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Abstract

The holographic duals of higher spin theories on AdS3 are described by the large

N limit of a family of minimal model CFTs, whose symmetry algebra is equivalent to

W∞[λ]. We study perturbations of these limit theories, and show that they possess a

marginal symmetry-preserving perturbation that describes switching on the 1
N correc-

tions. We also test our general results for the specific cases of λ = 0, 1, where free field

realisations are available.
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1 Introduction

The proposed dualities relating a higher spin theory on AdSd+1 to vector-like nearly free

conformal field theories in d dimensions constitute simplified versions of the AdS/CFT cor-

respondence that are under very good quantitative control. As such they may open the way

towards understanding their inner workings. The prototype example was proposed some

years ago by Klebanov & Polyakov [1], see also [2, 3, 4, 5] for earlier work and [6] for a

subsequent generalisation. It relates a Vasiliev higher spin theory [7] on AdS4 to the large
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N limit of the O(N) vector model in 3 dimensions. Compelling evidence for this duality

was recently found by comparing correlation functions in [8, 9], as well as through the work

[10, 11] that determined interesting general constraints on the structure of the correlation

functions based on symmetry considerations. More recently, these dualities were further

generalised to a one-parameter family of (in general) parity-breaking theories in [12, 13, 14].

In a somewhat independent development, a lower dimension analogue of this duality was

proposed in [15], relating a higher spin theory on AdS3 [16, 17] to the large N limit of a family

of minimal model 2d CFTs. One of the guiding principles in proposing this duality was the

observation that the asymptotic algebra of the higher spin theory on AdS3 is described by a

W∞[λ] algebra [18, 19, 20, 21], which therefore largely controls the dual CFT. This proposal

was subsequently checked in various ways [22, 23].

In the 3d/2d case, the underlying symmetry algebra W∞[λ] is characterised, in addition

to the central charge (that corresponds geometrically to the size of the AdS space), by a

continuous parameter λ that controls the higher spin interactions.1 From the dual minimal

model perspective, λ is identified with

λ =
N

N + k
, while c = (N − 1)

[
1− N(N + 1)

(N + k)(N + k + 1)

]
, (1.1)

where k is the level of the coset model. In particular, λ therefore becomes a continuous

parameter in the ’t Hooft limit, in which c ∼ N(1−λ2). However, from the viewpoint of the

W∞[λ] symmetry algebra, λ and c are arbitrary (finite) parameters, and there is a priori no

need to take c→∞ in order for λ to become continuous.

It is then natural to ask whether theories corresponding to different values of λ (and c) are

connected by continuous deformations. For example, one may wonder whether there exist

exactly marginal operators that change λ continuously (while preserving theW∞ symmetry)

without affecting c. Or there could be deformations that change both λ and c infinitesimally.

Given that theWN,k minimal models do not possess any exactly marginal operators, one may

suspect that the first option is not possible, and indeed there is a fairly general argument —

due to Stefan Fredenhagen — that implies that such deformations cannot exist. (This will

be briefly reviewed in section 5.1.) However, we find evidence that a marginal deformation

exists, at least in the ’t Hooft limit, that modifies both λ and c. In fact, it can be identified

with a perturbation that introduces 1
N

and 1
k

corrections such that to first order λ does not

change.

More specifically, we characterise quite generally the perturbing operators that preserve

the W∞ symmetry to first order, and find that there is a one-parameter family of operators

1This parameter is the natural analogue of the λ = N
k parameter in one dimension higher, where N is

the rank of the gauge group and k the Chern-Simons coupling constant [12, 13, 14].
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with this property. They are uniquely characterised by their eigenvalues of the spin-3 gen-

erator. Quite remarkably, the h = 1 descendant of the light state corresponding to ( ; )

has this property in the ’t Hooft limit and therefore defines (together with its conjugate

operator) an interesting perturbing field. We analyse its properties, first for the special cases

λ = 0, 1, where free field realisations are available,2 and then for general λ, using confor-

mal perturbation theory. The conformal perturbation theory is quite intricate since, in the

’t Hooft limit, there are infinitely many fields of the same conformal dimension, and hence

we need to analyse an infinitely degenerate case. However, because of the structure of the

fusion rules, the perturbation problem has a lot of structure, and we can identify at least

certain qualitative features.

The paper is organised as follows. We begin with reviewing the free field realisations of

the specialW∞[λ] theories at λ = 0 (section 2) and λ = 1 (section 3). In particular, we show

that the singlet sector of N complex free fermions defines a W∞[0] algebra at c = N − 1,

while the singlet sector of k complex free bosons lead to W∞[1] at c = 2k. While both of

these statements are certainly expected, they had not been established at finite c before; in

particular, we confirm that the structure constants of the W∞[λ] algebras agree precisely

with the prediction of [23] for these values of λ and c. In section 4 we then study the

conditions a perturbing operator must satisfy in order to preserve the W∞ algebra at first

order. This is first done in the ’t Hooft limit, and then for finite c, using the full quantum

version of the W∞[λ] algebra. We give strong evidence that the h = 1 descendant of the

light state corresponding to ( ; ) has this property in the ’t Hooft limit, and confirm this

statement explicitly for the special cases λ = 0 and λ = 1 (where the statement remains

true even at finite c). In section 5 we then study the effect of the perturbation by this field

(and its conjugate) in the ’t Hooft limit, and identify the perturbed spectrum with what is

obtained from the minimal model perspective upon switching on a certain combination of 1
N

and 1
k

corrections. Finally, we conclude in section 6. There are four appendices where some

of the more technical material has been collected together.

2 The theory at λ = 0

The simplest explicit realisation of theW∞[λ] algebra exists at λ = 0, where we can describe

the theory in terms of free fermions. We shall later also comment on how this description is

related to the continuous orbifold point of view proposed in [24].

2These are the natural analogues of the free O(N) vector models in 3 dimensions.
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2.1 The free fermion description

Let us consider the theory of N free complex fermions ψi and ψ∗i, i = 1, . . . , N with action

S0 =

∫
d2z
(
ψ∗i ∂̄ψi + ψ̄i ∂ψ̄∗i

)
. (2.1)

The corresponding equations of motion are

∂̄ψi = ∂̄ψ∗i = 0 , (2.2)

and the OPEs take the form

ψi(z1)ψ∗j(z2) ∼ δij

(z1 − z2)
, (2.3)

with similar expressions for the right movers ψ̄i and ψ̄∗j. We shall always consider only

states that are singlets with respect to the global SU(N) action.

The free theory has the conserved spin-s chiral currents [25, 26, 27] (the expressions for

the anti-chiral currents are analogous)

W s = n(s)
s−1∑
k=0

(−1)k
(
s− 1

k

)2

∂s−1−kψ∗i ∂kψi , (2.4)

where the sum over i is implicit, and we choose the normalisation convention

n(s) =
[(s− 1)!]2

(2s− 2)!
. (2.5)

Explicitly, for small values of s, these current are then

J ≡ W 1 = ψ∗iψi (2.6)

T ≡ W 2 =
1

2
(∂ψ∗i ψi − ψ∗i ∂ψi) (2.7)

W ≡ W 3 =
1

6

(
∂2ψ∗i ψi − 4 ∂ψ∗i ∂ψi + ψ∗i ∂2ψi

)
(2.8)

U ≡ W 4 =
1

20

(
∂3ψ∗i ψi − 9 ∂2ψ∗i ∂ψi + 9 ∂ψ∗i ∂2ψi − ψ∗i ∂3ψi

)
. (2.9)
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2.2 OPEs and commutation relations

It follows from the OPEs given in Appendix A that the modes of the stress energy tensor T

satisfy a Virasoro algebra with central charge c = N ,

[Lm, Ln] = (m− n)Lm+n +
N

12
m (m2 − 1) δm,−n , (2.10)

while J is a U(1)-current whose modes satisfy

[Jm, Jn] = N mδm,−n , [Lm, Jn] = −nJm+n . (2.11)

It also follows from (A.5) and (A.6) that W is neither U(1)- nor Virasoro-primary. Indeed,

converted into modes, these OPEs imply that the commutation relations take the form

[Jm,Wn] = 2mLm+n , [Lm,Wn] = (2m− n)Wm+n + 1
6
m(m2 − 1)Jm+n . (2.12)

The OPE of W with itself (A.7) then leads to

[Wm,Wn] = 2N
360

m(m2 − 1)(m2 − 4)δm,−n + 1
15

(m− n)(2m2 + 2n2 −mn− 8)Lm+n

+2(m− n)Um+n . (2.13)

Note that this algebra is linear, i.e. the commutators (2.13) do not involve the normal ordered

Λ(4) =: LL : term that generically appears in this commutator.

2.3 The U(1) coset

The free fermion theory does not directly describeW∞[λ] for any value of λ, since it contains

a spin 1 current J , and hence leads to W1+∞. Furthermore, in the above basis (in which the

generators are bilinears in the fermions, and hence the OPEs do not contain any non-linear

term) the generators W s with s ≥ 2 do not close among themselves, as follows for example

from (A.6). There is, however, a different basis in which W∞[0] appears as a subalgebra

of the free fermion theory. In this basis, the generators are not just bilinears in the free

fermions, and as a consequence the algebra will turn out to be non-linear.

The basic idea for finding this basis is inspired by the coset construction, and in effect,

the resulting construction is what the coset by the U(1)-current J would amount to. We

can recursively construct currents W̃ s of spin s = 2, 3, . . . that are primary with respect to

J . In terms of modes this then means that the modes W̃ s
m commute with Jn. Because of

the Jacobi identity, the same is then also true for the commutators of W̃ s1 and W̃ s2 , i.e.

the W̃ s generators form a closed algebra. In the following we shall construct the first few
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of these generators explicitly; we can then determine their commutation relations, and show

that they generate indeed W∞[0] at c = N − 1.

2.3.1 The coset generators

Let us first define the generators W̃s recursively. For s = 2, we get

T̃ = T − 1

2N
: JJ : , (2.14)

or in terms of states

L̃−2Ω = L−2Ω− 1

2N
J−1J−1Ω . (2.15)

It is easy to see that (2.15) is U(1)-primary, i.e. JnL̃−2Ω = 0 for n ≥ 0. The OPEs of T̃ with

J and itself are then

T̃ (z1)J(z2) ∼ 0 , T̃ (z1)T̃ (z2) ∼ (N − 1)/2

(z1 − z2)4
+

2T̃ (z2)

(z1 − z2)2
+

T̃ ′(z2)

(z1 − z2)
, (2.16)

i.e. the new modes L̃n define a Virasoro algebra (2.10) with central charge N − 1 (instead of

N), and commute with the modes Jn.

For s = 3, the U(1)-primary generator is

W̃ = W − 2

N
: JT : +

2

3N2
: JJJ : , (2.17)

or in terms of states

W̃−3Ω = W−3Ω− 2

N
J−1L−2Ω +

2

3N2
J−1J−1J−1Ω . (2.18)

Moreover, W̃ is also primary with respect to T̃ , i.e.

T̃ (z1)W̃ (z2) ∼ 3W̃ (z2)

(z1 − z2)2
+

W̃ ′(z2)

(z1 − z2)
, (2.19)

which in particular does not involve the current J any longer, in contrast to the situation in

(A.6), and in agreement with the above general argument. Incidentally, the simplest way to

compute (2.19) is to use the general formula

T̃ (z1)W̃ (z2) =
∑
n∈Z

(z1 − z2)−n−2V
(
L̃nW̃−3Ω, z2

)
, (2.20)

where V (ψ, z) denotes the vertex operator associated to ψ, together with the mode expansion
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of T̃ ,

L̃n = Ln −
1

2N

∑
l∈Z

: Jn−lJl : . (2.21)

We also need the explicit formula for the U(1)-primary state at h = 4, which equals

Ũ−4Ω = U−4Ω− 1

5N
J−1J−3Ω− 3

20N
J−2J−2Ω− 3

N
J−1W−3Ω +

3

N2
J−1J−1L−2Ω

− 3

4N3
J−1J−1J−1J−1Ω−

(21− 15
N

)

(5N + 17)
(L̃−2L̃−2 − 3

5
L̃−4)Ω , (2.22)

where the last term is required in order to make it also Virasoro primary with respect to T̃ .

Continuing in this manner, we can recursively construct U(1)-primary fields W̃ s that

generate a closed algebra. We can furthermore recursively make them Virasoro primary

(with respect to T̃ ), and thus the resulting W∞ algebra has the spin content 2, 3, 4, . . ..

Following the general logic of [23], it must therefore be isomorphic to W∞[λ] for some value

of λ. In the following we shall show that the relevant value of λ is λ = 0. Note that the

classical analysis of [20] only tells us that this has to be true to leading order in 1/c; now we

have shown that it is actually true even at finite c = N − 1.

2.3.2 Determining λ

In order to determine the value of the parameter λ, it is sufficient to calculate two commu-

tators. Indeed, in the conventions of [23] and [28], we have3

[W̃m, W̃n] =
N3c

144
m(m2 − 1)(m2 − 4)δm,−n +

N3

12
(m− n)(2m2 + 2n2 −mn− 8)L̃m+n

+2(m− n)Ũm+n +
40N3

(5c+ 22)
(m− n)Λ̃m+n , (2.23)

[Ũm, Ũn] =
N4c

4320
m(m2 − 1)(m2 − 4)(m2 − 9)δm,−n + · · · , (2.24)

and the parameter γ2, which determines the coefficient of U in the WW OPE [23] and

characterises the W algebra uniquely, is then given by

γ2 =
896

75

N4

N2
3

. (2.25)

3In [28] N4 was defined with the opposite sign compared to [23], as follows from comparing the equation
for the commutator [Wm, Un]. Here we use the conventions of [23].
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Using the analogue of (2.20), we have worked out the first few terms of the W̃W̃ OPE to be

W̃ (z1) W̃ (z2) ∼ 2(N − 1)(N − 2)

3N

1

(z1 − z2)6
+

4(N − 2)

N

T̃ (z2)

(z1 − z2)4
+

2(N − 2)

N

T̃ ′(z2)

(z1 − z2)3

+
4 Ũ(z2) + 3

5
T̃ ′′(z2)

(z1 − z2)2
+

64(N − 2)

5N(N − 1)

Λ̃(4)(z2)

(z1 − z2)2
+O

(
1

z1 − z2

)
, (2.26)

where Λ̃(4) is the composite field Λ̃(4) =: T̃ T̃ : − 3
10
∂2T̃ . Comparing with the central term in

(2.23) and using that c = N − 1, we conclude that

N3 =
4

5

N − 2

N
. (2.27)

In order to compute N4, we have also determined the central term in the Ũ Ũ OPE, i.e.

Ũ4Ũ−4Ω =
9(N − 1)(N − 2)(N − 3)(N + 1)

N2(5N + 17)
Ω , (2.28)

which gives

N4 =
54

7

(N − 2)(N − 3)(N + 1)

N2(5N + 17)
. (2.29)

Thus γ2 becomes

γ2 =
144(N + 1)(N − 3)

(5N + 17)(N − 2)
=

64(c+ 2)(λ− 3)
(
c(λ+ 3) + 2(4λ+ 3)(λ− 1)

)
(5c+ 22)(λ− 2)

(
c(λ+ 2) + (3λ+ 2)(λ− 1)

) ∣∣∣∣∣
λ=0,c=N−1

,

(2.30)

i.e. it agrees with the general formula of [23, eq. (2.15)] at λ = 0 and c = N − 1. This proves

that the free fermion construction indeed gives rise to W∞[λ = 0] at c = N − 1.

We should mention that this argument relies on the assumption that the only consistent

W∞ algebras that are generated by one field of each integer spin s ≥ 2 are described by

W∞[λ]. While this statement has not been established in complete generality, there is very

convincing evidence, based on the analysis of [29], that this is indeed the case.4

2.4 The continuous orbifold viewpoint

It was argued in [24] that the theory at λ = 0 can be described in terms of a continuous

orbifold. More specifically, one considers the affine ŝu(N)1 theory, and takes the orbifold by

the action of the group SU(N)/ZN . In the untwisted sector this amounts to restricting the

4In [29] the commutators of the spin fields with total spin s ≤ 10 were determined uniquely in terms of
λ and c, using recursively the Jacobi identities.
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affine level 1 theory to those states that are SU(N)/ZN singlets. From this point of view, the

higher spin currents then arise from the Casimir operators; in particular, the stress energy

tensor of the continuous orbifold theory equals

T co =
1

2(N + 1)

∑
a

: JaJa : , (2.31)

where Ja are the currents of the ŝu(N)1 theory, while the spin 3 generator is

W co =
1

3(N + 1)(N + 2)

∑
abc

dabc : JaJ bJ c : , (2.32)

where dabc is the totally symmetric invariant tensor. The higher spin generators are similarly

associated to the higher order Casimir operators.

Actually, the relation between this continuous orbifold description and the free fermion

construction from above is fairly immediate. The theory of N complex fermions has a û(N)1

algebra, whose generators are

J ij = ψ∗ iψj . (2.33)

This current algebra contains the û(1) subalgebra generated by J =
∑

i ψ
∗ iψi and the coset

by this û(1) algebra (see section 2.3) leads to an affine ŝu(N)1 theory at c = N − 1. Indeed,

the ŝu(N)1 currents are simply given by, see [30, chapter 15.5.6]

Ja =
∑
ij

ψ∗i taij ψ
j , (2.34)

where taij are the generators of su(N) in the fundamental representation. In both theories we

are furthermore considering only singlets with respect to the global SU(N) action, and thus

the spectra agree precisely (in the untwisted sector). The twisted sectors are then completed

by consistency, and thus should also match. (It might be interesting to understand the

twisted sectors more directly from the free fermion point of view; this could be closely

related to the discussion of [31] in one dimension higher.)

Using the translation between the free fermion and the ŝu(N)1 description, it was shown

in [30, chapter 15.5.6] that the stress energy tensor of (2.31) agrees indeed with T̃ from

(2.14). We have also checked that (2.32) and (2.17) similarly agree.

3 The theory at λ = 1

The other simple realisation of the W∞[λ] algebra arises for λ = 1, for which there is a

description in terms of k complex free bosons.
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3.1 The higher spin currents

The theory of k complex free bosons has spin-s currents [32]

W s(z) = m(s)
s−1∑
l=1

(−1)l

(s− 1)

(
s− 1

l

)(
s− 1

s− l

)
∂lφ j ∂s−lφ̄ j , (3.1)

where the sum over j = 1, . . . , k is implicit, and we choose the normalization factor

m(s) =
2s−3s!

(2s− 3)!!
. (3.2)

Explicitly, the first few currents are

T (z) ≡ W 2(z) = − : ∂φ j ∂φ̄ j : (3.3)

W (z) ≡ W 3(z) = −2 : (∂φ j ∂2φ̄ j − ∂2φ j ∂φ̄ j) : (3.4)

U(z) ≡ W 4(z) = −16

5
: (∂φ j ∂3φ̄ j − 3 ∂2φ j ∂2φ̄ j + ∂3φ j ∂φ̄ j) : . (3.5)

Using the OPEs of the currents

∂φ i(z1) ∂φ̄ j(z2) ∼ − δij

(z1 − z2)2
(3.6)

we can work out the OPEs of higher spin currents, and one finds for the stress energy tensor

T (z1)T (z2) =
k

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+

∂T (z2)

(z1 − z2)
+ · · · , (3.7)

thus showing that the central charge equals c = 2k, as expected. Some of the other OPEs

are worked out explicitly in Appendix B, see eqs. (B.1) – (B.5); converted into modes, they

give rise to the commutation relations

[Lm, Ln] = (m− n)Lm+n + k
6
m(m2 − 1)δm+n (3.8)

[Lm,Wn] = (2m− n)Wm+n (3.9)

[Lm, Un] = (3m− n)Um+n + 32
5
m(m2 − 1)Lm+n (3.10)

[Wm,Wn] = 2(m− n)Um+n + 4
5
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

+2k
15
m(m2 − 1)(m2 − 4)δm+n (3.11)

[Wm, Un] = (3m− 2n)Xm+n + 64
35

(5m3 − 5m2n+ 3mn2 − 17m− n3 + 9n)Wm+n

[Um, Un] = 64
525
km(m2 − 1)(m2 − 4)(m2 − 9)δm+n + · · · , (3.12)
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where we have only worked out the leading term for the [U,U ] commutator.

3.2 The primary basis

The W s as defined in (3.1) are not primaries: while W 3 is still a primary (see (3.9)), the

spin-4 field U is already not primary (see eq. (3.10)). In order to identify the λ value of the

resulting algebra, it is convenient to go to a primary basis. For instance, the spin-4 current

in the primary basis is

Ũ = U − 192

10k + 22
Λ(4) , (3.13)

where Λ(4)
(
=: TT : − 3

10
∂2T

)
is the familiar composite field, see eq. (2.26). In terms of this

field, the relevant OPEs then become

W (z1)W (z2) =
16k

z6
12

+ 48

[
T

z4
12

+
1

2

∂T

z3
12

+
3

20

∂2T

z2
12

+
1

30

∂3T

z12

]
+

4

z2
12

[
Ũ +

192

10k + 22
Λ(4)

]
+

2

z12

[
∂Ũ +

192

10k + 22
∂Λ(4)

]
, (3.14)

Ũ(z1)Ũ(z2) =
3072(2k + 2)k

10k + 22

1

z8
12

+ · · · . (3.15)

Comparing as before with eqs. (2.23) and (2.24) we thus conclude that

N3 =
48

5
, N4 =

9216

7

c+ 2

5c+ 22
, (3.16)

where we have used that c = 2k. Thus the γ2 parameter from eq. (2.25) becomes

γ2 =
512(c+ 2)

3(5c+ 22)
=

64(c+ 2)(λ− 3)(c(λ+ 3) + 2(4λ+ 3)(λ− 1))

(5c+ 22)(λ− 2)(c(λ+ 2) + (3λ+ 2)(λ− 1))

∣∣∣∣
λ=1

. (3.17)

Hence the free boson theory generates indeedW∞[λ = 1] at c = 2k. Moreover, the seemingly

non-linear W∞[λ = 1] algebra of eq. (3.14) is in fact linear upon going to the original non-

primary basis (3.1), in agreement with the analysis of [20].

4 Deforming the theory

We are interested in perturbing the W∞[λ] algebra by a marginal operator that preserves

the current symmetry, i.e. by a perturbation that leaves all currents of W∞[λ] holomorphic.

From the analysis of [33], see also [34], we know that to first order in perturbation theory

11



this will be the case provided that

lim
ε→0

∮
|w−z|=ε

dwΦ(w, w̄)W s(z) = 0 . (4.1)

Since we know that the OPE of W s with Φ is of the form

W s(z)Φ(w, w̄) =
∑
l

(W s
l Φ)(w, w̄) (z − w)−l−s (4.2)

the requirement that W s remains holomorphic means that

Ns ≡
s−1∑
l=0

(−1)l

l!
(L−1)lW s

−s+1+l Φ = 0 s ≥ 2 . (4.3)

(Here we have assumed that Φ is W∞[λ] primary.) Given that the WN,k minimal models

are not expected to have any such perturbation — the integrable perturbation by the field

(0; adj) is relevant and induces the RG flow from k → k − 1 — we can only hope to find

a solution to this problem either at generic values of (λ, c) of the W∞[λ] theory, or in the

’t Hooft limit of the WN,k models. Remarkably, there is a simple perturbing field Φ that

seems to satisfy (4.3) in the ’t Hooft limit, as we shall now explain.

4.1 The perturbation in the ’t Hooft limit

We begin by analysing the condition (4.3) in the ’t Hooft limit, i.e. in the limit of the minimal

models WN,k where we take N, k →∞ while keeping

λ =
N

N + k
(4.4)

fixed. It was shown in [23] that with the central charge

cN,k = (N − 1)
[
1− N(N + 1)

(N + k)(N + k + 1)

]
(4.5)

the chiral algebra WN,k
∼= W∞[λ], even at finite N and k. In the ’t Hooft limit cN,k → ∞,

and hence the non-linear terms in W∞[λ] drop out. Let us denote the eigenvalues of the

W∞[λ] primary state Φ by

W t
0Φ = wtΦ t ≥ 2 . (4.6)

By construction N2 = 0 provided that Φ is marginal, i.e. w2 ≡ h = 1. On the other hand,

the Ns with s ≥ 3 are generically non-trivial null-vectors. In order to confirm that they are

12



indeed null we need to show that they are annihilated by all positive W∞[λ] modes. Using

the commutation relations [Lm,W
s
n] = ((s− 1)m− n)W s

m+n one can easily check that

LnNs = 0 n ≥ 1 , s ≥ 3 . (4.7)

Thus it is sufficient to require

W s
nNt = 0 , s, t ≥ 3 , n ≥ 1 . (4.8)

We now consider the special case of (4.8) with s = 3 and n = t−1. Then using the structure

of the commutation relations of W∞[λ], in particular the fact that the highest spin mode

that appears in the commutator of W 3 with W t is W t+1, (4.8) leads to an equation for the

eigenvalue wt+1 in terms of the eigenvalues ws with s ≤ t (as well as the structure constants

of the algebra). For example, from (4.8) with s = 3 and n = t − 1 = 2 with t = 3, 4, 5 we

obtain

w4 =
3

4

(
N3 + (w3)2

)
(4.9)

w5 =
1

15

(
10w4w3 + 8

N4

N3

w3
)

(4.10)

w6 =
1

9

(
5 (w4)2 + 30n44w

4 − 3N4

)
, (4.11)

where N3, N4 and n44 are the structure constants of the W∞[λ] algebra, which equal, in our

conventions,

N3 =
16

5
σ2(λ2 − 4) , N4 =

384

35
σ4(λ2 − 4)(λ2 − 9) , n44 =

8

15
σ2 (λ2 − 19) , (4.12)

where σ is a normalisation constant.

Thus this subset of conditions fixes the eigenvalues of Φ up to an arbitrary choice of w3.

One might wonder whether some of the other conditions in (4.8) would then fix w3, but this

does not seem to be the case.5 In fact there is an intuitive reason why this should be so: the

set of conditions (4.8) with s = 3 and n = t − 1 is equivalent to the set of conditions with

t = 3, n = 1, 2 and s = 3, 4, . . .. On the other hand, these latter conditions are equivalent

to the statement that N3 is indeed a null-vector, i.e. to the statement that the W 3-current

remains holomorphic to first order in perturbation. But since the whole W∞[λ] algebra is

generated by repeated OPEs from W 3, this should then imply that the wholeW∞[λ] algebra

remains holomorphic to first order, i.e. (4.8) is satisfied for all s, t ≥ 3 and n ≥ 1.

This suggests that a one-parameter family of representations preserve theW∞[λ] algebra

5We have worked out a few more relations obtained from (4.8), but they all follow from those above.
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to first order in perturbation theory. One might then wonder whether one of the coset fields

would satisfy these constraints in the ’t Hooft limit. Quite remarkably, this does seem to be

the case. To see how this goes, recall that the ( ; ) representation becomes indecomposable

in the ’t Hooft limit, i.e. its structure is [22]

( ; ) :
...

...
...

...

2 ρ

L1

��

ξ

��

T

L2

��

1 φ

L−1

XX FF

L1

��
L0 = 0 ω

L−2

GG

(4.13)

Furthermore, in a suitable rescaling limit (see Section 5), the arrow between φ and ω dis-

appears, and φ becomes a primary field of conformal dimension h = 1. Its eigenvalues are

simply

ws(φ) = ws( ; 0) + ws(0; ) , (4.14)

where ws( ; 0) and ws(0; ) are the eigenvalues of W s
0 on the highest weight states of ( ; 0)

and (0; ), respectively. In the conventions of [28] the eigenvalues of these representations

are

w2( ; 0) = 1
2
(1 + λ) w2(0; ) = 1

2
(1− λ)

w3( ; 0) = 2
3
i σ (1 + λ)(2 + λ) w3(0; ) = −2

3
i σ (1− λ)(2− λ)

w4( ; 0) = −4
5
σ2 (1 + λ)(2 + λ)(3 + λ) w4(0; ) = −4

5
σ2 (1− λ)(2− λ)(3− λ)

(4.15)

and

w5( ; 0) = −32
35
i σ3 (1 + λ)(2 + λ)(3 + λ)(4 + λ) , (4.16)

w5(0; ) = 32
35
i σ3 (1− λ)(2− λ)(3− λ)(4− λ) , (4.17)

w6( ; 0) = 64
63
σ4 (1 + λ)(2 + λ)(3 + λ)(4 + λ)(5 + λ) , (4.18)

w6(0; ) = 64
63
σ4 (1− λ)(2− λ)(3− λ)(4− λ)(5− λ) , (4.19)

from which we deduce

w2(φ) = 1 , w3(φ) = 4 iσλ , w4(φ) = −48

5
σ2(1 + λ2) , (4.20)
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and

w5(φ) = −128

7
i σ3 λ(5 + λ2) , w6(φ) =

640

21
σ4 (8 + 15λ2 + λ4) . (4.21)

Together with the values for the structure constants (4.12), it is then straightforward to

check that eqs. (4.9) – (4.11) are indeed satisfied. This gives strong support to the assertion

that φ indeed satisfies all the requirements in (4.8). We shall also be able to confirm this

using different methods for the special cases of λ = 0 and λ = 1, see sections 4.3 and 4.4

below.

4.2 The analysis for the non-linear W∞[λ] case

The above analysis was done in the ’t Hooft limit, but we may ask whether the situation for

the W∞[λ] algebra at finite c would be different. We have repeated the analysis of (4.8) for

this case, using the explicit form of the quantum algebraW∞[λ] as given in [23, Appendix A]

(see also [29]). While there are 1
c

corrections, e.g. (4.9) and (4.10) become

w4 =
3

4

( 5 (c− 2)

5c+ 22
N3 + (w3)2

)
(4.22)

w5 =
1

15

(
10w4w3 +

56(c− 6)

(7c+ 114)

N4

N3

w3
)
, (4.23)

we have found that the general structure is largely unmodified, i.e. there continues to be a

one-parameter family of such perturbing fields (that are characterised by the W 3
0 eigenvalue

w3). In order to find the analogue of φ in this context we have demanded in addition that

the representation generated from Φ has the same character as that of φ, i.e.

χφ =
q

(1− q)2

∞∏
s=2

∞∏
n=s

1

(1− qn)
= q1

(
1 + 2q + 4q2 + 7q3 + · · ·

)
. (4.24)

In particular, this means that there are only two linearly independent states at the first

descendant level, i.e. the representation possesses many null states, e.g. a null state of the

form (W 4
−1 +αW 3

−1 + βL−1)Φ = 0, etc. Then there are only six solutions for w3, namely the

roots of the sextic equation

21000(5c+ 22)2(c− 1)N3
3N4 − 253125(5c+ 22)(c2 − 4)N5

3

− 5625(259c3 + 2170c2 + 8180c+ 9752)N4
3 (w3)2 − 12544(c+ 2)(5c+ 22)2N2

4 (w3)2

+ 8400(5c+ 22)(31c2 + 141c+ 266)N2
3N4 (w3)2

− 1125(5c+ 22)(35c2 − 192c− 524)N3
3 (w3)4 + 840(5c− 17)(5c+ 22)2N3N4 (w3)4

− 225(5c+ 22)(5c2 + 32c+ 44)N2
3 (w3)6 = 0 . (4.25)
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In the large c limit, plugging in the values for N3 and N4 from (4.12), we obtain the solutions

w3 = ± 4 i σ λ or w3 = ± 4 i σ (λ+ 2) or w3 = ± 4 i σ (λ− 2) . (4.26)

Note that the first two solutions correspond precisely to φ and its conjugate φ∗ (i.e. the

corresponding state in ( ; )). We don’t know the interpretation for the other four solutions.

It is instructive to compare these general results to what happens at the special points

λ = 0 and λ = 1 where we have free field realisations of the algebra, see Section 2 and 3,

respectively. In particular, for these cases we can construct the analogue of φ explicitly, and

show that it preserves indeed the full W∞[λ] algebra to first order. Let us first consider the

case of λ = 0.

4.3 The perturbing field at λ = 0

In the free fermion theory there is only one U(1)-primary field of conformal dimension (1, 1)

in the untwisted sector, namely

Φ =
(
ψ̄∗i ψi

) (
ψ̄j ψ∗j

)
− 1

N
JJ̄ =

(
ψ̄∗i ψi

) (
ψ̄j ψ∗j

)
− 1

N

(
ψ∗i ψi

) (
ψ̄∗j ψ̄j

)
, (4.27)

where J and J̄ are the holomorphic and anti-holomorphic U(1)-currents, respectively. In

terms of the continuous orbifold description it corresponds to the field

Φ =
∑
a

JaJ̄a , (4.28)

as one confirms using the identity of the representation matrices in the fundamental repre-

sentation ∑
a

taijt
a
kl = δil δjk −

1

N
δijδkl . (4.29)

The perturbation by this field leaves theW∞[λ = 0] currents holomorphic to first order. One

way to see this is to consider the perturbed action

S = S0 + g

∫
d2zΦ(z, z̄) , (4.30)

where S0 was defined in (2.1). This perturbation modifies the equations of motion of the

free theory (2.2) to

∂̄ψi = g (ψ̄iK +
1

N
ψiJ̄) ∂̄ψ∗i = −g (ψ̄∗iK̄ +

1

N
ψ∗iJ̄) , (4.31)
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where K and K̄ are defined as

K ≡ ψ̄∗j ψj , K̄ ≡ ψ∗j ψ̄j . (4.32)

It is easy to check that the U(1) current remains conserved, ∂̄J = 0, and the same is true

for the stress energy tensor T (and hence for T̃ ) since

∂̄T = 2g
[
−(ψ̄∗ · ∂ψ)K̄ − (∂ψ∗ · ψ̄)K + ∂(KK̄)

]
= 2g

[
−g(ψ∗ · ψ)KK̄ + g(ψ∗ · ψ)K̄K

]
= 0 , (4.33)

where the dot ‘·’ is a shorthand for the sum over i. On the other hand, one shows that the

higher spin currents W s (and hence W̃ s) are only preserved to first order in g,

∂̄W s = −g
s−1∑
k=0

s−1−k∑
p=1

p∑
q=0

(−1)k
(

s− 1

k, p− q, q

)[(s− 1

k

)
− (−1)p

(
s− 1

k + p

)]
× (∂s−1−k−pψ∗ · ∂p−qψ̄)(∂qψ̄∗ · ∂kψ) , (4.34)

where (
s− 1

k, p− q, q

)
=

(s− 1)!

k! (p− q)! q! (s− 1− k − p)!
. (4.35)

Since the sum over p starts with p = 1, we can apply the equations of motion at least once

more, and find that ∂̄W s = O(g2).

Thus our perturbation by Φ should satisfy the conditions (4.8) from above. In fact, using

Wick’s theorem repeatedly, one finds that

W̃0Φ = 0 . (4.36)

This solves indeed (4.25) since, at λ = 0, we have the relation

N4

N2
3

=
253125(c2 − 4)

21000(5c+ 22)(c− 1)
=

675

56

c2 − 4

(5c+ 22)(c− 1)
=

75

896
γ2
∣∣
λ=0

, (4.37)

where γ2 was defined in (2.25) and (2.30). Furthermore, Φ corresponds to the solution with

w3 = ±4 i σ λ|λ=0 = 0, i.e. it describes in the ’t Hooft limit precisely the left-right symmetric

combination of the field φ.

While the perturbation by Φ in (4.27) preserves the W∞[λ = 0] currents to first order in

perturbation theory, it does not do so to higher orders. One explicit way to see this is to use

(4.34) to determine

∂̄W̃ 3 = 6g2
[
J∂(K̄K)− (∂J)K̄K

]
, (4.38)
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which does not vanish. We have also confirmed this conclusion by a direct perturbative

analysis.

Another way to arrive at the same conclusion is to observe that it follows from the

analysis of [35] that Φ, given by (4.28), is not exactly marginal. Indeed, a current-current

deformation is only exactly marginal if all chiral currents that appear in the sum lie in an

abelian subalgebra, and similarly for the anti-chiral currents. However, this is clearly not

the case for (4.28). Thus, in particular, the T component of the stress energy tensor does

not remain holomorphic to higher order in perturbation theory. The same conclusion can

also be reached by observing that in the free fermion description we have the identification

( ; ) ∼= (0; 0)⊕ (adj; 0) , (4.39)

as follows from [24, eq. (2.10)]. The perturbing field corresponds to the second representation,

(adj; 0), which is not exactly marginal.

4.4 The perturbing field at λ = 1

For the free boson theory at λ = 1, the only real singlet field (in the untwisted sector) that

has conformal dimension (1, 1) is

Φ1 = ∂φ j ∂̄φ̄ j + ∂̄φ j ∂φ̄ j . (4.40)

It is proportional to the Lagrangian itself, and thus switching on this field only changes the

‘radius’ of the bosons; in particular it therefore does not break the W∞[λ = 1] symmetry.

(It also cannot deform λ since otherwise W∞[λ] algebras with λ 6= 1 would also have a free

boson realisation and hence must be linear, in contradiction with the results of [20].6)

Thus we should expect that Φ1 is again a solution of (4.25). Using Wick’s theorem, we

have determined the W 3
0 eigenvalue of Φ1; in fact, the two terms in Φ1 (that are complex

conjugates of one another) have opposite W 3
0 eigenvalue, and thus Φ1 is only an eigenvector

of (W 3
0 )2 with eigenvalue

(w3)2 = 16 . (4.41)

Together with (3.16) one can easily check that (4.25) is indeed satisfied for all values of

c, i.e. all values of k. We should also mention that comparing (3.16) to (4.12) it follows

that σ2 = −1 in the conventions of Section 3. Thus (4.41) corresponds again to the first

eigenvalue in (4.26) at λ = 1, i.e. Φ1 can be identified with the left-right symmetric version

of φ+ φ∗ in the ’t Hooft limit.

The fact that the perturbing field is trivial can also be understood from the point of view

6We thank Rajesh Gopakumar for this observation.
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of the minimal models. At λ = 1, all eigenvalues of the fields of the form (0; Λ−) vanish, and

hence the analogue of [24, eq. (2.10)] is

(Λ1; Λ2) ∼= (Λ1; 0) . (4.42)

The analogue of (4.39) is therefore

( ; ) ∼= ( ; 0) , (4.43)

i.e. the perturbing field agrees indeed with the ‘scalar’ field ∂φj ∂̄φ̄j.

5 The effect of the perturbation

As we have seen in Section 4.1, in the ’t Hooft limit the φ ‘descendant’ of the ( ; ) represen-

tation (which decouples from the ground state in the ’t Hooft limit) defines a perturbation

that leaves the full set of W∞[λ] currents holomorphic at first order in perturbation theory.

Thus we can ask how the perturbation by the corresponding left-right symmetric field Φ (i.e.

the combination of φ with its right-moving analogue) changes the underlying W∞[λ] theory.

Since the perturbation only has the desired properties in the ’t Hooft limit, we need to be

careful about how precisely the limit is defined. Let us denote by ω the ground state of the

( ; ) representation in the WN,k minimal model, and by ω∗ its conjugate, i.e. the ground

state of the ( ; ) representation. At finite (N, k) we define, following [36]

Φ =
1

2hω
L̄−1L−1ω , ω =

1

2hω
L̄1L1Φ , (5.1)

and then take the N →∞ limit, keeping as before λ = N
N+k

fixed, see eq. (4.4).7 Then both

ω and Φ have unit norm in the limit, but become disconnected in the sense that

L̄−1L−1ω = 0 , L̄1L1Φ = 0 . (5.2)

In particular, Φ is therefore a primary non-descendant field, and it makes sense to perturb

with it. Actually, since we should perturb with a real field we shall consider the perturbation

by P = Φ + Φ∗, where

Φ = lim
N→∞
λ fixed

1

2hω
L̄−1L−1ω , Φ∗ = lim

N→∞
λ fixed

1

2hω
L̄−1L−1ω

∗ . (5.3)

7Another choice for the limit theory is to demand that as N → ∞, ω becomes null whereas Φ stays in
the spectrum and has a unit norm. This requires Φ = 1

(2hω)2 L̄−1L−1ω and ω = L̄1L1Φ [22].
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Since the four-point function of P with itself does not factorise over the identity channel, the

perturbation by P will not be exactly marginal [37]. However, as in [36] there are suitable

holomorphic descendants of ω (and its higher powers) that begin to mix with the stress

energy tensor in perturbation theory, and it is plausible that a suitable linear combination of

them will remain holomorphic. In any case, we shall only work to first order in perturbation

theory, where the theory remains conformal.

5.1 The structure of the perturbation theory

In order to study the effect of the perturbation by P , one could try to study the behaviour of

the structure constants of theW∞[λ] algebra (i.e. the correlators of the holomorpic currents)

under the perturbation by P . However, this is quite delicate since the perturbation directly

affects the holomorphic correlators only at second order in perturbation theory: since P has

conformal dimension (1, 1), the ‘right-moving’ conformal dimension must be soaked up by at

least one other field with non-zero right-moving conformal dimension. In fact, there is a quite

generic argument that shows that λ can never be changed by an exactly marginal operator

P .8 In order to see this, suppose that we have a family of W-algebras (parametrised by λ),

and suppose that we could change λ by switching on a perturbation by an exactly marginal

field P with coupling constant g. As we have just explained, the first order perturbation

must always vanish, thus the derivative of allW-algebra correlators with respect to g vanishes

when evaluated at g = 0 — and this holds for all values of λ. But if the perturbation by g P

just changes λ, then the fact that this holds for all values of λ implies that it also holds for

all values of g, i.e. that the derivative of theW-algebra correlators with respect to g vanishes

for all values of g. But then this means that these correlators are actually independent of g,

i.e. that the W-algebra does not change under the perturbation.

In our case the situation is different since P is not exactly marginal, and hence the pre-

vious argument does not apply. However, it highlights the difficulty in trying to determine

the change of λ directly from the correlators of the holomorphic currents. We shall therefore

follow a different route: we will compute the conformal dimension of the simplest represen-

tation O ≡ ( ; 0) (which has conformal dimension h = 1
2
(1 + λ) at O(g0)) in the perturbed

theory, and read off the effect of the perturbation from the change of h. The computation is

an analysis of operator-mixing following [38] (see also [39]) which we shall now outline.

Let us consider all the fields {Oi,O∗i } with conformal dimension h = 1+λ
2

in the unper-

turbed theory, where Oi and O∗i are a conjugate pair. Define M as the matrix of their

two-point functions. Because these two-point functions always couple conjugate pairs to-

8We thank Stefan Fredenhagen for explaining this to us.
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gether, the structure of M is of the form

M = M⊗

(
0 1

1 0

)
. (5.4)

As we shall see, we only need to know the eigenvalues of M; therefore it is enough to

concentrate on the matrix M, i.e. we shall simply write Oi for the pair {Oi,O∗i },

Mij = 〈Oi(z1, z̄1)Oj(z2, z̄2)〉 . (5.5)

At O(g0), the matrix M is diagonal

M
(0)
ij = 〈Oi(z1, z̄1)Oj(z2, z̄2)〉(0) =

1

|z1 − z2|4h
δij and ln M(0) = (−4h) ln |z1 − z2|1 . (5.6)

At order g, two representations (Oi and Oj) that are related to each other by adding or

subtracting a box can start to have a non-zero two-point function

〈Oi(z1, z̄1)Oj(z2, z̄2)〉(1) = g

∫
d2w 〈Oi(z1, z̄1)Oj(z2, z̄2)P (w, w̄)〉

= g
1

|z1 − z2|4h
ln |z1 − z2|Pij . (5.7)

Thus, to O(g), the mixing matrix M is

M = M(0) + gP +O(g2) =
1

|z1 − z2|4h
(
1 + gP ln |z1 − z2|+O(g2)

)
(5.8)

with ln M = [(−4h)1+gP ] ln |z1−z2|+O(g2). In particular, after the perturbation is turned

on, the two-point function matrix is no longer diagonal, i.e. the fields {Oi,O∗i } we started

with are no longer conformal eigenstates. The new conformal eigenstates in the perturbed

theory at O(g) are the eigenvectors of the mixing matrix defined as

M = (−4h) 1 + gP , (5.9)

and their conformal dimensions are the corresponding eigenvalues divided by (−4).

Now in order to study the effect of the perturbing field P on ( ; 0), we first need to

identify all states that are ‘mixed’ together at order g; a necessary condition for this is that

they have conformal dimension h = 1
2
(1+λ) in the ’t Hooft limit. To enumerate these fields,

first recall that the conformal dimension of (Λ+; Λ−) at finite (N, k) can be written in terms
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of the quadratic Casimir C2 of su(N) as

h(Λ+; Λ−) =
C2(Λ+)

N + k
+
C2(Λ0)

N + 1
− C2(Λ−)

N + k + 1
+ n , (5.10)

where {Λ+,Λ0,Λ−} are highest weight representations of {su(N)k, su(N)1, su(N)k+1}, re-

spectively. They satisfy the constraint that, as a weight of su(N), Λ+ + Λ0 − Λ− lies in the

root lattice of su(N). Furthermore, n is the ‘height’ at which Λ− appears in Λ+ ⊗ Λ0. The

quadratic Casimir has the large N expansion (that is exact even at finite N)

C2(Λ) = N
B(Λ)

2
+
D(Λ)

2
− B(Λ)2

2N
, (5.11)

where B(Λ) is the number of boxes of Λ, B(Λ) =
∑

i ri =
∑

j cj, and D(Λ) is defined as

D(Λ) =
∑

i r
2
i −

∑
j c

2
j , with ri and cj being the number of boxes in the i’th row and j’th

column, respectively. Expressed in terms of B and D, the large N expansion of the conformal

dimension (5.10) is then

h(Λ+; Λ−) =
B0 + (B+ −B−)λ

2
+ n+

1

2N

[
(D0 −B0) + (D+ −D−)λ+B−λ

2
]

+O
(

1

N2

)
,

(5.12)

where B+ is a shorthand for B(Λ+), and similarly for the others.9 Therefore for the state

(Λ+; Λ−) to have conformal dimension 1+λ
2

in the ’t Hooft limit we need

B0 = 1, B+ −B− = 1, and n = 0 , (5.13)

which means that Λ+ ⊂ Λ− ⊗ . For these representations — in the following we shall

refer to them sometimes as the ‘scalar-like’ representations — the conformal dimension then

equals

h(Λ+; Λ−) =
1

2
(1 + λ) +

λ2B− − 1

2N
+
D+ −D−

2N
λ+O

( 1

N2

)
. (5.14)

Note that this formula is only correct for λ < 1; for λ = 1, we need to take N →∞ at finite

k, and then an expansion in inverse powers of N does not make sense. Instead, we should

then consider an expansion in inverse powers of k, i.e. we should replace

1

N
7→ (1− λ)

λ

1

k
. (5.15)

9Actually, in the large N limit, B(Λ) is in general the sum of the number of boxes and anti-boxes of Λ,
see e.g. [22]. In particular, B0 = 1 in (5.13) corresponds to Λ0 being the anti-fundamental representation
with one anti-box.
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The property that Λ+ ⊂ Λ− ⊗ implies that the fields of interest are in one-to-one

correspondence with the edges of the Young lattice (see e.g. [40] for an introduction to some

of its basic properties — the different colours of the arrows in Fig. 1 will be explained below).

Figure 1: Young lattice.

Recall that the number of Young tableaux at level n (i.e. with n boxes) equals P (n) (the

partition number of n), while the number of edges at level n (i.e. edges from level n to level

n+ 1) is S(n) defined by

S(n) =
n∑
k=0

P (k) . (5.16)

Their generating functions are

∞∑
n=0

P (n)xn =
∞∏
m=1

1

1− xm
∞∑
n=0

S(n)xn =
1

1− x

∞∏
m=1

1

1− xm
. (5.17)

S(n) counts the number of scalar-like fields for which Λ− has n boxes, and it grows exponen-

tially with n.10 Therefore there are infinitely many such fields in the ’t Hooft limit, and we

need to deal with an infinitely-degenerate operator mixing problem. However, as we shall see

below in Section 5.3, the perturbation analysis has a lot of structure, and we can therefore

understand at least its qualitative features in some detail.

10Indeed, we have P (n) ∼ 1
4
√
3n

exp
(
π
√

2n
3

)
as n→∞.
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5.2 The mixing matrix

Next we want to determine the mixing matrix M explicitly. Its off-diagonal entries can be

computed from the integral∫
d2w 〈Oi(z1, z̄1)Oj(z2, z̄2)P (w, w̄)〉 = Pij

1

|z1 − z2|4h
ln |z1 − z2| , (5.18)

where h = 1
2
(1+λ) is the conformal dimension at O(g0). As explained above, the correlators

in the integrand are first to be evaluated at finite N and k, with P = Φ + Φ∗ as given in

(5.3); the large N , k limit is then only taken at the end. At finite N and k and up to O( 1
N

),

the three-point function of O1 and O2 with ω equals

〈O1(z1, z̄1)O2(z2, z̄2)ω(w, w̄)〉 = CO1O2 ω

∣∣∣∣∣ 1

(z1 − z2)2h+ 1
N

∆1(z2 − w)
1
N

∆2(z1 − w)
1
N

∆3

∣∣∣∣∣
2

,

(5.19)

where ∆i = δi+δi+1−δi+2, and δi (with i ≡ i+3) are the O( 1
N

) corrections to the conformal

dimensions

O1 : h1 = h+
δ1

N
O2 : h2 = h+

δ2

N
ω : h3 =

δ3

N
=

λ2

2N
. (5.20)

In order to deduce from this the correlator corresponding to Φ, we then apply 1
2hω

L̄−1L−1 to

(5.19) and obtain

〈O1(z1, z̄1)O2(z2, z̄2) Φ(w, w̄)〉 =
4

Nλ2
CO1O2 ω

∣∣∣∣∣
∆2

z2−w + ∆3

z1−w

(z1 − z2)2h+ 1
N

∆1(z2 − w)
1
N

∆2(z1 − w)
1
N

∆3

∣∣∣∣∣
2

.

(5.21)

Finally, we take the large N limit and evaluate the w-integral to obtain∫
d2w 〈O1(z1, z̄1)O2(z2, z̄2) Φ(w, w̄)〉 =

(
−16π

N
· ∆2∆3

λ2
· CO1O2 ω

) 1

|z1 − z2|4h
ln |z1 − z2| ,

(5.22)

where ∆2∆3 = (λ
2

2
)2 − (δ1 − δ2)2; here we have used the identity∫

d2w
1

(w − z1)(w̄ − z̄2)
= 2π ln r

∣∣∣∞
|z1−z2|

. (5.23)

and dropped the ln∞ term.11

11The singularity ln∞ is due to taking the N → ∞ limit before doing the integral; the integral (5.22)
does not suffer from an IR divergence at finite N .

24



Thus the Pij entry in the mixing matrix between Oi and Oj is

Pij =
16π

N
· COiOj ω ·

((δi − δj)2

λ2
− λ2

4

)
. (5.24)

The coefficients δi and δj are read off from (5.14), and for the calculation of the structure

constants COiOj ω we can use the results of [41, 42], see also [43] for earlier work. In particular,

some of them were calculated explicitly in [41] using the Coulomb gas approach. Based on

the large N factorisation properties of these structure constants, [42] wrote down an effective

Hamiltonian that captures the exact spectrum and cubic interactions in the ’t Hooft limit.

Since we only need the large N result, we can therefore directly use this effective Hamiltonian

point of view.

We have worked out the explicit coefficients for the low-lying representations up to level 4;

some of the details are spelled out in Appendix C.

5.3 The eigenvalue problem

As we have reviewed above, the eigenvalues of the mixing matrix M (5.9) give the per-

turbed conformal dimensions of the states under consideration. Thus we need to study the

eigenproblem

M · ~F = ρ ~F . (5.25)

In the strict N → ∞ limit ~F is an infinite-dimensional vector, and hence we expect ρ to

take a continuum of eigenvalues. Nevertheless, as we shall now explain, the structure of

the eigenvalues can be identified naturally with that of the conformal dimensions of the

scalar-like states in the ’t Hooft limit.

To start with we observe that the matrix M has the form of a block Jacobi matrix

M({An}, {Bn}) =


A1 B1 0 0 0 . . .

BT
1 A2 B2 0 0 . . .

0 BT
2 A3 B3 0 . . .

0 0
. . . . . . . . . 0

 (5.26)

with

An = −4h1S(n−1)×S(n−1) , Bn = S(n− 1)× S(n) matrix of rank S(n− 1) . (5.27)

The first few explicit expressions for Bn are given in Appendix C. At low levels (for which

we have worked them out, i.e. up to level 4), the matrix Bn has rank S(n− 1) provided that

λ 6= 0. This is also what one should expect generically, and we therefore conjecture that this
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will continue to be true for all n.

Under this assumption the eigenvector problem (5.25) can be solved recursively, gener-

alising the method of finding the eigenvalues of a scalar Jacobi matrix (which we review in

Appendix D). We first decompose the eigenvector ~F into ~F = {~f1, ~f2, . . .}, with ~fn being a

vector of dimension S(n−1). Then for any given eigenvalue ρ, we have to solve the recursive

relations

Bn · ~fn+1 = (ρ+ 4h)~fn −BT
n−1 · ~fn−1 , n ∈ N≥1 , (5.28)

where we have set ~f0 ≡ 0. Unlike the scalar Jacobi case for which the equation, at each

level, is a scalar equation, now the equation at level n is a matrix equation with S(n − 1)

components for the S(n) unknowns in ~fn+1. However, since Bn has rank S(n − 1), we can

always find a solution for ~fn+1, and hence an eigenvector with eigenvalue ρ. This solution is,

however, not unique — in fact the kernel of Bn has dimension S(n)− S(n− 1) = P (n), and

thus, at every level n, we obtain P (n) new families of solutions with ~fn+1 6= 0 but ~fi = 0 for

i ≤ n.

In order to illustrate the structure of these various solutions let us describe some simple

examples. Consider first the eigenvector that involves the original scalar representation

( ; 0), i.e. the eigenvector with f1 = 1. In this case, (5.28) is to be solved with the initial

condition

f1 = 1 . (5.29)

We may choose to supplement the recursion relation (5.28) with the requirement that ~fn+1

is orthogonal to the kernel of Bn,

~f T
n+1 · gn = 0 ∀gn ∈ ker(Bn) (5.30)

in order to guarantee that at level n the corresponding eigenvector is orthogonal to the new

families of eigenvectors that will appear at that level. These P (n) equations, together with

the S(n−1) equations from (5.28), then uniquely determine the S(n) components of ~fn+1 for

all n ≥ 1. This construction works for arbitrary ρ, and thus we conclude that the eigenvalue

spectrum is continuous. This is consistent with the fact that, in the strict N → ∞ limit,

there are infinitely many states that are ‘mixed’ with ( ; 0) via P .

In constructing the solution with f1 = 1 we have in effect identified from the infinite

mixing matrix M (5.9) a sub-matrix (which is also infinite) that describes the mixing of

( ; 0) with all states that couple to it at O(g). For example, the condition (5.30) with n = 1

identifies a specific linear combination ~f
(1)

2 of the two states ( ; ) and ( ; ) at level 2,

namely the linear combination that mixes with ( ; 0) at order g, and similarly at the higher
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levels. However, since there are two scalar-like states at level 2, we may construct a second

state ~f
(2)

2 from ( ; ) and ( ; ) that is orthogonal to ~f
(1)

2 and hence lies in the kernel

of B1. It will generate a new family of solutions; this is to say, we can repeat the above

procedure replacing ( ; 0) by ~f
(2)

2 , i.e. by imposing the initial conditions

f1 = 0 , ~f2 = ~f
(2)

2 . (5.31)

The eigenvectors of this second sub-matrix then involve the states that mix with the linear

combination of ( ; ) and ( ; ) given by ~f
(2)

2 at order g. Again, we can find the solution

for the ~fn recursively, requiring as before (5.30) for n ≥ 2, and since this can be done for

any choice of ρ, it will also lead to a continuum of eigenvalues.

It should now be clear how to proceed in general: at level n, we find P (n) = S(n)−S(n−1)

new families of solutions for which ~fn+1 6= 0 lies in the kernel of Bn and ~fj = 0 for j ≤ n.

For each choice of ~fn+1 we can then construct an eigenvector recursively for any value of ρ.

Thus each of these families will also give rise to a continuum of eigenvalues in the ’t Hooft

limit. Altogether we therefore get at each level n, P (n) families of eigenvectors, where each

family has in turn a continuum of eigenvalues.

So far we have studied the eigenvalue problem in the strict N → ∞ limit. It is natural

to ask whether it is possible to formulate (and hopefully answer) the same question at

large but finite N . At finite (N, k), the number of scalar-like states is finite (∼ min(N, k))

and correspondingly the spectrum is no longer a continuum. In fact, as is explained in

Appendix D, it is straightforward to determine the eigenvalues of the finite problem by

similar techniques. The resulting eigenvalues are then distributed symmetrically with respect

to h = 1+λ
2

.

5.4 The CFT interpretation

As we have explained above, see eq. (5.9), each eigenstate with eigenvalue ρ corresponds to

a state in the spectrum with conformal dimension

hρ = −ρ
4

= h− 1

4
(ρ+ 4h) , i.e. δh = −1

4
(ρ+ 4h) . (5.32)

We now want to match δh as computed from the perturbative analysis, to the change in

conformal dimension of the primary operators of theWN,k models in the ’t Hooft limit as we

vary (N, k). Recall that the ’t Hooft parameter and the central charge of the WN,k models

are given by λ and cN,k in (4.4) and (4.5), respectively. As we modify N 7→ N + δN and
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k 7→ k + δk, they change to first order (in the ’t Hooft limit) as

δλ = − 1

N
λ(λ− 1)δN − 1

N
λ2δk (5.33)

and

δc = (2λ+ 1)(λ− 1)2δN + 2λ3δk . (5.34)

Furthermore, the γ2 parameter, defined in (2.30), can be expressed in terms of N and k as

γ2 =
64(k + 1)(N − 3)(N + 1)(k + 2N)(3k + 2N)(3k + 4N + 3)

(N − 2)(2k +N)(2k + 3N + 2)
(
k(5N + 17)(k + 2N + 1) + 22N(N + 1)

) , (5.35)

and thus it changes as

δγ2 = − 128λ2(λ− 1)

N(λ− 2)2(λ+ 2)2
δN − 128λ3

N(λ− 2)2(λ+ 2)2
δk . (5.36)

Given our general argument above (see the beginning of Section 5.1) we should expect that

to first order δγ2 = 0. Thus we conclude that δk and δN should be related as

δk = −(λ− 1)

λ
δN . (5.37)

Note that then we also have δλ = 0, and

δc = (1− λ2) δN . (5.38)

Under this deformation the conformal dimensions of the scalar-like representations in eq. (5.14)

change as

δh(Λ+; Λ−) = −1

2

δN

N

[λ2B− − 1

N
+

(D+ −D−)

N
λ
]
. (5.39)

This should now be compared to (5.32) above.

In order to do so, let us first explain how the structure of the answer is the same on both

sides. As we have seen above, the eigenstates of the mixing matrix M organise themselves

into families, where at each level n, P (n) new families of eigenvectors of M emerge. Each

such family gives rise to a continuum of eigenvalues ρ.

From the viewpoint of the minimal model representations on the other hand, let us

consider the ‘branches’ of the Young lattice. Recall that the edges of the Young lattice are

in one-to-one corresponding to the scalar-like states (Λ+; Λ−). A branch is a collection of

edges, starting from a given level and including one edge at each subsequent level. Given

the structure of the Young lattice, see in particular eq. (5.16), it is clear that at each level

n, there are P (n) edges that are not on any branch that emerges before level n and are the
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roots of P (n) new branches. Thus the branches of the Young lattice are in natural one-to-one

correspondence to the families of eigenstates of M .

One definite (and natural) way to construct these branches is as follows. Let us begin with

the original scalar representation ( ; 0), and define its branch by picking one representation

at each level (i.e. for each value of B−), namely the one for which ∆D ≡ D+ − D− is

maximal. (This is the branch described by the black edges in Fig. 1.) Then we consider

the corresponding transposed branch, where we replace each representation (Λ+; Λ−) by its

transpose (Λt
+; Λt

−).12 Obviously the transposed branch shares the representation ( ; 0) with

the original branch; thus we should take it to start from ( ; 0) instead — this then leads

to the branch corresponding to the red edges in Fig. 1. Note that taking the transpose

does not modify B− — so the transposed branch also has one representation at each level

— but it changes the sign of both D+ and D−, and hence the sign of ∆D. Thus the change

in conformal dimensions of the transposed representations are, apart from the ‘drift term’

(λ2B− − 1)/N , opposite to those of the original representations, see eq. (5.39).

We now propose that these two branches together are to be mapped to the first two

families that come out of the perturbative analysis, i.e. the family (5.29) that mixes with

( ; 0), and the family (5.31) that mixes with the level 2 state given by ~f
(2)

2 . In particular,

in the ’t Hooft limit the ratio ∆D/N (as well as the drift term (λ2B− − 1)/N) become

continuous variables, and hence the branches of minimal model representations lead to a

continuum of perturbed conformal dimensions; this matches the continuum for ρ we found

above. At finite N and k, the two branches contain the same number of states as the two

families, and their eigenvalues are, except for the ‘drift term’ (λ2B− − 1)/N , symmetrically

distributed around h, thereby matching the structure found in the perturbative analysis.

(We shall comment below on the origin of the ‘drift term’ in the perturbative analysis.)

It should now be clear how to continue. While the above two branches account for

all representations up to level 2, there are two more branches starting with edges linking

level 2 to level 3. Again, they can be completed into branches by picking at each level a

representation with the second biggest (or smallest) value for ∆D — these two branches

can be chosen to be transposes of one another, and they correspond to the solutions of the

perturbative analysis with f1 = ~f2 = 0 and ~f3 6= 0. (They are described by the blue and

green edges in Fig. 1.) Furthermore, their eigenvalues will, again apart from the drift term,

be symmetrically distributed around h.

Continuing in this manner, there will be P (n) branches emerging at level n, and their

conformal weights will, apart from the drift term, be symmetrically distributed around h.

This matches nicely the structure of the eigenvalues as computed in the perturbative analysis.

It remains to comment on the reason that the ‘drift term’ (λ2B− − 1)/N in (5.39) is

12The transpose Λt is the Young tableaux that is obtained from Λ upon reflection along the diagonal.
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invisible to the perturbation analysis of the previous subsection. Recall that in the formula

of the quadratic Casimir (5.11), the term proportional to B is the leading term in the 1
N

expansion. It should therefore be considered as the ‘classical’ contribution, while the term

proportional to D corresponds to the first 1
N

correction. Correspondingly, in the expansion

of the conformal dimension (5.14), although both λ2B−−1
2N

and D+−D−
2N

λ are of O( 1
N

), in some

sense only the first one is ‘classical’.13 Therefore in the large but finite N case, we shouldn’t

merely truncate the infinite mixing matrix to a finite one; we should also shift the diagonal

entries of the mixing matrix by the ‘classical’ piece (−4)λ
2B−−1

2N
. Once this is done, the

new eigenvalues are distributed symmetrically with respect to the shifted O(g0) conformal

dimension, thus explaining the ‘drift term’ λ2B−−1
N

in (5.39).

We therefore regard this as good evidence for the assertion that the perturbation by P

corresponds to switching on the above 1
N

corrections of the WN,k minimal models in the

’t Hooft limit. We should also mention that this identification fits with what we have seen

explicitly for the special cases λ = 0 and λ = 1 above. Indeed, for λ = 1, it follows from

(5.36) that in order for δγ2 = 0, we need to take δk = 0, see also (5.37). But then, it follows

from (5.33) and (5.34) that both δλ = δc = 0, i.e. that the perturbation does not change

anything, in nice agreement with what we saw in Section 4.4. From the point of view of the

perturbative analysis, at λ = 1 where N →∞ at finite k, it is no longer appropriate to make

a 1
N

expansion, but we should rather perform a 1
k

expansion, replacing 1
N

by 1
k

as in (5.15).

But then (5.24) vanishes at λ = 1, i.e. the spectrum is not perturbed at all.

On the other hand, for λ = 0, δλ = 0 automatically from (5.33) and δc = δN from (5.34).

In this case the condition δγ2 = 0 from (5.36) does not impose any restriction on δk and δN ,

and thus δc = δN will be non-zero. Note, however, that the coefficient of the ∆D-term in

(5.39) vanishes for λ = 0. This is reflected, in the context of the perturbation computation,

by the fact that the analysis breaks down for λ = 0 as the Bn do not have maximal rank

any longer. (For instance, the rank of B3 is rk(B3) = 3 < 4, at λ = 0.) This reduction in

the rank of Bn at λ = 0 is a sign that the scalar-like states do not ‘mix’ strongly enough to

break the degeneracy of their conformal dimensions.

6 Conclusions

In this paper we have studied the behaviour of theW∞[λ] theories under perturbations that

preserve the symmetry algebra to first order. In particular, we have found that the minimal

models possess such a perturbing field in the ’t Hooft limit, and we have shown that it

corresponds to switching on the 1
N

corrections, while keeping λ fixed at first order. Since the

13 We remind the reader that the ‘1’ in λ2B−−1
2N comes from B2 = 1.
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theory at finite N involves necessarily the light states (that may be taken to decouple in the

’t Hooft limit [22]), it is not surprising that these states, as well as their descendants, play an

important part in the analysis. The perturbative analysis is technically rather demanding

since the strict ’t Hooft limit is a degenerate point where infinitely many states — the

analogues of the light states at h = 1
2
(1 + λ) — have the same conformal dimension and

hence can mix in perturbation theory. However, as we have seen, the structure of the theory

is sufficiently rigid so as to allow one to understand at least some of the qualitative features.

We should mention that the 2d case we have considered here differs qualitatively from

what happens in higher dimensions. In particular, it was shown in [10, 11] that for d ≥ 3,

the 1
N

corrections necessarily break the higher spin symmetry to first order. This is to

be contrasted with what we have found here, namely that there are perturbing fields that

preserve the symmetry at least to first order.

Perturbations of these W∞[λ] algebras, not necessarily preserving the higher spin sym-

metry, will also be important in order to connect suitable generalisations of these theories

to string theory. In particular, it would be interesting to understand what the effect of the

exactly marginal perturbing field of the large N = 4 higher spin theory of [44] is. It should

be possible to study this question with similar techniques as those used in the present paper.
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A The free fermion theory at λ = 0

In this appendix we collect some of the OPEs we have calculated for the free fermion theory.

Using Wick’s theorem it is not difficult to work out the singular part of the OPEs of these
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currents. In particular, we find that

J(z1) J(z2) ∼ N

(z1 − z2)2
(A.1)

T (z1)T (z2) ∼ N/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+

T ′(z2)

(z1 − z2)
(A.2)

T (z1) J(z2) ∼ J(z2)

(z1 − z2)2
+

J ′(z2)

(z1 − z2)
(A.3)

J(z1)T (z2) ∼ J(z2)

(z1 − z2)2
, (A.4)

J(z1)W (z2) ∼ 2

(z1 − z2)2
T (z2) (A.5)

T (z1)W (z2) ∼ 1

(z1 − z2)4
J(z2) +

3

(z1 − z2)2
W (z2) +

1

(z1 − z2)
W ′(z2) , (A.6)

W (z1)W (z2) ∼ 2N/3

(z1 − z2)6
+

4T (z2)

(z1 − z2)4
+

2T ′(z2)

(z1 − z2)3
+

4U(z2) + 3
5
T ′′(z2)

(z1 − z2)2

+
2U ′(z2) + 2

15
T ′′′(z2)

(z1 − z2)
, (A.7)

where ∼ always denotes the singular part of the operator product expansion.
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B The free boson theory at λ = 1

The first few OPEs of the free boson higher spin fields defined in eq. (3.1) are explicitly given

by (z12 ≡ z1 − z2)

T (z1)W 3(z2) ∼ 3

z2
12

W 3(z2) +
1

z12

∂W 3(z2) (B.1)

T (z1)W 4(z2) ∼ 192

5

T (z2)

z4
12

+
4

z2
12

W 4(z2) +
1

z12

∂W 4(z2) (B.2)

W 3(z1)W 3(z2) ∼ 48

[
T

z4
12

+
1

2

∂T

z3
12

+
3

20

∂2T

z2
12

+
1

30

∂3T

z12

]
+

4

z2
12

W 4(z2) +
2

z12

∂W 4(z2) + 16
k

z6
12

(B.3)

W 3(z1)W 4(z2) ∼ 768

5

[
W 3

z4
12

+
1

3

∂W 3

z3
12

+
1

14

∂2W 3

z2
12

+
1

84

∂3W 3

z12

]
+

5

z2
12

W 5(z2) +
2

z12

∂W 5(z2) (B.4)

W 4(z1)W 4(z2) ∼ 12288

5

[
T

z6
12

+
1

2

∂T

z5
12

+
3

20

∂2T

z4
12

+
1

30

∂3T

z3
12

+
1

168

∂4T

z2
12

+
1

1120

∂5T

z12

]
+

1728

5

[
W 4

z4
12

+
1

2

∂W 4

z3
12

+
5

36

∂2W 4

z2
12

+
1

36

∂3W 4

z12

]
+

6

z2
12

W 6(z2) +
3

z12

∂W 6(z2) +
3072

5

k

z8
12

. (B.5)

C Explicit mixing matrices

Using the notation of (5.26), the first few explicit expressions for the Bn are as follows

• N
16πg

B1 :

( ; ) ( ; )

( ; 0) 1−λ√
2

1+λ√
2

• N
16πg

B2 :

( ; ) ( ; ) ( ; ) ( ; )

( ; )
√

2
3
(1− λ) 0 2+λ√

3
0

( ; ) 0 2−λ√
3

0
√

2
3
(1 + λ)
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• N
16πg

B3 :

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

( ; ) 0 0 0
√

3(−1+λ)
2

−3+λ
2

0 0

( ; )
√

3(1−λ)

2
√

2
3−λ

4
3(1+λ)

4
0 0 0 0

( ; ) −
√

3(1+λ)

2
√

2

3(−1+λ)
4

−3+λ
4

0 0 0 0

( ; ) 0 0 0 0 0 3−λ
2

√
3(1+λ)

2

D The eigenproblem of a scalar Jacobi matrix

Let us consider the perturbative solution corresponding to f1 = 1, i.e. the solution that

involves the original scalar field O ≡ ( , 0) itself. As was argued in section 5.3, the pertur-

bative analysis will mix to this state one specific linear combination of scalar-like states at

each level; thus we can consider the truncated problem, where instead of the full matrix M

we just consider the eigenvalue problem

J · ~F = ρ ~F with ~F = (f1, f2, . . .) (D.1)

for the ‘scalar Jacobi matrix’

J({an}, {bn}) =


a1 b1 0 0 0 . . .

b1 a2 b2 0 0 . . .

0 b2 a3 b3 0 . . .

0 0
. . . . . . . . .

 , (D.2)

where now all an and bn are numbers. This can be solved recursively; since the value of f1

only affects the overall normalisation, we can start by setting f1 = 1. Then given any ρ ∈ C,

we solve for fn(ρ) as

f1 = 1

a1f1 + b1f2 = ρ f1 → f2 =
1

b1

(ρ− a1)f1

. . . (D.3)

bn−1fn−1 + anfn + bnfn+1 = ρ fn → fn+1 =
1

bn

[
(ρ− an)fn − bn−1fn−1

]
. . .
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Note that, by construction, fn(ρ) is a polynomial of degree n− 1 in ρ. If the Jacobi matrix

is strictly infinite, this is the most general solution.

If the Jacobi matrix truncates to some finite matrix, say to a matrix of size K ×K —

this will be the case for finite N and k — then the analysis can be performed similarly. We

simply extend the Jacobi matrix to an infinite matrix by choosing the an and bn for n > K

arbitrarily. Then we can construct recursive eigenvalues as above. Up to level K the solution

agrees with the solution to the actual eigenvalue problem we are interested in, so all we have

to require is that the analysis terminates at level K, i.e. that fK+1(ρ) = 0. Since fn(ρ) is a

polynomial of degree n − 1 in ρ, this gives rise to K different solutions, as expected. Note

that if all ai, i = 1, . . . , K agree, ai ≡ a, then fn(ρ) is an even (odd) polynomial of ρ− a if

n is odd (even); in this case the eigenvalues will be symmetrically distributed around ρ = a.

If the diagonal entries exhibit some ‘drift’, we expect that also the eigenvalues will become

symmetrically distributed w.r.t. some shifted mean.
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