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ABSTRACT
A new Bayesian software package for the analysis of pulsar timing data is presented in the
form of TempoNest which allows for the robust determination of the non-linear pulsar timing
solution simultaneously with a range of additional stochastic parameters. This includes both
red spin noise and dispersion measure variations using either power law descriptions of the
noise, or through a model-independent method that parameterises the power at individual fre-
quencies in the signal. We use TempoNest to show that at noise levels representative of current
datasets in the European Pulsar Timing Array (EPTA) and International Pulsar Timing Array
(IPTA) the linear timing model can underestimate the uncertainties of the timing solution by
up to an order of magnitude. We also show how to perform Bayesian model selection between
different sets of timing model and stochastic parameters, for example, by demonstrating that
in the pulsar B1937+21 both the dispersion measure variations and spin noise in the data are
optimally modelled by simple power laws. Finally we show that not including the stochastic
parameters simultaneously with the timing model can lead to unpredictable variation in the
estimated uncertainties, compromising the robustness of the scientific results extracted from
such analysis.

Key words: methods: data analysis, pulsars: general, pulsars:individual

1 INTRODUCTION

The ever increasing precision of pulsar timing studies, combined,
in particular, with the exceptional rotational stability of millisecond
pulsars (MSPs) has resulted in a powerful tool for the pursuit of a
wide range of scientific goals. For example, in recent years pulsar
timing has been used to find extrasolar planets (Bailes et al. 2011),
to study matter at super-nuclear densities in the interior of neu-
tron stars (Espinoza et al. 2011), and the double pulsar system PSR
J0737-3039A/B, provides precise measurements of several ‘post
Keplerian’ parameters allowing for stringent tests of general rel-
ativity (Kramer et al. 2006).

For a detailed review of pulsar timing refer to e.g. Lorimer et
al. (2004). In brief, the arrival times of pulses (TOAs) for a particu-
lar pulsar will be recorded by an observatory in a series of discrete
observations over a period of time. These arrival times must all be
transformed into a common frame of reference, the solar system
barycenter, in order to correct for the motion of the Earth.

A model for the pulsar can then be fit to the TOAs that char-
acterises the properties of the pulsar’s orbital motion, as well as
its timing properties such as its orbital frequency and spin down.

? E-mail: ltl21@cam.ac.uk

This is most commonly carried out using the TEMPO1, and more
recently, TEMPO2 pulsar-timing packages (Hobbs, Edwards, &
Manchester 2006; Edwards, Hobbs, & Manchester 2006; Hobbs
et al. 2009). TEMPO2 uses an initial guess to the timing model to
generate a set of pre-fit residuals. A Fisher-matrix approximation to
the timing model parameters is then calculated and a linear least-
squares method is utilised to improve the fit. If desired, multiple
iterations can be performed such that the best-fit values for the tim-
ing model from the previous iteration are used as the starting guess
for the next, until convergence is reached.

When performing this fitting process, TEMPO2 considers the
TOAs to be solely the sum of a deterministic signal due to the tim-
ing model, and a white noise component described completely by
the TOA uncertainties. In realistic datasets however this assump-
tion is rarely true. If additional stochastic processes such as intrin-
sic red spin noise due to rotational irregularities in the neutron star
(Shannon & Cordes 2010) or correlated noise due to a stochastic
gravitational wave background (GWB) generated by, for example,
coalescing black holes (e.g. Jaffe & Backer 2003; Phinney 2001)
are present in the data then power from these contributions will be

1 http://www.atnf.csiro.au/research/pulsar/tempo
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2 L. Lentati et al.

absorbed by the timing model, affecting the accuracy of the param-
eter estimation.

Recently, Coles et al. (2011) (henceforth C11) proposed a
method of improving the timing model fit by using the Cholesky-
decomposition of the covariance matrix describing the properties
of these additional stochastic processes in the TOAs, calculated
from the power spectral density of the timing residuals. This can
be used to whiten the residuals, after which parameter estimation
is performed in these transformed observations using ordinary least
squares.

In van Haasteren & Levin (2013) (henceforth vHL2013), how-
ever, it is shown that after fitting for the timing model the resulting
residuals are not time stationary, and as such the power spectral
density of those residuals is not a well defined mathematical quan-
tity. In addition because the method in C11 does not account for the
covariance between the timing model and the stochastic processes,
the uncertainties associated with the parameter estimates, in partic-
ular those associated with the quadratic spin down, are not optimal.
The preferred approach is therefore to perform a joint analysis of
the deterministic timing model and any additional stochastic com-
ponents present as in vHL2013.

However, when performing a Bayesian analysis using the lin-
earised timing model as presented in vHL2013 it is not possible
to perform model selection between different sets of timing model
parameters using the evidence. This is because the maximum like-
lihood value at which the linearisation is performed will depend
upon the exact set of model parameters included, and as such, both
the data and the model will vary as the parameter space changes.
It is also not clear how the estimation of the uncertainties of the
timing model parameters depends on the linearisation process, es-
pecially in the regime where the signal to noise ratio might be low,
and the Fisher-matrix approximation will be poor.

In this paper we present a solution to these problems in the
form of TempoNest. TempoNest provides a means of performing
a simultaneous analysis of either the linear or non-linear timing
model and additional stochastic parameters using the Bayesian in-
ference tool MultiNest (Feroz & Hobson 2008; Feroz, Hobson,
& Bridges 2009) to efficiently explore this joint parameter space,
whilst using TEMPO2 as an established means of evaluating the
timing model at each point in that space. TempoNest allows for
robust model selection between different sets of timing model or
noise parameters, and requires only basic prior knowledge of the
timing model.

In Section 2 we will describe the basic principles of our
Bayesian approach to data analysis, giving a brief overview of how
it may be used to perform model selection, and introduce Multi-
Nest. In Section 3 we will describe the stochastic models currently
available for use in TempoNest to include with the timing model,
including the white noise modifiers EFAC and EQUAD, along with
descriptions of both red spin noise and dispersion measure varia-
tions.

We will then perform a series of tests using TempoNest de-
signed to show some of the included functionality. In Section 6 we
use simulated data to compare the non-linear and linear approxi-
mation to the timing model across different noise regimes designed
to represent both future and current datasets, whilst in Section 7 we
apply TempoNest to two sets of publicly available data, firstly of the
binary pulsar B1855+09 and then the isolated pulsar B1937+21.
We show how TempoNest can be used to perform Bayesian model
selection between different sets of timing model and stochastic pa-
rameters, and for the latter case, also compare the parameters esti-
mates and uncertainties for the timing solutions produced by Tem-

poNest, Tempo2, and the SpectralModel plug-in for Tempo2 that
uses the principles described in C11.

We note that the aim of this paper is not to provide a user man-
ual for TempoNest, but rather give an overview of its functionality.
A development build of TempoNest is currently available online 2,
with a full public release planned in the near future.

This research is the result of the common effort to directly
detect gravitational waves using pulsar timing, known as the Euro-
pean Pulsar Timing Array (EPTA) (Janssen et al. 2008) 3.

2 BAYESIAN INFERENCE

Our method for performing pulsar timing analysis is built upon the
principles of Bayesian inference, which provides a consistent ap-
proach to the estimation of a set of parameters Θ in a model or
hypothesis H given the data, D. Bayes’ theorem states that:

Pr(Θ | D,H) =
Pr(D | Θ,H)Pr(Θ | H)

Pr(D | H)
, (1)

where Pr(Θ | D,H) ≡ Pr(Θ) is the posterior probability distribution
of the parameters, Pr(D | Θ,H) ≡ L(Θ) is the likelihood, Pr(Θ |
H) ≡ π(Θ) is the prior probability distribution, and Pr(D | H) ≡ Z
is the Bayesian Evidence.

In parameter estimation, the normalizing evidence factor is
usually ignored, since it is independent of the parameters Θ. In-
ferences are therefore obtained by taking samples from the (un-
normalised) posterior using, for example, standard Markov chain
Monte Carlo (MCMC) sampling methods.

In contrast to parameter estimation, for model selection the
evidence takes the central role and is simply the factor required to
normalize the posterior over Θ:

Z =

∫
L(Θ)π(Θ)dnΘ, (2)

where n is the dimensionality of the parameter space.
As the average of the likelihood over the prior, the evidence

is larger for a model if more of its parameter space is likely and
smaller for a model where large areas of its parameter space have
low likelihood values, even if the likelihood function is very highly
peaked. Thus, the evidence automatically implements Occam’s ra-
zor: a simpler theory with a compact parameter space will have a
larger evidence than a more complicated one, unless the latter is
significantly better at explaining the data.

The question of model selection between two models H0 and
H1 can then be decided by comparing their respective posterior
probabilities, given the observed data set D, via the model selec-
tion ratio R:

R =
P(H1 | D)
P(H0 | D)

=
P(D | H1)P(H1)
P(D | H0)P(H0)

=
Z1

Z0

P(H1)
P(H0)

, (3)

where P(H1)/P(H0) is the a priori probability ratio for the two mod-
els, which can often be set to unity but occasionally requires further
consideration.

2.1 Nested Sampling and evaluating the evidence

Evaluation of the multidimensional integral in Eq. 2 is a challeng-
ing numerical task. Standard techniques like thermodynamic inte-

2 https://github.com/LindleyLentati/TempoNest
3 www.epta.eu.org/
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gration (O’Ruanaidh & Fitzgerald 1996) are extremely computa-
tionally expensive, which makes evidence evaluation at least an
order-of-magnitude more costly than parameter estimation. Some
fast approximate methods have been used for evidence evaluation,
such as treating the posterior as a multivariate Gaussian centered
at its peak (see e.g. Hobson, Bridle, & Lahav 2002 ), but this ap-
proximation is clearly a poor one for multimodal posteriors (except
perhaps if one performs a separate Gaussian approximation at each
mode). The Savage-Dickey density ratio has also been proposed
(see e.g. Trotta 2007) as an exact, and potentially faster, means of
evaluating evidences, but is restricted to the special case of nested
hypotheses and a separable prior on the model parameters.

The nested sampling approach (Skilling 2004) is a Monte-
Carlo method targeted at the efficient calculation of the evidence,
but also produces posterior inferences as a by-product.

Nested sampling considers the prior volume X where the like-
lihood is greater than some value λ, which can be written as:

X(λ) =

∫
L(Θ)>λ

π(Θ)dnΘ. (4)

This allows us to rewrite Eq. 2 as a one-dimensional integral over
λ:

Z =

∫ ∞

0
X(λ)dλ. (5)

When the inverse of X(λ), the likelihood value that corresponds to
a given prior volume, L(X), exists this integral can then be written:

Z =

∫ 1

0
L(X)dX, (6)

and so the evidence can be calculated as the weighted sum of a set
of M values of X:

Z =

M∑
i=1

Liwi. (7)

where the weights wi are simply given by the trapezium rule wi =
1
2 (Xi−1 − Xi+1).

2.2 MultiNest

In Feroz, Hobson, & Bridges (2009) and Feroz & Hobson (2008)
this nested sampling framework was built upon with the intro-
duction of the MULTINEST algorithm, which provides an effi-
cient means of sampling from posteriors that may contain multi-
ple modes and/or large (curving) degeneracies, and also calculates
the evidence. Since its release MULTINEST has been used suc-
cessfully in a wide range of astrophysical problems, from detecting
the Sunyaev-Zel’dovich effect in galaxy clusters (Consortium et al.
2012), to inferring the properties of a potential stochastic gravita-
tional wave background in pulsar timing array data (Lentati et al.
2013) (henceforth L13).

In brief, the MultiNest algorithm operates by first drawing a
set of Nlive points from the prior π(Θ). An ellipsoidal decomposition
is then performed such that the full set of live points is contained
within a set of ellipsoids. At each subsequent iteration i a point
is drawn with likelihood L from the union of these ellipsoids and
is checked to see if it satisfies the constraint L > Li where Li is
the lowest likelihood value present in the set of live points at that
iteration. If this constraint is satisfied the point replaces the lowest
likelihood point in the live set with a probability 1/ne where ne is
the number of ellipsoids in which the new point lies.

In high dimensions most of the volume in the ellipsoids lies

in their outer shells, thus when the decomposition extends beyond
the true iso-likelihood surface, the acceptance rate of new points
can decrease significantly. In order to maintain high sampling effi-
ciency in high dimensions MultiNest therefore contains a ‘constant
efficiency’ mode. Here the total volume enclosed by the ellipsoids
is adjusted such that the sampling efficiency meets some user set
target. However whilst this mode is adequate for parameter estima-
tion, the evidence values are not reliable.

Recently, however, the MULTINEST algorithm has been
updated to include the concept of importance nested sampling
(Cameron & Pettitt 2013) (INS) which provides a solution to this
problem. Full details can be found in Feroz et al. (2013), but the key
difference is that, where with normal nested sampling the rejected
points play no further role in the sampling process, INS uses every
point sampled to contribute towards the evidence calculation. One
outcome of this approach is that even when running in constant ef-
ficiency mode the evidence calculated is reliable even in higher (∼
50) dimensional problems.

In pulsar timing analysis we will often have to deal with timing
models that can contain > 20 parameters, which, when combined
with the properties of the stochastic component of the signal can
result in a total dimensionality of 50-60. As such, the ability to run
in constant efficiency mode whilst still obtaining accurate values
for the evidence when these higher dimensional problems arise is
crucial in order to perform reliable model selection.

3 PULSAR TIMING LIKELIHOOD

For any pulsar we can write the TOAs for the pulses as a sum of
both a deterministic and a stochastic component:

ttot = tdet + tsto, (8)

where ttot represents the n TOAs for a single pulsar, with tdet and
tsto the deterministic and stochastic contributions to the total re-
spectively, where any contributions to the latter will be modelled as
random Gaussian processes. Writing the deterministic signal due
to the timing model as τ(ε), and the uncertainty associated with a
particular TOA i as σi we can write the likelihood that the data is
described solely by the timing model as:

Pr(t|ε) ∝
 n∏

i=1

σ2
i

−
1
2

exp

−1
2

n∑
i=1

(ti − τ(ε)i)2

σ2
i

. (9)

This represents the simplest model choice possible in TempoNest,
including only those free parameters present in the TEMPO2 fit.
From here we can now begin to make our model for the stochastic
contribution to the signal more realistic by introducing additional
parameters to describe the white and red noise components, in order
to compare the evidence with this simpler model and determine the
optimal set of parameters supported by the data.

3.1 Additional white noise

When dealing with pulsar timing data, the properties of the white
noise can be separated into two components:

1: For a given pulsar, each TOA has an associated error bar,
the size of which will vary across a set of observations. We can
introduce an extra free parameter, denoted EFAC, to account for
possible mis-calibration of this radiometer noise (Hobbs, Edwards,
& Manchester 2006). The EFAC parameter therefore acts as a
multiplier for all the TOA error bars for a given pulsar, observed
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with a particular system. TempoNest allows for either a single
EFAC parameter to be estimated for all TOAs for a given pulsar,
or, where the observing system has been flagged for each TOA, a
separate EFAC can be included for each system.

2: A second white noise component is also used to represent
some additional source of time independent noise, which we call
EQUAD. In principal this parameter represents something physi-
cal about the pulsar, the high frequency tail of the pulsar’s red spin
noise power spectrum, or, ‘jitter’ (Liu et al. 2012), and so should be
independent of the observing system. Differences in the integration
times between TOAs for different observing epochs can muddy this
physical interpretation however, and as such as with EFAC, either a
single EQUAD parameter can be estimated for all TOAs for a given
pulsar, or for each flagged system separately.

We can therefore rewrite the error σi associated with each TOA i
as σ̂i so that:

σ̂2
i = (αiσi)2 + β2

i (10)

where α and β represent the EFAC and EQUAD parameters applied
to TOA i respectively. Note this is not how Tempo2 defines the re-
lationship between the EQUAD and EFAC parameters. Thus Eq. 9
can be trivially rewritten to include the new white noise parameters
as:

Pr(t|ε,α, β) ∝

 n∏
i=1

σ̂2
i

−
1
2

exp

−1
2

n∑
i=1

(ti − τ(ε)i)2

σ̂2
i

. (11)

3.2 Additional red noise

TempoNest currently supports two methods for describing the in-
trinsic red noise properties of the pulsar, the recently introduced
model independent frequency domain method described in L13
and the power law model, time domain method described in (van
Haasteren et al. 2009) (henceforth vH2009).

3.2.1 L13 method

We begin by writing the red noise component of the stochastic sig-
nal, which we will denote tred, in terms of its Fourier coefficients a
so that tred = Fa where F denotes the Fourier transform such that
for frequency ν and time t we will have both:

Fν,t =
1
T

sin (2πνt) , (12)

and an equivalent cosine term. Here T represents the total observing
span for the pulsar, and ν the frequency of the signal to be sampled.
Defining the number of coefficients to be sampled by nmax, Tem-
poNest will then include the set of frequencies with values n/T ,
where n extends from 1 to nmax. For typical PTA data Lee et al.
(2012) show that a low frequency cut off of 1/T is sufficient to ac-
curately describe the expected long term variations present in the
data. If necessary though it is also possible to specify arbitrary sets
of frequencies such that terms with ¡¡ 1/T can be included in the
model, or to allow noise terms where the frequency itself is a free
parameter.

For a single pulsar the covariance matrix ϕ of the Fourier co-
efficients a will be diagonal, with components

ϕi j =
〈
aia∗j

〉
= ϕiδi j, (13)

where there is no sum over i, and the set of coefficients {ϕi} repre-
sent the theoretical power spectrum for the residuals.

As discussed in L13, whilst Eq 13 states that the Fourier
modes are orthogonal to one another, this does not mean that we
assume they are orthogonal in the time domain where they are sam-
pled, and it can be shown that this non-orthogonality is accounted
for within the likelihood. Instead, in Bayesian terms, Eq. 13 repre-
sents our prior knowledge of the power spectrum coefficients within
the data. We are therefore stating that, whilst we do not know the
form the power spectrum will take, we know that the underlying
Fourier modes are still orthogonal by definition, regardless of how
they are sampled in the time domain. It is here then that, should one
wish to fit a specific model to the power spectrum coefficients at the
point of sampling, such as a broken, or single power law, the set of
coefficients {ϕi} should be given by some function f (Θ), where we
sample from the parameters Θ from which the power spectrum co-
efficients {ϕi} can then be derived.

We can then write the joint probability density of the timing
model, white noise parameters, power spectrum coefficients and the
signal realisation, Pr(ε,α, β, {ϕi}, a | t), as:

Pr(ε,α, β, {ϕi}, a | t) ∝ Pr(t|ε,α, β, a) (14)

× Pr(a|{ϕi}) Pr({ϕi}).

For our choice of Pr({ϕi}) we use an uninformative prior that is
uniform in log10 space, and draw our samples from the parameter
ρi = log10(ϕi) instead of ϕi which has the added advantage that
we avoid unnecessary rejections due to samples that have negative
coefficients in the sampling process. Given this choice of prior the
conditional distributions that make up Eq. 14 can be written:

Pr(t|ε,α, β, a) ∝
1

√
det(N)

(15)

× exp
[
−

1
2

(t − τ(ε) − Fa)T N−1(t − τ(ε) − Fa)
]

where Ni j = σ̂2
i δi j and represents the white noise errors in the resid-

uals and:

Pr(a|{ρi}) ∝
1√
detϕ

exp
[
−

1
2

a∗Tϕ−1a
]
. (16)

In TempoNest we then marginalise over all Fourier coefficients a
analytically in order to find the posterior for the remaining param-
eters alone.

When performing this marginalisation we use a uniform prior
for the Fourier coefficients, so that, denoting t − τ(ε) as δt,
(FT N−1F + ϕ−1) as Σ and FT N−1δt as d our marginalised posterior
is given by:

Pr(ε,α, β, {ϕi}|t) ∝
det (Σ)−

1
2√

det (ϕ) det (N)
(17)

× exp
[
−

1
2

(
δtT N−1δt − dT Σ−1d

)]
.

3.2.2 vH2013 method

Here we begin by parameterising the red noise process using a
power law spectral density of the form:

S ( f ) = A2
(

f
1yr−1

)γ
, (18)

c© 0000 RAS, MNRAS 000, 000–000
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where S ( f ) is the spectral density at frequency f , A is the amplitude
of the red noise process and γ is the spectral index. We write the
time domain covariance matrix CRed

i j between observations i and j
as given in vH2009:

CRed
i j =

A2

f γ−1
L

{
Γ(1 − γ) sin

(
πγ

2

)
(19)

× ( fLτ)γ−1 −

∞∑
n=0

(−1)n ( flτ)2n

(2n)!(2n + 1 − γ)

 .
where fL is a low frequency cut off and τ = 2π(ti − t j) with ti

the ith TOA. In (van Haasteren et al. 2009) it is shown that the
quadratic spin down acts to absorb any contribution to the signal
that arises from the choice of this low frequency cut off, and as
such it is only necessary to choose fL so that 1/ fL is much greater
than the observing time span in order to obtain rapid convergence
of the expression. The result of this however, is that the level of
uncertainty in the spin down parameters will be affected to a much
greater extent than any others by the presence of low frequency
stochastic processes in the data, a fact that we will return to in Sec-
tion 7.2. Finally denoting the white noise covariance matrix N as
before we can write the total covariance matrix describing our sim-
ulated residuals Ci j as:

C = CRed + N. (20)

We can then write our likelihood as:

Pr(t|ε,α, β, A, γ) =
1

√
(2π)ndetC

(21)

× exp
(
−

1
2

(t − τ(ε))T C−1(t − τ(ε))
)
.

3.3 Including dispersion measure variations

The plasma located in the interstellar medium (ISM), as well as in
solar winds and the ionosphere can result in delays in the propaga-
tion of the pulse signal between the pulsar and the observatory, an
effect that appears as a red noise signal in the timing residuals.

Unlike other red noise signals however, the severity of the ob-
served dispersion measure variations is dependant upon the observ-
ing frequency, and as such we can use this additional information to
isolate the component of the red noise that results from this effect.

In particular, the group delay tg(ν) for a frequency ν is given
by the relation:

tg(ν) = DM/(Kν2) (22)

where the dispersion constant K is given by:

K ≡ 2.41 × 10−16 Hz−2 cm−3 pc s−1 (23)

and the dispersion measure is defined as the integral of the electron
density ne from the Earth to the pulsar:

DM =

∫ L

0
nedl. (24)

Dispersion measure corrections can be included in the anal-
ysis as an additional set of stochastic parameters with only minor
modifications to the equations 17 and 21 allowing as before, using
either a power law model or the model independent description. In
both cases we begin by first defining a vector D of length equal to
the number of observations for a given pulsar as:

Di = 1/(Kν2
i ) (25)

for observation i with observing frequency νi.

3.3.1 Model independent method

For the model independent approach we then need to make a
change to our basis vectors such that our dispersion measure
Fourier modes are described by:

FDM
ν,ti =

1
T

sin (2πνsti) Di (26)

and an equivalent cosine term, where T is the length of the observ-
ing timespan, and νs now explicitly denotes the frequency of the
signal to be parameterised as before, where the set of frequencies
to be included is defined in the same way as for the red spin noise.
Unlike when modelling the red spin noise, we no longer have the
quadratic in the timing model to act as a proxy to the low frequency
(νs < 1/T ) DM variations in our data. As such these terms must be
accounted for either by explicitly including these low frequencies
in the model, or by including a quadratic in DM to act as a proxy,
as with the red noise, defined as:

QDM(ti) = α0tiDi + α1t2
i Di (27)

with α0,1 free parameters to be fit for, and ti the barycentric arrival
time for TOA i. This can be achieved most simply be adding the
timing model parameters DM1 and DM2 into the pulsar parameter
file, and allowing TempoNest to include them in the fit.

3.3.2 Time domain power law model

For a detailed discussion of this approach, and comparisons to ex-
isting methods see Lee et al. (submitted). In brief, we transform our
red noise covariance matrix CRed

i j to:

CDM
i j = CRed

i j DiD j. (28)

The total noise covariance matrix can therefore be rewritten as:

Ctot = CRed + N + CDM . (29)

4 ANALYTICAL MARGINALISATION OVER THE
TIMING MODEL

Despite having the ability to fit simultaneously for all the tim-
ing model parameters and the stochastic properties of the noise
present in the signal, there may be times where it is preferable to
marginalise over some of the timing model parameters analytically
in order to decrease the dimensionality of the problem. For exam-
ple, a set of TOAs for a single pulsar might be the combination of
many different sets of observations taken by different observatories,
with phase jumps fitted between each set. If the specific values of
these jumps are not of interest then the analysis might be performed
faster if the decrease in the number of calculations required to ex-
plore the smaller dimensional space outweighs the increase in the
calculation time that results from the matrix operations required by
the marginalisation process.

If we separate the timing model into a contribution from the
set of parameters that we wish to parameterise τ(ε) and a contribu-
tion from the set of m parameters that we plan to marginalise over
analytically τ(ε′) then we can write the probability that the data t
is described by the remaining parameters ε and any additional pa-
rameters θ we wish to include as:

c© 0000 RAS, MNRAS 000, 000–000



6 L. Lentati et al.

Pr(t|ε, θ) =

∫
dmε′ Pr(ε′) Pr(t|ε′, ε, θ) (30)

Using a uniform prior on the m ε′ parameters, we use the same ap-
proach as described in (van Haasteren & Levin 2013) to perform
this marginalisation process analytically. This results in a set of
equations 31, 32 that exist in parallel to Eqns 17 and 21 :

Pr(t|ε,α, β) =
1√

(2π)n−mdet(GT CG)
(31)

× exp
(
−

1
2

(δt)T G(GT CG)−1GT (δt)
)
.

where δt = t−τ(ε), C is the n×n noise covariance matrix as before
and G is the n × (n − m) matrix that performs the marginalisation
whose derivation will not be given here but is described in (van
Haasteren & Levin 2013),

Pr(ε,α, β, {ϕi}|t) ∝
det

(
Σ̂
)− 1

2√
det (ϕ) det

(
N̂
) (32)

× exp
[
−

1
2

(
δtT N̂−1δt − d̂T Σ̂−1d̂

)]
,

where N̂ = G(GT NG)−1GT , Σ̂ = (FT N̂−1F+ϕ−1) and d̂ = FT N̂−1δt.

5 LINEAR APPROXIMATION TO THE TIMING MODEL

We would like to compare the results of the non-linear analysis of
the timing model afforded by TempoNest, with those that can be
obtained from the linear approximation, and so we provide a brief
description of the linear model below.

Given an initial estimate of the m timing model parameters ε0i

a linear approximation can be performed such that any deviations
from that estimate are encapsulated using the m parameters δεi such
that:

δεi = εi − ε0i. (33)

Therefore, writing the set of post–fit residuals that results from the
subtraction of the initial estimate of the timing model from our
TOAs as δtpost we can express the change in these residuals that
results from the deviation in the timing model parameters δε as:

δt = δtpost −Mδε, (34)

where M is the n × m ‘design matrix’ which describes the depen-
dence of the timing residuals on the model parameters.

Therefore in all previous equations, we can simply substitute
t−τ(ε) for δtpost−Mδε in order to evaluate the linear approximation
to the timing model.

6 APPLICATION TO SIMULATED DATA

In order to compare the parameter estimates obtained through both
the non-linear and the linearised timing models we use a series of
three simulations, details of which are given below. The simulations
are designed to make it progressively more difficult to extract the
correct timing model parameters, due both to increasing the ampli-
tude of the white noise in the data, and increasing the complexity
of the noise by including additional red noise signals.

Simulation 1: The TOAs consist only of the deterministic timing
model and Gaussian white noise with an amplitude of 10−7 seconds.

Simulation 2: As simulation 1, however with a white noise
amplitude of 10−6 seconds.

Simulation 3: As simulation 1, however with the addition of a red
noise signal described by Eq.19 with A = 5 × 10−14 and γ = 4.333.

In all three simulations we use a simulated timing model for
the binary pulsar J1713+0747 consistent with current observed val-
ues Splaver et al. 2005, details of which are given in Table 1. When
performing the linearised parameterisation of the timing model we
perform the linearisation at the injected parameter values in order
to maximise the performance of the method, and thus provide the
most stringent comparison.

Tables 2 to 4 show the maximum likelihood, linear and non-
linear timing model and stochastic parameter estimates for the three
simulations. In all cases we list only a single set of maximum like-
lihood parameter estimates, as these are the same for both linear
and non-linear models. Figs. 1 to 3 then show the one and two di-
mensional marginalised posteriors for a subset of the non-linear
(top plots) and linear (bottom plots) timing model parameters re-
lated to the binary properties of the system that show the greatest
differences when comparing the two models. For simulation 3 we
substitute two of the timing model parameters in these plots (the
orbital period and eccentricity) in favour of the spectral index and
amplitude of the red noise.

For the three simulations all the posterior distributions for the
timing model parameters shown in Figs. 1 to 3 are consistent with
the injected parameter values within 2σ confidence intervals for
both the linear and non-linear timing models. From simulation 1 we
see that in the high signal–to–noise regime, there is almost no ob-
servable difference between either the parameter estimates or their
uncertainties for the linear and non-linear timing models. This is to
be expected as the range of parameter space over which the like-
lihood remains high is small, and thus the linear approximation
should be valid.

As we increase the level of the white noise however, from an
amplitude of 100ns to 1µs, we begin to see some significant differ-
ences between the two models. In particular the companion mass
and Kopeikin parameters (KOM and KIN) show large curving de-
generacies between the parameters. These non-Gaussian features
are lost when we transition to the linear regime, which has the re-
sult of incorrectly estimating the uncertainties in these parameters.
For example, the 1σ confidence intervals for the companion mass
M2 is a factor 2.4 times smaller in the linear regime when compared
to the non-linear.

This effect is accentuated even further in simulation three
where we introduce a red noise signal into the data. Here almost
all parameters shown in Fig. 3 show an underestimation of the er-
ror in the linear regime, with the most extreme examples showing
1σ confidence intervals 8.8 and 10.8 times greater in the non-linear
model for parameters A1 and M2 respectively. It is important to
note that in both cases we are modelling the red noise in the same
way, and thus this effect is solely due to the differences between
the linear and non-linear timing models. As such, any method of
pulsar timing analysis that operates in the linear regime, regardless
of how it incorporates additional stochastic processes, such as the
Cholesky method in C11, will suffer from this effect.
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Table 1. Injected timing model parameter values for PSR J1713+0747

Fit and data-set

Pulsar name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J1713+0747
MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50000.3—53002.0
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Measured Quantities

Right ascension, α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:13:49.5325545
Declination, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +07:47:37.49998
Pulse frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . . . . . 218.81184044143486131
First derivative of pulse frequency, ν̇ (s−2) . . . . . . . −4.0839248109419448511×10−16

Dispersion measure, DM (cm−3pc) . . . . . . . . . . . . . . 15.9936
Proper motion in right ascension, µα (mas yr−1) . . 4.91612625
Proper motion in declination, µδ (mas yr−1) . . . . . . −3.9208688
Parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9359045
Orbital period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . . . . 67.8251296839
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . . . . . . 54303.63538774
Projected semi-major axis of orbit, x (lt-s) . . . . . . . 32.34242233904
Longitude of periastron, ω0 (deg) . . . . . . . . . . . . . . . 176.20415671
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4940259711×10−5

First derivative of orbital period, Ṗb . . . . . . . . . . . . . 3.00166×10−13

Periastron advance, ω̇ (deg/yr) . . . . . . . . . . . . . . . . . . −3.6932×10−5

Companion mass, Mc (M�) . . . . . . . . . . . . . . . . . . . . . 0.3112297
Longitude of ascending node, Ω (degrees) . . . . . . . 93.90581
Orbital inclination angle, i (degrees) . . . . . . . . . . . . . 71.139153

Set Quantities

Epoch of frequency determination (MJD) . . . . . . . . 54312
Epoch of position determination (MJD) . . . . . . . . . . 54312
Epoch of dispersion measure determination (MJD) 54312

Assumptions

Clock correction procedure . . . . . . . . . . . . . . . . . . . . . TT(TAI)
Solar system ephemeris model . . . . . . . . . . . . . . . . . . DE421
Binary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T2
Model version number . . . . . . . . . . . . . . . . . . . . . . . . . 5.00

In this one set of simulations we do not see any significant
bias in the timing model parameters returned by the linear timing
model, however, given that the posterior probability distribution of
the non-linear timing model shows significant curving degenera-
cies, and much greater 1σ confidence intervals for the binary pa-
rameters when compared to the linear model as the noise increases,
we would expect that over a large number of realisations the num-
ber of occurences of > 4σ deviations that occur in the linear timing
model should exceed that predicted by Gaussian statistics. In order
to test this hypothesis we generate a series of 10591 realisations of
the noise in simulation 2, using Tempo2 to calculate the parameter
estimates with the linear timing model, and count the number of
> 4σT2 deviations for the binary parameters in the timing model,
with σT2 the 1σ uncertainty returned by Tempo2. Given Gaussian
statistics we would expect ∼ 10 such events across all parameters
total. Fig. 4 shows a histogram for the number of events for the bi-
nary parameters in PSR J1713+0747. The model parameters A1,
M2, KIN and KOM show a significant excess from the Gaussian
prediction, indicating that the linear timing model significantly un-
derestimates the errors in these parameters. Comparing this result
to Fig. 2 we see that these parameters correspond to those that have
large curving degeneracies in the posterior probability distribution,
with significantly larger 1σ confidence intervals than those returned
by the linear model, confirming our hypothesis.

7 APPLICATION TO REAL DATA

We now demonstrate the application of TempoNest to the pub-
licly available datasets for the binary pulsar B1855+09 and the iso-
lated pulsar B1937+21 presented in (Kaspi, Taylor, & Ryba 1994)
(henceforth K94). For the former, we demonstrate the ability of
TempoNest to perform rigorous model selection between different
sets of stochastic and timing model parameters, whilst for the latter
we compare power law and model independent descriptions of the
red spin noise, and in addition to these also compare the method of
(Keith et al. 2013) in our analysis of the dispersion measure varia-
tions in order to find the optimal description of the stochastic prop-
erties of the data.

7.1 B1855+09

The mean posterior values and associated one-sigma errors for
the final fitted timing model and stochastic parameters for PSR
B1855+09 are listed in Table 5 and includes five astrometric quan-
tities (α, δ, µα, µδ, π), two rotational parameters (ν, ν̇), dispersion
measure, as well as 7 binary parameters. In addition to these we
have included three stochastic parameters, an EFAC, EQUAD and a
single red noise power spectrum coefficient, with a frequency equal
to 1/T , with T the total time span of the data.
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Figure 1. One and two-dimensional marginalised posterior distributions for a subset of the binary parameters for PSR J1713+0747 for simulation 1 for the
non-linear (top) and linear (bottom) timing models. These parameters are from left to right: the orbital period of the binary (PB), the epoch of periastron (T0) the
projected semi-major axis of orbit (A1), the longitude of periastron (OM), the eccentricity (ECC), the first derivative of the orbital period of the binary (PBDOT),
the first derivative of the longitude of periastron (OMDOT), the companion mass (M2), the longitude of ascending node (KOM) and the inclination angle (KIN).
In all cases the scale on the x-axis is the deviation from the injected parameter values in units of the uncertainty in the parameter returned by Tempo2. In the high
signal–to–noise regime of these simulations the two models are completely consistent with one another, both in terms of parameter estimates, and uncertainties.
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Figure 2. One and two-dimensional marginalised posterior distributions for a subset of the binary parameters for PSR J1713+0747 for simulation 2 for the
non-linear (top) and linear (bottom) timing models. These parameters are from left to right: the orbital period of the binary (PB), the epoch of periastron (T0) the
projected semi-major axis of orbit (A1), the longitude of periastron (OM), the eccentricity (ECC), the first derivative of the orbital period of the binary (PBDOT),
the first derivative of the longitude of periastron (OMDOT), the companion mass (M2), the longitude of ascending node (KOM) and the inclination angle (KIN).
In all cases the scale on the x-axis is the deviation from the injected parameter values in units of the uncertainty in the parameter returned by Tempo2. With the
increase in the level of the white noise (1µs) there are now significant differences in the posterior distributions of the two timing models with large non-Gaussian
tails leading to an under-estimation of the uncertainties in the linear model.
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Figure 3. One and two-dimensional marginalised posterior distributions for a subset of the binary parameters for PSR J1713+0747 for simulation 3 for the non-
linear (top) and linear (bottom) timing models. These parameters are from left to right: the epoch of periastron (T0), the projected semi-major axis of orbit (A1),
the longitude of periastron (OM), the first derivative of the orbital period of the binary (PBDOT), the first derivative of the longitude of periastron (OMDOT), the
companion mass (M2), the longitude of ascending node (KOM) and the inclination angle (KIN). In all cases but the red noise parameters, the scale on the x-axis
is the deviation from the injected parameter values in units of the uncertainty in the parameter returned by Tempo2. Whilst all parameters are consistent with
the injected values within 2σ confidence internals, the addition of red noise to the signal has resulted in even greater discrepancies in the estimated parameter
uncertainties between the linear and non-linear timing models, however the posterior distributions for the two stochastic parameters are extremely consistent
between both.
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Table 2. Maximum likelihood, non-Linear and linear timing model parameter estimates for Simulation 1

Maximum Likelihood Non-linear Linear

Right ascension, α . . . . . . . . . . . . . . . . . . . . . . . . . . 4.510914902 4.510914902 (3) 4.510914902 (3)
Declination, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1360265985 0.1360265984 (3) 0.1360265984 (3)
Pulse frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . . 218.81184044143492 218.81184044143486 (18) 218.81184044143486 (18)
First derivative of pulse frequency, ν̇ (s−2) . . . . . −4.083922 ×10−16 −4.083925 (6) ×10−16 −4.083922 (6) ×10−16

Proper motion in right ascension, µα (mas yr−1) 4.9186 4.9161 (18) 4.9161 (18)
Proper motion in declination, µδ (mas yr−1) . . . −3.922 −3.921 (3) −3.921 (3)
Parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.94 0.94 (2) 0.94 (2)
Orbital period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . 67.825130 67.825129 (7) 67.825130 (7)
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . . . 54303.6354 54303.6354 (4) 54303.6354 (4)
Projected semi-major axis of orbit, x (lt-s) . . . . 32.34242227 32.34242233 (16) 32.34242233 (16)
Longitude of periastron, ω0 (deg) . . . . . . . . . . . . 176.204 176.204 (2) 176.204 (2)
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . 7.49410×10−5 7.49402 (6) ×10−5 7.49402 (6) ×10−5

First derivative of orbital period, Ṗb . . . . . . . . . . 2×10−14 3 (6)×10−13 3 (6)×10−13

Periastron advance, ω̇ (deg/yr) . . . . . . . . . . . . . . . −4×10−5 −3 (19) ×10−5 −3 (19) ×10−5

Companion mass, Mc (M�) . . . . . . . . . . . . . . . . . . 0.316 0.312 (16) 0.312 (16)
Longitude of ascending node, Ω (degrees) . . . . . 94.1 93.8 (1.4) 93.9 (1.4)
Orbital inclination angle, i (degrees) . . . . . . . . . . 71.0 71.1 (6) 71.1 (7)

Table 3. Maximum likelihood, non-linear and linear timing model parameter estimates for Simulation 2

Maximum Likelihood Non-Linear Linear

Right ascension, α . . . . . . . . . . . . . . . . . . . . . . . . . . 4.51091490 4.51091486 (3) 4.51091486 (2)
Declination, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.136026598 0.136026602 (3) 0.136026602 (3)
Pulse frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . . 218.8118404414366 218.8118404414348 (18) 218.8118404414348 (18)
First derivative of pulse frequency, ν̇ (s−2) . . . . . −4.08385 ×10−16 −4.08392 (6) ×10−16 −4.08392 (6) ×10−16

Proper motion in right ascension, µα (mas yr−1) 4.906 4.905 (17) 4.906 (17)
Proper motion in declination, µδ (mas yr−1) . . . −3.90 −3.91 (3) −3.91 (3)
Parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 1.0 (2) 0.9 (2)
Orbital period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . 67.82513 67.82510 (6) 67.82510 (6)
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . . . 54303.635 54303.636 (4) 54303.634 (4)
Projected semi-major axis of orbit, x (lt-s) . . . . 32.342422 32.342421 (22) 32.342422 (16)
Longitude of periastron, ω0 (deg) . . . . . . . . . . . . 176.20 176.21 (2) 176.20 (2)
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . 7.4948×10−5 7.4948 (6) ×10−5 7.4949 (6) ×10−5

First derivative of orbital period, Ṗb . . . . . . . . . . −1.7×10−12 1.5 (65)×10−13 5 (62)×10−13

Periastron advance, ω̇ (deg/yr) . . . . . . . . . . . . . . . −4×10−5 −9 (18) ×10−4 −10 (19) ×10−4

Companion mass, Mc (M�) . . . . . . . . . . . . . . . . . . 0.3 0.53 (27) 0.34 (13)
Longitude of ascending node, Ω (degrees) . . . . . 95 103 (13) 102 (16)
Orbital inclination angle, i (degrees) . . . . . . . . . . 69 63 (8) 68 (6)

In performing the analysis using TempoNest we first per-
formed a series of ten iterations with Tempo2 to ensure the timing
solution had converged and set a uniform prior on the timing model
parameters covering a range of ±10σT2 from the maximum likeli-
hood estimate obtained from the final iteration with σT2 the error
returned by Tempo2. The maximum likelihood Tempo2 estimates
and one sigma errors are given in Table 5 alongside the TempoN-
est results. For the stochastic parameters we took our priors to be
uniform across the ranges [0, 5], [−10, −5], [−20, 0] for EFAC,
log10 EQUAD and ρi respectively.

In addition to these quantities, Table 5 lists the parameter es-
timates for 4 additional timing model parameters, ω̇, Ṗb, ė and ẋ
which were added to the timing model one at a time and the full
analysis repeated. In all cases however, the addition of the extra
timing model parameters resulted in a decrease of the log-evidence
by ∼ 1 unit relative to the original fit indicating that there is no
support for the parameters in the data.

Comparing the evidence for a model without the three stochas-
tic parameters to that in Table 5 we find a decrease of the log-

evidence of ∼ 2.5 units. Whilst this is not definitive, the inclusion
of the stochastic parameters is still strongly favoured, and allows us
to quantify the qualitative observation of a cubic signal present in
the residuals described in (Kaspi 1995).

Finally, because the observations of B1855+09 presented in
K94 were made using 3 observing back-ends over the course of
the dataset, we also performed the analysis including two jumps
between the different systems. As there is a strong covariance be-
tween red noise signals and the jump parameters, we included the
following combinations of parameters in our analysis :

Model 1: Including Jumps - without any additional stochastic pa-
rameters
Model 2: Including Jumps - including EFAC/EQUAD
Model 3: Including Jumps - including EFAC/EQUAD and a sin-

gle red noise coefficient at frequency 1/T .

As with the other timing model parameters, we set our prior to be
±10σT2 from the Tempo2 initial estimate. We could then compare
the evidence returned from these analyses, with those models that
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Table 4. Maximum likelihood, non-linear and linear timing model parameter estimates for Simulation 3

Maximum Likelihood Non-Linear Linear

Right ascension, α . . . . . . . . . . . . . . . . . . . . . . . . . . 4.51091491 4.51091487 (2) 4.510914907 (9)
Declination, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.136026597 0.136026601 (3) 0.1360265978 (18)
Pulse frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . . 218.8118404414 218.8118404412 (2) 218.8118404412 (2)
First derivative of pulse frequency, ν̇ (s−2) . . . . . −4.084 ×10−16 −4.091 (4) ×10−16 −4.090 (4) ×10−16

Proper motion in right ascension, µα (mas yr−1) 4.93 4.94(2) 4.93 (2)
Proper motion in declination, µδ (mas yr−1) . . . −3.94 −3.93 (4) −3.93 (4)
Parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 0.6 (2) 0.4 (2)
Orbital period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . 67.82513 67.82516 (7) 67.82515 (7)
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . . . 54303.635 54303.649 (11) 54303.639 (4)
Projected semi-major axis of orbit, x (lt-s) . . . . 32.342422 32.342412 (12) 32.3424211 (12)
Longitude of periastron, ω0 (deg) . . . . . . . . . . . . 176.20 176.28 (6) 176.22 (2)
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . 7.4938×10−5 7.4932 (8) ×10−5 7.4936 (6) ×10−5

First derivative of orbital period, Ṗb . . . . . . . . . . 4×10−12 7 (6)×10−12 6 (6)×10−12

Periastron advance, ω̇ (deg/yr) . . . . . . . . . . . . . . . 0.0016 0.0007 (18) 0.0007 (19)
Companion mass, Mc (M�) . . . . . . . . . . . . . . . . . . 0.3 2 (3) 0.44 (13)
Longitude of ascending node, Ω (degrees) . . . . . 91 108 (13) 98 (18)
Orbital inclination angle, i (degrees) . . . . . . . . . . 72 52 (13) 66 (7)
log10 Ared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -13.01 −13.31 (19) -13.31 (20)
Spectral Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 4.7(7) 4.7 (7)
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Figure 4. Number of greater than 4σT2 deviations for the binary parameters in the timing model of PSR J1713+0747 between the fit returned by Tempo2 using
the linear timing model and the true value in a series of 10591 realisations of the noise in simulation 2, with σT2 the 1σ uncertainty returned by Tempo2. Given
Gaussian statistics we would expect ∼ 10 such events across all parameters total. The model parameters A1, M2, KIN and KOM show significant deviations
from this prediction, indicating that the linear timing model significantly underestimates the errors in these parameters. Comparing this result to Fig. 2 we see
that these parameters correspond to those that have large curving degeneracies in the posterior probability distribution, with significantly larger 1σ confidence
intervals than those returned by the linear model.
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Table 5. Timing model and stochastic parameter estimates for PSR B1855+09

Fit and data-set

Pulsar name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B1855+09
MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46436.7—48973.7
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3450.2 ± 0.3

Measured Quantities

TempoNest Tempo2

Right ascension, α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18:57:36.394354(4) 18:57:36.394354(4)
Declination, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +09:43:17.31966(10) +09:43:17.31966(11)
Pulse frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . . . . . 186.49440787786523(4) 186.49440787786523(4)
First derivative of pulse frequency, ν̇ (s−2) . . . . . . . −6.20499(9)×10−16 −6.20500(9)×10−16

Dispersion measure, DM (cm−3pc) . . . . . . . . . . . . . . 13.307(3) 13.308(3)
Proper motion in right ascension, µα (mas yr−1) . . −2.63(3) −2.63(3)
Proper motion in declination, µδ (mas yr−1) . . . . . . −5.41(5) −5.46(5)
Parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2(2) 1.1(3)
Sine of inclination angle,sin i . . . . . . . . . . . . . . . . . . . 0.9991(4) 0.9990(4)
Orbital period, Pb (d) . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3271713813(4) 12.3271713815(5)
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . . . . . . 47529.896(2) 47529.8966(19)
Projected semi-major axis of orbit, x (lt-s) . . . . . . . 9.2307801(3) 9.2307802(3)
Longitude of periastron, ω0 (deg) . . . . . . . . . . . . . . . 276.39(6) 276.39(6)
Orbital eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . . . . 2.170(3)×10−5 2.169(4)×10−5

Companion mass, Mc (M�) . . . . . . . . . . . . . . . . . . . . . 0.270(14) 0.265(14)

Stochastic Parameters

EFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.806(11) -
log10[EQUAD] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -6.2(2) -
log10 [RedC1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4.5(1.0) -

Set Quantities

Epoch of frequency determination (MJD) . . . . . . . . 47526
Epoch of position determination (MJD) . . . . . . . . . . 47526
Epoch of dispersion measure determination (MJD) 47526

Assumptions

Clock correction procedure . . . . . . . . . . . . . . . . . . . . . TT(TAI)
Solar system ephemeris model . . . . . . . . . . . . . . . . . . DE405
Binary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T2
Model version number . . . . . . . . . . . . . . . . . . . . . . . . . 5.00

Additional Included Parameters

First derivitive of orbital eccentricity, ė . . . . . . . . . . -2(5)×10−16

First derivitive of orbital period, Ṗb . . . . . . . . . . . . . 0.2 (1.1)×10−12

First derivitive of x, ẋ . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 (2.1)×10−15

Periastron advance, ω̇ (deg/yr) . . . . . . . . . . . . . . . . . -0.01(4)
Jump 1 mk3 14w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.8 (1.1) ×10−6

Jump 2 mk3 14m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 (1.9) ×10−7

exclude the jump parameters to see which set is most supported
by the data. In every instance the inclusion of the jumps resulted
in either a small drop in the evidence of ∼ 0.5, or it remained the
same, suggesting no support for these parameters in the data. The
parameter estimates for the jumps when fitted alongside the optimal
set of parameters are listed in Table 5 alongside the other additional
parameters tested.

Comparing the parameter estimates obtained by TempoNest
with those from Tempo2 we see that they are completely consistent
for all values and their uncertainties. Such agreement is unsurpris-
ing as the approximation that the data is well described by only the

timing model and white noise is well justified in this instance given
the minor support for additional stochastic parameters in the data.

7.2 B1937+21

In comparison to B1855+09 the timing model for pulsar B1937+21
is relatively simple, requiring only 8 parameters, the same 5 as-
trometric and 2 rotational quantities as for B1855+09, and disper-
sion measure. However, the analysis is made more complex by the
presence of significant long term variation in the timing residuals.
In order to account for one source of this noise, the TOAs in the
K94 dataset were observed at two widely spaced frequencies, 1408
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Table 6. Evidence for different stochastic models for pulsar B1937+21 in
dataset 1

Model Nc log Evidence

model independent analysis 5 0
- 6 2.8
- 7 2.7
- 8 2.7
- 10 2.3
- 15 -2.1
- 20 -6.5

model independent analysis with optimal frequencies 7 5.9
power law 6 5.2

- 10 6.5
- 20 7.2
- 50 7.4
- 100 7.5

two component power law 100 8.7

and 2380 MHz in order to calculate the effects of dispersion on the
residuals prior to fitting the timing model.

In performing the analysis with TempoNest we therefore use
two versions of the TOAs. The first includes the DM corrections
calculated in K94 (henceforth dataset 1), and the second excludes
them (henceforth dataset 2). The simple timing model required for
this pulsar means that we expect little non-linearity despite the large
amounts of noise present in the data. We therefore first analytically
marginalise over the timing model using the timing model estimates
obtained from Tempo2 and perform model selection between dif-
ferent sets of stochastic parameters for each dataset. In each case
we include an EFAC and EQUAD parameter, and then test differ-
ent combinations of models for the red noise and DM variations in
the data. The full set of models compared in both datasets 1 and 2
are listed below.

• Dataset 1

Model 1: model independent analysis with Nc consecutive fre-
quency coefficients
Model 2: model independent analysis with optimally chosen fre-

quency coefficients
Model 3: power law analysis with Nc consecutive coefficients

• Dataset 2

Model 1: model independent analysis with Nc coefficients for
both red noise and DM variations

Model 2: power law analysis with Nc coefficients for red noise,
model independent analysis of DM variations

Model 3: model independent analysis with Nc coefficients for red
noise, power law analysis for DM variations

Model 4: power law analysis with Nc coefficients for both red
noise and DM variations

7.2.1 Dataset 1

Table 6 shows the evidence returned for the different stochastic
models applied to dataset 1. Using the model independent descrip-
tion of the red noise signal we find that only 6 power spectrum
coefficients are supported by the data when including consecutive
frequencies. Whilst this may seem like a small number for an ap-
parently complex signal, in L13 it is shown that even in the high
signal to noise regime, over an order of magnitude fewer power
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Figure 6. Subset of the posterior probability distribution for the
frequency of the floating power spectrum coefficient in terms of n
such that the frequency is given by ν = n/T . Whilst several peaks
are visible, only the inclusion of the dominant peak at n = 77.2
results in an increase of the Evidence.

spectrum coefficients than time series data points are required to
describe the data when dealing with steep red power spectrum.

It is possible, however, that frequencies with n > 6 are sup-
ported by the data but that considering only a consecutive set biases
the model to include only low frequency coefficients. To ascertain
whether this is the case we perform the following test:

1: Include the lowest 6 power spectrum coefficients in the model
red noise model.
2: In addition include a coefficient with frequency a free parame-

ter, allowed to vary continuously from ν = 6/T to ν = 100/T .
3: Include all frequencies at which there is a peak in the posterior

probability distribution for this floating coefficient into the model.
4: Eliminate coefficients until the optimal set is found, such that

the Evidence is maximised.

A different approach to follow could be that of Feroz, Balan, &
Hobson (2011). Here, the data would initially be analysed with
one power spectrum coefficient, with frequency allowed to vary.
In this stage the evidence is not calculated, but the computation-
ally less expensive process of parameter estimation is performed.
The resulting best fit model is subtracted from the data and a set
of residuals formed. An evidence calculation is then performed for
two competing models on the residuals: i) That the residuals con-
tain a signal described by one power spectrum coefficient, or ii)
The data contains no signal. If the evidence supports the inclusion
of an additional power spectrum coefficient the parameter estima-
tion is repeated with two components and a new set of residuals
formed. This process is then repeated until the evidence from the
residual analysis no longer supports any signal. This has the ad-
vantage that the evidence calculation need only be performed for a
single frequency, eliminating much of the computational cost, how-
ever comparisons between this and other methods will be the sub-
ject of future work.

Fig. 6 shows an section of the posterior probability distribu-
tion for the frequency of the floating power spectrum coefficient.
Whilst there are multiple modes in the posterior, only the inclusion
of the dominant peak at a frequency of n = 77.2/T is supported
by the evidence. In total the optimal set of frequencies was given
by [1, 2, 3, 4, 6, 17.2, 77.2]. Using this optimal set increases the log
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Figure 5. (left) The mean values and associated one sigma error bars for the power at the 7 optimal frequencies fitted to B1937+21 dataset 1 using the model
independent analysis. The blue dotted and green dashed lines indicate the mean two component power law models fitted over the optimal set of frequencies only
and over the first 100 consecutive frequencies respectively. Whilst the two component model fitted to only the optimal set is consistent at all frequencies, we
include this only for completion as we do not consider it to be a physically motivated model. (right) Timing residuals for B1937+21 dataset 1 (red points) and
the best-fit signal realisation for the red noise using the optimal model independent analysis (blue dotted line).
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Figure 7. Mean spectral index and one sigma uncertainties for the
power law model fitted to B1937+21 dataset 1. Whilst the uncer-
tainties are large there is a clear trend for the mean parameter esti-
mate to move towards shallower spectral indices as the number of
coefficients over which the model fit increases, and it intercepts the
flat tail of the red spin noise spectrum.

Evidence by ∼ 3 over the model with 6 consecutive frequencies.
Fig. 9 (left) shows the power spectrum for the red spin noise evalu-
ated at the optimal set of frequencies, whilst the right panel shows
the maximum likelihood signal realisation given the mean param-
eter estimates for this optimal set. The power spectrum shows the
clear signature of a steep red noise process at low frequencies, with
a substantial, flatter, high frequency tail.

When fitting a power law model to the data we find that the
evidence stabilises after Nc ∼ 20. Despite the flat tail to the power
spectrum visible with the model independent analysis, we observe
an increase in the evidence of ∼ 1 compared to the optimal fre-
quency model. Fig. 7 shows the mean posterior value and one-
sigma uncertainties for the spectral indicies of the power law model
fitted as we increase the number of coefficients included in the

model. Whilst the uncertainties are large, the mean value shows
a clear trend towards flatter values decreasing from 4.5 to 3.7 as the
number of coefficients included increases from 6 to 100 and more
of the flat spectrum tail is included in the model.

Given these results we therefore also model the red noise as
a two component power law. Fig. 8 shows the one-dimensional
marginalised posterior for one of the spectral indicies included in
this model, displaying two clear peaks: one associated with the
steep low frequency part of the spectrum with an index of ∼ 4
and one with the flat spectrum tail with an index of ∼ 1.5. The
evidence for the two component fit results in a final increase of ∼
1 relative to the one component model, however we must subtract
log 2 from this value in order to account for ”counting degeneracy”,
the fact that we have two combinations of spectral indices (i.e. the
parameters for the first and second power law can switch with out
affecting the result). Therefore, whilst there are tentative signs of
this dual spectrum signal in the data, it is not sufficient to justify
the additional parameters in our description of the stochastic sig-
nal, we therefore consider the one component power law to be the
optimal choice for this dataset.

7.2.2 Dataset 2

Table 7 lists the evidence for the different models applied to dataset
2 where we give the value only for the optimal Nc in each case.
In all cases the number of coefficients required by the DM varia-
tions was greater than for the red noise. For dataset 2 the optimal
set of frequencies is given by [1, 2, 5, 6] for the red spin noise, and
[1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 24.6, 81.5] for the DM variations. We
find that once again finding the optimal set of frequencies to in-
clude results in a significant increase in the log evidence of ∼ 4.5
when compared to the consecutive set. As with dataset 1 we show
in Fig 9 the residuals and maximum likelihood signal realisation
given the mean posterior values for the power spectrum coefficients
obtained by the optimal model independent analysis. Fitting for a
power law model in both cases results in spectral indices of −5 ± 1
and −2.6 ± 0.4 for the red noise and DM variations respectively,
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Table 7. Evidence for different stochastic models for pulsar B1937+21 in dataset 2

Model Nc (Red, DM) log Evidence

model independent red noise and DM with consecutive frequencies 2 , 13 0
model independent red noise and DM with optimal frequencies 5 , 12 4.3

power law red noise, model independent DM with consecutive frequencies 10 , 13 0.7
model independent red noise with consecutive frequencies, power law DM 2 , 15 11.5

power law red noise and DM 10 , 15 11.9
power law red noise and two component power law DM 10 , 100 11.5
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Figure 8. One dimensional marginalised posterior for the spectral
indices of the two component power law model. Two peaks are
clearly visible in the posterior, corresponding to a steep red noise
process at low frequencies, and a shallower one at higher frequen-
cies.

consistent with the model independent analysis. As with dataset 1
this consistency is supported by the log evidence, which has a max-
imum when constraining the power spectrum to follow a power law.

Compared to dataset 1 the we find neither the red noise nor
the DM variation power spectrum in dataset 2 show any sign of a
shallow tail. This suggests that the DM model applied in K94 did
not account fully for the higher frequency DM variation, flattening
the red noise spectrum of the resultant residuals.

We now perform the analysis of the non-linear timing model
simultaneously with the red noise and DM variations, where we
model the latter two elements using a power law model as has been
supported by the evidence in the preceding stochastic analysis.

7.2.3 Timing model analysis

Table 8 lists the mean posterior values and associated one sigma
uncertainties for our final timing model and stochastic solutions to
both datasets 1 and 2 where, following the results in Sections 7.2.1
and 7.2.2, the stochastic signals have been modelled as power law
processes for both the red noise and DM variations. Fig. 10 then
shows the one and two dimensional marginalised posteriors for a
selection of the modelled parameters; RA, DEC, PMRA, PMDEC,
PX and the red noise and DM spectral indices and amplitudes. As
expected the timing model parameters show no evidence for non-
linear behaviour in either case despite the high levels of red noise
in the dataset. As such we would expect that our estimates for the
stochastic parameters when analytically marginalising over the tim-

ing model will be completely consistent with those in the full anal-
ysis and indeed this is the case in both datasets.

Table 8 also lists the timing model solutions returned by ap-
plying both the standard Tempo2 fit and using the SpectralModel
plug-in which utilises the Cholesky method described in C11. In
order to use the SpectralModel plug-in in the case of dataset 2 we
therefore applied the method of Keith et al. (2013) to model the DM
variations as a linearly interpolated time series, sampled every 100
days in the observation. Unlike the approach in K94 this therefore
allows us to include the uncertainties in the DM model in the final
timing model solutions whilst still using the Cholesky method.

Fig. 11 shows a graphical representation of the differences be-
tween the TempoNest, SpectralModel and Tempo2 results for the
timing model parameters given in Table 8 for datasets 1 (left) and
2 (right). Here the value on the yaxis is given by the difference be-
tween the TempoNest (or SpectralModel) estimate, and the Tempo2
estimated parameter values, divided by the Tempo2 error, which as
before we will denote σT2. The errors are then the 1σ errors esti-
mated by TempoNest (SpectralModel) which we will denote σT N

(σS M). Therefore a fit that is consistent both with the value and
error returned by Tempo2 would have a value of 0 ± 1 in Fig. 11.

There are several things that are immediately apparent in Fig.
11. The first is the level of disparity between the parameter esti-
mates returned by Tempo2, and those returned by both TempoNest
and the SpectralModel analysis. With the exception of only DM in
dataset 1, and PX in dataset 2 the parameter estimates returned by
TempoNest during the joint analysis are at least 4σT2 away from
the Tempo2 values, with an average deviation of ∼ 30σT2.

Whilst the parameter estimates returned by the TempoNest
and SpectralModel analysis are in both cases consistent with one
another, the estimates of the uncertainties are several times larger
than those returned by TempoNest by a factor of ∼ 2 − 3.

In order to investigate the difference in the uncertainties re-
turned by TempoNest and the SpectralModel plugin, we first con-
sider the major differences between the different types of analysis:

• TempoNest uses the full non-linear model compared to the
linear approximation in SpectralModel
• TempoNest uses physical priors on parameters such as par-

allax, such that they must take values greater than zero, Spec-
tralModel does not
• TempoNest includes both red and white noise estimation in

the fit with the timing model, SpectralModel does not include ad-
ditional white noise terms, and fixes the red noise when calculating
the uncertainties for the timing model.
• TempoNest uses a cut off power law model for the red noise,

whereas SpectralModel uses a red noise model with a corner fre-
quency at which it turns over.

In order to ascertain how large an effect these differences make we
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Figure 9. (top) Mean values and one sigma uncertainties for the optimal set of power spectrum coefficients required to describe the red noise (left) and DM
variations (right). The mean power law estimate is over plotted in both cases, for which we find spectral indices of −5 ± 1 and −2.6 ± 0.4 calculated including
the first 10 and 15 consecutive coefficients for each respectively. (bottom) Timing residuals for B1937+21 dataset 2 (red points) and the best-fit combined signal
realisation for the red noise and DM variations using the optimal model independent analysis (blue dotted line) shown for the 2.4GHz (left) and 1.4GHz (right)
data separately for clarity.

therefore rerun the analysis on dataset 1, so that we have the same
DM model in both cases, whilst making the following changes:

1: Use the linear timing model, linearised at the timing model pa-
rameters estimated by the SpectralModel plug-in without the con-
dition that parameters must take physical values
2: As in 1, but fixing EFAC = 1 and EQUAD = 0, and fixing the

spectral index of the red noise power law to be the same value used
in the SpectralModel plug-in (−4.0)

Fig. 12 shows the timing model parameters estimated from these
different approximations in the same format as in Fig. 11. The red
and green points represent the parameter estimates from the full
non-linear timing analysis, and the linearised analysis respectively,
however there is no discernible difference in either the estimated
parameter values, or the uncertainties between these two models, as
expected given the set of parameters included in the timing model.
The blue points represent the case where we have not included
white noise in the model, and have fixed the spectral index of the
red noise to be that used in the SpectralModel analysis (−4.0). Here
there is a clear increase in the level of uncertainty of the timing

model parameters relative to the full analysis by a factor of ∼ 2 − 3
except for DM which sees the uncertainties decrease by ∼ 60%. In
both cases however this brings the estimated uncertainties in line
with those derived from the SpectralModel analysis, with remain-
ing differences being of the order 10%, with the exception of the
quadratic spin down parameters, from which we would expect the
greatest difference given the use of different red noise models.

This clearly emphasises the importance of including as much
as is required to fully describe the data simultaneously in the fit
along with the timing model parameters. We should make clear that
the magnitude of the differences observed in PSR B1937+21 will
not be typical for most millisecond pulsars, however, the precise
level of difference to expect is difficult to quantify a priori, being
a function of signal-to-noise, the cadence of the observations, and
the complexity of the timing model used to describe the pulsar. We
therefore still suggest that unless a full simultaneous analysis such
as that described here is performed in every case, the unpredictable
variation in the uncertainties returned from the analysis must im-
pact the robustness of the science extracted from that analysis.
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Figure 10. (top) The one and two dimensional marginalised posterior distributions for the eight timing model parameters: RA, DEC, F0, F1, DM,
PMRA, PMDEC and PX, and the four stochastic parameters: EFAC, EQUAD, and amplitude and spectral index of the power law model for the red
noise for dataset 1. (bottom) As in the top plot, but for dataset 2, and with EFAC and EQUAD replaced with the amplitude and spectral index of the
power law model for dispersion measure variations.
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Table 8. Timing model and stochastic parameter estimates for PSR B1937+21

Fit and data-set

Pulsar name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B1937+21
MJD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46024.8—48973.8
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Measured Quantities - Including K94 DM Corrections

TempoNest Tempo2 Spectral Model

Right ascension, α . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:39:38.561314(10) 19:39:38.561288(3) 19:39:38.56130(5)
Declination, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +21:34:59.1295(2) +21:34:59.13068(5) +21:34:59.1291(9)
Pulse frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . . . . . 641.92823355803(16) 641.9282335579857(7) 641.9282335581(14)
First derivative of pulse frequency, ν̇ (s−2) . . . . . . . −4.33169(3))×10−14 −4.3316913(15)×10−14 −4.33169(5)×10−14

Dispersion measure, DM (cm−3pc) . . . . . . . . . . . . . . 71.04003(2) 71.039981(15) 71.040024(15)
Proper motion in right ascension, µα (mas yr−1) . . 0.084(11) 0.054(4) 0.08 (7)
Proper motion in declination, µδ (mas yr−1) . . . . . . −0.421(15) −0.319(4) − 0.43(2)
Parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.24(9) 0.01(4) 0.20(15)
EFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.88(14) – –
log10 EQUAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −6.59(4) – –
log10 Ared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −3.30(16) – –
γred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9(6) – –

Measured Quantities - Excluding K94 DM Corrections

TempoNest Tempo2 Spectral Model

Right ascension, α . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:39:38.561307(10) 19:39:38.561219(3) 19:39:38.561301(19)
Declination, δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +21:34:59.1296(2) +21:34:59.13136(5) +21:34:59.1292(4)
Pulse frequency, ν (s−1) . . . . . . . . . . . . . . . . . . . . . . . . 641.9282335581(3) 641.9282335580713(13) 641.9282335581(9)
First derivative of pulse frequency, ν̇ (s−2) . . . . . . . −4.33169(6) ×10−14 −4.331679(3)×10−14 −4.3317(2)×10−14

Dispersion measure, DM (cm−3pc) . . . . . . . . . . . . . . 71.041(13) 71.040715(15) 71.04060(12)
Proper motion in right ascension, µα (mas yr−1) . . 0.069(10) −0.005(3) 0.08(2)
Proper motion in declination, µδ (mas yr−1) . . . . . . −0.411(15) −0.279(4) −0.44(5)
Parallax, π (mas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25(10) 0.41(4) 0.19(13)
EFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.29(19) – –
log10 EQUAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −7.3(9) – –
log10 Ared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −3.7(3) – –
γred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3(9) – –
log10 ADM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.15(7) – –
γDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7(3) – –

Set Quantities

Epoch of frequency determination (MJD) . . . . . . . . 52601
Epoch of position determination (MJD) . . . . . . . . . . 52601
Epoch of dispersion measure determination (MJD) 52601

Assumptions

Clock correction procedure . . . . . . . . . . . . . . . . . . . . . TT(TAI)
Solar system ephemeris model . . . . . . . . . . . . . . . . . . DE405
Binary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NONE
Model version number . . . . . . . . . . . . . . . . . . . . . . . . . 5.00

8 CONCLUSION

We have introduced TempoNest, a software package that provides
a means of performing a robust Bayesian analysis of pulsar timing
data. TempoNest allows for the joint analysis of the timing model
along with a range of additional stochastic parameters including
EFAC and EQUAD parameters, and descriptions of both red spin
noise and dispersion measure variations using either a power law
description of the noise, or in a model-independent way, parame-
terising the power at individual frequencies in the data.

We have applied TempoNest to both simulated and real
datasets in order to demonstrate several key aspects of function-

ality. First we used simulated data for the pulsar PSR J1713+0747
in order to compare the linear and non-linear timing models where
the level of noise varied between simulations, from that expected
from the square kilometer array (∼ 100ns white timing noise),
to a level more representative of current observations, including
red spin noise. We showed that in the high signal–to–noise exam-
ple the differences between the timing solutions for the linear and
non-linear timing model parameters were negligible. In the lower
signal–to–noise examples, however, the linear timing model failed
to capture all the information present in the data, with large curv-
ing degeneracies in the non-linear parameter space leading to un-
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Figure 11. (left) Difference between the parameter estimates and uncertainties returned by TempoNest (red solid points) and the SpectralModel plug-in
(blue points) and Tempo2 for PSR B1937+21 for dataset 1. (right) As with the left plot, but for dataset 2, where we have used DMModel to characterise
the dispersion measure variations for the SpectralModel fit, and a power law DM model for the TempoNest fit. In both plots the zero on the y axis
represents the value returned by Tempo2, with the y axis being in units of the 1σ Tempo2 error. Therefore, a fit consistent with that returned by Tempo2
will have a value of 0 ± 1 in these plots.
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Figure 12. Difference between the timing model parameter estimates re-
turned by TempoNest under a series of different approximations and the
Tempo2 parameter estimates in the same format as Fig. 11, as well as the
timing model estimates returned by the SpectralModel plug-in for dataset 1.
For each timing model parameter from left to right the data points represent
the following: i )Full analysis using TempoNest ii) Using the linear timing
model, linearised at the timing model parameters estimated by the Spec-
tralModel plug-in, iii) as (ii) but with the EFAC = 1, EQUAD = 0, γred =

−4.0, and, iv) the SpectralModel fit

certainties that exceeded those in the linear approximation by up to
an order of magnitude.

We then applied TempoNest to two publicly available datasets,
the binary pulsar B1855+09 and the isolated pulsar B1937+21. For
the former we used a model independent method of parameteris-
ing the red spin noise in the data and found marginal support for
a single low frequency component in addition to the timing model

parameters fitted, but found it did not affect the timing model so-
lutions in any observable way, with parameter estimates that were
completely consistent with those of Tempo2 in all respects. We then
demonstrated the ability for TempoNest to perform model selection
using the evidence by including a series of additional timing model
parameters and repeating the analysis in order to find the optimal
set that described the data. This included adding jumps between
instrument back ends, and additional physical parameters such as
derivatives of the binary period or eccentricity.

In the case of B1937+21 we used both a power law, and model
independent method of parameterising both the dispersion measure
and red noise signals in the data, and found whilst they gave con-
sistent results, the evidence heavily favoured the use of the simpler
model, with both components being well described by a power law
power spectrum with spectral indices of −2.7 ± 0.3 and −5.3 ± 0.9
respectively. When comparing the timing model solutions returned
by TempoNest from this joint analysis with those of Tempo2 we
found large discrepancies, both in terms of the parameter estimates
themselves and their uncertainties. In the most extreme cases the
TempoNest parameter estimates were up to ∼ 38σT2 away from the
Tempo2 values, with σT2 the returned Tempo2 uncertainty, whilst
the uncertainties themselves were over two orders of magnitude
greater in the case of the pulsar’s spin down parameters. When
compared to the Cholesky method found in the Tempo2 Spec-
tralModel plug-in, we found that by not including all the stochastic
processes in the analysis simultaneously with the timing model, the
timing model parameter uncertainties are overestimated by a factor
∼ 2 − 3 in almost all cases, showing unambiguously the impor-
tance of including as much as is required to fully describe the data
simultaneously in the analysis. This is all the more critical given
the precise level of difference to expect for any pulsar is difficult to
quantify a priori, being a function of signal-to-noise, the cadence
of the observations, and the complexity of the timing model used
to describe the pulsar. We therefore suggest that unless a full simul-
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taneous analysis such as that described here is performed in every
case, the unpredictable variation in the uncertainties returned from
the analysis must impact the robustness of the science extracted
from that analysis.

TempoNest is freely available as a development build4, with a
full public release planned in the near future.
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