first-year ice. Farther
south where first-year ice seldom survives the melt season, rainfall and above-freezing
surface temperatures occur during the growth season, both of which can cause flushing.
As the first-year ice is less thick, strong snow fall which slows ice growth can lead to
flooding more easily than in multi-year ice.

As all multi-year ice has experienced at least one melt season, it is not surprising that
multi-year simulations have a salinity of zero at the surface (figure 3.15 c and d). That
all 21 years have zero surface salinity shows that flooding of multi-year ice does not
occur in any of the simulations. Most of the variability in multi-year ice arises from the
different ice thickness and salinity of the ice at the end of the melt season. The spikes
visible in roughly 5 simulations between 0.4 and 0.6 in the November profiles arise from
sudden quick growth in the beginning of the growth season beneath comparably fresh
ice (figure 3.15 c). This growth can be quicker than in first-year ice of similar thickness
due to the following reasons. The first reason is that by the time first-year ice reaches
the same thickness, it has likely accumulated an insulating snow layer which slows ice
growth. Secondly, the fresher multi-year ice has a higher thermal conductivity and
lower thermal capacity which enhances heat transport from the ice-ocean interface to
the ice-atmosphere boundary.

Over the next half year the profiles are smoothed out and the salinity sinks to 5 g/kg
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or lower except in the lowest 10 percent (subfigure 3.15 d). Visible in both first-year
ice and multi-year ice is that the salinity in the lowest layers is higher in November
when ice growth is stronger than in April.
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Figure 3.15: Vertically-normalized salinity profiles of the reanalysis forced simulations (de-
scribed in subsection 3.4.1) using the complex salinity parametrizations at the first of Novem-
ber (subfigures a & c) and the first of April (b and d). First-year ice (subfigures a & b) and
multi-year ice (subfigures c & d) are shown separately. The grey lines are the individual
model realizations and the black line is the average over all profiles.
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In conclusion, the variability in first-year ice is strongest at the surface and arises from
the atmospheric forcing, while the variability in multi-year ice is mostly due to the
thickness of the ice at the beginning of the growth season. A third possible source of
variance is the variation in the oceanic heat flux. This is not included in this study as
all simulations share the same prescribed annual cycle of oceanic heat flux.

3.4.5 Simple and prescribed salinity approach

As both the simple and prescribed approach are relevant in the following chapter, we
briefly compare the mean first-year and multi-year profile of all approaches. The mean
first-year profiles of the three approaches differ far more than the mean multi-year
profiles (figure 3.11 a). The simple approach has a lower first-year salinity than the
complex run in the upper ice half, and has a slightly higher salinity in the upper 20 %
and in-between the depth fraction of 0.6 and 0.8 for multi-year ice (figure 3.11 a). The
prescribed approach is lower in the upper half and more saline in the lower 20-30 % of
the ice in comparison to the other approaches in both first-year and multi-year ice.

3.5 Impact of parametrizing salinity

While the previous section focused on the salinity evolution and the processes which
drive it, this section aims to quantify how parametrizing salinity affects sea-ice proper-
ties relevant to the climate system. We address this question, which is highly relevant
to modellers seeking to improve climate models, by using the same runs used in the
previous section (see subsection 3.4.1).

To asses the total impact of parametrizing salinity in a climate model it is not sufficient
to quantify the impact on the sea ice itself. It is also necessary to determine resulting
feedbacks with the ocean and atmosphere. So far the only coupled model featuring
a partially parametrized salinity is the NEMO-LIM model which uses a prescribed
atmospheric forcing. Using the NEMO-LIM model Vancoppenolle et al. (2009) found
that the large-scale sea-ice mass balance and the upper ocean characteristics are quite
sensitive to sea-ice salinity. Salinity variations introduced to NEMO-LIM increased sea
ice volume by up to 28 % in the Southern Hemisphere because changes to the ice-ocean
interactions stabilized the ocean leading to a reduced oceanic heat flux. In the Arctic
the ocean stratification was not influenced by the implemented sea-ice variations, but
Vancoppenolle et al. (2009) discovered increases in ice thickness of up to a meter due
to changes of the sea-ice thermal properties.

From Vancoppenolle et al. (2009) we conclude that in the Arctic the oceanic feedbacks
will be small owing to the stable stratification of the Arctic Ocean. Although the
atmospheric feedbacks remains unknown, we can use SAMSIM’s more advanced salinity
parametrizations with a much higher spatial and temporal resolution to take a more
detailed look than Vancoppenolle et al. (2009) at how the salinity evolution affects the
sea ice.

A further piece of information needed to weigh introducing salinity parametrizations
into a coupled model is the resulting increase in computational cost. As there are almost
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unlimited options where to invest additional computational resources (e.g. increasing
spatial resolution, more ice thickness categories per grid cell, more complex radiation
schemes) it would be ideal to give an estimation of the computational increase along
with the estimated improvement so modelers can gauge where to invest free resources
most efficiently. A brief description of the numerical costs associated with the salinity
approaches can be found in subsection 3.2.4.

To quantify the impact of parametrizing salinity we compare quantities of the nine re-
analysis forced simulations using the three salinity approaches introduced in subsection
3.2.4. The specific quantities we use based on their importance for the climate system
are the same four used in Griewank and Notz (2013). These are the ice thickness, the
freshwater column stored in the ice and snow, the thermal resistance Rth, and the total
enthalpy H integrated over the whole ice and snow column. Each of the nine runs is
evaluated separately over the full 4.5 simulation years to ensure that opposing biases
at different locations do not average out.

The metrics we use to compare the time dependent quantities against each other are a
time integrated ratio and a time integrated, weighted absolute difference. The ratio r
of the quantity xi(t) using the salinity approach i against the same quantity using the
different salinity approach xj(t) over the simulated 4.5 years is calculated as

r =

∫ t=4.5 a

t=0
xi(t) dt∫ t=4.5 a

t=0
xj(t) dt

.

The second metric used, the weighted absolute difference d, is determined by

d =

∫ t=4.5 a

t=0
xi(t)− xj(t) dt∫ t=4.5 a

t=0
xj(t) dt

and is a measure of how large the differences between the two quantities at each time
step compared to the total value of the second quantity. The ratio is chosen to indicate
if and by how much xi is greater or smaller than xj over time, while the absolute
difference is chosen to detect compensating errors not apparent in the ratio.

We quantify the impact by comparing the simple and prescribed approach against the
complex approach. Although our data comparisons show that the complex salinity
approach provides a more realistic estimation of the salinity evolution than the simple
and prescribed, which approach provides the most realistic salinity evolution is of no
consequence to the determined impact.

The computed ratios for each simulation reveal that the prescribed approach with few
exceptions leads to a lower ice thickness, freshwater column, thermal resistance, and
total enthalpy than the complex approach (figure 3.16). Ratios range from 0.90 to 1.05,
with enthalpy having the largest spread. The mean over all ratios and quantities of
the prescribed approach is 0.971, accordingly the quantities of the complex approach
are approximately 3 % higher on average. The ratios of the simple approach have a
slightly lower spread and are on average higher with a mean of 1.017.

The absolute differences paint a similar picture, with the prescribed approach having a
slightly larger spread with differences up to 11 % (figure 3.17). On average the simple
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Figure 3.16: Ratios of the time integrated ice thickness, freshwater column, thermal resistance
Rth, and enthalpy H of the simple and the prescribed SAMSIM salinity approach compared
against the complex approach (details in section 3.5). The ratios were calculated separately
for each of the nine reanalysis forced simulations over 4.5 years. Each dot shows the ratio of
a specific simulation, while the lines show the mean over all runs and quantities.

approach has slightly lower differences with a mean of 3.6 % in comparison to the
prescribed mean of 4.3 %. Because the absolute differences are only slightly larger
than the ratios, we can deduce that most of the discrepancy between two simulations
is in one direction.

Given that the prescribed approach does not distinguish growing from melting ice and
that the prescribed profile was not optimized or tuned in any way, the prescribed ap-
proach is unexpectedly close to the complex approach. We also expected the prescribed
approach to have a wider spread when compared to the complex approach, because the
prescribed approach treats all ice the same regardless of its history while the complex
approach is dependent on previous conditions.

From our results we conclude that the possible improvements achievable by fully
parametrizing salinity in the Arctic are not worth the numerical costs, especially be-
cause the impact of parametrizing salinity will be smaller when fewer layers are used.
Instead we recommend using either a prescribed profile or a hybrid approach. The
salinity approach used by Vancoppenolle et al. (2009) is such a hybrid, in which the
total bulk salinity of the whole column is parametrized and the salinity profile is pre-
scribed based on the bulk salinity. Prescribed profiles can also be thickness, time, or
even location dependent. If a model can distinguish first-year and multi-year ice this
information could also be used to prescribe the salinity.

3.6 Summary and conclusions

We have incorporated surface melt, flooding, and flushing into SAMSIM. In contrast
to the thermodynamic models derived from Maykut and Untersteiner (1971), such
as Bitz and Lipscomb (1999) and Huwald et al. (2005a), surface melt in SAMSIM is
implemented as a two stage process. The first stage is the conversion of snow to slush
followed by the second stage of surface ablation by melt water runoff. All desalination
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Figure 3.17: Time integrated absolute differences of the ice thickness, freshwater column,
thermal resistance Rth, and enthalpy H of simulations using the simple and prescribed SAM-
SIM salinity approach compared against simulations using the complex approach (details in
section 3.5). The absolute differences were calculated separately for each of the nine reanaly-
sis forced simulations over 4.5 years. Each dot shows the ratio of a specific simulation, while
the lines show the mean over all runs and quantities.

processes are parametrized twice in SAMSIM. The complex parametrizations calculate
brine fluxes and are physically consistent, while the simple parametrizations attempt
to imitate the effects of the complex parametrizations with less numerical overhead.

SAMSIM is the only 1D thermodynamic sea-ice model other than the 1D LIM model
of Vancoppenolle et al. (2007) which has a fully prognostic salinity. In contrast
to the flushing parametrization of Vancoppenolle et al. (2007), the complex flush-
ing parametrization of SAMSIM explicitly includes both horizontal and vertical brine
movements. A detailed discussion of why the complex gravity drainage parametrization
of SAMSIM agrees better than the gravity drainage of LIM 1D with both theoretical
and numerical expectations is included in Griewank and Notz (2013). The complex
flooding parametrization based on the results of Maksym and Jeffries (2000) is an
ad hoc solution as the current understanding of flooding is insufficient to develop a
more realistic parametrization. Nevertheless, SAMSIM is the first 1D model to include
flooding as well as flushing and gravity drainage, and the flooding parametrization
does capture the basics of flooding and forms snow ice with reasonably salinities in a
physically consistent manner.

Under idealized conditions, the complex flushing parametrization leads to oscillations
of the salinity profile close to the surface. If gravity drainage is deactivated flushing also
leads to a strong increase of salinity close to the ice-ocean interface. Although we do
not have data available to determine optimal values of the ratio of vertical to horizontal
hydraulic resistance β and the melt solid fraction φs,melt, sensitivity experiments show
that the flushing parametrization is only weakly sensitive to changes close to the default
values. At higher vertical resolution the flushing onset occurs sooner and the salinity
oscillations have a higher frequency.

No idealized study of the flooding parametrization is shown due to the ad hoc nature
of the parametrization and the lesser importance of flooding compared to flushing in
the Arctic.
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We study the salinity evolution of Arctic sea ice using 36 years of SAMSIM output. To
imitate Arctic conditions we force SAMSIM with ERA-interim reanalysis precipitation
and radiation fluxes from throughout the Arctic. The 36 years are separated into
16 years of first-year and 21 years of multi-year sea-ice and then compared against
ice-core data. The mean multi-year salinity profile of Schwarzacher (1959) and the
salinity evolution of first-year ice cores from Barrow Alaska agree well with SAMSIM.
However, while the first-year ice-core salinity at the surface decreases from January to
May, the modelled salinity at the surface remains constant until the onset of melt. This
discrepancy indicates that brine fluxes close to the ice-snow boundary are captured
poorly by SAMSIM. Possible reasons for this discrepancy are discussed in detail in
subsection 3.4.2.2.

We deduce from the 36 years of simulated sea-ice that ice thickness is a good indicator of
bulk salinity for growing first-year ice. The model results agree well with the empirical
results of Cox and Weeks (1974) and Kovacs (1997). That the modeled bulk salinities
of thin ice are higher than the ice-core data is at least partially due to the fact that
brine loss during coring is especially high from thin and more saline ice. The transition
from growth to melt is accompanied by a 1.5-4 g/kg reduction of bulk salinity caused
by gravity drainage before the onset of flushing. This onset of gravity drainage as
the ice warms is consistent with earlier findings by Griewank and Notz (2013) and
Jardon et al. (2013). The onset contradicts the general melt evolution depicted by
Eicken et al. (2002) in which gravity drainage sets in at the end of the melt season. In
general thicker multi-year ice tends to be fresher, but during growth the bulk salinity
increases with thickness. During melt both multi-year and first-year ice have a linear
relationship of bulk salinity and thickness as Cox and Weeks (1974) hypothesized on
a limited set of cores, but the slope of the linear relationship in the model is steeper
than that proposed by Cox and Weeks (1974).

Our results show the largest inter-annual variations of salinity occur at the surface of
first-year ice and are caused by rain, surface melt, and flooding. In contrast, the lower
80 % of the salinity profile of first-year ice are similar to each other, despite being
forced with reanalysis data taken from different locations. The multi-year ice profiles
vary depending on the ice thickness at the onset of growth and become more similar
over the growth season. First-year and multi-year ice profiles can be approximated
using the mean normalized profiles shown in figure 3.14, and a smooth transition of
first-year to multi-year ice can be achieved by linearly transitioning from the first-year
to the multi-year profile as shown in subsection 3.4.3.

We compare the ice thickness, freshwater column, thermal resistance, and total stored
energy of the nine 4.5 year long simulations of Arctic sea-ice using the three different
salinity approaches against each other. Although certain quantities differ by up to 10
% for a specific simulation, on average the differences between the complex salinity
approach and the others are below 5 %. The simple approach is slightly closer to
the complex approach than the prescribed approach, but only by 1 %. We conclude
that fully parametrizing the temporal sea-ice salinity evolution in the Arctic for cli-
mate models is not worth the computational cost. Instead, we recommend using a
parametrized-prescribed hybrid such as that proposed by Vancoppenolle et al. (2009).
The most crucial aspect of a parametrized-prescribed hybrid is the ability to distin-
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guishing multi-year from first-year ice. This can be done by tracking the bulk salinity
of the whole ice column as Vancoppenolle et al. (2009) did, or by tracking the ice
age in some fashion (e.g. Lietaer et al., 2011). Once the model is able to distinguish
first-year from multi-year ice, empirical profiles of first-year and multi-year, such as the
mean normalized profiles shown in figure 3.14 or the multi-year profile of Schwarzacher
(1959), can be prescribed. A smooth transition from first-year to multi-year ice can
be achieved by linearly transitioning from the first-year to the multi-year profile as
discussed in subsection 3.4.3. Further temporal refinement can be achieved by taking
the annual cycle into account (figure 3.12).

Comparisons to laboratory and field salinity measurements have shown that the para-
metrized brine fluxes in SAMSIM are a reasonable approximation of reality. SAMSIM’s
semi-adaptive grid is convenient when studying processes which occur close to the
ice-atmosphere or ice-ocean boundary, as it avoids numerical diffusion through layer
advection in the surface and bottom layers. All dissolved tracers in brine can be easily
advected similar to salt, and the gas volume fraction in each layer can be used to
compute outgassing and uptake. Thanks to these properties SAMSIM is a valuable
tool to study small-scale thermodynamic and biogeochemical aspects of sea ice.
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Chapter 4

Final conclusions

4.1 Answers to key research questions

How and with which precision can brine fluxes be parametrized in a 1D
sea-ice model?

I have successfully parametrized gravity drainage to such a degree that when sim-
ulating the laboratory experiments of Notz (2005) I can not distinguish model errors
from measurement uncertainty. From this I conclude that I can reproduce gravity
drainage when it occurs close to the ice-ocean interface with a high degree of precision
and better than other parametrizations from the literature. From the good agreement
between modeled and measured bulk salinity against ice thickness I know that the
complex gravity drainage parametrization also predicts the depth of gravity drainage
reasonably well. No measurements are available that can confirm if gravity drainage
also occurs deep in the ice as the parametrization predicts.

My flushing parametrization produces multi-year salinity profiles which agree with
field measurements and also explicitly computes horizontal brine fluxes which are high
close to the ice-ocean surface as expected. The ratio of horizontal to vertical flushing
tends to oscillate over time, which is physically plausible for a specific location but
undesirable in a 1D model which attempts to provide a representative profile for a
large horizontal area. More detailed laboratory and field measurements are needed to
understand flushing better and to tune and evaluate my parametrization. The high
horizontal variability and inherent instability of melting ice indicate that a 1D model
will never be able to parametrize flushing with the same precision as gravity drainage.

Flooding is currently too poorly understood and observed to develop a high quality
parametrization or evaluate the current parametrization included in SAMSIM. Until
we have a better picture of how brine moves at the ice-snow boundary, I must rely on
guesswork and ad hoc approximations. Despite the limitations, the flooding scheme I
implemented does capture the basics of flooding and forms snow ice with reasonably
salinities in a physically consistent manner.

In conclusion, I have succeeded to parametrize the brine fluxes in accordance with
the current understanding of the underlying processes. Although brine movements
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at the snow-ice interface are only poorly understood, the current parametrizations
enable highly detailed and physically consistent studies of sea-ice thermodynamics and
biogeochemical processes.

When and how do brine movements occur in sea ice, and how does sea-ice
salinity evolve over time as a result?

I find that the depth of gravity drainage varies during growth as a reaction to sur-
face temperature, and can even span the full ice depth (section 2.6). This full depth
desalination indicates that gravity drainage can replenish the whole ice column with
nutrients from the ocean. I also find that gravity drainage is active during the tran-
sition from growth to melt, and that the amount of desalination caused by gravity
drainage in warming ice is comparable to that caused by flushing (figure 3.12). It is
also clearly visible in the normalized profiles that flushing only desalinates the upper
ice while the lower half is desalinated by gravity drainage.

From the model output I conclude that the inter-annual salinity variability of first-
year ice is highest in the top 20 % and is caused by raining, flooding, and flushing on
thin ice (subsection 3.4.4). The lower 80 % of ice grow under similar conditions, and
gravity drainage leads to similar salinity profiles with a low inter-annual variability.
The salinity profile of the lower 80 % can be approximated using the mean normalized
profile I introduced in subsection 3.4.3. All multi-year ice have zero salinity at the
surface and 5 [g/kg] bulk salinity close to the ice-ocean interface (figure 3.15). The
highest inter-annual salinity variability is in the middle of the ice shortly after the onset
of growth. This variability arises from the different ice states at the end of the growth
season. The multi-year salinity profile can be reasonably well approximated through
the empirical mean I provide in subsection 3.4.3.

The model shows a clear relationship of ice thickness to bulk salinity for growing sea
ice which agrees well with the empirical results of Cox and Weeks (1974) and Kovacs
(1997) (figure 3.9). The relationship between bulk salinity and thickness breaks down
when the ice warms at the end of growth season. Gravity drainage reduces the bulk
salinity of the warming ice by 1.5-4 g/kg while the thickness remains constant. In
general thicker multi-year ice tends to be fresher, but during growth the bulk salinity
increases with thickness. During melt both multi-year and first-year ice have a linear
relationship of bulk salinity and thickness as Cox and Weeks (1974) hypothesized on
a limited set of cores, but the slope of the linear relationship in the model is steeper
than that proposed by Cox and Weeks (1974).

How much could climate models benefit from fully parametrizing salinity,
and which salinity approach provides the best improvement at a reasonable
computational cost?

My results from multi-year simulations show that under Arctic conditions parametriz-
ing or prescribing the salinity in SAMSIM leads to differences smaller than 5% on
average. For specific simulations certain quantities differ by up to approximately 10
%. Given the large uncertainties in the model representations of sea-ice dynamics,
sub-grid scale representation, lead formation, snow thermal conductivity, and snow
distribution, I do not recommend large-scale models attempt to fully parametrize the
temporal evolution of sea-ice salinity. Instead I recommend either prescribing a sea-
ice salinity profile based on age and season or using a prescribed-parametrized hybrid
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which combines a prescribed profile with a parametrized bulk salinity. As discussed in
the previous paragraph, the ice thickness is a poor proxy for bulk salinity outside of
the melt season. The most crucial aspect of a prescribed-parametrized hybrid is the
ability to distinguishing multi-year from first-year ice. This can be done by tracking
the bulk salinity of the whole ice column as Vancoppenolle et al. (2009) did, or by
tracking the ice age in some fashion. Once the model is able to distinguish first-year
from multi-year ice, further refinement can be achieved by taking the annual cycle into
account.

4.2 Outlook

As the salinity parametrizations are currently limited by lack of understanding and
data, they can not be improved or refined until more measurements or theoretical in-
sight become available. The wire harp instrument first used by Notz (2005) has been
revised recently and will hopefully soon provide non-invasive time series of salinity pro-
files from both field campaigns and laboratory studies of melting sea ice. Researchers
have also managed to take optical measurements of chemical sea-ice properties (e.g.
Rysgaard et al., 2008), which could in future be used to take 2D measurements of
salinity.

Researchers are currently seeking to quantify chemical and biological processes in the
ice to reproduce and understand field and laboratory measurements, and to determine
which processes are relevant over large time and length scales. SAMSIM is well suited
for these tasks as it currently provides the most accurate estimation available of brine
movements in sea ice. The semi-adaptive grid is helpful when studying processes at
the ice surface and close to the ice-ocean interface, as no numerical diffusion through
layer advection occurs in the surface and bottom layers. An additional advantage of
SAMSIM is that in contrast to all other 1D sea-ice models the gas volume fraction
is treated explicitly, which enables calculating the amount of outgassing and uptake
needed to achieve pressure equilibrium. Thanks to all these attributes SAMSIM is a
valuable tool to study the small-scale biogeochemical and thermodynamic aspects of
sea ice.
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