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ABSTRACT

A new Bayesian software package for the analysis of pulsar timing data is presented in the
form of TEMPONEST which allows for the robust determination of the non-linear pulsar timing
solution simultaneously with a range of additional stochastic parameters. This includes both
red spin noise and dispersion measure variations using either power-law descriptions of the
noise, or through a model-independent method that parametrizes the power at individual
frequencies in the signal. We use TEMPONEST to show that at noise levels representative of
current data sets in the European Pulsar Timing Array and International Pulsar Timing Array
the linear timing model can underestimate the uncertainties of the timing solution by up to
an order of magnitude. We also show how to perform Bayesian model selection between
different sets of timing model and stochastic parameters, for example, by demonstrating that
in the pulsar B19374-21 both the dispersion measure variations and spin noise in the data are
optimally modelled by simple power laws. Finally, we show that not including the stochastic
parameters simultaneously with the timing model can lead to unpredictable variation in the
estimated uncertainties, compromising the robustness of the scientific results extracted from

such analysis.
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1 INTRODUCTION

The ever increasing precision of pulsar timing studies, combined,
in particular, with the exceptional rotational stability of millisecond
pulsars (MSPs) has resulted in a powerful tool for the pursuit of a
wide range of scientific goals. For example, in recent years pulsar
timing has been used to find extrasolar planets (Bailes et al. 2011),
to study matter at super-nuclear densities in the interior of neu-
tron stars (Espinoza et al. 2011), and in the double pulsar system
PSR J0737—-3039A/B, provides precise measurements of several
‘post-Keplerian” parameters allowing for stringent tests of general
relativity (Kramer et al. 2006).

For a detailed review of pulsar timing refer to e.g. Lorimer et al.
(2004). In brief, the arrival times of pulses (TOAs) for a particular
pulsar will be recorded by an observatory in a series of discrete
observations over a period of time. These arrival times must all be
transformed into a common frame of reference, the Solar system
barycentre, in order to correct for the motion of the Earth.

* E-mail: 1121 @cam.ac.uk

A model for the pulsar can then be fitted to the TOAs that char-
acterizes the properties of the pulsar’s orbital motion, as well as its
timing properties such as its orbital frequency and spin down. This
is most commonly carried out using the TEMPO,' and more recently,
TEMPO2 pulsar timing packages (Hobbs, Edwards & Manchester
2006; Edwards, Hobbs, & Manchester 2006; Hobbs et al. 2009).
TEMPO2 uses an initial guess of the timing model to generate a set
of pre-fitting residuals. A Fisher-matrix approximation to the tim-
ing model parameters is then calculated and a linear least-squares
method is utilized to improve the fit. If desired, multiple iterations
can be performed such that the best-fitting values for the timing
model from the previous iteration are used as the starting guess for
the next, until convergence is reached.

When performing this fitting process, TEMPO2 considers the TOAs
to be solely the sum of a deterministic signal due to the timing
model, and a white noise component described completely by the
TOA uncertainties. In realistic data sets however this assumption
is rarely true. If additional stochastic processes, such as intrinsic
red spin noise due to rotational irregularities in the neutron star

Uhttp://www.atnf.csiro.au/research/pulsar/tempo
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(Shannon & Cordes 2010) or correlated noise due to a stochastic
gravitational wave background (GWB) generated by, for example,
coalescing black holes (e.g. Phinney 2001; Jaffe & Backer 2003),
are present in the data, then power from these contributions will
be absorbed by the timing model, affecting the accuracy of the
parameter estimation.

Recently, Coles et al. (2011, henceforth C11) proposed a
method of improving the timing model fit by using the Cholesky-
decomposition of the covariance matrix describing the properties
of these additional stochastic processes in the TOAs, calculated
from the power spectral density of the timing residuals. This can
be used to whiten the residuals, after which parameter estimation
is performed in these transformed observations using ordinary least
squares.

In van Haasteren & Levin (2013, henceforth vHL2013), however,
it is shown that after fitting for the timing model the resulting resid-
uals are not time stationary, and as such the power spectral density
of those residuals is not a well-defined mathematical quantity. In
addition, because the method in C11 does not account for the co-
variance between the timing model and the stochastic processes, the
uncertainties associated with the parameter estimates, in particular
those associated with the quadratic spin down, are not optimal. The
preferred approach is therefore to perform a joint analysis of the de-
terministic timing model and any additional stochastic components
present as in vHL2013.

However, when performing a Bayesian analysis using the lin-
earized timing model as presented in vHL2013, it is not possible
to perform model selection between different sets of timing model
parameters using the evidence. This is because the maximum likeli-
hood value at which the linearization is performed will depend upon
the exact set of model parameters included, and as such, both the
data and the model will vary as the parameter space changes. It is
also not clear how the estimation of the uncertainties of the timing
model parameters depends on the linearization process, especially
in the regime where the signal-to-noise ratio might be low, and the
Fisher-matrix approximation will be poor.

In this paper, we present a solution to these problems in the
form of TEMPONEST. TEMPONEST provides a means of performing a
simultaneous analysis of either the linear or non-linear timing model
and additional stochastic parameters using the Bayesian inference
tool muLTINEST (Feroz & Hobson 2008; Feroz, Hobson & Bridges
2009) to efficiently explore this joint parameter space, whilst using
TEMPO2 as an established means of evaluating the timing model at
each point in that space. TEMPONEST allows for robust model selection
between different sets of timing model or noise parameters, and
requires only basic prior knowledge of the timing model.

In Section 2, we will describe the basic principles of our Bayesian
approach to data analysis, giving a brief overview of how it may
be used to perform model selection, and introduce MULTINEST. In
Section 3, we will describe the stochastic models currently available
for use in TEMPONEST to include with the timing model, including the
white noise modifiers EFAC and EQUAD, along with descriptions
of both red spin noise and dispersion measure (DM) variations.

We will then perform a series of tests using TEMPONEST designed
to show some of the included functionality. In Section 6, we use
simulated data to compare the non-linear and linear approximation
to the timing model across different noise regimes designed to
represent both future and current data sets, whilst in Section 7, we
apply TEMPONEST to two sets of publicly available data, first of the
binary pulsar B1855+4-09 and then the isolated pulsar B1937+21.
We show how TEMPONEST can be used to perform Bayesian model
selection between different sets of timing model and stochastic

parameters, and for the latter case, also compare the parameters
estimates and uncertainties for the timing solutions produced by
TEMPONEST, TEMPO2 and the SpectralModel plug-in for TEMPO2 that
uses the principles described in C11.

We note that the aim of this paper is not to provide a user manual
for TEMPONEST, but rather give an overview of its functionality. A
development build of TEMPONEST is currently available online,? with
a full public release planned in the near future.

This research is the result of the common effort to directly detect
gravitational waves using pulsar timing, known as the European
Pulsar Timing Array (Janssen et al. 2008).’

2 BAYESTIAN INFERENCE

Our method for performing pulsar timing analysis is built upon
the principles of Bayesian inference, which provides a consistent
approach to the estimation of a set of parameters ® in a model or
hypothesis H given the data, D. Bayes’ theorem states that

Pr(D | ®, H)Pr(® | H)

P® | D, H) = BrD | 1) : (0

where Pr(®|D, H) = Pr(®) is the posterior probability distribution
of the parameters, Pr(D|®, H) = L(0®) is the likelihood, Pr(® |
H) = m(®) is the prior probability distribution and Pr(D|H) = Z is
the Bayesian evidence.

In parameter estimation, the normalizing evidence factor is usu-
ally ignored, since it is independent of the parameters ®. Inferences
are therefore obtained by taking samples from the (unnormalized)
posterior using, for example, standard Markov chain Monte Carlo
sampling methods.

In contrast to parameter estimation, for model selection the ev-
idence takes the central role and is simply the factor required to
normalize the posterior over ©:

Z= /L((E))Tc(@)d”@, ?

where 7 is the dimensionality of the parameter space.

As the average of the likelihood over the prior, the evidence
is larger for a model if more of its parameter space is likely and
smaller for a model where large areas of its parameter space have
low likelihood values, even if the likelihood function is very highly
peaked. Thus, the evidence automatically implements Occam’s ra-
zor: a simpler theory with a compact parameter space will have
larger evidence than a more complicated one, unless the latter is
significantly better at explaining the data.

The question of model selection between two models H, and
H, can then be decided by comparing their respective posterior
probabilities, given the observed data set D, via the model selection
ratio R:

_ P(H|D) _ P(D|H)P(H) _ Zi P(Hy)
P(Hy | D)~ P(D | Hy)P(Hy) ~ Zo P(Ho)

3

where P(H,)/P(H,) is the a priori probability ratio for the two
models, which can often be set to unity but occasionally requires
further consideration.

2 https://github.com/LindleyLentati/TempoNest
3 www.epta.eu.org/
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2.1 Nested sampling and evaluating the evidence

Evaluation of the multidimensional integral in equation (2) is a chal-
lenging numerical task. Standard techniques like thermodynamic
integration (O’Ruanaidh & Fitzgerald 1996) are extremely compu-
tationally expensive, which makes evidence evaluation at least an
order-of-magnitude more costly than parameter estimation. Some
fast approximate methods have been used for evidence evaluation,
such as treating the posterior as a multivariate Gaussian centred
at its peak (see e.g. Hobson, Bridle & Lahav 2002), but this ap-
proximation is clearly a poor one for multimodal posteriors (except
perhaps if one performs a separate Gaussian approximation at each
mode). The Savage-Dickey density ratio has also been proposed
(see e.g. Trotta 2007) as an exact, and potentially faster, means of
evaluating evidences, but is restricted to the special case of nested
hypotheses and a separable prior on the model parameters.

The nested sampling approach (Skilling 2004) is a Monte Carlo
method targeted at the efficient calculation of the evidence, but also
produces posterior inferences as a by-product.

Nested sampling considers the prior volume X where the likeli-
hood is greater than some value A, which can be written as

XA = / (®)d"O. “4)
L(©)>)

This allows us to rewrite equation (2) as a one-dimensional integral
over A:

Z= / - X(M)dx. ()
0

When the inverse of X(1), the likelihood value that corresponds to
a given prior volume, L(X), exists, this integral can then be written
as

1
Z = / L(X)dX, (6)
0

and so the evidence can be calculated as the weighted sum of a set
of M values of X:

M
Z = ZL,‘U),‘, (7)
i=l

where the weights w; are simply given by the trapezium rule w; =
T(Xi = Xig).

2.2 MULTINEST

In Feroz et al. (2009) and Feroz & Hobson (2008), this nested
sampling framework was built upon with the introduction of the
MULTINEST algorithm, which provides an efficient means of sam-
pling from posteriors that may contain multiple modes and/or large
(curving) degeneracies, and also calculates the evidence. Since its
release MULTINEST has been used successfully in a wide range of
astrophysical problems, from detecting the Sunyaev—Zel’dovich ef-
fect in galaxy clusters (AMI Consortium et al. 2012), to inferring
the properties of a potential stochastic GWB in pulsar timing array
data (Lentati et al. 2013, henceforth L13).

In brief, the MuLTINEST algorithm operates by first drawing a set
of Njy. points from the prior 71(®). An ellipsoidal decomposition
is then performed such that the full set of live points is contained
within a set of ellipsoids. At each subsequent iteration i a point
is drawn with likelihood L from the union of these ellipsoids and
is checked to see if it satisfies the constraint L > L; where L; is
the lowest likelihood value present in the set of live points at that

iteration. If this constraint is satisfied the point replaces the lowest
likelihood point in the live set with a probability 1/n. where n, is
the number of ellipsoids in which the new point lies.

In high dimensions, most of the volume in the ellipsoids lies in
their outer shells; thus, when the decomposition extends beyond
the true isolikelihood surface, the acceptance rate of new points
can decrease significantly. In order to maintain high sampling effi-
ciency, in high dimensions MULTINEST therefore contains a ‘constant
efficiency’ mode. Here, the total volume enclosed by the ellipsoids
is adjusted such that the sampling efficiency meets some user set
target. However, whilst this mode is adequate for parameter estima-
tion, the evidence values are not reliable.

Recently, however, the MULTINEST algorithm has been updated to
include the concept of importance nested sampling (INS; Cameron
& Pettitt 2013), which provides a solution to this problem. Full
details can be found in Feroz et al. (2013), but the key difference is
that, where with normal nested sampling the rejected points play no
further role in the sampling process, INS uses every point sampled
to contribute towards the evidence calculation. One outcome of this
approach is that even when running in constant efficiency mode the
evidence calculated is reliable even in higher (~50) dimensional
problems.

In pulsar timing analysis, we will often have to deal with timing
models that can contain >20 parameters, which, when combined
with the properties of the stochastic component of the signal, can
result in a total dimensionality of 50-60. As such, the ability to run
in constant efficiency mode whilst still obtaining accurate values
for the evidence when these higher dimensional problems arise is
crucial in order to perform reliable model selection.

3 PULSAR TIMING LIKELIHOOD

For any pulsar, we can write the TOAs for the pulses as a sum of
both a deterministic and a stochastic component:

tiot = Laet + Lstos (8)

where t,,, represents the n TOAs for a single pulsar, with #4, and
t.o the deterministic and stochastic contributions to the total, re-
spectively, where any contributions to the latter will be modelled as
random Gaussian processes. Writing the deterministic signal due
to the timing model as t(€), and the uncertainty associated with a
particular TOA i as o;, we can write the likelihood that the data are
described solely by the timing model as

m I (6 — 7(6))?

Pr(t|e) o? exp | —= A 9

(t]€) (H}) p<2; o7 ) ©)
This represents the simplest model choice possible in TEMPONEST,
including only those free parameters present in the TEMPO?2 fit. From
here, we can now begin to make our model for the stochastic con-
tribution to the signal more realistic by introducing additional pa-
rameters to describe the white and red noise components, in order
to compare the evidence with this simpler model and determine the
optimal set of parameters supported by the data.

3.1 Additional white noise

When dealing with pulsar timing data, the properties of the white
noise can be separated into two components:

(1) For a given pulsar, each TOA has an associated error bar, the
size of which will vary across a set of observations. We can introduce
an extra free parameter, denoted EFAC, to account for possible
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miscalibration of this radiometer noise (Hobbs et al. 2006). The
EFAC parameter therefore acts as a multiplier for all the TOA error
bars for a given pulsar, observed with a particular system. TEMPONEST
allows for either a single EFAC parameter to be estimated for all
TOAs for a given pulsar, or, where the observing system has been
flagged for each TOA, a separate EFAC can be included for each
system.

(2) A second white noise component is also used to represent
some additional source of time independent noise, which we call
EQUAD. In principle, this parameter represents something physical
about the pulsar, the high-frequency tail of the pulsar’s red spin
noise power spectrum, or, ‘jitter’ (Liu et al. 2012), and so should be
independent of the observing system. Differences in the integration
times between TOAs for different observing epochs can muddy this
physical interpretation however, and as such as with EFAC, either a
single EQUAD parameter can be estimated for all TOAs for a given
pulsar, or for each flagged system separately.

We can therefore rewrite the error o; associated with each TOA
i as ; so that

67 = (0))" + 7, (10)

where o and B represent the EFAC and EQUAD parameters ap-
plied to TOA i, respectively. Note, this is not how TEmMpo2 defines
the relationship between the EQUAD and EFAC parameters. Thus,
equation (9) can be trivially rewritten to include the new white noise
parameters as

n —1/2 n o N2
Pr(tle, a, B) (H &f) exp (—; Z (t’(;(e)l)) (11)
i=1 i

i=1

3.2 Additional red noise

TEMPONEST currently supports two methods for describing the in-
trinsic red noise properties of the pulsar: the recently introduced
model-independent frequency domain method described in L13
and the power-law model, time domain method described in van
Haasteren et al. (2009, henceforth vH2009).

3.2.1 LI13 method

We begin by writing the red noise component of the stochastic
signal, which we will denote ¢,.4, in terms of its Fourier coefficients
a so that ¢, = Fa where F denotes the Fourier transform such
that for frequency v and time ¢ we will have both

1
F,, = T sin (27tvt) , (12)

and an equivalent cosine term. Here, T represents the total observing
span for the pulsar, and v the frequency of the signal to be sam-
pled. Defining the number of coefficients to be sampled by 7y,
TEMPONEST Will then include the set of frequencies with values n/T,
where n extends from 1 to np,,. For typical PTA data, Lee et al.
(2012) show that a low-frequency cut-off of 1/T is sufficient to ac-
curately describe the expected long-term variations present in the
data. If necessary though it is also possible to specify arbitrary sets
of frequencies such that terms with v < 1/7T can be included in the
model, or to allow noise terms where the frequency itself is a free
parameter.

For a single pulsar, the covariance matrix ¢ of the Fourier coef-
ficients a will be diagonal, with components

¢ij = (@ia]) = ¢:8, (13)

where there is no sum over 7, and the set of coefficients {¢;} repre-
sent the theoretical power spectrum for the residuals.

As discussed in L13, whilst equation (13) states that the Fourier
modes are orthogonal to one another, this does not mean that we
assume they are orthogonal in the time domain where they are sam-
pled, and it can be shown that this non-orthogonality is accounted
for within the likelihood. Instead, in Bayesian terms, equation (13)
represents our prior knowledge of the power spectrum coefficients
within the data. We are therefore stating that, whilst we do not know
the form the power spectrum will take, we know that the underlying
Fourier modes are still orthogonal by definition, regardless of how
they are sampled in the time domain. It is here then that, should one
wish to fit a specific model to the power spectrum coefficients at
the point of sampling, such as a broken, or single power law, the set
of coefficients {g;} should be given by some function {®), where
we sample from the parameters ® from which the power spectrum
coefficients {¢;} can then be derived.

We can then write the joint probability density of the timing
model, white noise parameters, power spectrum coefficients and
the signal realization, Pr(e, &, 8, {¢;}, a | t), as

Pr(e, o, B, {@i},a | t) o Pr(tle, o, B, a)

x Pr(al{g:}) Pr({e:}). (14)

For our choice of Pr({¢;}), we use an uninformative prior that is
uniform in logy space, and draw our samples from the parameter
pi = logio(¢;) instead of ¢; which has the added advantage that
we avoid unnecessary rejections due to samples that have negative
coefficients in the sampling process. Given this choice of prior the
conditional distributions that make up equation (14) can be written
as

1 1 T
Pr(tle, o, B, a) x \/?(N) exp { — E(t —1(¢)— Fa)
x N7'(t — 7(e) — Fa)} (15)

where N;; = 6i26,» ; and represents the white noise errors in the
residuals and

Pr(al{pi})

\/dleitganp {—%a*T(p’]a] . (16)
In TEMPONEST, we then marginalize over all Fourier coefficients a an-
alytically in order to find the posterior for the remaining parameters
alone.

When performing this marginalization, we use a uniform prior
for the Fourier coefficients, so that, denoting ¢ — 7(€) as §t,
(FTN'F + ¢~ ") as ¥ and FTN~'§¢ as d our marginalized poste-
rior is given by

det(z)"1?

Pr(e, o, B, {9i}]t) Jdet(p) det(N)

1
X exp —E(sﬂN”st—de*‘d) . an

3.2.2 vH2013 method

Here, we begin by parametrizing the red noise process using a
power-law spectral density of the form

S(f) = A2 (L)y (18)

Lyr!
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where S(f) is the spectral density at frequency f, A is the amplitude
of the red noise process and y is the spectral index. We write the
time domain covariance matrix Cged between observations i and j
as given in vH2009:

2

A Ei9%
Red
C = fLy*l {F(l —y)sm( > )

N (fir)”
y—1 _ 1\
x (f7) ’§lzo< D —(ZH)!(ZHI_V)}, (19)

where f; is a low-frequency cut-off and v = 27t(t; — ¢;) with ¢; the
ith TOA. In vH2009, it is shown that the quadratic spin down acts
to absorb any contribution to the signal that arises from the choice
of this low-frequency cut-off, and as such it is only necessary to
choose f;. so that 1/f; is much greater than the observing time span
in order to obtain rapid convergence of the expression. The result
of this however, is that the level of uncertainty in the spin-down
parameters will be affected to a much greater extent than any others
by the presence of low-frequency stochastic processes in the data,
a fact that we will return to in Section 7.2. Finally, denoting the
white noise covariance matrix N as before, we can write the total
covariance matrix describing our simulated residuals C;; as

C=CRd L N. (20)

‘We can then write our likelihood as
1

v/ (2m)rdetC

Pr(tle,a, B, A, y) =
X exp (—%(r —1(e)'C 't - r(e))). 1)

3.3 Including DM variations

The plasma located in the interstellar medium, as well as in solar
winds and the ionosphere can result in delays in the propagation of
the pulse signal between the pulsar and the observatory, an effect
that appears as a red noise signal in the timing residuals.

Unlike other red noise signals however, the severity of the ob-
served DM variations is dependent upon the observing frequency,
and as such we can use this additional information to isolate the
component of the red noise that results from this effect.

In particular, the group delay f,(v) for a frequency v is given by
the relation

t,(v) = DM/(K1?), (22)
where the dispersion constant K is given by
K =241 x107""Hz2cm™> pes™! (23)

and the DM is defined as the integral of the electron density 7, from
the Earth to the pulsar:

L
DM = / nodl, 4)
JO

DM corrections can be included in the analysis as an additional
set of stochastic parameters with only minor modifications to the
equations (17) and (21) allowing as before, using either a power-
law model or the model-independent description. In both cases, we
begin by first defining a vector D of length equal to the number of
observations for a given pulsar as

D; = 1/(Kv?) (25)

for observation i with observing frequency v;.

3.3.1 Model-independent method

For the model-independent approach, we then need to make a
change to our basis vectors such that our DM Fourier modes are
described by

V1

1
FPM — T sin 27v,t;) D; (26)

and an equivalent cosine term, where 7T is the length of the observing
timespan, and v, now explicitly denotes the frequency of the signal
to be parametrized as before, where the set of frequencies to be
included is defined in the same way as for the red spin noise. Unlike
when modelling the red spin noise, we no longer have the quadratic
in the timing model to act as a proxy to the low-frequency (v; < 1/T)
DM variations in our data. As such these terms must be accounted
for either by explicitly including these low frequencies in the model,
or by including a quadratic in DM to act as a proxy, as with the red
noise, defined as

Oowm(t) = aot; D; + a1t D; 27

with «, | free parameters to be fit for, and ¢; the barycentric arrival
time for TOA i. This can be achieved most simply by adding the
timing model parameters DM1 and DM2 into the pulsar parameter
file, and allowing TEMPONEST to include them in the fit.

3.3.2 Time domain power-law model

For a detailed discussion of this approach, and comparisons to
existing methods see Lee et al. (2013). In brief, we transform our
red noise covariance matrix C }}e“ to

DM Red
Ci/- ZCU D;D;. (28)
The total noise covariance matrix can therefore be rewritten as

Cmt — Cde + N + CDM. (29)

4 ANALYTICAL MARGINALIZATION OVER
THE TIMING MODEL

Despite having the ability to fit simultaneously for all the timing
model parameters and the stochastic properties of the noise present
in the signal, there may be times where it is preferable to marginalize
over some of the timing model parameters analytically in order to
decrease the dimensionality of the problem. For example, a set
of TOAs for a single pulsar might be the combination of many
different sets of observations taken by different observatories, with
phase jumps fitted between each set. If the specific values of these
jumps are not of interest then the analysis might be performed
faster if the decrease in the number of calculations required to
explore the smaller dimensional space outweighs the increase in
the calculation time that results from the matrix operations required
by the marginalization process.

If we separate the timing model into a contribution from the set of
parameters that we wish to parametrize 7 (€) and a contribution from
the set of m parameters that we plan to marginalize over analytically
7(€’), then we can write the probability that the data # is described
by the remaining parameters € and any additional parameters 6 we
wish to include as

Pr(tle, ) = / d"€' Pr(e’) Pr(t|€, €, 0). (30)

Using a uniform prior on the m €' parameters, we use the same
approach as described in vHL2013 to perform this marginalization

$T0Z ‘€2 Afenuer Uo sOSAUd [euoiTRlInRIS) |dIA e /BI0'S[euinolpuoxo'seutu//:dny Wwoly pepeojumod


http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

A Bayesian approach to pulsar timing analysis 3009

process analytically. This results in a set of equations (31) and (32)
that exist in parallel to equations (17) and (21):

1

/(2 det(GTCG)

X exp (—%(St)TG(GTCG)’lGT(St)), 3D

Pr(tle, o, B) =

where 8t =t — 1(e€), C is the n x n noise covariance matrix as
before and G is the n x (n — m) matrix that performs the marginal-
ization whose derivation will not be given here but is described in
vHL2013,

det (£)7"
Pr(f, o, ﬁs {(Pz”t) X

det () det (N)
X exp {—% <6tTN718t — tAlT)iiltAl)} , (32)

where N = G(G'NG)'G", £=(F'N 'F+¢ ') and d=

FTN 'st.

5 LINEAR APPROXIMATION TO THE TIMING
MODEL

We would like to compare the results of the non-linear analysis of
the timing model afforded by TEMPONEST, with those that can be
obtained from the linear approximation, and so we provide a brief
description of the linear model below.

Given an initial estimate of the m timing model parameters €,
a linear approximation can be performed such that any deviations
from that estimate are encapsulated using the m parameters §¢; such
that

86,’ = €; — €. (33)

Therefore, writing the set of post-fit residuals that results from the
subtraction of the initial estimate of the timing model from our
TOAS as 8t,05, we can express the change in these residuals that
results from the deviation in the timing model parameters de as

8t = 8tpoq — MSe, (34

where M is the n x m ‘design matrix” which describes the depen-
dence of the timing residuals on the model parameters.

Therefore, in all previous equations, we can simply substitute ¢ —
7(€) for 8,0 — Mde in order to evaluate the linear approximation
to the timing model.

6 APPLICATION TO SIMULATED DATA

In order to compare the parameter estimates obtained through both
the non-linear and the linearized timing models, we use a series of
three simulations, details of which are given below. The simulations
are designed to make it progressively more difficult to extract the
correct timing model parameters, due to both increasing the ampli-
tude of the white noise in the data, and increasing the complexity
of the noise by including additional red noise signals.

Simulation 1. The TOAs consist only of the deterministic timing
model and Gaussian white noise with an amplitude of 1077 s.

Simulation 2. As simulation 1, however with a white noise am-
plitude of 107° s.

Simulation 3. As simulation 1, however with the addition of a
red noise signal described by equation (19) withA =5 x 10~'* and
y =4.333.

In all three simulations, we use a simulated timing model for the
binary pulsar J17134-0747 consistent with current observed values
(Splaver et al. 2005), details of which are given in Table 1. When
performing the linearized parametrization of the timing model, we
perform the linearization at the injected parameter values in order
to maximize the performance of the method, and thus provide the
most stringent comparison.

Tables 2—4 show the maximum likelihood, linear and non-linear
timing model and stochastic parameter estimates for the three simu-
lations. In all cases, we list only a single set of maximum likelihood
parameter estimates, as these are the same for both linear and non-
linear models. Figs 1-3 then show the one- and two-dimensional
marginalized posteriors for a subset of the non-linear (top plots) and
linear (bottom plots) timing model parameters related to the binary
properties of the system that show the greatest differences when
comparing the two models. For simulation 3, we substitute two of
the timing model parameters in these plots (the orbital period and
eccentricity) in favour of the spectral index and amplitude of the
red noise.

For the three simulations, all the posterior distributions for the
timing model parameters shown in Figs 1-3 are consistent with
the injected parameter values within 20 confidence intervals for
both the linear and non-linear timing models. From simulation 1,
we see that in the high signal-to-noise regime, there is almost no
observable difference between either the parameter estimates or
their uncertainties for the linear and non-linear timing models. This
is to be expected as the range of parameter space over which the
likelihood remains high is small, and thus the linear approximation
should be valid.

As we increase the level of the white noise however, from an
amplitude of 100 ns to 1 us, we begin to see some significant differ-
ences between the two models. In particular, the companion mass
and Kopeikin parameters (KOM and KIN) show large curving de-
generacies between the parameters. These non-Gaussian features
are lost when we transition to the linear regime, which has the re-
sult of incorrectly estimating the uncertainties in these parameters.
For example, the 1o confidence intervals for the companion mass
M2 is a factor 2.4 times smaller in the linear regime when compared
to the non-linear.

This effect is accentuated even further in simulation three where
we introduce a red noise signal into the data. Here, almost all
parameters shown in Fig. 3 show an underestimation of the error
in the linear regime, with the most extreme examples showing lo
confidence intervals 8.8 and 10.8 times greater in the non-linear
model for parameters A1 and M2, respectively. It is important to
note that in both cases, we are modelling the red noise in the same
way, and thus, this effect is solely due to the differences between
the linear and non-linear timing models. As such, any method of
pulsar timing analysis that operates in the linear regime, regardless
of how it incorporates additional stochastic processes, such as the
Cholesky method in C11, will suffer from this effect.

In this set of simulations, we do not see any significant bias in
the timing model parameters returned by the linear timing model;
however, given that the posterior probability distribution of the
non-linear timing model shows significant curving degeneracies,
and much greater 1o confidence intervals for the binary parame-
ters when compared to the linear model as the noise increases, we
would expect that over a large number of realizations the number
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Table 1. Injected timing model parameter values for PSR J1713+0747.

Fit and data set

Pulsar name
MJD range
Number of TOAs

J17134-0747
500 00.3-530 02.0
216

Measured quantities

Right ascension, «

Declination, §

Pulse frequency, v (s™')

First derivative of pulse frequency, v (s~2)
Dispersion measure, DM (cm™3 pe)

Proper motion in right ascension, st (mas yr—')
Proper motion in declination, pts (mas yr_])

Parallax, 7t (mas)

Orbital period, Pj, (d)

Epoch of periastron, 7o (MID)
Projected semimajor axis of orbit, x (It-s)
Longitude of periastron, wq (deg)
Orbital eccentricity, e

First derivative of orbital period, P,
Periastron advance, o (deg yr—')
Companion mass, M. (M)
Longitude of ascending node, 2 (deg)
Orbital inclination angle, i (deg)

17:13:49.532 5545
+07:47:37.499 98

218.811 840 441 434 861 31

—4.083 924 810941 944 8511 10710
15.9936

4916 126 25

—3.920 8688

0.935 9045

67.825 129 6839

543 03.635 387 74

32.342 422 339 04

176.204 156 71

7.494 025 9711x 10~

3.001 66x 10713

—3.6932x 1073

0.311 2297

93.905 81

71.1391 53

Set quantities

Epoch of frequency determination (MJD)
Epoch of position determination (MJD)
Epoch of DM determination (MJD)

543 12
543 12
543 12

Assumptions

Clock correction procedure
Solar system ephemeris model
Binary model

Model version number

TT(TAI)
DE421
T2

5.00

Table 2. Maximum likelihood, non-linear and linear timing model parameter estimates for simulation 1.

Maximum likelihood Non-linear

Linear

4.510914 902
0.136 026 5985
218.811 840 441 434 92

4.510914 902 (3)
0.136 026 5984 (3)

Right ascension, o
Declination, §

4.510914 902 (3)
0.136 026 5984 (3)

Pulse frequency, v (s~ ')
First derivative of pulse frequency, v (s~2)

Proper motion in right ascension, jt, (mas yr~') 49186
Proper motion in declination, s (mas yr—!) —3.922
Parallax, 7t (mas) 0.94
Orbital period, Pp, (d) 67.825 130
Epoch of periastron, 7o (MID) 543 03.6354
Projected semimajor axis of orbit, x (It-s) 32.342 422 27

Longitude of periastron, wq (deg) 176.204
Orbital eccentricity, e

First derivative of orbital period, Ph 2x 10714
Periastron advance, & (deg yr—') —4x 1073
Companion mass, M. (M@) 0.316
Longitude of ascending node, 2 (deg) 94.1
Orbital inclination angle, i (deg) 71.0

—4.083922 x 10716

7.494 10x 1072

218.811 840 441 434 86 (18)
—4.083 925 (6) x 10710

218.811 840 441 434 86 (18)
—4.083 922 (6) x 10710

4.9161 (18) 4.9161 (18)
—3.921 (3) —3.921 (3)
0.94 (2) 0.94(2)

67.825 129 (7) 67.825 130 (7)

543 03.6354 (4) 543 03.6354 (4)
32.342 422 33 (16) 32.342 422 33 (16)
176.204 (2) 176.204 (2)
7.494 02 (6) x 10~ 7.494 02 (6) x 107
3(6)x 10713 3(6)x 10713
—3(19) x 1077 —3(19) x 1073
0.312 (16) 0.312 (16)
93.8 (1.4) 93.9 (1.4)

71.1 (6) 71.1 (7)

of occurrences of >4¢0 deviations that occur in the linear timing
model should exceed that predicted by Gaussian statistics. In order
to test this hypothesis, we generate a series of 10 591 realizations
of the noise in simulation 2, using TEmpO2 to calculate the param-
eter estimates with the linear timing model, and count the number
of >40 1, deviations for the binary parameters in the timing model,

with o7, the 1o uncertainty returned by TEMPO2. Given Gaussian
statistics, we would expect ~10 such events across all parame-
ters total. Fig. 4 shows a histogram for the number of events for
the binary parameters in PSR J171340747. The model parameters
Al, M2, KIN and KOM show a significant excess from the Gaus-
sian prediction, indicating that the linear timing model significantly
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Table 3. Maximum likelihood, non-linear and linear timing model parameter estimates for simulation 2.

Maximum likelihood

Non-linear

Linear

4.510914 90
0.136 026 598

Right ascension, «
Declination, &
Pulse frequency, v (s™!)

First derivative of pulse frequency, v (s~2) —4.083 85 x 10710

218.811 840 441 4366

4.510914 86 (3)
0.136 026 602 (3)

218.811 840 441 4348 (18)
—4.083 92 (6) x 1071¢

4.510914 86 (2)
0.136 026 602 (3)

218.811 840 441 4348 (18)
—4.083 92 (6) x 1071°

Proper motion in right ascension, 1t (mas yr—!) 4.906 4.905 (17) 4.906 (17)
Proper motion in declination, j5 (mas yrfl) —3.90 —-3.91 (3) —-3.91 (3)
Parallax, 7t (mas) 1.2 1.0 (2) 0.9 (2)
Orbital period, Pj, (d) 67.825 13 67.825 10 (6) 67.825 10 (6)
Epoch of periastron, o (MJD) 543 03.635 543 03.636 (4) 543 03.634 (4)
Projected semimajor axis of orbit, x (It-s) 32.342 422 32.342 421 (22) 32.342 422 (16)
Longitude of periastron, wq (deg) 176.20 176.21 (2) 176.20 (2)
Orbital eccentricity, e 7.4948% 107> 7.4948 (6) x 1073 7.4949 (6) x 1073
First derivative of orbital period, P, —1.7x 10712 1.5 (65)x 1013 5(62)x 10713
Periastron advance, & (deg yr—') —4x 1073 —9(18) x 1074 —10(19) x 107
Companion mass, M. M@p) 0.3 0.53 (27) 0.34 (13)
Longitude of ascending node, 2 (deg) 95 103 (13) 102 (16)
Orbital inclination angle, i (deg) 69 63 (8) 68 (6)
Table 4. Maximum likelihood, non-linear and linear timing model parameter estimates for simulation 3.

Maximum ikelihood Non-linear Linear

451091491
0.136 026 597
218.811 840 4414

Right ascension, «
Declination, &

4.510914 87 (2)
0.136 026 601 (3)

4.510914 907 (9)
0.136 026 5978 (18)

Pulse frequency, v (s~1)

First derivative of pulse frequency, v (s~2) —4.084 x 10716
Proper motion in right ascension, (. (mas yr“) 4.93
Proper motion in declination, 5 (mas yr—') —3.94
Parallax, 7t (mas) 0.5
Orbital period, Pp, (d) 67.825 13
Epoch of periastron, 7o (MID) 543 03.635
Projected semimajor axis of orbit, x (It-s) 32.342 422

Longitude of periastron, wq (deg) 176.20

Orbital eccentricity, e 7.4938x 1073
First derivative of orbital period, Pb 4% 10712
Periastron advance, & (deg yr—!) 0.0016
Companion mass, M. Mp) 0.3
Longitude of ascending node, 2 (deg) 91
Orbital inclination angle, 7 (deg) 72
log o Ared —13.01
Spectral index 3.5

218.811 8404412 (2) 218.811 8404412 (2)

—4.091 (4) x 10716 —4.090 (4) x 10716
4.94(2) 4.93(2)
—3.93 (4) —3.93 (4)

0.6 (2) 0.4 (2)

67.825 16 (7) 67.825 15 (7)

543 03.649 (11) 543 03.639 (4)
32.342 412 (12) 32.342 4211 (12)
176.28 (6) 176.22 (2)
7.4932 (8) x 1073 7.4936 (6) x 107>
7 (6)x 10712 6 (6)x 10712
0.0007 (18) 0.0007 (19)

2(3) 0.44 (13)
108 (13) 98 (18)
52 (13) 66 (7)

—13.31 (19) —13.31 (20)
4.7(7) 4.7 (7)

underestimates the errors in these parameters. Comparing this result
to Fig. 2, we see that these parameters correspond to those that have
large curving degeneracies in the posterior probability distribution,
with significantly larger 1o confidence intervals than those returned
by the linear model, confirming our hypothesis.

7 APPLICATION TO REAL DATA

We now demonstrate the application of TEMPONEST to the publicly
available data sets for the binary pulsar B1855+09 and the iso-
lated pulsar B19374-21 presented in Kaspi, Taylor & Ryba (1994,
henceforth K94). For the former, we demonstrate the ability of TEM-
PONEST to perform rigorous model selection between different sets
of stochastic and timing model parameters, whilst for the latter, we
compare power-law and model-independent descriptions of the red
spin noise, and in addition to these, also compare the method of
Keith et al. (2013) in our analysis of the DM variations in order to
find the optimal description of the stochastic properties of the data.

7.1 B18554-09

The mean posterior values and associated 1o errors for the final fit-
ted timing model and stochastic parameters for PSR B18554-09
are listed in Table 5 and includes five astrometric quantities
(o, 8, [y, s, T, two rotational parameters (v, v), DM, as well as
seven binary parameters. In addition to these, we have included
three stochastic parameters, an EFAC, EQUAD and a single red
noise power spectrum coefficient, with a frequency equal to 1/T,
with T the total time span of the data.

In performing the analysis using TEMPONEST, we first performed
a series of 10 iterations with TEMPO2 to ensure that the timing solu-
tion had converged and to set a uniform prior on the timing model
parameters covering a range of £100 1, from the maximum likeli-
hood estimate obtained from the final iteration with o7, the error
returned by TEMP0o2. The maximum likelihood TEMPO2 estimates and
1o errors are given in Table 5 alongside the TEMPONEST results. For
the stochastic parameters, we took our priors to be uniform across
the ranges [0, 5], [—10, —5], [—20, 0] for EFAC, log;(EQUAD and
pi, respectively.
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Figure 1. One- and two-dimensional marginalized posterior distributions for a subset of the binary parameters for PSR J171340747 for simulation 1 for the
non-linear (top) and linear (bottom) timing models. These parameters are from left to right: the orbital period of the binary (PB), the epoch of periastron (T0),
the projected semimajor axis of orbit (A1), the longitude of periastron (OM), the eccentricity (ECC), the first derivative of the orbital period of the binary
(PBDOT), the first derivative of the longitude of periastron (OMDOT), the companion mass (M2), the longitude of ascending node (KOM) and the inclination
angle (KIN). In all cases, the scale on the x-axis is the deviation from the injected parameter values in units of the uncertainty in the parameter returned by
TEMPO2. In the high signal-to-noise regime of these simulations the two models are completely consistent with one another, both in terms of parameter estimates
and uncertainties.
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Figure 2. One- and two-dimensional marginalized posterior distributions for a subset of the binary parameters for PSR J1713+4-0747 for simulation 2 for the
non-linear (top) and linear (bottom) timing models. These parameters are from left to right: the orbital period of the binary (PB), the epoch of periastron (TO0),
the projected semimajor axis of orbit (Al), the longitude of periastron (OM), the eccentricity (ECC), the first derivative of the orbital period of the binary
(PBDOT), the first derivative of the longitude of periastron (OMDOT), the companion mass (M2), the longitude of ascending node (KOM) and the inclination
angle (KIN). In all cases, the scale on the x-axis is the deviation from the injected parameter values in units of the uncertainty in the parameter returned by
TEMPO2. With the increase in the level of the white noise (1 ps), there are now significant differences in the posterior distributions of the two timing models
with large non-Gaussian tails leading to an underestimation of the uncertainties in the linear model.
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Figure 3. One- and two-dimensional marginalized posterior distributions for a subset of the binary parameters for PSR J1713+0747 for simulation 3 for the
non-linear (top) and linear (bottom) timing models. These parameters are from left to right: the epoch of periastron (T0), the projected semimajor axis of
orbit (A1), the longitude of periastron (OM), the first derivative of the orbital period of the binary (PBDOT), the first derivative of the longitude of periastron
(OMDOT), the companion mass (M2), the longitude of ascending node (KOM) and the inclination angle (KIN). In all cases, but the red noise parameters, the
scale on the x-axis is the deviation from the injected parameter values in units of the uncertainty in the parameter returned by TEmpo2. Whilst all parameters
are consistent with the injected values within 20 confidence internals, the addition of red noise to the signal has resulted in even greater discrepancies in the
estimated parameter uncertainties between the linear and non-linear timing models; however, the posterior distributions for the two stochastic parameters are
extremely consistent between both.
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Figure 4. Number of greater than 4075 deviations for the binary parameters in the timing model of PSR J1713+0747 between the fit returned by TEMPO2 using
the linear timing model and the true value in a series of 10 591 realizations of the noise in simulation 2, with o> the 1o uncertainty returned by TEmpo2. Given
Gaussian statistics, we would expect ~10 such events across all parameters total. The model parameters A1, M2, KIN and KOM show significant deviations
from this prediction, indicating that the linear timing model significantly underestimates the errors in these parameters. Comparing this result to Fig. 2, we see
that these parameters correspond to those that have large curving degeneracies in the posterior probability distribution, with significantly larger 1o confidence

intervals than those returned by the linear model.

In addition to these quantities, Table 5 lists the parameter esti-
mates for four additional timing model parameters, @, P;,, e and x
which were added to the timing model one at a time and the full
analysis repeated. In all cases, however, the addition of the extra
timing model parameters resulted in a decrease of the log-evidence
by ~1 unit relative to the original fit indicating that there is no
support for the parameters in the data.

Comparing the evidence for a model without the three stochastic
parameters to that in Table 5, we find a decrease of the log-evidence
of ~2.5 units. Whilst this is not definitive, the inclusion of the
stochastic parameters is still strongly favoured, and allows us to
quantify the qualitative observation of a cubic signal present in the
residuals described in Kaspi (1995).

Finally, because the observations of B1855+4-09 presented in K94
were made using three observing back-ends over the course of the
data set, we also performed the analysis including two jumps be-
tween the different systems. As there is a strong covariance between
red noise signals and the jump parameters, we included the follow-
ing combinations of parameters in our analysis:

(i) Model 1: Including jumps — without any additional stochastic
parameters.

(i) Model 2: Including jumps — including EFAC/EQUAD.

(i) Model 3: Including jumps — including EFAC/EQUAD and a
single red noise coefficient at frequency 1/7.

As with the other timing model parameters, we set our prior to
be £100 1, from the TEMPO2 initial estimate. We could then compare
the evidence returned from these analyses, with those models that
exclude the jump parameters to see which set is most supported
by the data. In every instance the inclusion of the jumps resulted
in either a small drop in the evidence of ~0.5, or it remained the

same, suggesting no support for these parameters in the data. The
parameter estimates for the jumps when fitted alongside the optimal
set of parameters are listed in Table 5 alongside the other additional
parameters tested.

Comparing the parameter estimates obtained by TEMPONEST with
those from TEMPO2, we see that they are completely consistent for
all values and their uncertainties. Such agreement is unsurprising
as the approximation that the data are well described by only the
timing model and white noise is well justified in this instance given
the minor support for additional stochastic parameters in the data.

7.2 B1937+21

In comparison to B1855+409, the timing model for pulsar
B1937+21 is relatively simple, requiring only eight parameters,
the same five astrometric and two rotational quantities as for
B1855+09, and DM. However, the analysis is made more com-
plex by the presence of significant long-term variation in the timing
residuals. In order to account for one source of this noise, the TOAs
in the K94 data set were observed at two widely spaced frequencies,
1408 and 2380 MHz in order to calculate the effects of dispersion
on the residuals prior to fitting the timing model.

In performing the analysis with TEMPONEST, we therefore use two
versions of the TOAs. The first includes the DM corrections calcu-
lated in K94 (henceforth data set 1), and the second excludes them
(henceforth data set 2). The simple timing model required for this
pulsar means that we expect little non-linearity despite the large
amounts of noise present in the data. We therefore first analytically
marginalize over the timing model using the timing model esti-
mates obtained from TEMpO2 and perform model selection between
different sets of stochastic parameters for each data set. In each case,
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Table 5. Timing model and stochastic parameter estimates for PSR B1855-009.

Fit and data set

Pulsar name
MIJD range
Number of TOAs
Evidence

B1855+09

464 36.7-489 73.7
270

34502 £0.3

Measured quantities

Right ascension, «

Declination, &

Pulse frequency, v (s~ ')

First derivative of pulse frequency, v (s2)
Dispersion measure, DM (cm™> pc)

Proper motion in right ascension, jto (mas yr—!)
Proper motion in declination, ;s (mas yrfl)
Parallax, 7t (mas)

Sine of inclination angle, sin i

Orbital period, Pj, (d)

Epoch of periastron, Tp (MID)

Projected semimajor axis of orbit, x (It-s)
Longitude of periastron, wq (deg)

Orbital eccentricity, e

Companion mass, M. (M)

TEMPONEST

18:57:36.394 354(4)
+09:43:17.319 66(10)
186.494 407 877 865 23(4)
—6.204 99(9)x 10716
13.307(3)

—2.63(3)

—5.41(5)

1.2(2)

0.9991(4)

12.327 171 3813(4)

475 29.896(2)

9.230 7801(3)

276.39(6)

2.170(3)x 107

0.270(14)

Stochastic parameters

EFAC
log1o[EQUAD ()]
logjo [RedC1]

0.806(11)
~62(2)
—4.5(1.0)

Set quantities

Epoch of frequency determination (MJD) 47526
Epoch of position determination (MJD) 47526
Epoch of DM determination (MJD) 475 26
Assumptions
Clock correction procedure TT(TAI)
Solar system ephemeris model DEA405
Binary model T2
Model version number 5.00

Additional included parameters

First derivative of orbital eccentricity, ¢
First derivative of orbital period, Py
First derivative of x, x

Periastron advance, & (deg yr—!)

Jump 1 mk3_14w

Jump 2 mk3_14m

—2(5)x 10716
0.2 (1.1)x 10712
1.52.1)x 1071
—0.01(4)
—1.8(1.1) x 107©
0.5(1.9) x 1077

TEMPO2

18:57:36.394 354(4)
+09:43:17.319 66(11)
186.494 407 877 865 23(4)
—6.205 00(9)x 10716
13.308(3)

—2.63(3)

—5.46(5)

1.1(3)

0.9990(4)

12.327 171 3815(5)

475 29.8966(19)

9.230 7802(3)

276.39(6)

2.169(4)x 1073

0.265(14)

we include an EFAC and EQUAD parameter, and then test different
combinations of models for the red noise and DM variations in the
data. The full set of models compared in both data sets 1 and 2 are
listed below.

(i) Data set 1

Model 1: model-independent analysis with N, consecutive fre-
quency coefficients.

Model 2: model-independent analysis with optimally chosen fre-
quency coefficients.

Model 3: power-law analysis with N, consecutive coefficients.

(ii) Data set 2

Model 1: model-independent analysis with N, coefficients for
both red noise and DM variations.

Model 2: power-law analysis with N, coefficients for red noise,
model-independent analysis of DM variations.

Model 3: model-independent analysis with N, coefficients for
red noise, power-law analysis for DM variations.

Model 4: power-law analysis with N, coefficients for both red
noise and DM variations.

7.2.1 Dataset 1

Table 6 shows the evidence returned for the different stochastic
models applied to data set 1. Using the model-independent descrip-
tion of the red noise signal, we find that only six power spectrum
coefficients are supported by the data when including consecutive
frequencies. Whilst this may seem like a small number for an ap-
parently complex signal, in L13 it is shown that even in the high
signal-to-noise regime, over an order of magnitude fewer power
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Table 6. Evidence for different stochastic models for pulsar B1937+421 in
data set 1.

Model N. log evidence
Model-independent analysis 5 0
- 6 2.8
- 7 2.7
- 8 2.7
- 10 2.3
- 15 —2.1
- 20 —6.5
Model-independent analysis with optimal frequencies 7 5.9
Power law 6 52
- 10 6.5
- 20 72
- 50 7.4
- 100 7.5
Two-component power law 100 8.7
o
I ‘ } L ‘ i Ll s ‘ ‘ I
60 65 70 75 80 85 %

n

Figure 5. Subset of the posterior probability distribution for the frequency
of the floating power spectrum coefficient in terms of n such that the fre-
quency is given by v = n/T. Whilst several peaks are visible, only the
inclusion of the dominant peak at n = 77.2 results in an increase of the
evidence.

Logy[S(f) ()]

35 3 72‘.5 2
Log,g[Frequency (days'1)]

spectrum coefficients than time series data points are required to
describe the data when dealing with steep red power spectrum.

It is possible, however, that frequencies with n > 6 are sup-
ported by the data but that considering only a consecutive set biases
the model to include only low-frequency coefficients. To ascertain
whether this is the case, we perform the following test:

(1) include the lowest six power spectrum coefficients in the
model red noise model;

(2) in addition, include a coefficient with frequency a free pa-
rameter, allowed to vary continuously from v = 6/T to v = 100/T;

(3) include all frequencies at which there is a peak in the posterior
probability distribution for this floating coefficient into the model;

(4) eliminate coefficients until the optimal set is found, such that
the evidence is maximized.

A different approach to follow could be that of Feroz, Balan
& Hobson (2011). Here, the data would initially be analysed with
one power spectrum coefficient, with frequency allowed to vary. In
this stage, the evidence is not calculated, but the computationally
less expensive process of parameter estimation is performed. The
resulting best-fitting model is subtracted from the data and a set
of residuals formed. An evidence calculation is then performed for
two competing models on the residuals: (i) that the residuals con-
tain a signal described by one power spectrum coefficient, or (ii)
the data contain no signal. If the evidence supports the inclusion of
an additional power spectrum coefficient the parameter estimation
is repeated with two components and a new set of residuals formed.
This process is then repeated until the evidence from the resid-
ual analysis no longer supports any signal. This has the advantage
that the evidence calculation need only be performed for a single
frequency, eliminating much of the computational cost; however,
comparisons between this and other methods will be the subject of
future work.

Fig. 5 shows a section of the posterior probability distribution
for the frequency of the floating power spectrum coefficient. Whilst
there are multiple modes in the posterior, only the inclusion of the
dominant peak at a frequency of n = 77.2/T is supported by the
evidence. In total, the optimal set of frequencies was given by [1, 2,
3,4,6,17.2,77.2]. Using this optimal set increases the log evidence
by ~3 over the model with six consecutive frequencies. Fig. 6 (left)

3e-06

2e-06

1e-06

-1e-06

Residual (sec)

-2e-06

-3e-06

-4e-06 L L L L L
46000 46500 47000 47500 48000 48500 49000

MJD

Figure 6. Left: the mean values and associated one sigma error bars for the power at the seven optimal frequencies fitted to B1937+421 data set 1 using
the model-independent analysis. The blue dotted and green dashed lines indicate the mean two component power-law models fitted over the optimal set of
frequencies only and over the first 100 consecutive frequencies, respectively. Whilst the two-component model fitted to only the optimal set is consistent at all
frequencies, we include this only for completion as we do not consider it to be a physically motivated model. Right: timing residuals for B1937+21 data set 1
(red points) and the best-fitting signal realization for the red noise using the optimal model-independent analysis (blue dotted line).
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55 T T T T T

Spectral Index
&

IS
T
+
L

35 q

Figure 7. Mean spectral index and lo uncertainties for the power-law
model fitted to B19374-21 data set 1. Whilst the uncertainties are large, there
is a clear trend for the mean parameter estimate to move towards shallower
spectral indices as the number of coefficients over which the model fit
increases, and it intercepts the flat tail of the red spin noise spectrum.

1 T T T 4,_1 T T T

0.9 b
0.8 b
0.7 -

0.6

Probability

0.4

03 B

0.2 b

0.1 L L L 1 L L

3 4
Spectral Index

Figure 8. One-dimensional marginalized posterior for the spectral indices
of the two component power-law model. Two peaks are clearly visible in
the posterior, corresponding to a steep red noise process at low frequencies,
and a shallower one at higher frequencies.

shows the power spectrum for the red spin noise evaluated at the
optimal set of frequencies, whilst the right-hand panel shows the
maximum likelihood signal realization given the mean parameter
estimates for this optimal set. The power spectrum shows the clear
signature of a steep red noise process at low frequencies, with a
substantial, flatter, high-frequency tail.

When fitting a power-law model to the data, we find that the
evidence stabilizes after N, ~ 20. Despite the flat tail to the power

spectrum visible with the model-independent analysis, we observe
an increase in the evidence of ~1 compared to the optimal frequency
model. Fig. 7 shows the mean posterior value and 1o uncertainties
for the spectral indices of the power-law model fitted as we increase
the number of coefficients included in the model. Whilst the uncer-
tainties are large, the mean value shows a clear trend towards flatter
values decreasing from 4.5 to 3.7 as the number of coefficients in-
cluded increases from 6 to 100 and more of the flat spectrum tail is
included in the model.

Given these results, we therefore also model the red noise as
a two component power law. Fig. 8 shows the one-dimensional
marginalized posterior for one of the spectral indices included in
this model, displaying two clear peaks: one associated with the steep
low-frequency part of the spectrum with an index of ~4, and one
with the flat spectrum tail with an index of ~1.5. The evidence for
the two-component fit results in a final increase of ~1 relative to the
one-component model; however, we must subtract log 2 from this
value in order to account for ‘counting degeneracy’, the fact that
we have two combinations of spectral indices (i.e. the parameters
for the first and second power law can switch without affecting
the result). Therefore, whilst there are tentative signs of this dual
spectrum signal in the data, it is not sufficient to justify the additional
parameters in our description of the stochastic signal; we therefore
consider the one-component power law to be the optimal choice for
this data set.

7.2.2 Data set 2

Table 7 lists the evidence for the different models applied to data
set 2, where we give the value only for the optimal N, in each case.
In all cases, the number of coefficients required by the DM variations
was greater than for the red noise. For data set 2, the optimal set
of frequencies is given by [1, 2, 5, 6] for the red spin noise and
[1,2,3,4,6,8, 10, 11, 12, 13, 24.6, 81.5] for the DM variations.
We find that once again finding the optimal set of frequencies to
include results in a significant increase in the log evidence of ~4.5
when compared to the consecutive set. As with data set 1, we show
in Fig. 9 the residuals and maximum likelihood signal realization
given the mean posterior values for the power spectrum coefficients
obtained by the optimal model-independent analysis. Fitting for a
power-law model in both cases results in spectral indices of —5 £
1 and —2.6 =+ 0.4 for the red noise and DM variations, respectively,
consistent with the model-independent analysis. As with data set
1, this consistency is supported by the log evidence, which has
a maximum when constraining the power spectrum to follow a
power law.

Compared to data set 1, we find that neither the red noise nor
the DM variation power spectrum in data set 2 show any sign of a
shallow tail. This suggests that the DM model applied in K94 did
not account fully for the higher frequency DM variation, flattening
the red noise spectrum of the resultant residuals.

Table 7. Evidence for different stochastic models for pulsar B1937+21 in data set 2.

Model N. (Red, DM) log evidence
Model-independent red noise and DM with consecutive frequencies 2,13 0
Model-independent red noise and DM with optimal frequencies 5,12 4.3
Power-law red noise, model-independent DM with consecutive frequencies 10, 13 0.7
Model-independent red noise with consecutive frequencies, power-law DM 2,15 11.5
Power-law red noise and DM 10, 15 11.9
Power-law red noise and two-component power-law DM 10, 100 11.5
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Figure 9. Top: mean values and 1o uncertainties for the optimal set of power spectrum coefficients required to describe the red noise (left) and DM variations
(right). The mean power-law estimate is over plotted in both cases, for which we find spectral indices of —5 £ 1 and —2.6 % 0.4 calculated including the first
10 and 15 consecutive coefficients for each, respectively. Bottom: timing residuals for B19374-21 data set 2 (red points) and the best-fitting combined signal
realization for the red noise and DM variations using the optimal model-independent analysis (blue dotted line) shown for the 2.4 GHz (left) and 1.4 GHz

(right) data separately for clarity.

We now perform the analysis of the non-linear timing model
simultaneously with the red noise and DM variations, where we
model the latter two elements using a power-law model as has been
supported by the evidence in the preceding stochastic analysis.

7.2.3 Timing model analysis

Table 8 lists the mean posterior values and associated 1o uncertain-
ties for our final timing model and stochastic solutions to both data
sets 1 and 2 where, following the results in Sections 7.2.1 and 7.2.2,
the stochastic signals have been modelled as power-law processes
for both the red noise and DM variations. Fig. 10 then shows the
one- and two-dimensional marginalized posteriors for a selection of
the modelled parameters; RA, DEC, PMRA, PMDEC, PX and the
red noise, and DM spectral indices and amplitudes. As expected,
the timing model parameters show no evidence for non-linear be-
haviour in either case despite the high levels of red noise in the data
set. As such, we would expect that our estimates for the stochastic
parameters when analytically marginalizing over the timing model
will be completely consistent with those in the full analysis, and
indeed, this is the case in both data sets.

Table 8 also lists the timing model solutions returned by applying
both the standard TeEmPO2 fit and using the SpectralModel plug-in

which utilizes the Cholesky method described in C11. In order to
use the SpectralModel plug-in in the case of data set 2, we therefore
applied the method of Keith et al. (2013) to model the DM variations
as a linearly interpolated time series, sampled every 100 d in the
observation. Unlike the approach in K94, this therefore allows us to
include the uncertainties in the DM model in the final timing model
solutions whilst still using the Cholesky method.

Fig. 11 shows a graphical representation of the differences be-
tween the TEMPONEST, SpectralModel and TEmpo2 results for the
timing model parameters given in Table 8 for data sets 1 (left)
and 2 (right). Here, the value on the y-axis is given by the differ-
ence between the TEMPONEST (or SpectralModel) estimate and the
TEMPO2 estimated parameter values, divided by the TEMPO2 error,
which as before we will denote o~. The errors are then the lo
errors estimated by TEMPONEST (SpectralModel) which we will de-
note ory (osy). Therefore, a fit that is consistent both with the
value and error returned by TEmMpo2 would have a value of 0 £ 1
in Fig. 11.

There are several things that are immediately apparent in Fig. 11.
The first is the level of disparity between the parameter estimates
returned by TEMPO2, and those returned by both TEMPONEST and the
SpectralModel analysis. With the exception of only DM in data
set 1, and PX in data set 2, the parameter estimates returned by
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Table 8. Timing model and stochastic parameter estimates for PSR B1937+21.

Fit and data set

Pulsar name B1937+21
MIJD range

Number of TOAs 420

460 24.8—489 73.8

Measured quantities — including K94 DM corrections

TEMPONEST

Right ascension, «

Declination, &

Pulse frequency, v (s™1)

First derivative of pulse frequency, v (s~2)
Dispersion measure, DM (cm™> pc)

—4.331 69(3)) x

19:39:38.561 314(10)
+21:34:59.1295(2)
641.928 233 558 03(16)

71.040 03(2)

TEMPO2

19:39:38.561 288(3)
+21:34:59.130 68(5)
641.928 233 557 9857(7)
—4.3316913(15)x 1014
71.039 981(15)

SpectralModel

19:39:38.561 30(5)
+21:34:59.1291(9)
641.928 233 5581(14)
—4.33169(5)x 10~14
71.040 024(15)

10714

Proper motion in right ascension, p, (mas yr’l) 0.084(11) 0.054(4) 0.08 (7)
Proper motion in declination, jts (mas yr‘l) —0.421(15) —0.319(4) —0.43(2)
Parallax, 7t (mas) 0.24(9) 0.01(4) 0.20(15)
EFAC 0.88(14) - -
log10[EQUAD (s)] —6.59(4) - -

logo Ared —3.30(16) - -

Vred 3-9(6) - -

Measured quantities — excluding K94 DM corrections
TEMPONEST TEMPO2 SpectralModel

Right ascension, «

Declination, &

Pulse frequency, v (s~ 1)

First derivative of pulse frequency, v (s%)

19:39:38.561 307(10)
+21:34:59.1296(2)
641.928 233 5581(3)

—4.331 69(6) x 1014

19:39:38.561 219(3)
+21:34:59.131 36(5)
641.928 233 558 0713(13)
—4.331 679(3)x 10~14
71.040 715(15)

19:39:38.561 301(19)
+21:34:59.1292(4)
641.928 233 5581(9)
—4.3317(2)x 10714
71.040 60(12)

—0.005(3) 0.08(2)
—0.279(4) —0.44(5)
0.19(13)

0.41(4)

Dispersion measure, DM (cm™3 pe) 71.041(13)
Proper motion in right ascension, (, (mas yr‘l) 0.069(10)
Proper motion in declination, j5 (mas yr’l) —0.411(15)
Parallax, 7t (mas) 0.25(10)
EFAC 1.29(19)
log1o[EQUAD (s)] —7.3(9)
logo Ared —3.7(3)
Vred 5.309)
log;o Apm —0.15(7)
YDM 2.7(3)
Set quantities
Epoch of frequency determination (MJD) 526 01
Epoch of position determination (MJD) 52601
Epoch of DM determination (MJD) 526 01

Assumptions

Clock correction procedure TT(TAI)
Solar system ephemeris model DEA405
Binary model NONE
Model version number 5.00

TEMPONEST during the joint analysis are at least 40, away from
the TEMPO2 values, with an average deviation of ~300 7.

Whilst the parameter estimates returned by the TEMPONEST and
SpectralModel analysis are in both cases consistent with one an-
other, the estimates of the uncertainties are several times larger than
those returned by TEMPONEST by a factor of ~2—3.

In order to investigate the difference in the uncertainties returned
by TEMPONEST and the SpectralModel plug-in, we first consider the
major differences between the different types of analysis.

(i) TEmPoONEST uses the full non-linear model compared to the
linear approximation in SpectralModel;

(i1) TEMPONEST uses physical priors on parameters such as paral-
lax, such that they must take values greater than zero, SpectralModel
does not;

(ii1) TEMPONEST includes both red and white noise estimation in the
fit with the timing model, SpectralModel does not include additional

white noise terms, and fixes the red noise when calculating the
uncertainties for the timing model;

(iv) TEMPONEST uses a cut-off power-law model for the red noise,
whereas SpectralModel uses a red noise model with a corner fre-
quency at which it turns over.

In order to ascertain how large an effect these differences make,
we therefore rerun the analysis on data set 1, so that we have
the same DM model in both cases, whilst making the following
changes:

(1) use the linear timing model, linearized at the timing model
parameters estimated by the SpectralModel plug-in without the con-
dition that parameters must take physical values;

(2) as in (1), but fixing EFAC = 1 and EQUAD = 0, and fixing
the spectral index of the red noise power law to be the same value
used in the SpectralModel plug-in (—4.0).
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Figure 10. Top: the one- and two-dimensional marginalized posterior distributions for the eight timing model parameters: RA, DEC, FO, F1, DM, PMRA,
PMDEC and PX, and the four stochastic parameters: EFAC, EQUAD, and amplitude and spectral index of the power-law model for the red noise for data set
1. Bottom: as in the top plot, but for data set 2, and with EFAC and EQUAD replaced with the amplitude and spectral index of the power-law model for DM
variations.
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Figure 11. Left: difference between the parameter estimates and uncertainties returned by TEMPONEST (red solid points) and the SpectralModel plug-in (green
points) and TEMPO2 for PSR B19374-21 for data set 1. Right: as with the left-hand plot, but for data set 2, where we have used DM model to characterize the
DM variations for the SpectralModel fit, and a power-law DM model for the TEMPONEST fit. In both plots, the zero on the y-axis represents the value returned by
TEMPO2, with the y-axis being in units of the 1o TEMPO2 error. Therefore, a fit consistent with that returned by TEMPo2 will have a value of O £ 1 in these plots.
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Figure 12. Difference between the timing model parameter estimates re-
turned by TEMPONEST under a series of different approximations and the
TEMPO2 parameter estimates in the same format as Fig. 11, as well as the
timing model estimates returned by the SpectralModel plug-in for data set 1.
For each timing model parameter from left to right the data points represent
the following: (i) full analysis using TEMPONEST, (ii) using the linear timing
model, linearized at the timing model parameters estimated by the Spec-
tralModel plug-in, (iii) as (ii) but with the EFAC = 1, EQUAD = 0, yreq =
—4.0 and (iv) the SpectralModel fit.

Fig. 12 shows the timing model parameters estimated from these
different approximations in the same format as in Fig. 11. The
red and green points represent the parameter estimates from the full
non-linear timing analysis, and the linearized analysis, respectively;
however, there is no discernible difference in either the estimated
parameter values, or the uncertainties between these two models, as
expected given the set of parameters included in the timing model.
The blue points represent the case where we have not included white
noise in the model, and have fixed the spectral index of the red noise
to be that used in the SpectralModel analysis (—4.0). Here, there
is a clear increase in the level of uncertainty of the timing model
parameters relative to the full analysis by a factor of ~2—3 except
for DM which sees the uncertainties decrease by ~60 per cent. In
both cases however, this brings the estimated uncertainties in line
with those derived from the SpectralModel analysis, with remaining

differences being of the order 10 per cent, with the exception of the
quadratic spin-down parameters, from which we would expect the
greatest difference given the use of different red noise models.

This clearly emphasizes the importance of including as much as
is required to fully describe the data simultaneously in the fit along
with the timing model parameters. We should make clear that the
magnitude of the differences observed in PSR B1937+21 will not
be typical for most MSPs; however, the precise level of difference
to expect is difficult to quantify a priori, being a function of signal
to noise, the cadence of the observations and the complexity of the
timing model used to describe the pulsar. We therefore still suggest
that unless a full simultaneous analysis such as that described here
is performed in every case, the unpredictable variation in the un-
certainties returned from the analysis must impact the robustness of
the science extracted from that analysis.

8 CONCLUSION

We have introduced TEMPONEST, a software package that provides a
means of performing a robust Bayesian analysis of pulsar timing
data. TEMPONEST allows for the joint analysis of the timing model
along with a range of additional stochastic parameters including
EFAC and EQUAD parameters, and descriptions of both red spin
noise and DM variations using either a power-law description of
the noise, or in a model-independent way, parametrizing the power
at individual frequencies in the data.

We have applied TEMPONEST to both simulated and real data sets
in order to demonstrate several key aspects of functionality. First,
we used simulated data for the pulsar PSR J1713+0747 in order to
compare the linear and non-linear timing models, where the level
of noise varied between simulations, from that expected from the
square kilometre array (~100 ns white timing noise), to a level more
representative of current observations, including red spin noise. We
showed that in the high signal-to-noise example the differences be-
tween the timing solutions for the linear and non-linear timing model
parameters were negligible. In the lower signal-to-noise examples,
however, the linear timing model failed to capture all the infor-
mation present in the data, with large curving degeneracies in the
non-linear parameter space leading to uncertainties that exceeded
those in the linear approximation by up to an order of magnitude.
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We then applied TEMPONEST to two publicly available data sets,
the binary pulsar B18554-09 and the isolated pulsar B19374-21. For
the former, we used a model-independent method of parametrizing
the red spin noise in the data and found marginal support for a
single low-frequency component in addition to the timing model
parameters fitted, but found that it did not affect the timing model
solutions in any observable way, with parameter estimates that were
completely consistent with those of TEMPO2 in all respects. We then
demonstrated the ability for TEMPONEST to perform model selection
using the evidence by including a series of additional timing model
parameters and repeating the analysis in order to find the optimal
set that described the data. This included adding jumps between
instrument back ends, and additional physical parameters such as
derivatives of the binary period or eccentricity.

In the case of B1937421, we used both a power-law, and a
model-independent method of parametrizing both the DM and red
noise signals in the data, and found whilst they gave consistent re-
sults, the evidence heavily favoured the use of the simpler model,
with both components being well described by a power-law power
spectrum with spectral indices of —2.7 + 0.3 and —5.3 £ 0.9, re-
spectively. When comparing the timing model solutions returned
by TEMPONEST from this joint analysis with those of TEmMPO2, we
found large discrepancies, both in terms of the parameter estimates
themselves and their uncertainties. In the most extreme cases, the
TEMPONEST parameter estimates were up to ~38c 1, away from the
TEMPO2 values, with o 1> the returned TEMPO2 uncertainty, whilst the
uncertainties themselves were over two orders of magnitude greater
in the case of the pulsar’s spin-down parameters. When compared
to the Cholesky method found in the TEMPO2 SpectralModel plug-in,
we found that by not including all the stochastic processes in the
analysis simultaneously with the timing model, the timing model
parameter uncertainties are overestimated by a factor ~2—3 in al-
most all cases, showing unambiguously the importance of including
as much as is required to fully describe the data simultaneously in
the analysis. This is all the more critical given the precise level of
difference to expect for any pulsar is difficult to quantify a priori,
being a function of signal to noise, the cadence of the observations,
and the complexity of the timing model used to describe the pulsar.
We therefore suggest that unless a full simultaneous analysis such
as that described here is performed in every case, the unpredictable
variation in the uncertainties returned from the analysis must impact
the robustness of the science extracted from that analysis.

TEMPONEST is freely available as a development build,* with a full
public release planned in the near future.
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