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1 Introduction

Higher Spin gauge theories have different structure in different space-time dimensions.

The first example of a consistent fully nonlinear HS theory in four dimensions was given

in [1]. Less is known for higher dimensions. In dimensions higher than four Higher Spin

theories are getting more complicated in general, allowing fields of mixed symmetry type.

At the same time, for the restricted spectra of only symmetric fields, Vasiliev equations are

available for any space-time dimension [2]. They are defined unambiguously and describe

totally symmetric bosonic fields of all spins.

Recent progress in three dimensional AdS higher spin gravity resulted in new relations

between topological Chern-Simons theory, two-dimensional conformal field theories with

higher spin symmetry, and new three-dimensional black hole solutions with higher spin

charges ([3]–[8] and references therein). It also points out again the importance of an

AdS background for the construction of consistent nonlinear higher spin interactions with

a finite number of interacting higher spin gauge fields. These recent results are based

on the embedding of the gravitational gauge group into a larger group, unifying higher

spin gauge symmetry with the AdS group. In the three dimensional case it amounts to

embedding SL(2) into SL(3)(SL(n)) in the case of spin three (up to spin n) gravity, and

the corresponding field theory is described by a three-dimensional Chern-Simons action

with SL(3)× SL(3) (SL(n)× SL(n)) gauge group. The case of three dimensions is singled

out by the existence of a one-parameter family of Higher Spin algebras that underlie the

construction of Chern-Simons actions for the gauge fields [9–12] and Vasiliev equations,

describing the interaction of Higher Spin gauge fields with scalar matter [13].

The main goal of this paper is to generalize this approach to five dimensions, and to

construct possible interacting theories (actually with cubic interaction) with finite number
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of higher spin fields in an AdS5 background. Moreover we show the existence of a sequence

of Lie algebras, the generators of which can be identified with the generators of Higher Spin

gauge symmetries for a finite number of symmetric fields in (A)dS5, in analogy to the three

dimensional case.1

As a realization of this idea we construct in the next section a special embedding of the

spin two and spin three symmetry generators in frame formalism into a unifying SU(10)

Lie algebra, where the spin two generators correspond to the SU(4) subalgebra and the

spin three generators to the remaining part of SU(10). In section 3 we construct gauge

fields and curvatures. The latter include interactions and self-interactions of the spin-2 and

spin-3 fields through the structure constant of SU(10) algebra. In the fourth section we

construct an action with cubic interaction following the prescription of [16] and [17] and

using our SU(10) gauge transformation and curvatures as a realization of the unified spin 2

and 3 gauge field theory. Generalization to any spin is discussed in section 5.

It would of course be interesting to construct a fully nonlinear interacting SU(10) in-

variant action. The first idea which comes to mind is a five-dimensional Chern-Simons

action for the SU(10) gauge field. This idea is also based on the fact that unitary groups

have an invariant third rank symmetric tensor which provides an invariant trace for the con-

struction of the Chern-Simons action in five dimensions. But it is well known [18, 19] that

this action, even in the pure gravity case (SO(6) gauge group) leads to Gauss-Bonnet (Love-

lock) gravity with a special combination of terms quadratic and linear in curvatures and

without a propagator for spin two fluctuations in an AdS5 background. Higher Spin Chern-

Simons gravity in 5d was discussed in [20], where the authors considered also the dynamics

of linearized spin 3 gauge fields. A different Lagrangian formulation for theories of spin

2 and higher in an AdS background in the frame formulation is the so-called MacDowell-

Mansouri-Stelle-West formulation [21, 22] used by Vasiliev for a perturbative analysis of

interactions [16, 17, 26]. In appendix B we discuss a generalization of the coset construction

of [21, 22] and introduce a compensator field living on the coset SU(10)/SO(10). Unfortu-

nately our result is negative: this theory does not have a correct free field limit.

2 Unification of spin 2 and 3 symmetries on AdS5

Gravitational theories in frame formalism can be formulated as gauge theories. Since our

construction draws some of its motivation from the three dimensional case, we will briefly

recall it. There pure gravity with a negative cosmological constant can be written as a

SO(2, 2) ≃ SL(2,R)× SL(2,R) Chern-Simons theory. The generalization to higher spin is

to replace SL(2) by a bigger group G with a special embedding SL(2,R) →֒ G, the simplest

case being G = SL(3,R) with the principal embedding, leading to a unified description of

a spin-three field coupled to gravity.

Five dimensional gravity in AdS5 space is a gauge theory of SO(2, 4) (pure AdS) or

SO(1, 5) (Euclidian AdS). The corresponding fünfbein and spin connection can be ex-

1These algebras should correspond to the representations of su(2, 2) (the latter can serve as defining

representations for these algebras) found in [14] and should be discrete cases of the one-parameter family

of algebras of [15].
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tracted from the gauge field, which is an algebra-valued one-form, by decomposition of the

adjoint representation of SO(2, 4) or SO(1, 5) into the adjoint and vector representations of

SO(1, 4). For simplicity and without loss of generality we can replace these non-compact

groups by their compact versions. Namely we consider instead of the AdS5 group the six di-

mensional rotation group SO(6) and expand the gauge field with respect to the “space-time

rotation” group SO(5), just separating the sixth component as the vector representation

and obtaining correspondingly a fünfbein and a spin-connection:

AAB
µ dxµ = AAB = −ABA, A,B, . . . = 1, . . . , 6,

AAB = {Aa6, Aab} = {ea, ωab}, a, b = 1, . . . , 5. (2.1)

We can then impose constraints of vanishing torsion and express the spin connection in

terms of fünfbein and inverse fünfbein fields.

Then we propose the following extension to include spin 3 fields (and higher). The

SO(6) representation of the gravitational fields (2.1) is via the antisymmetric two cell Young

tableau

AAB ⇒ Y
SO(6)

AAB = , dim(Y
SO(6)

AAB ) = 15 . (2.2)

In terms of Young tableaux, the expansion (2.1) is

SO(6)

=
(

+
)

SO(5)
, (2.3)

or in terms of dimensions:

15SO(6) = (5+ 10)SO(5) . (2.4)

From this point of view the spin 3 field corresponds to the SO(6) window diagram [16]

AAB,CD ⇒ Y
SO(6)

AAB,CD = , dim
(

Y
SO(6)

AAB,CD

)

= 84 . (2.5)

The conventions are such that A is symmetric in each pair of indices. The corresponding

SO(5) expansion to a spin 3 tetrad and connections looks like

AAB,CD eab ωab,c ωab,cd

SO(6)

=
(

+ +
)

SO(5)
, (2.6)

84SO(6) =
(

14 + 35 + 35
)

SO(5)
.

The ωab,cd are so-called extra fields (which are absent in d = 3).

For the unification of the spin 2 and spin 3 degrees of freedom into one field, we should

first of all find a Lie group G with dimension

15SO(6) + 84SO(6) = 99G . (2.7)

Taking into account that SO(6) is equivalent2 to SU(4) we see that the natural choice for

G is SU(10).3 The 15 generators of spin 2 gauge symmetry and 84 generators of spin 3

gauge symmetry can be combined into the 99 generators of SU(10).

2See the appendix for details on the isomorphism so(6) ≃ su(4) and other relevant formulae.
3For other signatures of the initial space-time isometry algebra, we have, of course, different real forms

of SL(10,C).
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To proceed, we have to find an embedding of SU(4) into SU(10) such that the adjoint of

the latter decomposes w.r.t. the former as in (2.7). That amounts to finding a representation

of SU(4) of dimension 10. Such representation of SU(4) exists in the space of symmetric

second-rank tensors. We arrive at the following embedding procedure:4

• Denote the 99 generators of the SU(10) algebra by

U I
J , U I

I = 0, I, J, · · · ∈ {1, 2, . . . , 10}. (2.8)

• We can present the SU(10) vector indices I, J, . . . as symmetric pairs of vector indices

of SU(4)

I, J, . . . → (αβ), (γδ), . . . , α, β, · · · ∈ {1, 2, 3, 4},

U I
J → Uαβ

γδ = Uβα
γδ = Uαβ

γδ , Uαβ
αβ = 0. (2.9)

• The SU(4) →֒ SU(10) embedding can then be realized as the decomposition into

single and double traceless parts of Uαβ
γδ

Uαβ
γδ = Wαβ

γδ +
1

6
δ
(α
(γL

β)
δ) , (2.10)

Lβ
δ = Uαβ

αδ ,

Wαβ
αδ = Lβ

β = 0,

where Lβ
δ are the 15 generators of SU(4).

This shows that (2.10) is a realization of the embedding:

99SU(10) = (15+ 84)SO(6) . (2.11)

Using the explicit form of the SU(10) generators, it is straightforward to work out the

commutation relations of L and W . The result is given in the appendix.

To summarize, we constructed a Lie algebra of spin 3 and spin 2 transformations in

AdS5 using a special embedding SO(6) ≃ SU(4) →֒ SU(10). From (A.6) one sees that

the difference between SU(10) and SU(4) is precisely the tensor representation of SU(4)

corresponding to the window tableau of SO(6).

In the subsequent sections we attempt to construct gauge field theory with cubic

interaction corresponding to the above unified algebra starting from Vasiliev’s free higher

spin action in AdS background [16].

3 Gauge fields and curvatures

In this section we apply the SU(4) →֒ SU(10) embedding to gauge fields and curvatures.

First of all we can equip a general one-form gauge field and zero-form gauge parameter

4We do not distinguish between the components of a tensor in the adjoint representation and the gene-

rators of SU(10).
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with SU(10) indices expressed as symmetric pairs of SU(4) indices

A = Aαβ
γδ Uγδ

αβ , ǫ = ǫαβγδ Uγδ
αβ , (3.1)

δA = Dǫ ⇒ δAαβ
γδ = dǫαβγδ +Aαβ

λρ ǫ
λρ
γδ −Aλρ

γδǫ
αβ
λρ .

From now on we use for algebra valued objects a component formalism, i.e. stripping off

the generators. In this notation the SU(10) Yang-Mills field strength is

Fαβ
γδ = dAαβ

γδ +Aαβ
λρ ∧Aλρ

γδ , Fαβ
αβ = 0. (3.2)

Using the embedding (2.10) we can extract from the SU(10) gauge field and field strength

the spin 2 and spin 3 gauge fields and curvatures:

Aαβ
γδ = Wαβ

γδ +
1

6
δ
(α
(γω

β)
δ) , Wαβ

αδ = ωβ
β = 0, (3.3)

Fαβ
γδ = Rαβ

γδ +
1

6
δ
(α
(γ r

β)
δ) , Rαβ

αδ = rββ = 0.

where

Rαβ
γδ = DωW

αβ
γδ +Wαβ

λρ ∧W λρ
γδ −

1

6
δ
(α
(γW

β)σ
|λρ| ∧W λρ

δ)σ,

DωW
αβ
γδ = dWαβ

γδ +
1

3
ω
(α
λ ∧W

β)λ
γδ −

1

3
ωλ
(γ ∧Wαβ

δ)λ, (3.4)

rαβ = dωα
β +

1

3
ωα
λ ∧ ωλ

β +Wασ
λρ ∧W λρ

βσ .

Structure and couplings of fields in the curvatures reflect the structure of the commuta-

tors (A.6).5 Defining the AdS5 background in standard SU(4) covariant way as

ωα
µ = ωα

0µ, (3.5)

r0 = Dω0ω0 = 0, (3.6)

where Dω0 = d + ω0 is the AdS5 covariant exterior derivative,6 we can expand the gauge

field in this background and extract from the SU(10) field strength the spin 2 and spin 3

curvatures in both linear and quadratic order in field fluctuations:

Aαβ
γδ = Wαβ

γδ +
1

6
δ
(α
(γ (ω0 + ω)

β)
δ) , (3.7)

Fαβ
γδ = Rαβ

1γδ +Rαβ
2γδ +

1

6
δ
(α
(γ (r1 + r2)

β)
δ) ,

5After rescaling the spin two field ω → 3ω the curvature takes the usual Riemann form.
6

Dω0
W

αβ
γδ = dW

αβ
γδ +

1

3
ω

(α
0λ ∧W

β)λ
γδ −

1

3
ω

λ
0(γ ∧W

αβ

δ)λ,

Dω0
ω

α
β = dω

αβ
γδ +

1

3
ω

α
0λ ∧ ω

λ
β −

1

3
ω

λ
0β ∧ ω

α
λ .
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where

Rαβ
1γδ = Dω0W

αβ
γδ ,

Rαβ
2γδ =

1

3
ω
(α
λ ∧W

β)λ
γδ −

1

3
ωλ
(γ ∧Wαβ

δ)λ +Wαβ
λρ ∧W λρ

γδ −
1

6
δ
(α
(γW

β)σ
|λρ| ∧W λρ

δ)σ,

rα1β = Dω0ω
α
β ,

rα2β =
1

3
ωα
λ ∧ ωλ

β +Wασ
λρ ∧W λρ

βσ . (3.8)

In the next section we construct a cubic interaction using these expansions.

4 Spin 3 and 2 cubic interaction

To formulate correctly the free action, we begin with a brief review of the Macdowell-

Mansouri-Stelle-West action principle for the case of ordinary spin two gravity in five

dimensions. The task can be formulated in the following way: we have to write a topological

action for a five dimensional gauge theory with SO(6) gauge group. This means that

we should construct a five-form enabling us to integrate over a general five dimensional

manifold M5 in a metric independent way. Introduce a field strength

FAB = dAAB +AA
C ∧ACB, A,B, · · · = 1, 2 . . . 6 . (4.1)

The natural choice for the action is

SSO(6) ∼

∫

M5

ǫABCDEF BAB ∧ FCD ∧ FEF , (4.2)

where BAB = −BBA is an SO(6) algebra valued gauge covariant one-form constructed

from some compensator field. The compensator field should be introduced in a way that

does not lead to equations of motion purely quadratic in the field strength

ǫABCDEFF
CD ∧ FEF = 0, (4.3)

as happens in the Chern-Simons case and which leads to a vanishing propagator in an

AdS background FAB = FAB
AdS = 0. A possible solution is to take the compensator as an

element of the coset G/H where G in this case is SO(6) and the stabilizer H should be

taken in a way to keep “Lorentz” covariance as the remaining symmetry after gauge fixing.

The natural choice in this case is H = SO(5). This construction leads to a consistent

gravity action, which is equivalent to the Einstein-Hilbert action in the linearized limit. In

summary, we define the compensator field as an element of a five dimensional sphere

S5 = SO(6)/SO(5) . (4.4)

The sphere can be realized, in a manifestly SO(6) invariant way, as a unit vector in R
6:

V A, V AVA = 1. (4.5)
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The SO(6) covariant one-form and the corresponding action can then be constructed

from (4.5) uniquely:

BAB = V [ADV B], DV B = dV B +AB
CV

C , (4.6)

SSO(6) ∼

∫

M5

ǫABCDMN V ADV B ∧ FCD ∧ FMN . (4.7)

A detailed analysis of the equations of motions and symmetries of this action can be found

in [16]–[25]. Here we only note that using local SO(6) invariance of the theory, we can bring

the vector field V A(x) to the constant unit vector in the sixth direction, and the remaining

SO(5) invariance will still be sufficient for covariance in the language of fünfbein and spin

connection (2.1). Another important aspect of this construction is that the remaining

SO(5) invariance, combined with diffeomorphism invariance will still be sufficient for full

AdS invariance of the theory [16].

The most important point of this short review for us is that one can rewrite this

action equivalently in SU(4) form. This can be done by direct transformation to chiral

spinor indices α, β, · · · ∈ {1, 2, 3, 4} using standard identities for chiral Dirac matrices in

six dimensions7

V αβ = i(ΣA)αβVA ←→ V A =
i

4
ΣA
αβV

αβ , V αβ = −V βα,

F β
α = (ΣAB)

β
αF

AB ←→ FAB = −
1

2
(ΣAB)αβF

β
α , Fα

α = 0. (4.8)

The constraint on V αβ which follows from (4.5) is

V αγVβγ = δαβ , Vαβ =
1

2
ǫαβγδV

γδ. (4.9)

With the help of the identity (A.11) one obtains from (4.7)

SSU(4) ∼ i

∫

M5

V αλDVβλ ∧ F β
ρ ∧ F ρ

α . (4.10)

So we recognize the SU(4) covariant algebra-valued one-form8

Bα
β = iV αλ(DV )βλ, Bα

α = 0, (4.11)

(DV )βλ = dVβλ +Aρ

[βVλ]ρ.

Linearization of this construction around an AdS5 background gives the free spin 2 action9

Ss=2
SU(4) = i

∫

M5

V αλDω0Vβλ ∧ rβ1ρ ∧ rρ1α, (4.12)

7Further details are given in appendix A.
8Another way of transformating to the SU(4) invariant action leading to the same result is considered

in appendix B.
9Here and below, the overall normalization is fixed for convenience.
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which is the starting point for considering free actions for higher spin fields in AdS5

space [16]–[25]. We now present the correct free action for spin three, which consist of

two parts [16]

Ss=3
SO(6) ∼

∫

M5

ǫABCDMN V ADω0V
B∧

(

RCC1,DD1
1 ∧RM

1 C1
,N

D1

+ 4R1
CC1,DD1 ∧RM

1 C1
,ND2VD1VD2

)

, (4.13)

where the relative coefficient between the two terms is fixed such that the equation of

motion for the unwanted “extra” fields corresponding to the SO(5) window like Young

tableau in (2.6) trivializes. Using results from appendix A we can transform this action to

SU(4) invariant form:

Ss=3
SU(4) = i

∫

M5

V αλDω0Vµλ ∧
(

2Rµσ
1δ1δ2

∧R δ1δ2
1ασ +Rµρ1

1σδ1
∧R σρ2

1αδ2
Vρ1ρ2V

δ1δ2
)

. (4.14)

For the construction of the cubic interaction lagrangian using our unifying spin 2 and 3

symmetry group SU(10) we start from the free spin 3 and spin 2 actions in AdS5 background

written in the SU(4) form with an as yet undetermined relative coefficient a:

Sfree = aSs=2
SU(4) + Ss=3

SU(4). (4.15)

We then construct the cubic interaction following Noether’s procedure and using the SU(10)

transformations for curvatures (3.8). If we split the gauge parameter ǫαβµν into its spin tree

and two parts,

ǫαβµν = ηαβµν +
1

6
δ
(α
(µε

β)
ν) , (4.16)

ηαβαν = εαα = 0,

we derive the gauge transformation for the spin 3 and spin 2 curvatures:10

δRαβ
µν = [R, η]αβµν −

1

6
δ
(α
(µ [R, η]

β)σ
ν)σ +

1

3
[R, ε]αβµν +

1

3
[r, η]αβµν ,

δrαµ =
1

3
[r, ε]αµ + [R, η]ασµσ , (4.19)

where

[R, η]αβµν = Rαβ
λρ η

λρ
µν − ηαβλρR

λρ
µν ,

[R, ε]αβµν = Rαβ

ρ(µε
ρ

ν) − ε(αρ Rβ)ρ
µν , (4.20)

[r, η]αβµν = r(αρ ηβ)ρµν − ηαβ
ρ(µr

ρ

ν),

10The corresponding transformation for the gauge fields is:

δW
αβ
µν = Dω0

η
αβ
µν + [W, η]αβ

µν −
1

6
δ
(α

(µ [W,η]
β)σ

ν)σ +
1

3
[W, ε]αβ

µν +
1

3
[ω, η]αβ

µν , (4.17)

δω
α
µ = Dω0

ε
α
µ +

1

3
[ω, ε]αµ + [W, η]ασ

µσ . (4.18)
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with

[R, ε]αβµβ = [r, η]αβµβ = 0. (4.21)

To perform Noether’s procedure we split the gauge transformations into zeroth and first

order in gauge fields and, as typical for Yang-Mills type of gauge fields, expand the trans-

formations in first and second order in gauge fields

δ0R
αβ
1µν = δ0r

α
1µ = 0,

δ1R
αβ
1µν + δ0R

αβ
2µν = ∆(R)

αβ
µν

(R1, r1, η, ε),

δ1r
α
1µ + δ0r

α
2µ = ∆(r)

α
µ
(R1, r1, η, ε), (4.22)

∆(R)
αβ
µν

= [R1, η]
αβ
µν −

1

6
δ
(α
(µ [R1, η]

β)σ
ν)σ +

1

3
[R1, ε]

αβ
µν +

1

3
[r1, η]

αβ
µν ,

∆(r)
α
µ
=

1

3
[r1, ε]

α
µ + [R1, η]

ασ
µσ .

We now use the prescription suggested in [16, 17] (see also [15] for further details and gen-

eralizations) and replace in the free action the linearized curvatures by the full curvatures

and extract a candidate cubic action of the form:

Scubic = ai

∫

M5

V αλhµλ ∧
[

rµ2δ ∧ rδ1α + rµ1δ ∧ rδ2α

]

+ i

∫

M5

2V αλhµλ ∧
[

Rµσ
2δ1δ2

∧Rδ1δ2
1ασ +Rµσ

1δ1δ2
∧Rδ1δ2

2ασ

]

(4.23)

+ i

∫

M5

V αλhµλ ∧
[

Rµρ1
2σδ1
∧Rσρ2

1αδ2
+Rµρ1

1σδ1
∧Rσρ2

2αδ2

]

Vρ1ρ2V
δ1δ2

]

,

where

h = Dω0V, Dω0h = 0 . (4.24)

This gives Noether’s equation with nonzero right hand side

δ1S
free + δ0S

cubic = a i

∫

M5

V αλhµλ ∧
[

∆µδ

(r) ∧ rδ1α + rµ1δ ∧∆δ
(r)α

]

+ i

∫

M5

2V αλhµλ ∧
[

∆µσ

(R)δ1δ2
∧Rδ1δ2

1ασ +Rµσ
1δ1δ2

∧∆δ1δ2
(R)ασ

]

(4.25)

+ i

∫

M5

V αλhµλ ∧
[

∆µρ1
(R)σδ1

∧Rσρ2
1αδ2

+Rµρ1
1σδ1
∧∆σρ2

(R)αδ2

]

Vρ1ρ2V
δ1δ2

]

.

It remains to prove that the right-hand side of Noether’s equation is zero on the free mass

shell. This means that the r.h.s. is zero on solutions of the free equation of motion of the

theory. This requires a deformation of the initial Yang-Mills like gauge symmetry. To show

that r.h.s. vanishes on the solutions of the free equations of motion we use the so-called

First On-Shell Theorem [16] which in our case can be formulated in the following manner:

• All linearized ‘torsions’ are zero on the free mass shell

V µ[γR
α]β
1µν = V µ[γr

α]
1µ = 0. (4.26)
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• The remaining curvatures can be expressed through the Weyl tensor zero forms in

the following way:

Rαβ
1µν = H

(2)
λρ V

ργCλαβ
γµν ,

rα1µ = H
(2)
λρ V

ργcλαγµ , (4.27)

H
(2)
λρ = hλσ ∧ V σδhδρ.

where the Weyl zero forms are completely symmetric and traceless

Cλαβ
γµν = C(λαβ)

γµν = Cλαβ

(γµν), cλαγµ = c(λα)γµ = cλα(γµ), (4.28)

Cλαβ
γµβ = cλαγα = 0.

• The Weyl tensors are V transversal:

V ρ[δCλ]αβ
ρµν = V ρ[δcλ]αρµ = 0. (4.29)

The first simplification of the r.h.s. of (4.25) occurs by virtue of the identity (A.17) and

condition (4.26). It allows us to remove the last line in (4.25) while changing the coefficient

in the second line from 2 to 1.

A second simplification results from using the torsion free condition. It sets to zero all

terms in (4.25) which originate from the second term in ∆(R) which effectively becomes

∆(R)
αβ
µν

= [R1, ǫ]
αβ
µν +

1

3
[r1, η]

αβ
µν . (4.30)

Note that here the full parameter ǫ (cf. 4.16) appears. The remaining terms can be written

in the form

δ1S
free + δ0S

cubic (4.31)

= a i

∫

M5

V ανhµν ∧
{1

3
[(r1 ∧ r1), ε]

µ
α + [R1, η]

µσ
δσ ∧ rδ1α + rµ1δ ∧ [R1, η]

δσ
ασ

}

+ i

∫

M5

V ανhµν ∧
{

[(R1 ∧R1), ǫ]
µσ
ασ +

1

3
[r1, η]

µσ
δ1δ2
∧Rδ1δ2

1ασ +Rµσ
1δ1δ2

∧
1

3
[r1, η]

δ1δ2
ασ

}

,

where

(R1 ∧R1)
αβ
µν = Rαβ

1ρ1ρ2
∧Rρ1ρ2

1µν ,

(r1 ∧ r1)
α
µ = rα1ρ ∧ rρ1µ. (4.32)

Then inserting (4.27) in (4.31) we obtain

δ1S
free + δ0S

cubic

= i

∫

M5

hµν ∧H
(2)
λρ ∧H

(2)
φχ V

ανV ργV χτ
{

a
(1

3
[(cλγc

φ
τ ), ε]

µ
α + [Cλ

γ , η]
µσ
δσ c

φδ
τα + cφµτδ [C

λ
γ , η]

δσ
ασ

)

+ [(Cλ
γC

φ
τ ), ǫ]

µσ
ασ +

1

3
[cλγ , η]

µσ
δ1δ2

Cφδ1δ2
τασ +

1

3
Cφµσ
τδ1δ2

[cλγ , η]
δ1δ2
ασ

}

. (4.33)
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We now note the crucial identity

hµν ∧H
(2)
λρ ∧H

(2)
φχ =

1

60
H(5)

[

Vλ[µVν](φVχ)ρ + Vρ[µVν](φVχ)λ + VµνVλ(φVχ)ρ

]

, (4.34)

where

H(5) = V χµhµν ∧ V νλhλσ ∧ V σδhδρ ∧ V ρφhφδ ∧ V δγhγχ (4.35)

is a volume form. Using this identity and the properties of the Weyl tensors, eqs. (4.28)

and (4.29), the variation of the action simplifies considerably:

δ1S
free + δ0S

cubic = −
i

30

(

2a−
4

3

)

∫

M5

H(5)
(

Cφµδ
τθ1θ2

ηθ1θ2δθ cτθφµ − cτθφµη
µδ
θ1θ2

Cφθ1θ2
τθδ

)

. (4.36)

So we see that full cancelation occurs if we fix the coefficient a = 2
3 . We have thus shown

that the invariant action with cubic interaction is

Sfree+cubic =
2

3
i

∫

M5

V αλhµλ ∧
[

rµ1δ ∧ rδ1α + rµ2δ ∧ rδ1α + rµ1δ ∧ rδ2α

]

(4.37)

+ i

∫

M5

2V αλhµλ ∧
[

Rµσ
1δ1δ2

∧Rδ1δ2
1ασ +Rµσ

2δ1δ2
∧Rδ1δ2

1ασ +Rµσ
1δ1δ2

∧Rδ1δ2
2ασ

]

+ i

∫

M5

V αλhµλ ∧
[

Rµρ1
1σδ1
∧Rσρ2

1αδ2
+Rµρ1

2σδ1
∧Rσρ2

1αδ2
+Rµρ1

1σδ1
∧Rσρ2

2αδ2

]

Vρ1ρ2V
δ1δ2

]

.

This action can be extracted as an expansion up to cubic order of the following expression

written in the form which includes only the SU(10) field strength Fαβ
µν :

Sfree+cubic = i

∫

M5

{1

3
V αλhµλ ∧ Fµσ

ρσ ∧ F ρδ
αδ (4.38)

+ 2V αβhµβF
µσ
λρ ∧ F λρ

ασ + V αλhµλ ∧ Fµδ1
βρ1
∧ F σδ2

αρ2
V ρ1ρ2Vδ1δ2

−
4

3
V αλhµλF

µσ
αρ ∧ F ρδ

σδ −
2

3
V αλhµλF

µδ1
αρ1
∧ F δ2σ

ρ2σ
V ρ1ρ2Vδ1δ2

}

.

With the help of identity (A.16) we can rewrite (4.38) as

Sfree+cubic =
1

3
i

∫

M5

[V αλhµλδ
β
σ − V βαhµσ + hβαVµσ] (4.39)

×

(

2δρ1δ2 δ
ρ2
δ1

+ V ρ1ρ2Vδ1δ2 +
1

3
δρ1δ1 δ

ρ2
δ2

)

∧ Fµδ1
βρ1
∧ F σδ2

αρ2
.

Analyzing this expression we find that the first bracket removes from the product of two

SU(10) field strengths the quadratic term which mixes the spin two and spin three fields.

In the free limit this leads to the correct diagonal action (4.15). On the other hand

the operator

2δρ1δ2 δ
ρ2
δ1

+ V ρ1ρ2Vδ1δ2 , (4.40)

in the second bracket controls the trivialization of the “extra field” equation of motion for

the spin 3 part and the coefficient 1
3 in front of last term is fixed by the condition that
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a deformation of the SU(10) gauge invariance which leads to this cubic interaction exists.

This nontrivial deformation makes the generalization of this procedure to quartic or the

full nonlinear action illusive and as a result the compact expression (4.40) is correct only

up to cubic order.

One might consider avoiding the deformation and to generalize the nonlinear spin 2

(SU(4)) action (4.10) to the spin 3 (SU(10)) case by introducing a SU(10) covariant compen-

sator. But this does not provide the correct free limit without mixed terms and the triviality

of “extra” field free equations at the same time. This is demonstrated in appendix B.

5 Outlook

One obvious generalization can be envisioned: including spins higher than three. This gen-

eralization is straightforward as far as the identification ofG and the embedding SO(6) →֒ G

are concerned. Consider e.g. spin 2, spin 3 and spin 4. The fields and their SO(5) repre-

sentations are

ea 5 eab 14 eabc 30

ωab 10 ωab,c 35 ωabc,d 81 (5.1)

ωab,cd 35 ωabc,de 105

ωabc,def 84

The fields in each column combine into representations of SO(6) whose Young tableau

coincides with the last one in each column. The total of 399 fields nicely combine into the

adjoint representation of SU(20). The pattern repeats if we add higher spins such that

for spin 2, . . . , s we find SU
((

s+2
3

))

. All of the fields, that correspond to spins from 2 to

s now combine into one SU
((

s+2
3

))

-valued one-form master field. We can introduce s − 1

symmetrized su(4) indices for each of the SU
((

s+2
3

))

indices (the number of components

matches exactly). The trace decomposition of the master one-form field gives all the fields,

corresponding to different spins.

We expect that this result hints on the existence of one parameter family of alge-

bras for symmetric Higher Spin fields in five dimensions, in full analogy with the three

dimensional case. For the critical values of the parameter, this algebra should acquire

infinite-dimensional ideals, with the remaining generators forming finite dimensional sub-

algebras SU
((

s+2
3

))

. This sequence of algebras should include the known infinite dimen-

sional Higher Spin algebras, discussed in [2, 16, 20, 27, 28]. In order to check this idea,

one has to implement the more general construction of Higher Spin algebra, along the lines

of [29–32]. In fact, a one parameter family of Higher Spin algebras is known to exist in any

dimension [15] (see also [33]). This family of algebras includes mixed symmetry fields in

higher dimensions, while in five dimensions it does not. It is also known [14] that there is a

family of unitary representations of the AdS5 algebra su(2, 2) that should serve as defining

representations for these algebras.
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While we have demonstrated the correct cubic action for spin two and spin three in an

AdS background, we encounter standard problems when considering the fully interacting

theory, even in the case of our higher spin algebra with only finite number of spins (see

appendix B for an alternative attempt). Therefore, the question of existence of an action

with nonlinear interactions of a finite number of dynamical Higher Spin fields remains open.
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A Useful relations

In this appendix we give some of the details about the Lie-algebras which were used in the

main body of the paper.

The generators of SU(n) in the fundamental representation can be chosen as a basis

of real traceless matrices as follows:

(U I
J )

i
j = δIiδJj −

1

n
δIJδ

i
j , (A.1)

where the range of all indices is 1, . . . , n. These generators satisfy

[U I
J , U

K
L ] = δKJ U I

L − δIL UK
J . (A.2)

Using the explicit representation (A.1), one easily works out the rank three d-symbol

of SU(n):

dIKM
JLN =

1

2
tr(U I

J{U
K
L , UM

N }) (A.3)

=
1

2

(

δINδML δKJ + δILδ
M
J δKN −

2

n
δINδKL δMJ −

2

n
δML δKN δIJ −

2

n
δILδ

K
J δMN +

4

n2
δIJδ

K
L δMN

)

.

Considering the special embedding SU(4) →֒ SU(10), we represent the SU(10) indices

I, J, . . . by a symmetriced pair of SU(4) indices, i.e. I = (αβ), etc. with α, β, · · · = 1, . . . , 4

and rewrite (A.2) as

[Uαβ
γδ , U

µν
ρσ ] = δµνγδ U

αβ
ρσ − δαβρσ Uµν

γδ , δαβγδ = δαγ δ
β
δ + δαδ δ

β
γ . (A.4)

– 13 –



J
H
E
P
1
0
(
2
0
1
3
)
1
8
5

Given the decomposition11

U I
J = Uαβ

γδ = Wαβ
γδ +

1

6
δ
(α
(γL

β)
δ) , Wαβ

αγ = Lα
α = 0, (A.5)

and the algebra (A.4), it is straightforward to derive

[Lα
β , L

γ
δ ] = δγβL

α
δ − δαδ L

γ
β,

[Lα
β ,W

µν
ρσ ] = δα(ρW

µν

σ)β − δ
(µ
β W ν)α

ρσ , (A.6)

[Wαβ
γδ ,W

µν
ρσ ] = δµνγδW

αβ
ρσ − δαβρσW

µν
γδ

+
1

6

(

δαβ〈γ(ρW
µν

σ)δ〉 − δµν〈γ(ρW
αβ

σ)δ〉 − δ
〈α(µ
γδ W ν)β〉

ρσ + δ〈α(µρσ W
ν)β〉
γδ

)

+
1

6

(

δµνγδ δ
(α
(ρL

β)
σ) − δαβρσ δ

(µ
(γL

ν)
δ)

)

+
1

72

(

δαβ〈γ(ρδ
(µ
σ)L

ν)
δ〉 − δµν〈ρ(γδ

(α
δ) L

β)
σ〉 − δ

〈α(µ
γδ δ

ν)
(ρL

β〉
σ) + δ〈µ(αρσ δ

β)
(γL

ν〉
δ)

)

,

where 〈α(βγ)δ〉 denotes symmetrization in (α, δ) and in (β, γ) and δαβγδ = δαγ δ
β
δ + δαδ δ

β
γ .

The isomorphism between the vector respresentation of SO(6) and the antisymmetric

second rank tensor representation of SU(4) is made explicit with the help of the chiral

Dirac matrices, some of whose properties are12

ΣA
αβ = −ΣA

βα,

(ΣA)αβ =
1

2
ǫαβγδΣA

γδ, (A.7)

(ΣA)αγΣB
γβ + (ΣB)αγΣA

γβ = 2δABδαβ .

A convenient basis for the ΣA
αβ is Σ1 = iσ3 ⊗ σ1, Σ

2 = 1 ⊗ σ2, Σ
3 = iσ2 ⊗ 1, Σ4 =

σ2 ⊗ σ3, Σ
5 = iσ1 ⊗ σ2, Σ

6 = σ2 ⊗ σ1 where σi are the three Pauli matrices. Then SO(6)

algebra generators can be constructed as

(ΣAB)γα = −
1

4

(

ΣA
αβΣ

Bβγ − ΣB
αβΣ

Aβγ
)

, (A.8)

Defining

Vαβ = iΣA
αβVA , V αβ =

1

2
ǫαβγδVγδ, (A.9)

one finds that (4.5) implies the constraint

V αγVβγ = δαβ . (A.10)

11Our conventions are δ
(α

(γL
β)

δ) = δαγL
β
δ + δβγL

α
δ + δαδ L

β
γ + δ

β
δ L

α
γ .

12The indices α̇ referring to the other chirality are not needed here. By raising and lowering them with

the charge conjugation matrix we can always convert them to un-dotted indices.
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Using the symmetries of the l.h.s. and the fact that ΣAB is traceless, leads to the identity

ǫABCDMN ΣA
αβΣ

B
γδ(Σ

CD)ρλ(Σ
MN )νµ

= 4i

[

ǫαβλµδ
ρν
γδ − ǫγδλµδ

ρν
αβ −

1

2
ǫαβγλδ

ν
δ δ

ρ
µ +

1

2
ǫαβδλδ

ν
γδ

ρ
µ +

1

2
ǫγδαλδ

ν
βδ

ρ
µ (A.11)

−
1

2
ǫγδβλδ

ν
αδ

ρ
µ −

1

2
ǫαβγµδ

ρ
δ δ

ν
λ +

1

2
ǫαβδµδ

ρ
γδ

ν
λ +

1

2
ǫγδαµδ

ρ
βδ

ν
λ −

1

2
ǫγδβµδ

ρ
αδ

ν
λ

]

with

δαβγδ = δαγ δ
β
δ − δαδ δ

β
γ . (A.12)

Other useful identities are

ǫABCDMN (ΣAB)αβ(Σ
CD)γδ (Σ

MN )µν = 16 i dαγµβδν , (A.13)

(ΣA)αβ(ΣA)γδ = 2 ǫαβγδ, (A.14)

and

hαβ ∧ hγδ = −
1

2

(

Vαγ H
(2)
βδ − Vβγ H

(2)
αδ − Vαδ H

(2)
βγ + VβδH

(2)
αγ

)

. (A.15)

For an antisymmetric one-form hαβ with V αβhαβ = 0 (e.g. for hαβ = DVαβ) and a two-form

fα
β one finds the identity

1

2
(V βαhµσ − hβαVµσ)f

µ
β ∧ fσ

α + V αλhµλf
µ
σ ∧ fσ

α = V αλhµλf
µ
α ∧ fσ

σ . (A.16)

We will also use

VαβVγδ + VαγVδβ + VαδVβγ = ǫαβγδ

Vρ1ρ2V
δ1δ2 = ǫδ1δ2τ1τ2Vτ1ρ1Vτ2ρ2 + δδ1δ2ρ1ρ2

. (A.17)

B Topological actions and coset construction

In this appendix we describe an attempt to construct an action for the spin two and

spin three fields with manifest SU(10) symmetry, generalizing the coset space construction

described in section 4. While the symmetry is manifest we will find that this construc-

tion leads to unwanted mixed terms between the spin two and spin three fields at the

quadratic level.

We begin with an alternative way to write the action (4.7) in SU(4) invariant form.

Note that the integrand in (4.7) is just the SO(6) invariant trace of three elements of the

SO(6) algebra or, equivalently, that ǫABCDEF is the d-symbol of SO(6) ≃ SU(4). With this

observation it is immediate how to generalize the topological action for any Lie group G:

SG ∼

∫

M5

dΩΘΛB
Ω ∧ FΘ ∧ FΛ , (B.1)

where capital Greek indices Γ,Θ,Λ · · · ∈ {1, . . . , dim(G)}. The crucial point of this con-

struction is the choice of the coset G/H whose element will be used for the construction
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of the G covariant one-form BΩ. In the case of G = SO(6) we have H = SO(5) and the

compensator field is an element of the five-sphere. Equivalently for the same system, if

G = SU(4) we identify the stabilizer group H = Sp(4) ≃ SO(5) and the compensator V αβ

is an element of the coset

SU(4)/Sp(4) , (B.2)

and is expressed as an antisymmetric SU(4) tensor constrained by (4.9). Then the SU(4)

algebra valued one-form can be constructed as (4.11) and the general action (B.1) trans-

forms into (4.10). Note also that in the same fashion as we fixed the gauge using local

SO(6) rotations,

V A = (V a, V 6), (a = 1, . . . , 5),

V (0)A = (0, 1), (B.3)

in the SU(4) formulation, we can bring the compensator field Vαβ(x) to the constant

symplectic form V
(0)
αβ , leaving an unbroken symmetry Sp(4). The relation corresponding

to (B.3) is

Vαβ(x) = V
(0)
αβ = iΣ6

αβ . (B.4)

We now extend the discussion to a possible compensator field for the unfied discussion

of spin 2 and spin 3 cases based on the SU(10) algebra. To this end we consider an action

with gauge group SU(10) with the special embedding of SU(4) discussed in section 2. This

means that we identify in (B.1) the field strength FΛ with the SU(10) field strength (3.2).

In other words we replace the indices Γ,Θ,Λ, . . . by two symmetrised pairs of SU(4) indices
αβ
γδ with the corresponding SU(10) rule for taking the trace, e.g. using the d-symbol (A.3)

SSU(10) =

∫

M5

Bαβ
µν ∧ Fµν

λρ ∧ F λρ
αβ , (B.5)

Fαβ
γδ was defined in (3.2). It remains to define the possible coset space and compensator,

and to construct an SU(10) covariant one-form

Bαβ
γδ , Bαβ

αβ = 0, (B.6)

δBαβ
γδ = Bαβ

λρ ǫ
λρ
γδ −Bλρ

γδ ǫ
αβ
λρ .

Searching for a suitable stabilizer for the coset G/H constructed from G = SU(10), we

arrive at H = SO(10). This choice of compensator allows the background value described

by the SU(4)/Sp(4) coset construction. This property we use below in the analysis of the

linearized limit. From

G/H = SU(10)/SO(10) , (B.7)

dim(G/H) = dim(SU(10))− dim(SO(10)) = 54 .

we conclude that the compensator should appear as a 54-dimensional representation of

SO(10). For SU(10) covariance of B or, equivalently, for SU(10) invariance of the ac-

tion (B.5), this representation should be expressed as a constrained representation of
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SU(10). From an SO(10) point of view it is a second rank symmetric traceless tensor

with 54 independent real components, which we can express as an SU(10) object in the

following way. Consider the space of complex tensors symmetric in a pair of lower indices

and its complex conjugate tensor with upper indices

VIJ = VJI , V̄ IJ = V̄ JI = (VIJ)
∗, I, J, · · · ∈ {1, . . . 10}. (B.8)

It has 55 independent complex components. The natural SU(10) invariant (real) constraints

V̄ IKVKJ = δIJ or V ∗V = 1, (B.9)

det(VIJ) = 1 (B.10)

reduces the number of independent real components to 54 and we can identify this tensor

with an element of the symmetric space (B.7). Then we can construct an SU(10) covariant

traceless one-form in the usual way

BI
J = iV̄ IKDVKJ , (B.11)

DVKJ = dVKJ −AL
(KVJ)L,

Moreover as opposed to the SU(4) case13 for SU(10) we can construct one more invariant

action. Such a term can be constructed with the rank four d symbol of SU(10), defined as

the completely symmetrized trace of four SU(10) generators:

SG ∼

∫

M5

dΩΞΘΛB
ΩΞ ∧ FΘ ∧ FΛ . (B.12)

As before, capital Greek indices refer to the adjoint representation of SU(10) and we can

replace them by an upper and a lower index refering to the fundamental representation of

SU(10) and its complex conjugate, respectively, e.g. FΛ → F I
J with F I

I = 0 or by two pairs

of symmetrised SU(4) indices, i.e. Fαβ
γδ with Fαβ

αβ = 0. The tensor B can be realized using

the SU(10)/SO(10) compensator field (cf. (B.8)–(B.10)):14

BIK
JL =

i

2
(V̄ IKDVJL −DV̄ IKVJL)− traces. (B.13)

Replacing capital Latin indices with symmetrized pairs of SU(4) indices as before, we

arrive at the following expression for Bαβ
µν in (B.5)

Bαβ
γδ = iV̄ αβ,λρDVγδ,λρ, (B.14)

Bαβ
αβ = 0,

where the SU(10)/SO(10) compensator field is defined as

Vαβ,λρ = Vλρ,αβ ,

V̄ αβ,λρ = (Vαβ,λρ)
∗,

V̄ αβ,λρVλρ,γδ = δαβγδ , (B.15)

det(V(αβ),(γδ)) = 1.

13The identity (A.16) relates two possible expressions for the spin 2 action.
14The traces would give the same contribution as (B.5).
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The second action (B.12) in the SU(4) covariant notation is

S̃SU(10) =

∫

M5

Bαβ,σδ
µν,λρ ∧ Fµν

αβ ∧ F λρ
σδ , (B.16)

where

Bαβ,σδ
µν,λρ =

i

2
(V̄ αβ,σδDVµν,λρ −DV̄ αβ,σδVµν,λρ). (B.17)

In this case we can also use local SU(10) transformations of the compensator field

and set

V
(0)
αβ,λρ = δ(αβ),(λρ) . (B.18)

The unbroken symmetry is SO(10), because the r.h.s. of (B.18) remains invariant under

SO(10) rotations.

We now address the embedding of the SU(4)/Sp(4) compensator Vαβ into the

SU(10)/SO(10) element (B.15). It is easy to see that the restrictions imposed by the ansatz

Vαβ,σδ =
1

2
(VασVβδ + VβσVαδ),

V̄ αβ,σδ =
1

2
(V ασV βδ + V βσV αδ), (B.19)

supplemented with

Aαβ
µν ∼ δ

(α
(µω

β)
ν) , (B.20)

lead to a reduction of the one-forms

Bαβ
γδ = iV̄ αβ,λρDVλρ,γδ =

1

2
δ
(α
(γB

β)
δ) ,

Bβ
δ = iV αβDVαδ. (B.21)

This means that putting the spin three gauge field to zero and using the ansatz (B.19),

we obtain the purely gravitational action (4.10) from the SU(10) invariant actions. This

immediately shows that the equations of motion have AdS5 background solutions.

Expressions (B.14) and (B.17) form all possible SU(10) covariant one forms which we

can construct using this compensator field. Therefore the most general action should be a

linear combination

SSU(10) + κ S̃SU(10) , (B.22)

where the relative coefficient κ is fixed by comparison with the free spin three action of

Vasiliev (4.14). Trying to fix it we replace in (B.19) and (B.5) F with linearized curvatures

Fαβ
1µν = Rαβ

1µν +
1
6δ

(α
(µr

β)
1ν) , use the SU(4) restriction (B.19) for the SU(10) compensator field

and replace the covariant derivative by Dω0 . Straightforward calculation gives

SSU(10) + κ S̃SU(10) → i

∫

M5

8

9
(1− κ)V αλhµλ ∧ rµ1δ ∧ rδ1α + Smixed(r1;R1) (B.23)

+ i

∫

M5

[

2V αλhµλ ∧Rµσ
1δ1δ2

∧Rδ1δ2
1ασ − 2κV αλhµλ ∧Rµρ1

1σδ1
∧Rσρ2

1αδ2
Vρ1ρ2V

δ1δ2
]

,

where

Smixed(r1;R1)= i

∫

M5

[4

3
V ασhµσ ∧ rβ1ν ∧Rµν

1αβ+
4κ

3
V ασhµσ ∧ rν1β ∧Rµρ

1αδV
βδVνρ

]

. (B.24)
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We see that the two possible independent SU(10) invariant structures produce two inde-

pendent contributions to the mixed term action (B.24). However there is no choice for the

relative cofficient κ which trivializes the “extra” field equation of motion in the second line

of (B.23) (κ = −1
2 , cf. (4.14)) and in the mixed term action (B.24) (κ = −1) simultane-

ously. This makes the correct free limit for the coset SU(10) action unreachable, at least

with the ansatz (B.19). At the moment we do not know how to resolve this problem.

References

[1] M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in

(3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

[2] M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),

Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

[3] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like

higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017

[arXiv:1208.1851] [INSPIRE].

[4] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007

[arXiv:1008.4744] [INSPIRE].

[5] M. Henneaux and S.-J. Rey, Nonlinear Winfty as Asymptotic Symmetry of

Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007

[arXiv:1008.4579] [INSPIRE].

[6] A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in

three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290]

[INSPIRE].

[7] M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022

[arXiv:1103.4304] [INSPIRE].

[8] P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT

duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

[9] M. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2+1),

Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

[10] E. Bergshoeff, M. Blencowe and K. Stelle, Area Preserving Diffeomorphisms And Higher

Spin Algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

[11] M.A. Vasiliev, Higher Spin Algebras and Quantization on the Sphere and Hyperboloid,

Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].

[12] S.F. Prokushkin, A.Y. Segal and M.A. Vasiliev, Coordinate free action for AdS3 higher spin

matter systems, Phys. Lett. B 478 (2000) 333 [hep-th/9912280] [INSPIRE].

[13] S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in

3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

[14] S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its

deformations as massless conformal fields and their supersymmetric extensions,

J. Math. Phys. 51 (2010) 082301 [arXiv:0908.3624] [INSPIRE].

– 19 –

http://dx.doi.org/10.1016/0370-2693(90)91400-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B243,378
http://dx.doi.org/10.1016/S0370-2693(03)00872-4
http://arxiv.org/abs/hep-th/0304049
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304049
http://dx.doi.org/10.1088/1751-8113/46/21/214017
http://arxiv.org/abs/1208.1851
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1851
http://dx.doi.org/10.1007/JHEP11(2010)007
http://arxiv.org/abs/1008.4744
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4744
http://dx.doi.org/10.1007/JHEP12(2010)007
http://arxiv.org/abs/1008.4579
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4579
http://dx.doi.org/10.1007/JHEP09(2011)113
http://arxiv.org/abs/1107.0290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0290
http://dx.doi.org/10.1007/JHEP05(2011)022
http://arxiv.org/abs/1103.4304
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4304
http://dx.doi.org/10.1007/JHEP11(2011)061
http://arxiv.org/abs/1108.2567
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2567
http://dx.doi.org/10.1088/0264-9381/6/4/005
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,6,443
http://dx.doi.org/10.1007/BF02108779
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,128,213
http://dx.doi.org/10.1142/S0217751X91000605
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A6,1115
http://dx.doi.org/10.1016/S0370-2693(00)00258-6
http://arxiv.org/abs/hep-th/9912280
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912280
http://dx.doi.org/10.1016/S0550-3213(98)00839-6
http://arxiv.org/abs/hep-th/9806236
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806236
http://dx.doi.org/10.1063/1.3447773
http://arxiv.org/abs/0908.3624
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3624


J
H
E
P
1
0
(
2
0
1
3
)
1
8
5

[15] N. Boulanger and E. Skvortsov, Higher-spin algebras and cubic interactions for simple

mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].

[16] M. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS5,

Nucl. Phys. B 616 (2001) 106 [Erratum ibid. B 652 (2003) 407] [hep-th/0106200]

[INSPIRE].

[17] M. Vasiliev, Cubic Vertices for Symmetric Higher-Spin Gauge Fields in (A)dSd,

Nucl. Phys. B 862 (2012) 341 [arXiv:1108.5921] [INSPIRE].

[18] A.H. Chamseddine, Topological Gauge Theory of Gravity in Five-dimensions and All Odd

Dimensions, Phys. Lett. B 233 (1989) 291 [INSPIRE].

[19] A.H. Chamseddine, Topological gravity and supergravity in various dimensions,

Nucl. Phys. B 346 (1990) 213 [INSPIRE].

[20] J. Engquist and O. Hohm, Higher-spin Chern-Simons theories in odd dimensions,

Nucl. Phys. B 786 (2007) 1 [arXiv:0705.3714] [INSPIRE].

[21] S. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Supergravity,

Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].

[22] K. Stelle and P.C. West, Spontaneously Broken de Sitter Symmetry and the Gravitational

Holonomy Group, Phys. Rev. D 21 (1980) 1466 [INSPIRE].

[23] E. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher

Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].

[24] E. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin

Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

[25] V. Lopatin and M.A. Vasiliev, Free Massless Bosonic Fields of Arbitrary Spin in

d-dimensional de Sitter Space, Mod. Phys. Lett. A 3 (1988) 257 [INSPIRE].

[26] X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in

various dimensions, hep-th/0503128 [INSPIRE].

[27] E.S. Fradkin and V. Ya. Linetsky, Conformal Superalgebras of Higher Spins,

Mod. Phys. Lett. A 4 (1989) 2363 [Ann. Phys. 198 (1990) 252] [INSPIRE].

[28] E. Sezgin and P. Sundell, Doubletons and 5-D higher spin gauge theory, JHEP 09 (2001) 036

[hep-th/0105001] [INSPIRE].

[29] M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645

[hep-th/0206233] [INSPIRE].

[30] M. Vasiliev, Higher spin superalgebras in any dimension and their representations,

JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].

[31] C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin

Field Equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].

[32] C. Iazeolla, On the Algebraic Structure of Higher-Spin Field Equations and New Exact

Solutions, arXiv:0807.0406 [INSPIRE].

[33] N. Boulanger, D. Ponomarev, E. Skvortsov and M. Taronna, On the uniqueness of

higher-spin symmetries in AdS and CFT, arXiv:1305.5180 [INSPIRE].

– 20 –

http://dx.doi.org/10.1007/JHEP09(2011)063
http://arxiv.org/abs/1107.5028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5028
http://dx.doi.org/10.1016/S0550-3213(01)00433-3
http://arxiv.org/abs/hep-th/0106200
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106200
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.012
http://arxiv.org/abs/1108.5921
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5921
http://dx.doi.org/10.1016/0370-2693(89)91312-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B233,291
http://dx.doi.org/10.1016/0550-3213(90)90245-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B346,213
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.015
http://arxiv.org/abs/0705.3714
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.3714
http://dx.doi.org/10.1103/PhysRevLett.38.1376
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,38,739
http://dx.doi.org/10.1103/PhysRevD.21.1466
http://inspirehep.net/search?p=find+J+Phys.Rev.,D21,1466
http://dx.doi.org/10.1016/0550-3213(87)90469-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B291,141
http://dx.doi.org/10.1016/0370-2693(87)91275-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B189,89
http://dx.doi.org/10.1142/S0217732388000313
http://inspirehep.net/search?p=find+J+Mod.Phys.Lett.,A3,257
http://arxiv.org/abs/hep-th/0503128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503128
http://dx.doi.org/10.1142/S0217732389002653
http://inspirehep.net/search?p=find+T+Conformal Superalgebras of Higher Spins
http://dx.doi.org/10.1088/1126-6708/2001/09/036
http://arxiv.org/abs/hep-th/0105001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0105001
http://dx.doi.org/10.4007/annals.2005.161.1645
http://arxiv.org/abs/hep-th/0206233
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206233
http://dx.doi.org/10.1088/1126-6708/2004/12/046
http://arxiv.org/abs/hep-th/0404124
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404124
http://dx.doi.org/10.1088/1126-6708/2008/10/022
http://arxiv.org/abs/0806.1942
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1942
http://arxiv.org/abs/0807.0406
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0406
http://arxiv.org/abs/1305.5180
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5180

	Introduction
	Unification of spin 2 and 3 symmetries on AdS(5)
	Gauge fields and curvatures
	Spin 3 and 2 cubic interaction
	Outlook
	Useful relations
	Topological actions and coset construction

