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ABSTRACT
Dense stellar systems such as globular clusters and dense nuclear clusters are the breeding
ground of sources of gravitational waves for the advanced detectors LIGO and Virgo. The
stellar densities reached in these systems lead to the dynamical formation of binaries at a rate
superior to what one can expect in regions of the galaxy with lower densities. Hence, these
systems deserve a close study to estimate rates and parameter distribution. This is not an easy
task, since the evolution of a dense stellar cluster involves the integration of N bodies with
high resolution in time and space and including hard binaries and their encounters and, in the
case of gravitational waves, one needs to take into account important relativistic corrections.
In this work, we present the first implementation of the effect of spin in mergers in a direct-
summation code, NBODY6. We employ non-spinning post-Newtonian (PN) corrections to the
Newtonian accelerations up to 3.5 PN order as well as the spin–orbit coupling up to next-
to-lowest order and the lowest order spin–spin coupling. We integrate spin precession and
add a consistent treatment of mergers. We analyse the implementation by running a set of
two-body experiments and then we run a set of 500 simulations of a stellar cluster with a
velocity dispersion set to a high value to induce relativistic mergers to set a proving ground
of the implementation. In spite of the large number of mergers in our tests, the application
of the algorithm is robust. We find in particular the formation of a runaway black hole (BH)
whose spin decays with the mass it wins, independently of the initial value of the spins of the
BHs. We compare the result with 500 Monte Carlo realizations of the scenario and confirm
the evolution observed with our direct-summation integrator. More remarkably, the subset of
compact objects that does not undergo many mergers, and hence represent a more realistic
system, has a correlation between the final absolute spin and the initial choice for the initial
distribution, which could provide us with information about the evolution of spins in dense
clusters once the first detections have started.
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1 IN T RO D U C T I O N

The field of gravitational wave (GWs) has reached a milestone
in the last years with the build-up of an international network of
GW interferometers which have achieved their design sensitivity.
The ground-based detectors LIGO and Virgo are undergoing major
technical upgrades that will increase the volume of the observable

� E-mail: Patrick.Brem@aei.mpg.de

Universe by a factor of a thousand, which is referred to as the
‘advanced’ configuration.1

Dense stellar systems such as globular clusters, galactic nuclei
and, in particular, dense nuclear clusters, are the breeding ground
of the sources that the advanced detectors can expect (see the recent
updated review of Benacquista & Downing 2011 and also Downing
et al. 2011). More remarkably, the event rate of stellar-mass black

1 http://www.ligo.caltech.edu/advLIGO/, http://wwwcascina.virgo.infn.it/
advirgo/
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hole binaries, the loudest kind of source, will be likely dominated
by sources formed dynamically, i.e. via stellar close interactions in
these stellar systems (Miller & Lauburg 2009; Banerjee, Baumgardt
& Kroupa 2010; Downing et al. 2010; Benacquista & Downing
2011).

The data that will be harvested from the advanced detectors will
allow us to do GW astrophysics. The construction of templates for
matched filtering is crucial in the searches for compact binaries.
There have been efforts to construct these templates by combin-
ing post-Newtonian (PN) calculations of the inspiral of the binary
with numerical relativity simulations of the merger and ringdown.
Two appealing approaches are the effective-one-body technique
(Buonanno & Damour 1999; Buonanno et al. 2009) and the phe-
nomenological hybrid waveform modelling (Ajith et al. 2007, 2009;
Santamarı́a et al. 2010).

However, the search will be challenging for the simple reason
that a GW has not been detected yet. Reliable estimates of the event
rates for the different kinds of binaries and of the expected param-
eter distribution will possibly be crucial for a successful detection.
On the other hand, once we have the data, we will be able to com-
pare the observed rates and parameters with the predictions derived
from different models and thus filter them. This will enlighten our
understanding of the creation and evolution of compact binaries in
dense stellar systems.

The most accurate simulations of dense stellar clusters that we
can do nowadays are performed with the so-called direct-summation
N-body algorithms. In particular, the family of integrators of Sverre
Aarseth has been in development for many decades (von Hoerner
1960, 1963; Aarseth 1963). Aarseth’s NBODY6 includes both KS reg-
ularization (where KS stands for Kustaanheimo-Stiefel) and chain
regularization: when particles are tightly bound or their separation
becomes too small, the system is regularized (see Kustaanheimo &
Stiefel 1965; Aarseth 2003) to avoid too small individual time steps
and numerical errors. It also employs the Ahmad–Cohen neigh-
bour scheme (Ahmad & Cohen 1973) and hierarchical, adaptive
time steps. We can hence resolve and follow accurately individual
orbits in the system. In this article, we present the first modifica-
tion of a direct-summation code, using NBODY6, that includes all
non-spinning PN corrections up to 3.5PN order and all spin contri-
butions up to 2.5PN order, including spin precession equations.

2 T H E F O R M A L I S M A N D I T S
I M P L E M E N TAT I O N

2.1 Correction of the accelerations

We modify the acceleration computation as described in the pio-
neering work of Kupi, Amaro-Seoane & Spurzem (2006) (KAS06)
to include relativistic corrections, which are based on the PN for-
malism for the interaction between two bodies. We note that recently
Aarseth (2012) included an approximative implementation for rel-
ativistic corrections in the new version of his code, NBODY7. The
relative acceleration, in the centre-of-mass form, including all PN
corrections used in the code can be written in the following way:

dv

dt
= −Gm

r2
[(1 + A)n + Bv] + C1.5,SO + C2,SS + C2.5,SO, (1)

where v = v1 − v2 is the relative velocity vector, m = m1 + m2 the
total mass, r the separation and n = r/r . A and B are coefficients
that can be found in Blanchet & Iyer (2003). The spin terms CN,
where N denotes the PN order, are taken from Faye, Blanchet &

Buonanno (2006) and Tagoshi, Ohashi & Owen (2001). SO stands
for spin–orbit and SS for spin–spin coupling.

These corrections are valid for two isolated bodies and shall
thus only be applied to the Newtonian acceleration in the case of
strong, ‘relativistic’ pair interactions where the perturbation by third
bodies is sufficiently small. Because of this, we deem it reasonable
to restrict the implementation of PN terms to regularized KS pairs
(see Kustaanheimo & Stiefel 1965; Aarseth 2003, for details). For
this reason, we also choose the centre-of-mass formulation shown
in equation (1) rather than the formulation in the general frame.
These KS pairs are only formed when the interaction between two
bodies becomes strong enough so that the pair has to be regularized.
During the KS regularization the relative motion of the companions
is still far from relativistic. Hence, only a small, relativistic subset
of all regularized KS pairs will need PN corrections. In order to
match the order of accuracy of the KS integration in the code, we
compute both the acceleration as shown in equation (1) as well as
the analytical time derivative.

To save computational costs, we switch on the PN corrections
only if one of the following two conditions is fulfilled:

v > βc

v >
β

5
c and

gPN

g
> γrel, (2)

where the parameters β and γ are chosen empirically to be β = 0.02
and γ = 0.01 and gPN and g are the PN acceleration and the
Newtonian acceleration, respectively.2 Note that this treatment dif-
fers from Aarseth (2012), who chooses a staggered scheme to switch
on first PN 2.5, and later PN1 or PN2. We always switch on the com-
plete set if equation (2) is fulfilled in order to maintain a correct
orbit integration under PN influence. The switch-on criterion for
the PN terms does not depend on the Newtonian perturbation of
the regularized pair. Thus, we also apply PN corrections to binaries
that are being influenced by a third body. However, we note that
for strong perturbations, NBODY6 automatically breaks up the KS
pair and uses a Chain regularization algorithm for more than two
bodies, in which we do not include any PN treatment due to the
complications that arise by having more than two dominant objects.

2.2 Spin precession

In addition to the effects on the acceleration, the spin of compact
objects undergoes precession in relativistic two-body interactions.
This is also taken into account by integrating the spin precession
equations

dS
dt

= 1

c2
U1,SO + 1

c3
U1.5,SS + 1

c4
U2,SO, (3)

d�

dt
= 1

c2
v1,SO + 1

c3
v1.5,SS + 1

c4
v2,SO, (4)

S = S1 + S2, (5)

� = m

(
S2

m2
− S1

m1

)
. (6)

2 In order to avoid confusion, we denote the acceleration with the letter g,
the dimensionless spin parameter with a and the semimajor axis with ξ .
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S and � describe the spin state of the pair. The individual terms for
UN and vN, where N denotes the PN order, can be found in Faye
et al. (2006) and Buonanno, Chen & Vallisneri (2003).

2.3 Relativistic mergers

Since relativistic binaries lose energy via the dissipative 2.5PN
acceleration term, we need to consistently add a relativistic ‘merger
recipe’ in the standard version of the code. For the purposes of our
study, we must address the following points.

(i) The criterion for two bodies to be transformed into one.
(ii) A dynamically correct treatment of the ‘loss’ of one object

from the simulation.
(iii) Computation of the spin of the BH that is formed after co-

alescence from the spins and OAM of the BHs that participated in
the coalescence.

PN theory can only be applied to the inspiral of the binary, but
not to the actual merger and ringdown. We choose for up to 3.5 PN
order a cut-off distance of 5 RS, with RS = 2 G(m1 + m2)/c2 the
combined Schwarzschild radius (Yunes & Berti 2008). For any
instantaneous separation below this value, the pair is merged into
one body.

On the other hand, the newly formed compact object must have a
mass and a velocity vector consistent with the conservation of linear
momentum. Also, since we are treating spinning compact objects,
all BHs must have an initial spin vector. As we will see ahead, in
Section 3, we use a fitting formula at the last integration step before
merging the bodies, i.e. at a separation of 5 RS, to assign a new spin
value to the merged system following the prescription of Rezzolla
et al. (2008).

The work we present in this article should be envisaged as a
first testing of the algorithm with a ‘stress test’: Our goal is the
integration of a large number of relativistic mergers in a stellar
cluster. We achieve this, as we will see later, by setting initially the
cluster in a relativistic stage with an extremely large central velocity
dispersion. In order to maximize the number of mergers, we neglect
the recoil of coalescing pairs, since merging BHs with a very large
recoiling velocity could leave the system. However, a priori it is
straightforward to implement a recipe for the gravitational recoil by
following a similar fitting formula as in, e.g. the work of Pollney
et al. (2007); Lousto et al. (2010).

3 T E S T I N G T H E IM P L E M E N TAT I O N

In this section, we test the implementation itself in a direct-
summation code. We present tests with a two-body integrator based
on the same routines as NBODY6, but restricted to a simple, regular-
ized two-body system. This is exactly the part of the modification in
the integration that we aim at implementing in NBODY6, and hence
is a perfect testing ground of our algorithm.

In order to do so, we will compare our simple integrations with
theoretical approaches. In this regard, the formulæ of Peters (1964)
are useful for testing the orbital decay in the simple non-spinning
case. For spinning pairs, we will check the precession frequencies
and conservation of the total angular momentum.

3.1 Non-spinning, merging relativistic binaries

In this section, we compare the results of our approximation with
the derivation of Peters (1964) of the evolution of the eccentricity
and semimajor axis of a binary which is decaying via the emission

of GWs. His derivations are based on Keplerian orbits and mimic
the 2.5 dissipative term in the PN expansion.〈

dξ

dt

〉
= −64

5

G3m1m2(m1 + m2)

c5ξ 3(1 − e2)7/2

(
1 + 73

24
e2 + 37

96
e4

)
〈

de

dt

〉
= −304

15
e
G3m1m2(m1 + m2)

c5ξ 4(1 − e2)5/2

(
1 + 121

304
e2

)
. (7)

In the last equations, ξ is the semimajor axis, e the eccentricity, t the
time, m1 and m2 the mass of the first and second star in the binary,
G is the gravitational constant and c the speed of light. In the case
of a circular binary, as shown in Peters (1964), one can solve the
differential equation for a binary with companion masses m1, m2

and initial semimajor axis ξ 0:

ξ (t) = (ξ 4
0 − 4βt)1/4, (8)

where

β = 64

5

G3m1m2(m1 + m2)

c5
. (9)

This yields a decay time of Tc(ξ0) = ξ 4
0 /(4β).

In the general case of eccentric binaries, one can integrate equa-
tion (7) numerically and compare the time evolution with the results
of our simulations. Since Peters’ formula is only valid for the lead-
ing order of gravitational radiation, we ‘switch off’ the terms 1 PN,
2 PN, 3 PN and 3.5 PN and only apply the 2.5 PN correction. In
Figs 1 and 2, we show the time evolution of eccentricity and semi-
major axis for a system with two BHs of masses m1 = 10 M� and
m2 = 1 M�. They agree very well up to the limit of validity of the
PN expansion.

The 2.5 term only takes into account energy and angular mo-
mentum loss due to GWs. The 1 and 2 PN terms are conservative,
they conserve energy and angular momentum, and they are the main
contribution to periapsis shift.

In Figs 3 and 4, we show the time evolution for a binary in which
we have taken into account the correcting terms 1 PN, 2 PN and
2.5 PN. Even though the 1 and 2 PN terms are conserving energy, the
binary coalesces quicker than in the Peters approximation, because
they change the orbital velocity and thus the 2.5 PN term acts slightly
stronger. The small rise in eccentricity very close to the merger is
a known effect of the PN expansion at the limits of its region of
validity.

Figure 1. Comparison of the eccentricity evolution of the two-body inte-
gration and Peters’ approximation.
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Figure 2. Comparison of the semimajor axis evolution of the two-body
integration and Peters’ approximation.

Figure 3. Comparison of the eccentricity evolution of the two-body inte-
gration with 1 PN, 2 PN and 2.5 PN terms and Peters’ approximation.

Figure 4. Comparison of the semimajor axis evolution of the two-body
integration with 1 PN, 2 PN and 2.5 PN terms and Peters’ approximation.

The contribution at 3 PN and 3.5 PN order are small compared to
the leading order, but these terms cause the orbit to diverge when
the binary enters the last few RS.3 This is an important effect, since
with PN terms up to order 2.5 one could in principle let the system
evolve until an overlap of the Schwarzschild radii. When including
3 PN and 3.5 PN, on the other hand, this becomes impossible and
in order to avoid unphysical, divergent behaviour one has to abort
the integration at larger separations. For this reason, we choose the
criterion r = 5RS where r is the instantaneous separation and RS is
the combined Schwarzschild radius.

3.2 Spinning binaries

3.2.1 Precession of angular momenta

In PN theory, the Newtonian angular momentum LN = x × p, with
p = r × m v, is no longer conserved. In the case of non-spinning
bodies, the direction of LN is conserved and only the modulus LN

is gradually radiated away during inspiral. However, in the case of
spinning bodies this no longer holds (Kidder 1995). Nonetheless,
as in electromagnetic theory, both the total spin vector S and the
angular momentum vector L precess around the total angular mo-
mentum vector J = L + S. The angular momentum vector we use
differs from the usual Newtonian definition:

L = LN + L1PN + LSO + L2PN. (10)

With this definition, J̇ = 0 up to 2 PN order. The 2.5 PN order,
however, introduces radiation loss. Kidder (1995) estimated the
precession frequency to the lowest order, i.e. L = LN. In the case
of a single spinning body with mass ms in a system with total mass
m, the precession frequency of both S and LN is given by

ωp = G|J |
2c2r3

(
1 + 3

m

ms

)
. (11)

As an example, let us consider a system of a maximally spinning
black hole of mass ms = 10 M� and a non-spinning companion of
mass m2 = 1 M�. We set the system on a circular orbit in the x–y
plane with radius 108 cm with the initial spin of ms in x-direction.
This gives a total initial angular momentum of

|J | =
√

Lz(t = 0)2 + S1,x(t = 0)2 = 1.12 × 1044 kg m2

s
, (12)

and thus a precession frequency of ωp = 0.18 Hz. We use non-
spinning PN terms up to 3.5 PN order and spin–orbit coupling up
to next-to-leading order.

From Fig. 5, we can see that the approximate value for the period
of the first precession cycle is (40.4 ± 0.4) s. This gives a value of
ωp,sim = 0.15 Hz. The small difference comes from the fact that the
calculation assumes the approximation L = LN, and we are already
in a very relativistic regime.

Even under the presence of spin–orbit precession, the direction
of JN should be conserved. Fig. (6) shows the x–y projection of
JN and LN during an inspiral. One can see that the direction of
JN is approximately constant but that the modulus shrinks due
to gravitational radiation. During this process, LN precesses about
this direction. One can also see the wobbles in the precession of the
orbital plane given by LN, as described in the appendix of Kidder
(1995). This is due to the fact that in reality the corrected L from
equation (10) does the strict precession, which is not true for the

3 Private communication with Seppo Mikkola and Cliff Will.
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Figure 5. Angular momentum precession in the case of one spinning body.
The total Newtonian angular momentum vector JN is approximately con-
served.

Figure 6. X–Y projection of the angular momentum precession in the case
of two maximally spinning bodies. Both JN and LN are gradually radiated
away as LN precesses about JN.

Newtonian value LN, and hence leads LN to wobble about the
conserved L.

The check of J conservation is a powerful way of testing the con-
sistency of the approach to estimate the spin and angular momentum
in the code.

3.3 Final spin approximation

In our code, we are subject to the limitations of our PN approach,
which is not valid anymore when the relative speed becomes larger
and larger, i.e. a few Schwarzschild radii before the merger. For
this, we adopt the fitting formula of Rezzolla et al. (2008), derived
from numerical simulations that address in full general relativity the
last orbits of the binary, including merger and ringdown. We hence
implement in the code the following formula for the modulus of the
final spin (Rezzolla et al. 2008)

|afin| = 1

(1 + q)2

[
|a1|2 + |a2|2q4 + 2|a2||a1|q2cos α

+2(|a1|cos β + |a2|q2cos γ )|l|q + |l|2q2
]1/2

, (13)

Figure 7. Comparison between the current final spin prediction and the
actual total angular momentum of the binary system.

where q = m2/m1 is the mass ratio, a1 and a2 the dimensionless
spin vectors and the angles are defined as

cos α = â1 · â2,

cos β = â1 · l̂,

cos γ = â2 · l̂. (14)

Therefore, so as to derive a value for the spin after merger, we need
the individual spin vectors a1, a2 and the orbital angular momentum
(OAM) at an arbitrary point in time during inspiral. l is a function
of the OAM, given by

|l| = s4

(1 + q2)2
(|a1|2 + |a2|2q4 + 2|a1||a2|q2 cos α)

+
(

s5η + t0 + 2

1 + q2

)
(|a1| cos β + |a2|q2 cos γ )

+ 2
√

3 + t2η + t3η
2, (15)

where we use the fitting factors si, ti given in Rezzolla et al. (2008).
With equation (13) to (15) in hand, one can check whether in the
regime in which PN is valid, the simulation is consistent with this
formula, in the sense that

(i) the total angular momentum must converge to the predicted
absolute value,

(ii) the predicted final value should be independent of the time
until coalescence.

Fig. 7 shows the time evolution of both the predicted absolute
value of the final spin at any given time during the inspiral and the
actual total angular momentum. As one can see, for equal masses
this gives a consistent value. J is decreasing due to gravitational
radiation until it reaches the prediction. At the latest times close to
the merger, there will remain a small difference between J and the
predicted value due to the cut-off at 5RS and due to other effects that
are part of the numerical relativity simulations but not modelled in
our PN integration.

3.4 Energy conservation

Since NBODY6 is a code to integrate Newtonian systems, it regularly
checks whether the total energy of the system is conserved within
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some tolerance for numerical errors. In this work, we have added
relativistic terms in the PN approximation, so that this is no longer
the case: (i) the dissipation, mainly by the 2.5 PN term, causes a
cumulative energy loss that has to be tracked and subtracted from
the total energy. On the other hand, (ii) even the non-dissipative
terms cause oscillations in the Newtonian energy, since only the
modified expression,

E = ENewt + E2.5PN,dis + E1PN + E2PN + E3PN + · · · (16)

is conserved at any given time. We thus calculate and subtract
the corrections up to 3 PN order from the total energy in order to
construct the conserved quantity E. In this way, we are able to verify
energy conservation in the same way as it is usually done in purely
Newtonian codes. This works well if the relativistic corrections
are small. However, when gPN/g ≈ 1 the error induced by PN
corrections will dominate and it becomes impossible to verify the
correct integration of the system. In order to avoid this, one could
decide an even larger distance threshold for merging two bodies
into one or a criterion based on the relative strength of the PN
corrections.

4 STELLA R - M A SS BINA RY MERGERS
I N A C L U S T E R : SO U R C E S O F G W S F O R
G RO U N D - BA S E D D E T E C TO R S

It is well-established that most galaxies should harbour a massive
black hole in their centre, with a mass of some 106−9 M� (see e.g.
Ferrarese et al. 2001; Kormendy & Gebhardt 2001; Ferrarese & Ford
2005). The densities observed may even exceed the core density of
globular clusters by a factor of 100, and hence achieve about 107–
108 M� pc−3. Mass segregation creates a flow of compact objects
towards the centre of the system (Lee 1987; Miralda-Escudé &
Gould 2000; Khalisi, Amaro-Seoane & Spurzem 2007; Preto &
Amaro-Seoane 2010; Amaro-Seoane & Preto 2011) and may build
up a cluster which could reproduce the effect of a massive black
hole (MBH). Indeed, this has been used as an alternative to explain
phenomena related to cluster evolution, like G1 and M15 (Gebhardt,
Rich & Ho 2002; van der Marel et al. 2002; Baumgardt et al.
2003a,b; Banerjee & Kroupa 2011). Nonetheless, for a globular
cluster, compact objects such as stellar black holes are very likely
expulsed via three-body interactions (Phinney & Sigurdsson 1991;
Kulkarni, Hut & McMillan 1993; Sigurdsson & Hernquist 1993;
Portegies Zwart & McMillan 2000). Lee (1995) proved that for σ

� 300 km s−1, the merger induced by gravity loss in clusters with
two components is shorter than the required time-scale for a third
star to interact with a binary, so that clusters with higher velocity
dispersions will not run into that problem. In this section, we will
test the robustness of our code by running simulations of dense
stellar clusters with a very high velocity dispersion to trigger a large
number of relativistic coalescences.

4.1 Initial conditions

To run a stress test on our implementation, we will consider that the
clusters are represented by an isotropic Plummer sphere containing
N = 1000 stellar remnants of equal mass m. We use N-body units
and choose a scaling according to KAS06 to trigger a significant
amount of relativistic mergers to test the code. We set the central
velocity dispersion to σ cen ≈ 4300 km s−1, which is equivalent to
fixing the ratio

σcen

c
= 1

70
. (17)

Figure 8. Top panel: eccentricity evolution of one dynamically formed
binary. First it is driven by Newtonian perturbations until the eccentricity
reaches a critical value, from which the rapid circularization sets in. The
dashed line marks the point from which we integrated equation (7) shown
in the bottom panel. Middle panel: perturbing force relative to the binary
force. Strong changes in eccentricity are caused by strong Newtonian per-
turbations. Bottom panel: inspiral as recorded in the simulation, compared
to the analytical solution of equation (7) as the solid line.

In other words, the speed of light ‘in code units’ is c = 70. We
consider therefore a cluster of compact objects with the same mass,
spinning with a dimensionless spin parameter a and we consider
three different initial spin setups for the compact objects at the time
T = 0.

(i) Non-spinning (a = 0).
(ii) Maximally spinning in the z-direction (a = 1).
(iii) Random magnitude and orientation.

4.2 Demonstration of a typical binary merger

We demonstrate here the evolution of a relativistic binary that has
been formed dynamically within one of the non-spinning setups.
Since we want to compare the decay to the approximation given
by equation (7), only the dissipative 2.5 PN term has been in-
cluded. Fig. 8 shows the evolution of the orbital elements and the
Newtonian perturbation by third bodies relative to the binary force.
The eccentricity evolves due to Newtonian perturbation until it
reaches a critical value and the GW-driven inspiral sets in. From
this point, the solution of equation (7) is plotted for comparison. We
note that in all plotted data points, the PN terms have been switched
on and we thus confirm the robustness of our implementation under
the presence of strong Newtonian perturbations.

4.3 Runaway growth

Because our system consists of very relativistic objects, almost any
binary that forms and is regularized will undergo a quick merger due
to the loss of orbital energy and due to the dissipative 2.5 PN term.
Around the time of the core collapse, i.e. after some ∼15 Trlx(T = 0),
with Trlx(T = 0) the initial relaxation time of the cluster, a series of
mergers leads to the formation of one particular BH in the system
that rapidly grows in mass and becomes much more massive than
the other objects. Therefore, we say that the object runs away in
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Figure 9. Mass of the runaway body, Mrunaw, for each setup, averaged over
500 runs. Mcl(T = 0) is the total mass of the cluster at the time T = 0 and
Trlx(T = 0) the initial relaxation time of the cluster. The shaded area shows
the standard deviation for the a = 0 case.

Figure 10. Cumulative relative energy error in a typical simulation. In this
case, we have 22 mergers, indicated by the dashed vertical lines, which cause
the Newtonian energy error to grow significantly. Our alternative method to
check for energy conservation leads to smaller fluctuations.

mass. This is a consequence of the increase in cross-section for GW
capture. The time evolution of the mass of this runaway object is
shown in Fig. 9. As we can see, after some ∼15 Trlx(T = 0), the
runaway object has achieved ∼5 per cent Mcl(T = 0), a value similar
to the case studied in KAS06, their fig. 1 around 450 time units.

An important issue that we need to address is the energy con-
servation in the simulations. In Fig. 10, we show both the usual
Newtonian energy and the corrected value, computed with equation
(16) for a simulation with the same configuration as before but with
N = 2000 bodies. The Newtonian energy error grows with every
single merger due to the dissipative PN terms. The corrected value
for the energy conservation in our approach fluctuates significantly
less and stays below 1 per cent. The absolute value of the error de-
pends on the nature of the merger. Head-on collisions dissipate the
lowest amount of energy, while gradual inspirals lose the maximum
amount before merger. The significant jump at T = 183 corresponds
to a binary which has spent a very long inspiral time due to a low

Figure 11. Spin of the runaway body in each simulation, averaged over 500
runs. The shaded area shows the standard deviation for the a = 0 case. All
initial spin setups lead to a similar evolution, except for the very first data
point which is slightly higher for the maximally spinning initial conditions.

eccentricity and a high initial separation. This causes rather high
errors in the numerical integration of the dissipated energy at 2.5 PN
order and thus contributes most to the total error, while some of the
other mergers only cause relative errors of ≈10−4.

The absolute energy error depends crucially on the cut-off radius
at which we end the integration and merge two bodies into one,
because this sets the highest velocity we have to deal with in the
binary. In this run, we chose 10RS. For smaller values, even the
corrected error grows to the order of the total energy of the system.
We note that even with larger errors induced by the dissipative PN
terms, the global behaviour of the simulation is not affected by
the particular choice of the merger radius. If one wants a powerful
energy conservation check it is reasonable to choose larger cut-off
radii.

In order to be able to make a statistical comparison between each
of the three spin setups and the potential impact on the evolution of
the runaway body, we perform 500 simulations for each initial spin
setup and show the mass averaged over each time bin. We can see
in Fig. 11 the evolution of the spin for all three cases against the
accumulated mass of the runaway object. Its formation is approxi-
mately the same in all three different scenarios, and consistent with
the results of KAS06. Nonetheless, the precise point in time where
the onset of the runaway process takes places depends sensitively
on the scaling. In any case, the choice for the initial distribution
of spins is washed out and all three cases show a consistent evo-
lution for the runaway body. We additionally perform 500 Monte
Carlo realizations of the scenario where one object merges with
non-spinning compact objects coming in at random angles using
the same final spin prediction as in the N-body code, so that we can
test the statistical study. We depict the Monte Carlo spin evolution
in Fig. 11 and confirm that this evolution is consistent with our
N-body analysis within some scattering.

4.4 Evolution of individual spins

We now focus on the compact objects that have experienced only a
few mergers. While the evolution of the spin of the runaway object
quickly washes out any information regarding the initial spins, in
the case of the other compact objects that do not undergo so many
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Figure 12. Spin distribution for those objects that have undergone at least
one merger during the whole evolution of the cluster but not more than four.
In the top panels, we show three different initial choices for the spin of the
BHs. From the left to the right, we have first a cluster in which initially
the BHs do not have spin, then a random value and in the last column a
maximally spinning configuration around the z-direction. From the top to
the bottom panels, we display the x-, y-, z- and absolute component of the
spin ranging between −1 and 1 (ax, ay, az, aabs shown on the left y-axis of
the panels, respectively). The red lines depict the values −0.68 and +0.68.

mergers, there is a dependence on the initial configuration even after
core collapse. This is particularly interesting, since a trend in the
evolution of the spin measurable with the advanced detectors would
provide us with valuable information about the spin evolution of
compact objects in clusters.

As mentioned in Section 2.3, we did not include BH recoil. For
any BH merger involving significantly spinning BHs, the recoil ve-
locity can exceed the escape velocity and these merger products
could thus leave the cluster. This means that the distribution pre-
sented here contains BHs that might no longer be part of the cluster
itself.

In Fig. 12, we show the end distribution of spins for different ini-
tial configurations of the spin distribution for an otherwise identical
system.

The configuration which initially had no spins is useful for
comparison with the other systems. While the x-, y- and z-
components individually show no clear trend, the absolute value
is aabs = (0.69 ± 0.02). If we move on to the second configura-
tion, in which we initially assign all compact objects a spin but of
random value, the final distribution is scattered around the same
value, displayed with a red line in each of the panels at 0.68. In this
case, the final value and standard deviation are aabs = 0.71 ± 0.03.
Finally, if we give all compact objects initially a maximum value
and set them in a preferred direction, which we arbitrarily choose
to be the positive z-direction, the final distribution has a value of
aabs = 0.76 ± 0.08.

In Fig. 13, we can also see this dependence. In the plot, we display
the time evolution of the total spin angular momentum in the cluster,
including the runaway object which carries most of the spin angular
momentum. In the case of an initially non-spinning configuration,
the spin builds up from OAM and converges to a generic value in
a similar way to what we showed in Fig. 12. We are limited in
our analysis to derive the exact value to which the curve converges
because of an accumulation of numerical errors.

Figure 13. Dashed green: total spin angular momentum for a cluster in
which the remnants are initially maximally spinning in the z-direction.
Solid blue: total spin angular momentum for an initially non-spinning con-
figuration.

5 C O N C L U S I O N S

In this work, we have presented the first implementation of the
effect of the spin for the treatment of relativistic mergers in a direct-
summation N-body integrator. For that, we modify the calculation
of the gravitational forces among particles using PN up to 3.5 PN
order and the spin–orbit coupling up to next-to-lowest order and the
lowest order spin–spin coupling.

We then check our implementations by running a series of tests
to compare with results based on analytical derivations, for isolated
two-body binaries and confirm the robustness of our approach. We
also present a way to check for the correct integration of a system
of N particles based on tracking the total energy, a usual test with
this kind of integrators. Our method is valid provided the number
of relativistic mergers in the system is low.

The final acid test of the implementation is to compare the global
dynamical behaviour of a relatively large number of BHs with
the new relativistic behaviour for binaries with well-known results
based on similar approaches. More specifically, we run a similar test
to that of KAS06 and obtain very similar results, which confirms the
correct incorporation of the new terms in the code, since the initial
spin distribution does not significantly change the global evolution
of the system. This is so, because if two non-spinning, equal mass
compact objects merge, the merger product will be spinning with
a ≈ 0.68 (Damour & Nagar 2007) in the direction of the angular
momentum. Since in a Plummer sphere there is no preferred direc-
tion in the distribution of the two-body angular momenta, this leads
to a randomization of the non-spinning distribution quickly. In the
scenario of two maximum spins in the z-direction, i.e. individual
spins of S = Gm2/c with equal masses m, the approximate angular
momentum in the last stable orbit before merger is of the same order
and thus also rotate the spins and similarly wash out the initially
preferred direction.

For the larger subset of BHs that undergo a lower number of
coalescences, which is more interesting since it is closer to what one
could expect to see in a realistic cluster, we find that the evolution of
the spin for consecutive mergers has a trend that oscillates around
the value predicted by Damour & Nagar (2007), but with a scatter
that is a fingerprint of the initial distribution of the isolated BHs,
before they merged with any other in the system. This is particularly
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interesting, since this trend is what will determine the value of the
spin that one can expect to see in globular clusters, and should be
carefully assessed when developing the waveform banks to do the
data analysis for the first detection.

Although, the systems that we have explored in this work cannot
be envisaged as representative examples of the grounds for which
we expect the advanced detectors to observe relativistic mergers, the
initial study of the behaviour of the code is a requirement before we
proceed to more realistic systems, and has provided us with initial
results which could play a crucial role in detection.

In particular, an immediate goal of our next research will be the
study of the spin distribution and evolution in a dense stellar cluster
with a realistic number of stars and including stellar evolution and
primordial binaries, such as in Downing et al. (2010, 2011), but
with a more accurate direct N-body integrator. The history and dis-
tribution of black holes in a dense star cluster is also important for
observing them in the electromagnetic windows, since it determines
e.g. number and distribution of X-ray binaries and encounters be-
tween black holes and other compact objects such as neutron stars
or white dwarfs.

Giersz et al. (2013) clearly show in their (non-relativistic) star
cluster simulations using the Monte Carlo code that quite a few BHs
and BH–BH binaries are formed and play a role for the dynamics
of the central region. The presence of BHs may explain the size
differences between red and blue globular clusters (Downing 2012)
and affect the number of blue stragglers in a cluster (Hypki & Giersz
2013). These papers also discuss that relativistic recoils after merger
are not only important for the GW signal itself, but it is an important
ingredient for correct modelling of globular clusters.

The kind of analysis we have presented in this work will soon
have interesting applications, taking into account that the advanced
ground-based detectors LIGO and VIRGO will have achieved their
design sensitivity as soon as 2016–2017.
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Miralda-Escudé J., Gould A., 2000, ApJ, 545, 847
Peters P. C., 1964, Phys. Rev., 136, 1224
Phinney E. S., Sigurdsson S., 1991, Nat, 349, 220
Pollney D. et al., 2007, Phys. Rev. D, 76, 124002
Portegies Zwart S. F., McMillan S. L. W., 2000, ApJ, 528, L17
Preto M., Amaro-Seoane P., 2010, ApJ, 708, L42
Rezzolla L., Barausse E., Dorband E. N., Pollney D., Reisswig C., Seiler J.,

Husa S., 2008, Phys. Rev. D, 78, 044002
Santamarı́a L. et al., 2010, Phys. Rev. D, 82, 064016
Sigurdsson S., Hernquist L., 1993, Nat, 364, 423
Tagoshi H., Ohashi A., Owen B. J., 2001, Phys. Rev. D, 63, 044006
van der Marel R. P., Gerssen J., Guhathakurta P., Peterson R. C., Gebhardt

K., 2002, AJ, 124, 3255
von Hoerner S., 1960, Z. Astrophys., 50, 184
von Hoerner S., 1963, Z. Astrophys., 57, 47
Yunes N., Berti E., 2008, Phys. Rev. D, 77, 124006

This paper has been typeset from a TEX/LATEX file prepared by the author.

 at M
PI G

ravitational Physics on January 23, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://arxiv.org/abs/1110.4423
http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/

