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We study the ability of the Advanced Laser Interferometer Gravitational-Wave Observatory
(aLIGO) to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem.
The cosmic censorship conjecture, which is believed to be true in the theory of general relativity, limits
the spin-to-mass-squared ratio of a Kerr black hole, y = j/m? =< 1. The no-hair theorem, which is also
believed to be true in the theory of general relativity, suggests a particular value for the tidal Love
number of a nonrotating black hole (k, = 0). Using the Fisher matrix formalism, we examine the
measurability of the spin and tidal deformability of compact binary systems involving at least one
putative black hole. Using parameter measurement errors and correlations obtained from the Fisher
matrix, we determine the smallest detectable violation of bounds implied by the cosmic censorship
conjecture and the no-hair theorem. We examine the effect of excluding unphysical areas of parameter
space when determining the smallest detectable apparent violations, and we examine the effect of
different post-Newtonian corrections to the amplitude of the compact binary coalescence gravitational
waveform, as given in Arun et al. [Phys. Rev. D 79, 104023 (2009)]. In addition, we perform a brief
study of how the recently calculated 3.0 pN and 3.5 pN spin-orbit corrections to the phase [Marsat
et al., Classical Quantum Gravity 30, 055007 (2013)] affect spin and mass parameter measurability.
We find that physical priors on the symmetric mass ratio and higher harmonics in the gravitational
waveform could significantly affect the ability of aLIGO to investigate cosmic censorship and the no-

hair theorem for certain systems.
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I. MOTIVATION

The era of advanced gravitational-wave detectors is
expected to provide the first direct observations of gravi-
tational waves. The inspiral portion of compact binary
coalescence (CBC) events are the most promising sources
for gravitational-wave detections in ground-based interfer-
ometers, such as the Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO). Expected de-
tection rates for binary black hole (BBH) mergers range
from 0.4 to 1000 per year with a realistic rate of 20 per
year, and expected detection rates for neutron-star—black-
hole (NS-BH) mergers range from 0.2 to 300 per year with
a realistic rate of 10 per year [1]. The form of the
gravitational-wave strain depends on the chosen metric
theory of gravity. The most accepted theory of gravity is
Einstein’s theory of general relativity. An important use of
gravitational-wave detectors will be to test the theory of
general relativity and cosmological conjectures associated
with general relativity.

Even within the confines of general relativity, there are
conjectures that, while widely believed, have not been
absolutely established, and violations could be uncovered
by gravitational-wave observations. One such conjecture
that is believed to be true in general relativity is the
cosmic censorship conjecture, which states roughly that
all singularities in spacetime must have an event horizon
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that conceals the singularity from a distant observer
[2]. In the Kerr geometry of a spinning black hole, the
event horizon can only exist for mass and spin ratios that
satisfy the Kerr bound, j =< m? in geometric units
(adopted throughout this paper), where j is the spin of
the black hole and m is the mass of the black hole. If the
spin of a compact object exceeds the value of its mass
squared, then the compact object violates the cosmic
censorship conjecture within the context of the Kerr
geometry [3-5]. This limit is often expressed in terms
of the Kerr parameter y = j/m? < 1.

The no-hair theorem is a consequence of the theory of
general relativity. The no-hair theorem states that a regular
black hole that has settled down to its final stationary
vacuum state is determined only by its mass, spin and
electric charge [4,6—12]. Astrophysical black holes are
thought to be electrically neutral, and therefore would be
categorized just by their mass and spin. It is widely ex-
pected that black holes in binary systems will be closely
described by such simple states for most of the inspiral
phase. Although the black hole will be slightly tidally
distorted by its binary partner, it has been shown that the
relativistic tidal Love number of a nonrotating black hole
will still be zero [13]. While nothing in the literature shows
that the tidal Love number should be zero for rotating black
holes, we suspect it should still be small for this scenario.
Thus, if the post-Newtonian tidal Love number is found to
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deviate from zero for a nonrotating object, it can be seen as
evidence that the requirements of the no-hair theorem are
not fulfilled, since the black hole is no longer uniquely
defined by its mass, spin and electric charge. If the object is
too massive to be a neutron star (i.e. m; > 3M,)," then it is
likely to be some exotic object far from the Schwarzschild
solution. A more detailed discussion of the implications of
the no-hair theorem can be found in Sec. V B.

The gravitational-wave strain produced by the inspiral
portion of a CBC event depends on the system’s parameters,
such as component masses, component spins, and compo-
nent tidal Love numbers. Once a gravitational-wave detec-
tion is made by aLLIGO, parameter estimation techniques
will be used to extract the system’s most likely parameters
from the raw data. This will be done using full Bayesian
analyses that involve techniques such as Markov-chain
Monte Carlo and nested sampling. An in-depth discussion
of LIGO parameter estimation can be found in Ref. [15].
Based on the results of parameter estimation, if at least one
of the system’s measured component masses indicates that
a body should nominally be a black hole, then the system
can be used to test for apparent violations of the cosmic
censorship conjecture and the no-hair theorem.

Many other authors have investigated the possibility of
using gravitational-wave observations to test aspects of
general relativity. These include measuring the deviation
of post-Newtonian coefficients from their predicted values
in general relativity [16—18], looking for alternative wave-
polarization states that do not occur in general relativity
[19,20], testing for a nonzero graviton mass [21-23], and
exploring whether the ringdown signal is consistent with
the quasinormal modes of a Kerr black hole [24-26]. For
recent reviews of these techniques, see Refs. [27-29].
Rodriguez, Mandel and Gair look at alLIGO’s ability to
verify the no-hair theorem for intermediate-mass black
hole systems in Ref. [30]. Tests of the no-hair theorem
and cosmic censorship can also be conducted in the elec-
tromagnetic sector using a variety of techniques, including
accretion disk modeling [31], observations of orbiting stars
and gas [32], and pulsar orbit timing [33].

This paper is outlined in the following manner: In
Sec. II, we provide background information pertinent to
our studies. In Sec. III, we outline the gravitational wave-
form for CBC events. In Sec. IV, we describe the Fisher
matrix formalism, discuss the validity of the Fisher matrix
approach, and describe a singular-value decomposition
method that we use to assist in inverting the Fisher matrix.
In Sec. V, we discuss the parameters used in each gravita-
tional waveform, and we outline known bounds on the
chosen parameter space. In Sec. VI, we discuss our results
for the ability of aLIGO to detect apparent violations of the

'Reasonably general arguments show that compact objects
having m > 3M, should be fully collapsed black holes [14],
though it is possible that exotic objects will have masses with
m>3M,.
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cosmic censorship conjecture and the no-hair theorem.
In Sec. VII, we discuss future implications of our findings.
In Sec. VIII, we succinctly summarize our results.

(Units convention: G = ¢ = 1.)

II. BACKGROUND

The inspiral portion of the CBC gravitational waveform
is well modeled by post-Newtonian (pN) expansions to
the phase and amplitude of the waveform [4,34-39].
However, systematic biases due to the deviation of a
post-Newtonian waveform from the true waveform can
significantly affect parameter estimation. Therefore, when
using post-Newtonian waveforms, it is important to em-
ploy the most up-to-date and accurate calculations. In this
paper, we use the waveforms provided in Arun et al. [40]
that include post-Newtonian expansions of the phase to
3.5 pN order and of the amplitude to 2.5 pN order. Spin
corrections are calculated for both the post-Newtonian
phase to 2.5 pN order and amplitude to 2.0 pN order in
Ref. [40]. When this work was near completion, the
3.0 pN- and 3.5 pN-order spin-orbit phase corrections
were calculated by Marsat et al. in Ref. [41]. We briefly
investigate how these affect our results. For nonspinning,
tidal waveforms, we use the lowest-order tidal correction
to the phase of the waveform given in Ref. [42].

To estimate the measurability of parameters appearing in
the inspiral CBC gravitational waveform, we use the Fisher
matrix formalism for a single detector, described in
Sec. IV. The accuracy of measurement errors produced
by the Fisher matrix formalism is a function of the
signal-to-noise ratio (SNR). A noisier system will bias
parameter error estimates obtained with the Fisher matrix
formalism [43]. However, a more accurate Bayesian
approach to parameter estimation using techniques such
as Markov-chain Monte Carlo (MCMC) can be very
computationally expensive. For the purpose of preliminary
investigation, the Fisher matrix formalism does well to
indicate the effects that should be studied more closely
with a full Bayesian analysis.

Much work has been done on parameter measurability
for CBC systems using the Fisher matrix formalism and
post-Newtonian CBC inspiral waveforms. Cutler and
Flanagan [44] studied the measurability of spin parame-
ters, along with other parameters, for the gravitational
waveform with a Newtonian amplitude (0.0 pN—order cor-
rection to the amplitude) and 1.5 pN—order corrections to
the phase. Poisson and Will [45] and Krolak et al. [46]
expanded the study for Newtonian-amplitude waveforms
with 2.0 pN-order phase corrections. Arun et al. [47]
studied parameter estimation for nonspinning waveforms
with a Newtonian amplitude and phase corrections to
3.5 pN order. Van Den Broeck and Sengupta [48] included
post-Newtonian corrections to the amplitude of the wave-
form and kept corrections to 3.5 pN order in the phase of
the waveform, including spin effects in the phase. Nielsen
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[49] studied a Newtonian-amplitude waveform with
additional spin-spin and spin-orbit corrections appearing
in the phase of the waveform as derived in Ref. [40].

In this work, we investigate alLIGO’s ability to detect
apparent violations of the cosmic censorship conjecture
and the no-hair theorem. We study how different
post-Newtonian approximations to the amplitude of the
gravitational waveform affect parameter measurability.
We include the post-Newtonian phase corrections to
3.5 pN order, with spin-orbit and spin-spin® phasing cor-
rections to 2.5 pN and 2.0 pN orders, respectively, and we
vary the post-Newtonian-amplitude corrections from
0.0 pN to 2.5 pN order. We also study the effect of spin
corrections in the amplitude of the waveform [40] and
of the recent spin-orbit corrections to the phase of the
waveform at 3.0 pN and 3.5 pN orders [41].

We investigate how prior knowledge about unphysical
areas of parameter space can affect the measurability of
spin and tidal parameters appearing in the waveform. We
have not done this by incorporating a prior into the Fisher
matrix calculations. It is difficult to incorporate flat priors
into the Fisher matrix formalism, although this has been
studied by Nielsen [49]. Instead, in this work we restrict
some of the parameter space after a full Fisher matrix
calculation has been carried out.

III. COMPACT BINARY COALESCENCE
GRAVITATIONAL WAVEFORM

The gravitational-wave strain for the inspiral portion
of a compact binary coalescence event has the following
general form in the frequency domain:

R(f) = A(f:0)e™ VD), (1)

where f is the gravitational-wave frequency and 6 are
the parameters of the system producing the gravitational-
wave signal [4]. The amplitude A and the phase ¥ can be
expanded in a post-Newtonian (pN) approximation, and
the phase is found using the stationary phase approxima-
tion (SPA). The form for the pN expanded waveform given
in Ref. [40] is

» MZ 5 N K nl )
W) = 2oL S Y o 2 e/l (2)

where M = m; + m, is the total post-Newtonian mass of
the binary system, D), is the transverse comoving distance
(see Ref. [50]), n = m;m,/M? is the symmetric mass
ratio, Wgpy is the SPA for the phase of the waveform to
some chosen pN order (see below), the index »n indicates
twice the pN expansion order of the amplitude, N is twice
the highest included pN expansion order of the amplitude,

>The “spin-spin” corrections include not only ¥, ¥»
corrections, but also quadrupole-monopole and the so-called
“self-spin” terms o y3.
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the index k indicates the kth harmonic, K is the highest

included harmonic, and the C;;’) coefficients are given in
Appendix D of Ref. [40]. The dimensionless pN expansion
parameter v, for the kth harmonic is

v = (mw%)'/ } 3)

The gravitational-wave frequency f is related to the orbital
frequency F of the binary system through f = kF.

We restrict our studies to spin-aligned (or antialigned),
nonprecessing systems, where the spin is defined in the
standard post-Newtonian fashion. In reality, precession
should be included in the gravitational waveform model
[51,52]. This is especially important for unequal-mass
systems, such as NS-BH binaries. The size of the preces-
sion cone scales with the mass ratio in such a way that
unequal-mass systems will precess more than equal-mass
systems. The effect of precession on parameter estimation
has been studied in depth for space-based detectors
[53-55]. In these studies, it is found that precession im-
proves parameter estimation by breaking parameter degen-
eracies, but astrophysical systems may not have enough
precession to induce this effect. There are fewer studies of
parameter estimation that include precession for ground-
based detectors. The LIGO-Virgo Collaboration performed
parameter estimation for a few precessing models in
Ref. [15]. The effect of precession upon detection, rather
than parameter estimation, for ground-based interferome-
ters was recently studied in Ref. [56]. Recent studies of
precession for LIGO parameter estimation include
Ref. [57-59], but there are no definitive conclusions on
how precession will affect parameter estimation for
ground-based detectors. Large-scale, systematic Bayesian
inference analyses will likely be required to develop a
better understanding of how precession will impact pa-
rameter estimation in the aLIGO era. For simplicity, we
have not investigated precessing systems in this work.

We study waveforms with amplitude corrections up to
the 2.5 pN order (N = 5), which include up to seven
harmonics (K = 7) in the waveform. Post-Newtonian
corrections for spinning systems have been investigated
at length in, for example, Refs. [40,41,60-66]. We in-
clude spin corrections to amplitude and phase as found
in Ref. [40]. These include spin-orbit corrections calcu-
lated at 1.5 pN and 2.5 pN orders in the phase, spin-spin
corrections at 2.0 pN order in the phase, spin-orbit
corrections appearing at 1.0 pN and 1.5 pN orders in
the amplitude, and spin-spin corrections appearing at
2.0 pN order in the amplitude. Separately, we also
study spin-orbit corrections that appear at 3.0 pN and
3.5 pN orders in the phase as recently calculated in
Ref. [41]. We investigate both spinning waveforms
with no tidal corrections and nonspinning waveforms
with the leading-order tidal correction to the phase,
which appears at 5.0 pN order.
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The general SPA phase Wgp, used in Eq. (2) is
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where € and «a are either 1 or O to turn on or off spin corrections to the phase (e turns on or off the 1.5 pN-to 2.5 pN—order
corrections, and « turns on or off the 3.0 pN— and 3.5 pN-order corrections), ¢, and ¢. are the time and phase of

coalescence, M = M3/

which we take to equal 1.
The five spin parameters appearing in Wgp, and derived in

is the chirp mass, yg

= 0.577216...

is Euler’s constant, and v, is an integration constant,

Refs. [40,41]1—8, o, v, &, and {—are
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where ¢; is a quadrupole-moment parameter, I:N is the
unit vector in the direction of the binary’s orbital
angular momentum, and y; = S, ;/m? are the dimensionless
spins of the ith body. In the works that derive these pN
corrections, g; has been implicitly set to 1. This is the value
it takes for spinning black holes, but not the value it takes
for neutron stars and possibly other spinning exotica [see
for example Eq. (8) of Ref. [67]]. However, we adopt the
same simplification here, since we will not be considering
spinning systems outside of the Kerr class.

We reparameterize the component spins y; into an
antisymmetric and a symmetric combination:

1

Xs = E(X/l + X2), (5)

I .

Xa =500 = Xa)- (6)
Recall that we restrict ourselves to spin-aligned

(or antialigned), nonprecessing waveforms, which means

Yo Ln=*lx. and %, Lx= *|¥,l. The positive
sign corresponds to systems with (anti)symmetric spins
aligned with the orbital angular momentum of the binary,
and the negative sign corresponds to systems with (anti)
symmetric spins antialigned with the binary’s orbital
angular momentum.

We also study nonspinning waveforms that include the
5.0 pN-order tidal correction to the phase. Tidal correc-
tions are calculated for the phase beyond 5.0 pN order [68].
However, we find that the tidal corrections beyond 5.0 pN
order in phase are completely unmeasurable by the Fisher
matrix. Including these terms creates a worse-conditioned
Fisher matrix and does not affect the measurability of the
5.0 pN-order tidal correction. Therefore, we omit all but
the leading-order tidal correction in this work.

The point-particle contributions to the phase of the
waveform are only calculated through 3.5 pN order (vz
beyond leading order). The leading-order tidal correction
to the phase appears at 5.0 pN order (v}(0 beyond leading
order). Therefore, the 5.0 pN—order term in the phase of the
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waveform does not include point-particle effects. The
5.0 pN—order tidal term that adds linearly to Eq. (4) is

117A

5q’tidal(vk) == 167

with A = A/M5 and

vy, (7
)Nt _ i(ml + 121’}12 )\l + my + 12m1

- L) ®

where A; is the tidal deformability parameter for compo-
nent mass m; [42]. The tidal deformability parameter,
which in this post-Newtonian description describes the
ratio of the induced quadrupole moment to the perturbing
external tidal field, is written in terms of the dimensionless
tidal Love number &, [42] as

A= %kzrs, 9)
with r being the radius of the star. A fully relativistic
generalization of this was provided in Ref. [13], where it
was shown that for nonrotating black holes, the relativistic
Love numbers all vanish. This remains true even when the
black hole is deformed by a tidal field.

We examine two scenarios: spinning systems with
no tidal corrections and nonspinning systems with tidal
corrections. For spinning systems, we ‘“‘turn on” the
1.5 pN- to 2.5 pN-order spin corrections in the phase by
setting the parameter € = 1 in Eq. (4), and we ‘“‘turn on”
the 3.0 pN—and 3.5 pN—order spin corrections in the phase
by setting the parameter & = 1. We also turn on or off the
spin corrections in the amplitude of the waveform as
derived in Ref. [40]. For nonspinning systems with tidal
corrections, we turn off all of the spin corrections in the
phase and the amplitude and add Eq. (7) linearly to Eq. (4)
for the phase of the waveform. We do not include any tidal
corrections in the amplitude of the waveform, because they
have not yet been calculated.

ny my

IV. PARAMETER ESTIMATION

A. Fisher matrix

We construct the covariance matrix using the
Fisher information matrix formalism for a single detector
to determine parameter errors and correlations. For a large
enough signal-to-noise ratio (SNR), the measurement errors
on the waveform parameters ] given a gravitational wave-
form A(f) fall into a Gaussian probability density function

> r ] Ny
p(A0) = det(—)e(*aﬂjw Ab)),
27T

where I' is the Fisher information matrix [38,44]. The
components of the Fisher matrix are defined as

oh | dh
+= (o [59) a0

emax
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where h is the gravitational waveform, 6 is a wave-
form parameter, 6,, is the set of true parameters, and

(- -]+ --)is an inner product defined by
_ = a(f)b*(f)
(al b) 4Re/0 e an

for power spectral density S, (f).

The root-mean-square error on a parameter ' is derived
from the inverse Fisher matrix, which is the covariance
matrix under certain assumptions [43]:

(A6, = A/(T'");; (no summation overi). (12)
The correlation between two parameters 6 and 6/ is also
derived from the inverse Fisher matrix:
(r=hy

¢;; = ——————(no summation overi or j). (13)

Y T[T N7

B. Validity of the fisher matrix

The Fisher matrix provides an approximation to the
covariance matrix that represents the Cramer-Rao bound
[43]. Studies using the Fisher matrix in the context of
gravitational-wave parameter estimation are vast in the
literature (e.g. Refs. [42,44,45,48,49,69]). However, there
are several drawbacks in employing the Fisher matrix for
parameter estimation studies. The derivation of the Fisher
matrix requires the linearized signal approximation (LSA),
which is only valid in the high-SNR limit [43]. Real
gravitational-wave detections in the advanced-detector
era are not expected to fall into the high-SNR limit [1].
In addition, the Fisher matrix assumes a Gaussian, single-
modal distribution of the likelihood function [43,70]. In
reality, the likelihood could be very non-Gaussian and
multimodal. The Fisher matrix does not fully explore the
parameter space, but rather focuses on one point in pa-
rameter space and assumes a Gaussian likelihood about
this point. In reality, a full Bayesian calculation of the
likelihood function starting from the raw data and
using techniques such as MCMC to explore parameter
space is required for accurate parameter estimation, which
has also been studied extensively in the literature (e.g.
Refs. [15,70-75]). Rodriguez et al. [70] perform an in-
depth comparison of the Fisher matrix with a full Bayesian
MCMC study and find that the Fisher matrix can be very ill
suited to parameter estimation for certain systems. Below,
we perform some tests to verify the validity of the Fisher
matrix approach in our work.

Vallisneri discusses a self-consistency check for
the Fisher matrix in Ref. [43]. To determine the level of
self-consistency of the Fisher matrix, we calculate

ltog 7| = 3 (A0 )iy — ARIAG )iy — AR, (14)
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where h; = dh/00.|; ,Ah=h|;: —h|; ,and g isa Figure 1 plots the cumulative distribution function of
J J 0max’ 010’ emax, lo —

logoR (R =|logr|) calculated for a large number

of random points on the lo-error surface at a fixed

SNR of 100 for the Newtonian-amplitude waveform

(red triangles), the 0.5 pN-order amplitude-corrected

point in parameter space that lies on the 1o-error surface.
The value of |logr| will depend on the SNR, since the
lo-error surface and parameter root-mean-square errors
are a function of SNR.

Spinning BBH (spin to 2.5 pN) Spinning BBH (spin to 3.5 pN)
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FIG. 1 (color online). The cumulative distribution function (CDF) for the quantity log ;oR, where R = |log r|. The quantity R,
defined in Eq. (14), is a measure of the self-consistency of the Fisher matrix. This quantity is calculated at 5000 random points on
the 1o-error surface, and the CDF of these points is plotted here. The smaller values of R indicate a more self-consistent Fisher
matrix. Therefore, the most self-consistent Fisher matrix calculations have a CDF of R that rises quickly. Above, we plot log (R for a
spinning BBH system (m; = 10Mg, m, = 11M,,), a spinning NS-BH system (m; = 1.4M,, m, = 10M,), and a tidal BBH system
(m; = 10My, my, = 11My), all witht, =0, ¢. = 0,0 = 7/6, ¢ = 7/6, y = 7/4 and « = 7/3, and with a fixed SNR of p = 100.
For the spinning BBH system, the component spins are y; = x, = 1; for the spinning NS-BH system, the component spins are y; = 0
and y, = 1; and for the nonspinning, tidal BBH system, the tidal deformability parameter is A = 0. The 1o-error estimates employed
in this calculation were obtained from a five- or four-parameter Fisher matrix calculation with 6 = {log M, m, t., X0 X} OF
6= {log M, n, 1., f\} for the spinning systems and the tidal system, respectively. The plot shows results for the Newtonian-amplitude
waveform (red triangles), the 0.5 pN—order amplitude-corrected waveform (blue X’s), and the 1.0 pN-order amplitude-corrected
waveform (green circles), with spin corrections included in the amplitude for the spinning systems. The spinning-system plot titles
indicate which spin corrections are kept in the phase of the waveform.
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waveform (blue X’s), and the 1.0 pN-order amplitude-
corrected waveform (green circles), with spin
corrections included in the amplitude for the spinning
systems. The 1o-error surface used in the calculation of
| log | came from a five- or four-parameter Fisher matrix
calculation with 6 = {log M, n, 1., xo X} or 6=
{log M, m, 1., A} for the spinning systems and the non-
spinning, tidal system, respectively. Figure 1 shows re-
sults for the spinning systems both with and without the
3.0 pN- and 3.5 pN-order spin corrections to the phase.

Figure 1 indicates that the approximations necessary
for the Fisher matrix formalism to be self-consistent, such
as the linearized signal approximation (LSA), are more
valid for the 1.0 pN—order amplitude-corrected waveform
with spin corrections in the amplitude when compared to
the Newtonian-amplitude waveform and the 0.5 pN—order
amplitude-corrected waveform for the spinning systems.
In addition, including the 3.0 pN- and 3.5 pN-order spin
corrections to the phase for the NS-BH system leads to
significant improvement in the self-consistency of the
Fisher matrix. However, the spinning BBH system is
either left unchanged or made slightly less valid by
including these higher-order spin-orbit corrections. For
the nonspinning, tidal BBH system, all of the waveforms
prove equally valid.

Vallisneri notes in Ref. [43] that the LSA will be more
valid for parameter spaces with weaker correlations. As
will be discussed in Sec. VI, the amplitude-corrected wave-
forms cause certain parameters that are strongly correlated
in the Newtonian-amplitude waveform to decouple for the
spinning BBH system. Parameter correlations are broken
when moving both from the Newtonian-amplitude wave-
form to the 0.5 pN-order amplitude-corrected waveform
and from the 0.5 pN—order amplitude-corrected waveform
to the spin-dependent 1.0 pN—order amplitude-corrected
waveform. Degeneracies are also slightly decreased when
including the 3.0 pN- and 3.5 pN—order spin corrections in
the phase for the spinning NS-BH system but mostly un-
changed for the spinning BBH system.

Figure 1 is a good reference for the self-consistency
of the Fisher matrix for different orders of the post-
Newtonian expansion. The scale of |log r| indicates that
the Fisher matrix may only be self-consistent for high
SNR. Therefore, we perform an additional investigation
into the validity of the Fisher matrix below. The results of
this investigation conclude that the Fisher matrix should
give fairly reliable results for the cases studied in this work,
even for a SNR of 10.

The Fisher matrix involves the partial derivative of the
waveform with respect to a set of parameters. In order for
the Fisher matrix approximation to be valid, the likelihood
needs to be fairly Gaussian on scales appropriate to the
SNR being studied. One way to examine the Gaussianity of
the likelihood would be through the ambiguity function P,
defined in Ref. [58] as
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h; |h;
(h;,, Iy s

Vg, hg, Vglhg)

P(émax, 6) = max, ,

where max, , means a maximization over coalescence
time and polarization angle, as described in Ref. [58].
The ambiguity function is a measure of the overlap

between the true waveform with parameters 6,,, and a

waveform described by parameters 6.

If the likelihood is Gaussian, the ambiguity function
should fit well to a quadratic curve [58]. The scale over
which the ambiguity function should be quadratic is de-
termined by the SNR. For a SNR of p, the ambiguity
function should be well fit to the same Gaussian over scales
up to P=1—1/p? [58]. Throughout this work, we
mainly study a SNR of p = 10, so the scale of interest
for the ambiguity function is P = 0.99. For completeness,
we examine the ambiguity function on scales P = 0.95.
Figure 2 shows the ambiguity function over the most
relevant parameters to this work, {M, 7, x,, x.}. In each
plot, the parameter on the x axis is varied while all other
parameters are held fixed at fiducial values, which are
outlined for the previous validity test. Each plot also
shows quadratic fits over three different scales: P = 0.95
(red dashed line), P = 0.99 (green dot-dashed line), and
P = 0.999 (blue solid line). The actual ambiguity function
is shown with black dots. Although we only show plots for
the spinning BBH system in the Newtonian amplitude, the
plots look very similar for the different systems studied in
this work and across different post-Newtonian approxima-
tions to the amplitude and phase. The quadratic fits across
different scales match up well. This test indicates that the
likelihood is appropriately Gaussian for the SNR studied in
this work.

Figure 2 also shows the quadratic fit as predicted by
the Fisher matrix (orange dotted line). The comparison
between ambiguity and the Fisher matrix is most simply
seen by examining the logarithm of the Gaussian likeli-
hood, as retrieved from Eqgs. (17) and (22) in Ref. [58],
for example. The one-dimensional ambiguity function
over parameter 6; not maximized over #. or ¢, denoted
below as P, is simply related to the relevant Fisher matrix
component I';;:

_ 1L

P=1
2 p?

(A6;)?> (no summation overi). (16)

However, to make a more direct comparison with the
normalized ambiguity function maximized over ¢, and i,
the parameters Dy, ¢, and ¢ should be projected out of the
Fisher matrix. Projecting out these three parameters is
achieved by computing a four-dimensional Fisher matrix
including the parameters of interest, Dy, t.., and ¢, invert-
ing this matrix, and taking the inverse of the relevant
component [(I'"1);;]7!'. The orange dotted lines plotted in
Figure 2 are for the quadratic fit,
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FIG. 2 (color online). The ambiguity function for different systems, as indicated by the title of each plot, over the most relevant
parameters to this work, {M, 1, x,, x.}- The pN order in each title references the pN expansion order of the amplitude of each
waveform. In each plot, the parameter on the x axis is varied while all other parameters are held fixed at fiducial values (see Sec. V).
Each plot also shows quadratic fits over three different scales: P = 0.95 (red dashed line), P = 0.99 (green dot-dashed line), and
P = 0.999 (blue solid line). The actual ambiguity function is shown with black dots. The fit lines are all fairly close to each other,
which indicates that the likelihood for these systems is fairly Gaussian over the relevant scale. In addition, the orange dotted line shows

the quadratic fit predicted from the Fisher matrix, which is also in good agreement.

1 (= H.. 11!
P=1- 2 M(A&)2 (no summation over i),
p

where 0; is either M, 7, x,, or x,. These fits are very
consistent with the ambiguity function calculation in all
cases.

Qualitatively, we expect the Fisher matrix results to be
accurate. Quantitatively, the Fisher matrix results will be
most accurate for a high SNR. The results in this paper are
provided for a SNR of 10. The Fisher matrix results scale
very simply from a SNR of 10 if the reader wishes to study
different SNR scenarios. Other sources of quantitative
error that may exceed the errors introduced by the Fisher
matrix are errors associated with the inaccuracies of the
post-Newtonian waveforms. When working with real data,
additional quantitative errors, such as calibration errors,
can also become significant. This work is intended to give
insight into the ability of aLIGO to study tests of general
relativity in a mainly qualitative manner. This study should
motivate full Bayesian studies that will be required to
investigate low-SNR scenarios quantitatively.

C. Singular-value decomposition

The parameter spaces that we investigate can be 11 or 10
dimensional; see Egs. (18) and (20). In these multidimen-
sional parameter spaces, the Fisher matrix is often singular
or badly conditioned, and therefore difficult to invert. One
way we address this is by using a singular-value decom-
position (SVD) on the Fisher matrix [76]. The SVD of a
matrix I' is

I' = USVH, (17)
where S is a diagonal matrix whose diagonal elements
contain the singular values, and U and V are unitary
matrices of the left and right singular vectors, respectively.
The covariance matrix in terms of its singular-value
decomposition is

r-!'=vs'ut

Since the Fisher matrix is real and symmetric by definition,
for our case we have V = U, and this matrix will be an
orthogonal matrix of the real eigenvectors of I'.
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If the Fisher matrix is singular or badly conditioned, its
singular values will be zero or very small. We remove the
singular or badly conditioned pieces of the Fisher matrix
by zeroing out the elements of S™! that are very large or
infinite. These elements correspond to the zero or very
small singular values of the Fisher matrix, which become
infinite or very large upon inversion. Zeroing out these
elements is effectively removing the unmeasurable linear
combinations of parameters from the Fisher matrix. In this
way, we are able to obtain error estimates for only the
measurable parameters, and we do not have to assume
a priori which are the measurable parameters.

V. PARAMETERS AND PARAMETER-SPACE
BOUNDS

A. Spinning waveform

For the spinning waveform described in Sec. III, the full
parameter space is 11 dimensional:

>

aspin,full = {10g (]/DM): log M, N te, b,
COS L, Xg» Xs» COS O, &, U}, (18)

where ¢ is the inclination angle of the binary, 6 and ¢ are
the sky position polar coordinates, ¢ is the polarization
angle, and y, and y, are the symmetric and antisymmetric
spin parameters described in Sec. III. We use true values
of t,=0, ¢. =0, v =7/3, 0 = 7/6, ¢ = 7/6, and
¢ = /4 for all of the results reported here. All calcula-
tions are performed for a fixed SNR, which determines the
value of D, for each calculation. The component masses
and spins are varied as described in Sec. VI A.

We find that a smaller dimensional parameter space
is required to obtain reliable results from the Fisher matrix
when performing calculations with the Newtonian-
amplitude spinning waveform, even when employing the
SVD method described in Sec. IV. For the Newtonian-
amplitude spinning waveform calculations, we use a
reduced six-dimensional parameter space:

éspin,reduced = {10g (]/DM)’ 10g M’ N te Xas Xs} (19)

For this reduced parameter space, we use true values
of t,=0, ¢. =0, v =7/3, 0 = 7/6, ¢ = 7/6, and
¢ = /4, and we vary component masses and spins as
described in Sec. VI A. Once again, the fixed SNR for each
calculation determines the value of D, for that system.
We exploit bounds on the symmetric mass ratio and the
Kerr parameter to reduce the acceptable parameter space.
The physical bounds on m; and m, and the definition of the
symmetric mass ratio restrict i to be (0, 1/4]. For Kerr
solutions, cosmic censorship requires |¥;| = 1, which re-
stricts | y,| and |y,| to be less than or equal to 1. The
bounds on spin and the symmetric mass ratio create a finite
region of the two-dimensional spin-mass parameter space
that is both physical and consistent with a Kerr black hole.
Excluding the unphysical areas of 1 parameter space is not
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imposed as a flat prior in the Fisher matrix calculation but
is applied after the fact to the error ellipse that results from
an unrestricted Fisher matrix calculation. A more detailed
discussion on the improved measurability of spin by
restricting the spin-mass parameter space can be found in
Sec. VIA.

For amplitude-corrected waveforms, the 11-dimensional
parameter space given in Eq. (18) often leads to a badly
conditioned or singular Fisher matrix. We use the singular-
value decomposition method discussed in Sec. IV to invert
the Fisher matrix and discover the unmeasurable linear
combinations of parameters. For the Newtonian-amplitude
waveform, all of the parameters in the reduced parameter
space éspin,,educed are measurable. For the lowest-order
amplitude-corrected waveform (0.5 pN), the measurable
parameters are M, 7, t., ¢., cost, x,, and y,. For the
1.0 pN-order amplitude-corrected waveform, the measur-
able parameters are M, 7, t., ¢., COS L, X4» Xs» and ¢. In
Sec. VI A, we only report on the measurement errors for M,
1, X, and Y/, since these are the most pertinent to our study.

B. Nonspinning, tidal waveform

For the nonspinning, tidal waveform described in
Sec. III, we investigate a ten-dimensional parameter space:

étidal = {log(l/DM)’ 10g m’ UB tc’ d)cr COS ¢, Ar Ccos 9’ ¢’ l,b}
(20)

We use true values of t, = 0, . = 0, v = 7/3, 0 = 7/6,
¢ = m/6,and y = 1r/4 for all of the results reported here.
All calculations are performed for a fixed SNR, which
determines the value of D, for each calculation. The
component masses and the tidal parameter are varied as
described in Sec. VIB.

As was the case with the spinning waveform, the tidal
parameter space also has bounds with useful physical
interpretations. We explore how exploiting the physical
bound on the symmetric mass ratio (0 < n = 1/4) affects
the measurability of the tidal parameter. In addition,
we place a bound on the tidal deformability parameter
(./~X = () for the waveform to be consistent with expecta-
tions from the no-hair theorem, in the sense described in
Sec. 1. Previous work on tidal deformability calculations
for compact systems [77] suggests that 6 W4, should be
zero or small for black holes. The closest matter analog
would be an incompressible star at maximum compactness
(c = m/r = 4/9), for which the tidal Love number would
be k, = 0.0017103 [77]. For an equal-mass, equal-radius
binary system, the parameter Ais

~ A A 1 r\>
A=—-—"T=—=o=—kl|—]),
2m)>  (2m)’ 48 2<m)
where the above follows from the definition of A [given by

Eq. (8)] for an equal-mass system, A is the tidal parameter
for one component object as defined in Eq. (9), r is the
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radius of one component object, and m is the mass of one
component object. Using the ratio of m/r for maximum
compactness in the above expression gives A = 0.002.
Therefore, it is reasonable to conclude that the parameter A
should be small, if not identically zero, for black holes. There
could potentially be internal structure effects appearing at
5.0 pN order in the phase that differ from the point-particle
approximation, but these effects should be undetectable for a
black hole to have no hair. Therefore, we take §W;4,; = O,
which implies A =0,fora nonspinning black hole with no
hair. For the most comprehensive aLLIGO test of the no-hair
theorem, it would be more appropriate to use numerical
relativity waveforms with various realizations of internal
structure parameterized by A.

Just as with the spinning waveform, this ten-dimensional
parameter space often leads to a badly conditioned or
singular Fisher matrix. Using the method described in
Sec. IV, we determine the measurable parameters for
each waveform. For the Newtonian-amplitude waveform,
the measurable parameters are M, 7, t., and A. For the
lowest-order amplitude-corrected waveform (0.5 pN), the
measurable parameters are M, 7, t., ¢, cos ¢, and A. For
the 1.0 pN-order amplitude-corrected waveforms, ¢ also
becomes measurable. In Sec. VIB, we only report on the
measurement errors for M, 7, and A, since these are the
most pertinent to our study.

VI. RESULTS

A. Detectable apparent violations of the
cosmic censorship conjecture

We study two different spinning systems: a near-equal-
mass binary black hole (BBH) system with component

1.0
08!
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FIG. 3 (color online).
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masses m; = 10Mgy and m, = 11M, and a neutron-
star—black-hole (NS-BH) system with component masses
m; = 1.4M, and m, = 10M,. The exactly equal-mass
limit is avoided due to singularities in the Fisher matrix
at the equal-mass limit when including amplitude correc-
tions. Both systems are parameterized as described by
Egs. (18) or (19) and are subject to the parameter-space
bounds discussed in Sec. VA. We use the spinning wave-
form described in Sec. III with the phase kept to 3.5 pN
order and the amplitude varied from 0.0 pN to 2.5 pN order.
Spin corrections are always included in the phase to 2.5 pN
order. We study the effect of turning on or off spin correc-
tions in the amplitude of the waveform and turning on or
off the 3.0 pN— and 3.5 pN-order spin corrections in the
phase.

We use the zero-detuning, high-power aLIGO power
spectrum as given in Ref. [78] for the power spectral
density S, (f). The inner-product integrations are carried
out from f,;, = 10 Hz to f.x = kF1s0, Where [38]

1

= 21
63227M @h

Fiso

We choose to only examine positive (aligned) spins when
determining the minimum detectable violation of the Kerr
spin bound. Negative (antialigned) spins are not as well
measured as positive spins, and therefore will lead to a larger
minimum detectable violation of the Kerr bound. Figure 3
shows the 1o-error ellipses as produced by the Fisher matrix
for both the spinning BBH system and the spinning NS-BH
system. Each ellipse is calculated for different values of
component spin. Figure 3 demonstrates how positive spins
are more measurable than negative spins, and therefore
more useful in determining the minimum detectable

NS-BH System, + and — Spins
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lo-error ellipses in the 7-), parameter space for a spinning Newtonian-amplitude waveform with spin

corrections in the phase to 2.5 pN order as described in Sec. III and with the reduced parameter space éspm_mduced described in Sec. VA.
These ellipses are calculated for a spinning BBH system with m; = 10M, and m, = 11M (left plot) and a spinning NS-BH system
with m; = 1.4My, and m, = 10M,, (right plot). Both systems have true parameters ¢, = 0, ¢. = 0, 0 = 7/6, ¢ = 7/6, y = 7w/4
and ¢ = 7/3, and a fixed SNR of p = 10. For the BBH system, the component spins are varied from y; = y, = —4 (red dashed
ellipse) to x; = x» = 4 (purple solid ellipse). Each ellipse takes a step of 2 in component spins. For the NS-BH system, the component
spins are varied from y; = 0, y, = —8 (red dashed ellipse) to y; = 0, x» = 8 (purple solid ellipse). Each ellipse takes a step of 2 in
Xs» Which corresponds to the black hole taking a step of 4 in its component spin. The neutron star spin is held fixed at 0. The numbers
near each ellipse indicate the y, value for that ellipse (color coded).
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violation. The figure also illustrates how parameter meas-
urability varies significantly for different values of spin for
the BBH system and the NS-BH system.

One goal of our work with spinning black hole systems is
to investigate how much better aLIGO would be able to
detect a violation of the Kerr bound (y; > 1) when only
the physical area of 7 parameter space is considered
(see Sec. VA for a discussion of parameter-space bounds).
As mentioned before, this is not done by imposing a flat prior
on the Fisher matrix. Rather, an unrestricted Fisher matrix
calculation is performed. We examine the 1o-error ellipses
in the n-y, or m-x, plane and determine if the entire
physical area of the ellipse is consistent or inconsistent
with the Kerr bound. We explore the parameter space until
we find the minimum y; = j;/(m;)? that violates the Kerr
bound when considering only physical parts of the error
ellipse. As can be seen in Tables I, II, III, and IV, the
parameter Y, is better measured than the parameter y,. As
discussed above and shown in Fig. 3, positive spins are also
better measured than negative spins. Therefore, we deter-
mine the minimum violation of the y, = 1 bound in order to
determine the minimum violation of the Kerr bound.

Figure 4 compares the minimally violating spin values
for a Newtonian-amplitude waveform when considering

PHYSICAL REVIEW D 88, 083002 (2013)

the entire parameter space (left plot) versus considering
only the physical area of parameter space (right plot). The
error ellipse on the right of Fig. 4 is consistent with the
Kerr bound when considering the entire parameter space,
but it is inconsistent with the Kerr bound when considering
only the area of the ellipse within the physically allowed
region of 7). Results are shown for only the spinning BBH
system. The spinning NS-BH system is not affected by
bounding values of 7 due to the error ellipse’s orientation
and placement in parameter space, as is evident in Fig. 6.

The strong correlation between the symmetric mass
ratio 7 and spin when using a Newtonian-amplitude wave-
form has been studied by Refs. [49,79], among others. The
correlation between mass and spin can be seen in Figs. 4-6.
As a result, the spin parameters are not well measured
with the Newtonian-amplitude waveform when consider-
ing the full -y, parameter space. However, by restricting
the parameter space to only the physical region of 7 for the
spinning BBH system, aLIGO’s ability to detect violations
of the Kerr bound increases by about a factor of 3. This
result is also summarized in Table 1.

We examine how the measurability of spin is affected by
including spin-independent and spin-dependent amplitude
corrections. The measurability of spin for waveforms with

TABLE I. Results for the spinning BBH system with true parameters m; = 10My, m, = 11Mg, t, =0, ¢. =0, 6 = 7/6,
¢ = w/6, ¢ = w/4 and « = 7/3, and with a fixed SNR of p = 10. The spins y; and y, for each scenario are given in the tables.
The tables show the 10~ measurement errors and correlation coefficients obtained from the Fisher matrix using spinning waveforms as
described in Sec. III with spin corrections in the phase to 2.5 pN order. Also given in the tables is the distance D, of the system in order
to achieve the fixed SNR of 10. Different order amplitude corrections, with and without spin in the amplitude, are given in different
rows of the tables. The top table shows results for fiducial spin values of y; = y» = 1, and the bottom table shows results for the
minimum detectable violating spins for each waveform. The first row of the bottom table is for the minimum violating spin when the
entire 7 parameter space is considered, and the second row is when only the physical 1 parameter space is considered.

pN order in amplitude X = X2 Dy (Mpc) AM/M An Ax, Ax, Cox. C My,

0.0 pN 1 938 0.0367 2.06 522.2 30.8 —0.9998 0.9989
0.5 pN 1 938 0.00420 0.0411 422 2.66 —0.3543 09197
1.0 pN 1 879 0.00328 0.00704 28.8 1.84 —0.1541 0.8777
1.5 pN 1 879 0.00339 0.00807 30.5 1.94 —0.1422 0.8844
2.0 pN 1 851 0.00360 0.00752 34.3 2.18 —0.1646 0.8979
2.5 pN 1 851 0.00329 0.00766 29.4 1.87 —0.1491 0.8790
1.0 pN + spin 1 879 0.00164 0.00709 2.84 0.159 0.1568 0.3184
1.5 pN + spin 1 935 0.00168 0.00882 2.56 0.167 0.2238 0.3168
2.0 pN + spin 1 901 0.00167 0.00809 2.44 0.159 0.1734 0.3169
2.5 pN + spin 1 902 0.00166 0.00825 2.44 0.159 0.1741 0.3201
0.0 pN (w/o 1 bound) 4.81 938 0.00609 0.129 103.2 3.81 —0.9998 —0.9452
0.0 pN (w/ 1 bound) 1.43 938 0.00918 0.936 226.3 11.8 —0.9994 0.9757
0.5 pN 2.33 938 0.00377 0.0411 23.6 1.51 —0.5014 0.8082
1.0 pN 2.08 879 0.00304 0.00709 15.0 1.07 —0.1851 0.8390
1.5 pN 2.12 879 0.00316 0.00810 15.7 1.12 —0.1737 0.8479
2.0 pN 2.21 850 0.00335 0.00755 16.7 1.21 —0.1995 0.8652
25 pN 2.09 851 0.00307 0.00769 15.2 1.09 —0.1809 0.8409
1.0 pN + spin 1.16 879 0.00165 0.00708 2.40 0.159 0.1693 0.3344
1.5 pN + spin 1.18 945 0.00170 0.00891 2.57 0.172 0.2471 0.3383
2.0 pN + spin 1.17 909 0.00169 0.00815 2.45 0.163 0.1891 0.3339
2.5 pN + spin 1.17 909 0.00168 0.00831 2.45 0.164 0.1916 0.3381
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spin corrections included in the phase, but only spin-
independent amplitude corrections,
Ref. [48]. Since then, more accurate spin corrections to
the phase and spin corrections to the amplitude have been

TABLE III.

TABLE II.

PHYSICAL REVIEW D 88, 083002 (2013)

Results for the spinning BBH system with true parameters m; = 10Mq, m, =

1IMy,t.=0,¢. =0, x,=x,=1,0=7/6,¢ = /6, ¢ = /4 and + = /3, and with a
fixed SNR of p = 10. The table shows the 10 measurement errors and correlation coefficients
obtained from the Fisher matrix using spinning waveforms as described in Sec. III with spin
corrections in the phase to 3.5 pN order. Also given in the table is the distance D, of the system
in order to achieve the fixed SNR of 10. Different order amplitude corrections, with and without
spin in the amplitude, are given in different rows of the table.

pN order in amplitude x; = x, Dy Mpc) AM/M Ay Ax, Ax, cCuyp  Couy,

0.0 pN 1 938 0.00431 0.0681 149 1.09 0.9173 0.8811
0.5 pN 1 938 0.00419 0.0358 209 1.14 0.1460 0.9062
1.0 pN 1 879 0.00309 0.00697 16.8 1.13 0.1315 0.8686
1.5 pN 1 879 0.00324 0.00798 17.5 1.17 0.1155 0.8788
2.0 pN 1 850 0.00356 0.00742 194 130 0.1271 0.9000
2.5 pN 1 851 0.00314 0.00757 17.4 1.16 0.1237 0.8736
1.0 pN + spin 1 879 0.00165 0.00707 2.42 0.166 0.1995 0.4112
1.5 pN + spin 1 935 0.00172 0.00880 2.55 0.176 0.2628 0.4319
2.0 pN + spin 1 901 0.00172 0.00806 2.44 0.168 0.2106 0.4303
2.5 pN + spin 1 902 0.00169 0.00822 2.43 0.168 0.2140 0.4224

was reported in

calculated. As described in Sec. III, here we use the wave-
forms given in Ref. [40], which include spin corrections in
the amplitude to 2.0 pN order and spin corrections in the
phase to 2.5 pN order. Later in this section, we address the

Results for the spinning NS-BH system with true parameters m; = 1.4Mg, my, = 10My, t. =0, ¢. =0, 0 = 7/6,

¢ = w/6, = /4 and « = 7/3, and with a fixed SNR of p = 10. The spins y; and y, for each scenario are given in the tables. The
tables show the 10~ measurement errors and correlation coefficients obtained from the Fisher matrix using spinning waveforms as
described in Sec. III with spin corrections in the phase to 2.5 pN order. Also given in the table is the distance D, of the system in order
to achieve the fixed SNR of 10. Different order amplitude corrections, with and without spin in the amplitude, are given in different
rows of the tables. The top table shows results for fiducial spin values of y; = 0 and y, = 1, and the bottom table shows results for the
minimum detectable violating black hole spins for each waveform. The first row of the bottom table is for the minimum violating spin
when the entire 7 parameter space is considered, and the second row of the bottom table is for the minimum violating spin when only
the physical n parameter space is considered.

pN order in amplitude X1 X2 Dy, Mpc) AM/M An Ay, Ay, Coy. CMy,

0.0 pN 0 1 383 0.00199 0.0399 3.30 2.66 —0.9929 0.9981
0.5 pN 0 1 391 0.00164 0.0340 2.76 2.22 —0.9879 0.9964
1.0 pN 0 1 364 0.00156 0.0329 2.64 2.12 —0.9875 0.9965
1.5 pN 0 1 361 0.00159 0.0335 2.68 2.16 —0.9869 0.9963
2.0 pN 0 1 356 0.00159 0.0336 2.68 2.16 —0.9474 0.9965
2.5 pN 0 1 355 0.00158 0.0336 2.63 2.15 —0.9868 0.9964
1.0 pN + spin 0 1 363 0.00150 0.0316 2.53 2.04 —0.9864 0.9962
1.5 pN + spin 0 1 376 0.00154 0.0322 2.59 2.09 —0.9859 0.9958
2.0 pN + spin 0 1 371 0.00154 0.0323 2.59 2.08 —0.9861 0.9960
2.5 pN + spin 0 1 370 0.00154 0.0323 2.59 2.08 —0.9859 0.9959
0.0 pN 0 498 383 0.000469 0.0118 2.33 1.49 —0.99996 —0.7490
0.5 pN 0 4.72 391 0.000381 0.0115 2.11 1.35 —0.9998 —0.6461
1.0 pN 0 4.72 364 0.000357 0.0115 2.11 1.35 —0.9998 —0.6148
1.5 pN 0 478 362 0.000359 0.0115 2.14 1.37 —0.9998 —0.6162
2.0 pN 0 4.84 358 0.000361 0.0116 2.19 1.41 —0.9998 —0.6277
2.5 pN 0 4.84 356 0.000360 0.0117 221 1.42 —0.9998 —0.6232
1.0 pN + spin 0 4.60 365 0.000337 0.0115 2.03 1.30 —0.9997 —0.5566
1.5 pN + spin 0 4.52 435 0.000382 0.0114 1.97 1.26 —0.9995 —0.6175
2.0 pN + spin 0 4.50 430 0.000372 0.0113 1.94 1.24 —0.9995 —0.5960
2.5 pN + spin 0 4.50 429 0.000371 0.0113 1.94 1.24 —0.9994 —0.5914
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TABLE IV. Results for the spinning NS-BH system with true parameters m; = 1.4Mq, m, =
10My, 1, =0,0,=0,x;, =0, x,=1,0 = 7/6,p = 7/6, ¢ = w/4 and v = 77/3, and with
a fixed SNR of p = 10. The table shows the 10 measurement errors and correlation coefficients
obtained from the Fisher matrix using spinning waveforms as described in Sec. III with spin
corrections in the phase to 3.5 pN order. Also given in the table is the distance D, of the system
in order to achieve the fixed SNR of 10. Different order amplitude corrections, with and without
spin in the amplitude, are given in different rows of the table.

pN order in amplitude x;, x» Dy Mpc) AM/ M An Ay, Ax, c

nxs  CMy,

0.0 pN 0 1 383
0.5 pN 0 1 390
1.0 pN 0 1 364
1.5 pN 0 1 361
2.0 pN 0 1 356
2.5 pN 0 1 355
1.0 pN + spin 0 1 363
1.5 pN + spin 0 1 376
2.0 pN + spin 0 1 371
2.5 pN + spin 0 1 370

0.000452 0.00527 1.05
0.000396 0.00480 0.956 0.822 0.7442 09138
0.000387 0.00462 0.968 0.831 0.7350 0.9181
0.000394 0.00469 0.991 0.850 0.7251 0.9192
0.000397 0.00465 1.01
0.000399 0.00466 1.02
0.000385 0.00461 0.963 0.827 0.7324 09173
0.000390 0.00474 0.954 0.819 0.7295 09137
0.000392 0.00471 0.969 0.832 0.7293 09162
0.000393 0.00472 0.976 0.838 0.7251 0.9167

0.900 0.8153 0.9208

0.868 0.7222 0.9222
0.876 0.7182 0.9229

more recent spin-orbit corrections at 3.0 pN and 3.5 pN
order in the phase.

The results for different order amplitude corrections,
with and without spin corrections in the amplitude, are
shown in Fig. 5 and Table I for the BBH system and in
Fig. 6 and Table III for the NS-BH system. The plots in
Figs. 5 and 6 show 1o-error ellipses for fiducial spin values
of y; = x» = 1 for the BBH system and y; =0, y, = 1
for the NS-BH system (red, dashed ellipses). In addition,
the plots show 1o error ellipses for the minimum detect-
able violation of the Kerr bound (blue solid ellipses). The
top tables in Tables I and III show parameter root-mean-
square errors and correlation coefficients for the fiducial
spin values. The bottom tables in Tables I and III show

Spinning BBH without » Bound

1.5
100 x1=Xx2=
0.5 4.81
0.0
-0.5
-1.0

-10 -5 0 5 10 15
Xs

FIG. 4 (color online).

parameter errors and correlation coefficients for the sys-
tems that provide the minimum detectable violation of the
Kerr bound with each waveform.

The BBH system is strongly affected by including ampli-
tude corrections in the waveform and spin corrections in the
amplitude. There is about a factor-of-10 improvement in the
measurability of the spin parameters when the lowest-order
amplitude correction (0.5 pN) is included in the waveform
and the spin terms in the phase are kept to 2.5 pN order. Van
Den Broeck and Sengupta also report on the improved
measurability of spin when amplitude corrections are in-
cluded in the waveform in Ref. [48]. A notable effect in
our calculations is that the symmetric mass ratio decouples
from spin and many other waveform parameters when the

Spinning BBH with n Bound

15/
1.0F X1 = X2 = 143
_ o5 \\
0.0 LIS
~0.5/ \
~1.0/

10 -5 0 5 10 15

lo-error ellipses in the 7-y, parameter space for a spinning Newtonian-amplitude waveform with spin

corrections in the phase to 2.5 pN order as described in Sec. III and with the reduced parameter space éspin_reduced described in Sec. VA.
These ellipses are calculated for a spinning BBH system with m; = 10My, m, = 1My, t. =0, ¢. =0, 6 = w/6, ¢ = 7/6,
¢ = 7/4 and ¢ = 77/3, and with a fixed SNR of p = 10. The component spins for each ellipse are given as an inlay on the plot. The
plot on the left shows the minimum detectable violation of the Kerr bound when considering the entire parameter space. The plot on
the right shows the minimum detectable violation of the Kerr bound when only considering the parts of the error ellipse that are
physical. The unphysical areas of parameter space are shaded gray in the plot on the right. The vertical solid lines bound the region of
parameter space that is consistent with the Kerr bound (— 1 = y, = 1).
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FIG. 5 (color online). 1o-error ellipses in the n-x, parameter space for various spinning, amplitude-corrected waveforms with spin
corrections in the phase to 2.5 pN order as described in Sec. III. The title of each plot indicates the pN-order amplitude correction. For
the 1.0 pN—order amplitude-corrected waveform, the title also indicates whether spin corrections have been included in the amplitude.
These ellipses are calculated for a spinning BBH system with true parameters m; = 10My, my = 11My, 1. =0, ¢. =0, 6 = 7/6,
¢ = 7/6, y = w/4 and « = /3, and with a fixed SNR of p = 10. The component spins for the solid blue ellipses are given as an
inlay on the plot. These spins indicate the minimum detectable apparent violation of cosmic censorship. The dashed red ellipses are
calculated with the fiducial spin values of y; = x, = 1 in each plot. The plots on the left are all to the same scale for comparison
purposes. The plots on the right are shown to a scale appropriate for each ellipse. The unphysical areas of parameter space are shaded
gray. The vertical solid lines bound the region of parameter space that is consistent with cosmic censorship (—1 = y, = 1).
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FIG. 6 (color online). 1o-error ellipses in the n-x, parameter space for various spinning, amplitude-corrected waveforms with spin
corrections in the phase to 2.5 pN order as described in Sec. III. The title of each plot indicates the pN-order amplitude correction. For
the 1.0 pN-order amplitude-corrected waveform, the title also indicates whether spin corrections have been included in the amplitude.
These ellipses are calculated for a spinning NS-BH system with true parameters m; = 1.4My, my = 10Mq, t. = 0, . = 0,60 = 7/6,
¢ = 7/6, y = 7/4 and « = 7/3, and with a fixed SNR of p = 10. The component spins for the solid blue ellipses are given as an
inlay on the plot. These spins indicate the minimum detectable apparent violation of cosmic censorship. The dashed red ellipses are
calculated with the fiducial spin values of y; = 0 and y, = 1 in each plot. The plots on the left are all to the same scale for comparison
purposes. The plots on the right are shown to a scale appropriate for each ellipse. The unphysical areas of parameter space are shaded
gray. The vertical solid lines bound the region of parameter space that is consistent with cosmic censorship (—1 = y, = 1).
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FIG. 7 (color online). These plots show 1c-error ellipses in the n—A parameter space for nonspinning, tidal waveforms, as described
in Sec. III. The title of each plot indicates the pN-order amplitude correction. These ellipses were calculated for a BBH system with
true parameters m; = 10Mo, my = 11Mo, t. =0, ¢, =0, § = 7/6, ¢ = 7/6, y = 7/4 and « = 7/3, and with a fixed SNR of
p = 10. The tidal parameter A for the solid blue ellipses is given as an inlay on the plot. These tidal deformability parameters indicate
the minimum detectable deviation from the no-hair theorem for each waveform. The dashed red ellipses are shown for the fiducial tidal
value of A = 0 in each plot. The unphysical areas of parameter space are shaded gray. The A = 0 axis indicates thea area of parameter
space that is consistent with the no-hair theorem. Both plots above are shown to the same scale for comparison purposes.

first-order amplitude correction is included in the waveform.?
There is additional improvement in spin and mass measur-
ability when the 1.0 pN-order amplitude correction is in-
cluded in the waveform, and there is a slight decrease in the
degeneracy between spin and chirp mass for this waveform.
Furthermore, when spin corrections are included in the am-
plitude, which occurs at lowest order at 1.0 pN, the measur-
ability of spin improves by an additional factor of about 10. In
this case, including spin corrections in the amplitude breaks
the correlation between chirp mass and spin even further.

The spinning NS-BH system is not strongly affected by
including spin-dependent or nonspinning amplitude cor-
rections. There is a slight improvement in parameter meas-
urability when moving from the Newtonian-amplitude
waveform to the amplitude-corrected waveform, but this
effect is not nearly as significant as with the spinning
BBH system. There is an even less significant improve-
ment in parameter measurability for the spinning NS-BH
system when moving from nonspinning amplitude correc-
tions to spin-dependent amplitude corrections. Overall, the
Newtonian-amplitude spinning NS-BH waveform per-
forms equally well as the amplitude-corrected waveforms
when it comes to parameter measurability.

We do a brief study of how parameter measurability is
affected by the 3.0 pN- and 3.5 pN-order spin-orbit cor-
rections to the phase [41]. Tables II and IV show the 1o
errors and correlation coefficients from the Fisher matrix
for the spinning BBH system and the spinning NS-BH
system, respectively, with spin corrections in the phase to

3Since the correlation between symmetric mass ratio and spin
is decreased when using amplitude-corrected waveforms, re-
stricting the error ellipse to only the physical area of 7 parameter
space does not significantly improve alLIGO’s ability to detect
apparent violations of cosmic censorship with these waveforms.
This is evident from the plots in Fig. 5.

3.5 pN order and the amplitude corrections varied as
described in the table.

The BBH system and the NS-BH system are both af-
fected in some way by the 3.0 pN— and 3.5 pN-order spin-
orbit terms in the phase. For the BBH system, there is more
than a factor-of-10 improvement in the symmetric mass
ratio and spin parameter measurability for the Newtonian-
amplitude waveform, and there is about a factor-of-10
improvement in the chirp mass measurability. The degen-
eracy between the chirp mass and the spin is slightly
decreased when the 3.0 pN- and 3.5 pN-order spin terms
in the phase are included in the Newtonian-amplitude
waveform, which may be what leads to the improved
measurability of mass and spin. The amplitude-corrected
waveforms without spin in the amplitude show improved
measurability of about a factor of 2 for the spin, but not the
mass parameters, and the amplitude-corrected waveforms
with spin corrections in the amplitude are minimally af-
fected by the 3.0 pN- and 3.5 pN-order spin-orbit correc-
tions to the phase.

For all of the different amplitude-corrected waveforms,
the spinning NS-BH system shows about a factor-of-10
improvement in the measurability of the mass parameters
when the 3.0 pN- and 3.5 pN-order spin-orbit corrections
are included in the phase, and about a factor-of-3 improve-
ment in the measurability of the spin parameters. The
3.0 pN- and 3.5 pN-order spin-orbit phase corrections
decrease the degeneracy between the symmetric mass ratio
and the spin parameters, which may lead to the improved
parameter measurability in this case.

B. Detectable deviations from the no-hair theorem

In this section, we discuss aLIGO’s ability to detect
deviations from the no-hair theorem using nonspinning,
tidal waveforms, as described in Sec. III. We keep the
phase to 5.0 pN order, where point-particle calculations
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TABLE V. This table shows results for the nonspinning BBH system with true parameters m; = 10Mg, m, = 11My, 1, = 0, ¢, =
0,0 =1m/6, p=m/6, & = w/4 and + = 7/3, and with a fixed SNR of p = 10. The tidal deformability parameter A for each
scenario is given in the tables. The tables show the 10 measurement errors and correlation coefficients obtained from the Fisher matrix
using the tidal waveform as described in Sec. III. Also given in the table is the distance D, of the system in order to achieve the fixed
SNR of 10. The phase is kept out to 3.5 pN order, and different order amplitude corrections are given in different rows of the tables. The
top table shows results for a fiducial tidal parameter value of A = 0, and the bottom table shows results for the minimum detectable

violating tides for each waveform.

pN order in amplitude A Dy (Mpc) AM/M An AA A C M

0.0 pN 0 938 0.00281 0.0200 15.7 0.9326 0.8305
0.5 pN 0 938 0.00234 0.0102 13.1 0.9019 0.7575
1.0 pN 0 879 0.00115 0.00649 7.26 0.6090 0.1241
1.5 pN 0 879 0.00123 0.00723 7.64 0.6569 0.2192
2.0 pN 0 851 0.00118 0.00694 7.77 0.6375 0.1778
2.5 pN 0 851 0.00118 0.00693 771 0.6331 0.1758
0.0 pN 18.4 938 0.00281 0.0200 18.4 0.9512 0.8581
0.5 pN 14.4 938 0.00232 0.0160 14.3 0.9193 0.7809
1.0 pN 7.61 879 0.00115 0.00649 7.61 0.6537 0.1723
1.5 pN 8.13 879 0.00123 0.00730 8.12 0.7039 0.2747
2.0 pN 8.19 850 0.00118 0.00698 8.18 0.6831 0.2308
25 pN 8.16 851 0.00118 0.00697 8.15 0.6811 0.2305

are known to 3.5 pN order and the leading-order tidal
correction appears at 5.0 pN order. We vary the amplitude
corrections from 0.0 pN to 2.5 pN order. We do not include
any tidal corrections in the amplitude of the waveform,
since they are not yet calculated. We only investigate heavy
systems, nominally BBH systems, without spin. We look at
a near-equal-mass BBH system with component masses
m; = 10Mg and m, = 11My. As with the spinning sys-
tem, the exactly equal-mass limit is avoided due to singu-
larities in the amplitude-corrected waveforms at this limit.
The BBH system is parameterized as described in
Sec. VB. We use the zero-detuning, high-power aLIGO
power spectrum [78] for the power spectral density, and we
perform inner-product integrations from f,;, = 10 Hz to
fmax = kF1s0, Where F| gg is defined in Eq. (21).

We investigate how both excluding the unphysical
values of the symmetric mass ratio and including dif-
ferent order amplitude corrections to the waveform affect
aLLIGO’s ability to detect deviations from the no-hair theo-
rem expectations, as described in Sec. V B. The bounds on
the symmetric mass ratio parameter space do not decrease
the minimum detectable deviation from the no-hair theo-
rem due to the orientation of the 1o-error ellipses in the
77-]\ plane, as illustrated in Fig. 7. The amplitude correc-
tions do have a noticeable affect on the measurability of
tidal deformability. While the lowest-order amplitude cor-
rection (0.5 pN) does not lead to a dramatic improvement
in the measurability of the tidal parameter A, the 1.0 pN—
order amplitude correction does give about a factor-of-2
improvement in the measurement error on A. The tidal
parameter is strongly correlated to both the symmetric
mass ratio and the chirp mass, but these correlations are

decreased, especially between the chirp mass and A, when
using the 1.0 pN-order amplitude-corrected waveform.
The results are summarized in Fig. 7 and Table V for
both the fiducial tidal parameter value of A =0 and the
minimum detectable violating A.

VII. DISCUSSION

Applying physical limits on the symmetric mass ratio
can have a noticeable impact on aLIGO’s ability to mea-
sure spin. When considering a near-equal-mass, spinning
BBH system, aLLIGO’s ability to test the cosmic censorship
conjecture is improved by about a factor of 3 by excluding
unphysical values of the symmetric mass ratio for a
Newtonian-amplitude waveform, as can be seen in Fig. 4
and Table I. The frequency-domain waveform given in
Eq. (2) with a Newtonian amplitude is commonly used
for detection and parameter estimation efforts. The strong
correlations between the symmetric mass ratio and spins
result in poor measurability of the spin parameters when
using this waveform. However, our results imply that in-
cluding a prior on the symmetric mass ratio can lead to a
significant improvement of spin measurability for near-
equal-mass, spinning BBH systems. However, we find
that a prior on the symmetric mass ratio will not affect
unequal-mass systems, as can be seen in Fig. 6, nor will it
affect near-equal-mass systems when amplitude-corrected
waveforms are employed, as can be seen in Fig. 5.

We find that switching from the Newtonian-amplitude
waveform to the amplitude-corrected waveform signifi-
cantly affects parameter measurability for the near-equal-
mass, spinning BBH system, but not for the unequal-mass,
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spinning NS-BH system. Amplitude corrections add mul-
tiple harmonics to the gravitational waveform. The
Newtonian-amplitude waveform only includes the second
harmonic. However, the 0.5 pN—order amplitude-corrected
waveform adds the lowest-order point-particle correction
to the first and third harmonics. The 1.0 pN-order
amplitude-corrected waveform adds a spin correction to
the first harmonic, a point-particle correction to the second
harmonic, and the lowest-order point-particle correction to
the fourth harmonic. Parameter measurability for the spin-
ning BBH system is most significantly affected by the
0.5 pN-order point-particle correction terms in the first
and third harmonics and the 1.0 pN—order spin correction
terms in the first harmonic. The higher-order amplitude-
correction terms above 1.0 pN order minimally affect
parameter measurability.

For the spinning BBH system, the lowest-order ampli-
tude correction improves the measurement error for chirp
mass and spin parameters by about a factor of 10 and for
the symmetric mass ratio by about a factor of 50 when
compared to the Newtonian-amplitude waveform. This
translates to about a factor-of-2 improvement on the mini-
mum detectable spins that violate the cosmic censorship
conjecture when compared to the Newtonian-amplitude
waveform using the full symmetric mass ratio parameter
space. The improved measurability may be due to the
breaking of the degeneracy between the symmetric mass
ratio and the spin parameters.

The spinning BBH system shows significant improve-
ment in parameter measurability again when the lowest-
order spin corrections are added to the amplitude, but the
spinning NS-BH system shows no significant change to
the amplitude by including spin terms, as is seen in
Tables I and III and Figs. 5 and 6. For the spinning
BBH system, the lowest-order spin corrections to the
amplitude result in more than a factor-of-10 improve-
ment in the measurability of both spin parameters when
compared to the 1.0 pN-order amplitude-corrected
waveform without spin corrections in the amplitude.
The improved measurability may be a result of decou-
pling chirp mass from spin. There is also about a factor-
of-2 improvement in the measurability of chirp mass
when the lowest-order spin corrections are included in
the amplitude. Including spin corrections in the ampli-
tude leads to about a factor-of-2 improvement in the
ability of aLIGO to detect violations of cosmic censor-
ship for a near-equal-mass BBH system.

A brief study of how the 3.0 pN- and 3.5 pN-order spin-
orbit phase corrections affect parameter measurability,
summarized in Tables II and IV, indicates that these cor-
rections can have a noticeable impact on the spinning BBH
system and the spinning NS-BH system. For the spinning
BBH system, including the newer spin-orbit phase correc-
tions leads to significant improvement in mass and spin
measurability and a decrease in the degeneracy between

PHYSICAL REVIEW D 88, 083002 (2013)

spin and chirp mass for the Newtonian-amplitude wave-
form. There is also some improvement in the measurability
of the spin parameters for the amplitude-corrected wave-
forms without spin terms in the amplitude. However, the
amplitude-corrected waveforms with spin terms in the
amplitude are mostly unaffected by the 3.0 pN- and
3.5 pN-order spin-orbit phase terms.

The spinning NS-BH system demonstrates improved
measurability for all different orders of amplitude correc-
tions in the mass and spin parameters when the 3.0 pN—and
3.5 pN-order spin-orbit phase terms are included in the
waveform. More follow-up studies should be done to see
how the 3.0 pN- and 3.5 pN-order spin-orbit phase
corrections affect alLIGO’s ability to detect apparent
violations of the cosmic censorship conjecture.

In summary, alLIGO can theoretically detect spin vio-
lations of the cosmic censorship conjecture at 1o for a
SNR of 10 (or 3¢ for a SNR of 30) for a near-equal-
mass BBH system with component spins as small as
X1 = X2 = 1.16 when using 1.0 pN-order amplitude-
corrected waveforms with spin corrections in the ampli-
tude. In addition, aLIGO can theoretically detect a spin
violation at 1o for a SNR of 10 (or 30 for a SNR of 30)
for a spinning NS-BH system with m; = 1.4My, m, =
10Mg, x1 = 0 and y, = 4.50 when using the 2.0 pN- or
2.5 pN-order amplitude-corrected waveform with spin
corrections in the amplitude.

As discussed in Sec. VIB, excluding unphysical
values of the symmetric mass ratio does not affect
aLLIGO’s ability to test whether the requirements of the
no-hair theorem are fulfilled. However, including ampli-
tude corrections in the waveform does noticeably affect
the measurability of the tidal deformability parameter A,
as shown in Table V and Fig. 7, which improves aLIGO’s
ability to detect deviations from the no-hair theorem.
There is some small improvement in parameter measur-
ability when including the 0.5 pN-order amplitude
correction. However, there is about a factor-of-2 im-
provement in measurement error for both mass parame-
ters and the tidal parameter when moving to the 1.0 pN—
order amplitude-corrected waveform. Note that for the
nonspinning BBH system examined in Sec. VI B, no spin
corrections were included in the amplitude. Therefore,
the 1.0 pN—order amplitude correction only adds a point-
particle correction to the second and fourth harmonic.
The tidal parameter A is coupled to both the symmetric
mass ratio and the chirp mass for waveforms including
up to the 0.5 pN-order amplitude correction. The
1.0 pN-order amplitude correction decouples A from
the chirp mass and decreases the strength of the coupling
between A and the symmetric mass ratio.

The minimum detectable deviation from the no-hair
theorem for a near-equal-mass BBH system with m; =
10Mg and m, = 11M is A = 7.61 at 1o for a SNR of 10
(or 30 for a SNR of 30). For comparison, a typical value
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for A for a binary neutron star system is about 40, but the
value of A is strongly dependent on the equation of state
[80]. For an incompressible star at maximum compactness,
the tidal parameter would be A = 0.002 [77].

It is worth making a brief mention of what could be
causing an apparent violation of cosmic censorship or
the no-hair theorem. There could be exotic objects, such
as boson stars, that do violate cosmic censorship or the
no-hair theorem and therefore lead to an apparent vio-
lation through their gravitational waveform. However,
observing an apparent violation of cosmic censorship
or the no-hair theorem does not necessarily mean these
conjectures are false. Rather, it could be the theory of
gravity, general relativity, that is wrong, or it could be
post-Newtonian theory that is wrong. The post-
Newtonian waveforms employed in this paper are based
on assumptions in standard general relativity, which
could be violated for systems such as a naked singular-
ity. However, in the case of a naked singularity, the
quantum gravity effects that are fixing the singularity
should only minimally affect the surrounding spacetime
on which post-Newtonian waveforms are based. In addi-
tion, the assumptions of the Kerr solution, such as axial
symmetry and asymptotic flatness, could not be satisfied.
However, detecting a nominal black hole that violates
the Kerr bound or detecting internal structure in a nomi-
nal black hole would be inconsistent with the current
post-Newtonian framework of general relativity and
cosmological conjectures in the Kerr geometry.

VIII. CONCLUSIONS

We explore ways to improve aLIGO’s ability to test
cosmic censorship and the no-hair theorem by improving
the measurability of spin and tidal deformability.
We find several methods for improving parameter
measurability that affect different systems and dif-
ferent amplitude-corrected waveforms in different ways.
Table VI summarizes our findings for how to improve
parameter measurability for each astrophysical system
that we examine. The pN orders in the table all refer to
pN order in the amplitude of the waveform, except when
indicated directly.

Our studies indicate that both a prior on the symmetric
mass ratio and including higher harmonics in the waveform
can have a significant effect on aLIGO’s ability to test

TABLE VI
censorship and the no-hair theorem.
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whether expectations from the cosmic censorship conjec-
ture and the no-hair theorem are satisfied for some, but not
all, systems.

For near-equal-mass spinning BBH systems, both a prior
on the symmetric mass ratio and including higher harmon-
ics could lead to significant improvement in spin and mass
parameter measurability, and therefore significant im-
provement in aLIGO’s ability to test cosmic censorship.
In addition, including spin corrections in the amplitude,
specifically the lowest-order spin correction to the first
harmonic, could lead to even further improved measur-
ability of spin and mass parameters. For the Newtonian-
amplitude waveform or the waveforms with nonspinning
amplitude corrections, the 3.0 pN— and 3.5 pN—order spin-
orbit phase terms should lead to improved mass and spin
measurability as well.

For the spinning NS-BH system, a prior on the symmet-
ric mass ratio should not lead to much improvement in
aLIGO’s ability to test cosmic censorship. Higher harmon-
ics should also not improve spin or mass parameter meas-
urability for this system. However, the 3.0 pN—and 3.5 pN-
order spin-orbit phase corrections should lead to improved
mass and spin measurability for both Newtonian and
amplitude-corrected waveforms.

For near-equal-mass nonspinning BBH systems with
tidal corrections, a prior on the symmetric mass ratio will
not improve alLIGO’s ability to investigate the no-hair
theorem, but including higher harmonics in the waveform
will improve mass and tidal measurability.

A final benefit of using amplitude-corrected waveforms,
which include higher harmonic effects, is discussed briefly
in Sec. V. Certain angle parameters, ¢., ¢, and ¢, are
unmeasurable for a single detector with the Newtonian-
amplitude waveform. However, including the lowest-order
amplitude correction in the waveform allows both ¢, and ¢
to become measurable, even for a single detector. Including
spin corrections in the amplitude further allows the azimu-
thal angle ¢ to become measurable for a single detector.
Therefore, higher harmonics can play a significant role in
the measurability of some of the system’s angle parame-
ters, on top of the benefits to mass and spin measurability
discussed above.

Overall, using a flat prior on the symmetric mass ratio
and including higher harmonics in the waveform could
provide alLIGO with a keen ability to test the theory of
general relativity with gravitational-wave detections from

Methods of improving Advanced LIGO’s ability to measure spin and tidal deformability, and therefore test cosmic

Restricting 7

parameter space harmonics

Including higher

Including spin in the
amplitude

Including the 3.0 pN, 3.5 pN
spin-orbit phase terms

Spinning BBH yes, only at 0.0 pN
Spinning NS-BH no no
Tidal BBH no

yes, starting at 0.5 pN

yes, starting at 1.0 pN yes, mostly at 0.0 pN
no yes, for all pN orders

yes, starting at 1.0 pN N/A N/A
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