

Home Search Collections Journals About Contact us My IOPscience

Addendum to 'The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries'

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2013 Class. Quantum Grav. 30 199401 (http://iopscience.iop.org/0264-9381/30/19/199401) View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 194.94.224.254 This content was downloaded on 23/01/2014 at 11:09

Please note that terms and conditions apply.

doi:10.1088/0264-9381/30/19/199401

Class. Quantum Grav. 30 (2013) 199401 (2pp)

ADDENDUM

Addendum to 'The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries'

P Ajith¹, Michael Boyle², Duncan A Brown³, Bernd Brügmann⁴, Luisa T Buchman⁵, Laura Cadonati⁶, Manuela Campanelli⁷, Tony Chu^{5,8}, Zachariah B Etienne⁹, Stephen Fairhurst¹⁰, Mark Hannam¹⁰, James Healy¹¹, Ian Hinder¹², Sascha Husa¹³, Lawrence E Kidder², Badri Krishnan¹⁴, Pablo Laguna¹¹ Yuk Tung Liu⁹, Lionel London¹¹, Carlos O Lousto⁷, Geoffrey Lovelace², Ilana MacDonald⁸, Pedro Marronetti¹⁵, Satya Mohapatra⁶, Philipp Mösta¹², Doreen Müller⁴, Bruno C Mundim⁷, Hiroyuki Nakano⁷, Frank Ohme¹², Vasileios Paschalidis⁹, Larne Pekowsky^{3,11}, Denis Pollney¹³, Harald P Pfeiffer⁸, Marcelo Ponce⁷, Michael Pürrer¹⁶, George Reifenberger¹⁵, Christian Reisswig⁵, Lucía Santamaría¹, Mark A Scheel⁵, Stuart L Shapiro⁹, Deirdre Shoemaker¹¹, Carlos F Sopuerta¹⁷, Ulrich Sperhake^{5,17,18,19}, Béla Szilágyi⁵, Nicholas W Taylor⁵, Wolfgang Tichy¹⁵, Petr Tsatsin¹⁵ and Yosef Zlochower⁷

- ⁴ Theoretisch Physikalisches Institut, Friedrich Schiller Universität, D-07743 Jena, Germany
- ⁵ Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, CA 91125, USA

¹ LIGO-California Institute of Technology, Pasadena, CA 91125, USA

² Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA

³ Department of Physics, Syracuse University, Syracuse, NY 13254, USA

⁶ Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

⁷ Center for Computational Relativity and Gravitation and School of Mathematical Sciences,

Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA

⁸ Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, Ontario M5S 3H8, Canada

⁹ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

¹⁰ School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, UK

¹¹ Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

¹² Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1,

D-14476 Golm, Germany

¹³ Departament de Física, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, E-07122 Palma, Spain

¹⁴ Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Callinstraße 38, D-30167 Hannover, Germany

¹⁵ Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA

¹⁶ Gravitational Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

¹⁷ Institut de Ciencies de l'Espai (CSIC-IEEC), Campus UAB, Bellaterra, E-08193 Barcelona, Spain

¹⁸ Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA
¹⁹ CENTRA, Departamento de Física, Instituto Superior Técnico, Av Rovisco Pais 1, 1049-001 Lisboa, Portugal

Received 22 May 2013, in final form 24 May 2013 Published 18 September 2013 Online at stacks.iop.org/CQG/30/199401

Abstract

A recent paper (Ajith *et al* 2012 *Class. Quantum Grav.* **29** 124001) described a catalog of 56 hybrid post-Newtonian/numerical-relativity waveforms modeling the inspiral, merger and ringdown of binary black hole systems spanning a range of mass ratios and spins. This catalog has been created and validated for use in the NINJA-2 project to study the sensitivity of gravitational-wave search and parameter-estimation algorithms. The contents of this catalog are being made available for public use. This addendum describes the public release.

PACS numbers: 04.25.Nx, 95.55.Ym, 04.80.Nn, 07.60.Ly, 04.25.D, 04.70.-s

S Online supplementary data available from stacks.iop.org/CQG/30/199401/mmedia

The waveforms included in the supplementary data are released as part of the NINJA-2 project [1]. They may be freely used for any purpose but not redistributed. Please cite any usage as [3]. The catalog is divided into directories by submitting group, and each submission is described by a .bbh file, the format of which is described in [2]. This release includes only the $(\ell, m) = (2, 2)$ modes, corresponding to the set validated in the paper.

References

- [2] Brown D A et al 2007 Data formats for numerical relativity waves arXiv:0709.0093
- [3] Ajith P et al 2012 Class. Quantum Grav. 29 124001

^[1] www.ninja-project.org/