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The standard process for the production of strongly squeezed states of light is degenerate optical

parametric amplification (OPA) below threshold in nonlinear dielectric media such as LiNbO3 or

periodically poled potassium titanyl phosphate (KTP). Here, we present a graphical description of

squeezed-light generation via OPA, visualizing the interaction between the nonlinear dielectric

polarization of the medium and the electromagnetic quantum field. We explicitly focus on the

transfer from the field’s ground state to a squeezed vacuum state and from a coherent state to a

bright squeezed state by the medium’s second-order nonlinearity, respectively. Our pictures

illustrate the phase-dependent amplification and deamplification of quantum uncertainties and give

the phase relations between all propagating electromagnetic fields as well as the internally induced

dielectric polarizations. The graphical description can also be used to describe the generation of

nonclassical states of light via higher-order effects of the nonlinear dielectric polarization such as

four-wave mixing and the optical Kerr effect. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4819195]

I. INTRODUCTION

Squeezed states of light belong to a specific class of quan-
tum states that has applications in the research field of quan-
tum information1–5 and were used to demonstrate quantum
teleportation6–8 and the Einstein-Podolsky-Rosen paradox.9–12

Squeezed states also have applications in quantum metrol-
ogy,13 and they have recently been applied to a gravitational
wave detector to improve its signal-to-noise ratio beyond the
photon counting limit (shot-noise limit).14

The Heisenberg uncertainty relation describes the insight
that certain pairs of physical quantities of the same system
cannot have simultaneously precisely defined values. Let us
consider the electric field strength of a propagating electro-
magnetic wave measured at a certain location in space. If the
wave is perfectly monochromatic, the expected evolution of
the electric field can be described by a sinusoidal wave.
Repeated measurements of the electric field strengths, how-
ever, reveal that the measurement results scatter around the
expected oscillation. The electric field strength at a certain
phase h ð0 � h � 2pÞ of the sinusoid is usually named X̂h
and its standard deviation DX̂h. Setting h ¼ p=2 yields the
field strength in the wave’s maximum, also called the ampli-
tude quadrature X̂1. Setting h ¼ 0 (or h ¼ p) yields the field
strength at a node, which is called the phase quadrature X̂2

(and which shows an uncertainty around zero). The
Heisenberg uncertainty relation sets a lower bound on the
electric field uncertainties measured for phases being p=2
apart, for instance ðDX̂1Þ2ðDX̂2Þ2 � ðDzpÞ4. Here, Dzp is the
zero-point fluctuation and corresponds to the wave’s ground
state uncertainty, i.e., the field’s standard deviation in case of
zero energy (zero photons) on average. The ground state is
also called the vacuum state, whose expected average elec-
tric field is represented by a sinusoidal with zero amplitude,
i.e., by a horizontal line. The vacuum state obeys ðDX̂hÞ2
¼ ðDX̂1Þ2 ¼ ðDX̂2Þ2 ¼ ðDzpÞ2. A wider class of states is the
class of so-called coherent states. These include sinusoidal
waves of arbitrary nonzero amplitudes but still obey the

same phase-independent uncertainty of the vacuum state.
Distinct from all those, a wave is said to be in a squeezed
state15–18 if the uncertainty of its field strength is “squeezed”
to values smaller than the wave’s zero-point fluctuation Dzp

for some finite range of the phase h. We distinguish between
squeezed vacuum states having a zero electric field on aver-
age for all phases and bright squeezed states having an elec-
tric field of nonzero amplitude on average.

Figure 1(a) illustrates the (phase independent) zero-point
fluctuation of the vacuum state over a full cycle of the phase
from 0 to 2p. The quantum uncertainty of the squeezed

Fig. 1. Statistics of electric field measurements for five different minimum-

uncertainty states of the same optical mode.17 (a) Representation of the ground

state and its zero-point (vacuum) fluctuation Dzp. The uncertainty does not

depend on the phase h. (b) A squeezed vacuum state; such a state is produced

by a phase-dependent (optical parametric) amplification of the zero-point

fluctuation. (c) A coherent state, i.e., a displaced vacuum state. (d) A bright

phase-squeezed state. (e) A bright amplitude-squeezed state. For all these

states the uncertainty product of the electric fields at orthogonal phases meets

the lower bound set by the Heisenberg uncertainty relation. Although these

pictures are just illustrations, they can be experimentally reproduced by quan-

tum state tomography using the beat signal with a homodyne local oscillator

field of the same frequency.17
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vacuum state is phase-dependent as can be seen in Fig. 1(b).
In this work, we present a graphical description that illus-
trates how a nonlinear dielectric medium converts a vacuum
state, with the help of a second-harmonic pump field, into a
squeezed vacuum state. The same approach can also illus-
trate the transformation from a (bright) coherent state, as
shown in Fig. 1(c), to a bright phase-squeezed state [Fig.
1(d)] or to a bright amplitude-squeezed state [Fig. 1(e)].

Squeezed states of light were produced for the first time in
1985 by Slusher et al. using four-wave mixing in a beam of
Na atoms.19 In principle any nonlinear process, such as
second-harmonic generation20,21 or the electro-optical Kerr
effect,22–24 can convert a vacuum state or a coherent state
into a squeezed state. The most successful process for
squeezed-light generation is degenerate optical parametric
amplification (OPA) below threshold. With this method,
squeezing strengths of up to 12.7 dB noise reduction below
the ground state uncertainty have been achieved.25,26

In Sec. II, we briefly sketch the optical setup for squeezed-
light generation with OPA. We then recall the mathematical
description for the nonlinear polarization of a dielectric me-
dium that enables the conversion and coupling of optical fre-
quencies and that is the fundamental basis of nonlinear
optics in general. Finally, we present our graphical descrip-
tion of squeezed-light generation via degenerate OPA below
threshold. Starting from the vacuum state or a coherent state
entering the pumped crystal, our model illustrates how the
squeezed state is produced and how the different frequency
components of the outgoing field are phase-related to each
other.

II. OPTICAL PARAMETRIC GENERATION OF

SQUEEZED STATES OF LIGHT

OPA is based on the second-order nonlinear dielectric
polarization in optical crystals quantified by their second-
order susceptibility vð2Þ. Typical crystal materials are lith-
ium niobate (LiNbO3) and potassium titanyl phosphate
(KTP). For squeezed-light generation via degenerate OPA
below threshold,17,27–34 a laser beam of moderate power
is focused into the crystal serving as the driving (pump)
field for the OPA process. Additional laser light inputs
are not required, but zero-point fluctuations at all frequen-
cies and all directions of propagation naturally enter the
crystal as well. The pump field’s intensity is high enough
to produce an anharmonic oscillation of charges and thus
a nonlinear dielectric polarization of the crystal. As a con-
sequence, parts of the pump field spontaneously decay
into pairs of signal and idler fields, whose frequency sum
corresponds to the pump field frequency. For a below-
threshold operation, the driving field intensity is still rela-
tively low such that spontaneous emission dominates
induced emission.

“OPA below threshold” is also called “spontaneous para-
metric down-conversion” (SPDC), and it forms the basis
not only for squeezed-light generation but also for the pro-
duction of entangled photon pairs.35,36 For degenerate
OPA, the signal and idler fields are indistinguishable, i.e.,
they have the same frequency, polarization, and direction of
propagation. For many popular materials, this setting can be
realized by stabilizing the crystal to a specific temperature,
the so-called phase matching temperature for degenerate
operation. Additionally, the nonlinear crystal is placed
between two or more mirrors that have a high reflectivity

for the signal/idler field. The mirrors form an optical reso-
nator with the purpose that only a signal/idler field of a
well-defined direction of propagation and transverse spatial
mode constructively interferes with itself when reflected
back and forth between the mirrors. To maximize the spon-
taneous down-conversion probability into this mode, the
pump laser beam needs to be aligned such that its waist and
direction of propagation are matched to the signal/idler
field. Eventually, a single laser beam composed of the
(nearly undepleted) pump field and the down-converted
field leaves the crystal and its surrounding resonator. The
two need to be separated from each other by a wavelength-
selective mirror. The squeezing effect is observed on the
degenerate signal/idler field. It initially enters the crystal
being in the vacuum state and is converted inside the crystal
into a squeezed vacuum state. If the initial state is a coher-
ent state—if a coherent laser beam having half the fre-
quency is co-propagating with the pump field—it is
converted into a “bright” squeezed state of light. Note that
the word bright need not be taken literally; a bright
squeezed laser beam is usually much dimmer than the
pump beam.

III. THE NONLINEAR POLARIZATION OF A

DIELECTRIC MEDIUM

We restrict our mathematical description to the special
case where the electric field vector of the incident light pro-
duces a dielectric polarization inside the crystal pointing
along the same direction. Both vectors can thus be described
by scalar quantities. For simplicity, we further assume that
the dielectric polarization does not depend on the optical fre-
quency. The nonlinear dielectric polarization P that is
caused by the electric field E of the optical pump beam, at
one location inside a nonlinear medium, can then be
expanded in the form

PðEÞ ¼ �0v
ð1ÞE|fflfflffl{zfflfflffl}
Pð1Þ

þ �0v
ð2ÞE2|fflfflfflffl{zfflfflfflffl}
Pð2Þ

þ �0v
ð3ÞE3|fflfflfflffl{zfflfflfflffl}
Pð3Þ

þ � � � : (1)

Here PðiÞ is the ith order of polarization, �0 is the vacuum
permittivity, and v is the electric susceptibility, with typical
values of vð1Þ � 1; vð2Þ � 10�12 m=V, and vð3Þ

� 10�24 m2=V2 for state-of-the-art solid state nonlinear opti-
cal materials.37 For squeezed-light generation via OPA, only
the first two terms are relevant (the first- and the second-
order polarizations).

Degenerate OPA involves only two fields: the fundamen-
tal field (being in a vacuum state or coherent state) and the
intense second-harmonic pump field. The total electromag-
netic input field is thus described by

E ¼ A cosðxtþ /Þ � B cosð2xtÞ : (2)

Here A is the amplitude of the fundamental field with optical
frequency f ¼ x=2p that shall be squeezed, and B is the am-
plitude of the pump field having twice the optical frequency.
The quantity / describes the relative phase between the two
components. The minus sign does not have a specific physi-
cal relevance; it is chosen here to directly reproduce Fig.
1(b). After interaction with a nonlinear crystal, described by
Eq. (1), the expression for the second-order polarization of
the crystal reads
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Pð2ÞðEÞ ¼ �0v
ð2ÞfA2 cos2ðxtþ /Þ þ B2 cos2ð2xtÞ � 2AB cosðxtþ /Þcosð2xtÞg

¼ �0v
ð2Þ 1

2
A2½1þ cosð2xtþ 2/Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

/2x

� þ 1

2
B2½1þ cosð4xtÞ|fflfflfflfflffl{zfflfflfflfflffl}

/4x

� � AB½cosðxt� /Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
/x

þ cosð3xtþ /Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
/3x

�
8<
:

9=
;:

(3)

The crystal’s second-order polarization thus contains a zero-
frequency (DC) component and components at frequencies x,
2x; 3x, and 4x. The component Pð2Þx ¼ ��0vð2ÞABcosðxt
�/Þ interferes with the fundamental frequency component of
the first-order polarization Pð1Þx ¼ �0vð1ÞAcosðxtþ /Þ. This
interference gives rise to the effect of optical-parametric
amplification of the fundamental input field. If all coefficients
are positive and / ¼ 90� or 2708, the fundamental input field
is indeed amplified due to constructive interference. Setting
/ ¼ 0

�
or 1808 results in destructive interference and thus

deamplification of the fundamental input field. This interfer-
ence takes place not only for deterministic field amplitudes
but also for stochastic field fluctuations and quantum uncer-
tainties.38 As a result, the quantum uncertainty at the funda-
mental wavelength gets deamplified (squeezed) and amplified
(anti-squeezed) twice per wavelength, as shown in Fig. 1.

The above description of OPA involves an approximation.
It does not take into account that parametric amplification and
deamplification are effects that accumulate over a finite propa-
gation length through the crystal. With our approximation we
lose, so to speak, the “interest on interest”. The exact gain or
depletion needs to be calculated by integrating over a large
number of individual, infinitesimally small steps of construc-
tive or destructive interference, respectively, as described
above. Taking this into account, the resulting amplification
factor (gain factor) and deamplification factor (depletion fac-
tor) that are observed outside the optical resonator are exactly
inverse to each other.39 These factors are usually quoted as er

and e�r, with r > 0 being the squeezing parameter.16 OPA
thus preserves the product of amplified and deamplified uncer-
tainties and obeys Heisenberg’s uncertainty relation, which
sets a lower bound on the product of arbitrary pairs of electric
field uncertainties at phases h and hþ 90�.16

In the following, we translate Eqs. (1) and (2) into a graph-
ical description of squeezed-state generation via OPA.

IV. THE GRAPHICAL DESCRIPTION OF OPTICAL

PARAMETRIC GENERATION OF SQUEEZED

STATES OF LIGHT

Our graphical description builds on the usual convention17

of displaying quantum fields and combines it with the one
illustrating the effect of the dielectric polarization inside a
medium in terms of a PðEÞ-diagram.40,41 Uncertainties of
time-domain quantum fields are usually represented as areas
spanning along the time axis with a width that corresponds
to the standard deviation of the uncertainty. Our graphical
description projects such an electric input field uncertainty
by the PðEÞ-diagram from the E-axis to the P-axis. Since the
latter is directly proportional to the radiated output field, the
overall nonlinear transfer of quantum noise due to the non-
linear dielectric polarization is depicted.

Our first example is given in Fig. 2 and describes the con-
version of a vacuum state into a squeezed vacuum state via
OPA. All input fields enter the graph from below. The

relevant electric field components are the zero-point fluctua-
tions Ein

vac;f at the fundamental frequency and the classical
pump field Ein

2f at the harmonic frequency. The total field
causes a nonlinear separation of charges inside the crystal
which is directly proportional to the electric component of
the output field Eout. The graph shows that the interplay
between the two fields results in a phase-dependent amplifi-
cation and deamplification of the quantum uncertainty at the
fundamental frequency. Apart from the quantum noise Eout

sqz;f ,
classical fields at frequencies 2f and 4f leave the dielectric
medium. The amplitude at frequency 2f is connected to the
pump field’s first-order polarization Pð1ÞðEin

2f Þ and the ampli-
tude at frequency 4f is connected to its second-order polar-
ization Pð2ÞðEin

2f Þ. Note that in actual experiments the
component at frequency 4f is largely suppressed since the
phase matching condition (integration over many infinitesi-
mal steps) is usually realized only for the f and 2f compo-
nents. The 4f components that are produced at different

Fig. 2. The polarization PðEÞ ¼ �0

�
vð1ÞE þ vð2ÞE2

�
(upper left graph)

describes the separation of charges of a second-order nonlinear material by

the electric component of an optical input field. We use this graph to illus-

trate how an input quantum field (from below) is projected into an output

quantum field (towards the right). In the example shown here, the input field

is composed of a classical pump field Ein
2f at frequency 2f and zero-point fluc-

tuations Ein
vac;f [cf. Fig. 1(a)] of a field at frequency f. The superposition Ein

of these two fields is transferred into a time-dependent dielectric polarization

that is the source of (and thus directly proportional to) the electric compo-

nent of the output field Eout. The quantum uncertainty of the output field

shows a phase-dependent amplification at frequency 2f. Spectral decomposi-

tion of the output field Eout reveals coherent amplitudes at frequencies 2f and

4f and a squeezed vacuum state Eout
sqz;f as shown in Fig. 1(b).
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locations inside the crystal along the direction of pump field
propagation thus interfere mainly destructively. The compar-
ison of the outgoing quantum noise Eout

sqz;f with the ingoing
vacuum field Ein

vac;f (horizontal lines across Eout
sqz;f ) reveals the

squeezing effect. The presence of the second-harmonic
pump field Ein

2f obviously is crucial to produce strong squeez-
ing because it harmonically drives the input uncertainty
along the characteristic curve. The pump field’s maxima pro-
duce an amplification of the uncertainty, while its minima
lead to deamplification of the uncertainty. Both happen twice
per fundamental period. The stronger the pump field, the
stronger the optical parametric amplification. Since the
pump field is rather bright, its quantum uncertainties are
comparatively small and do not play a significant role in this
process. Our example shows vacuum noise standard devia-
tions that are squeezed by about a factor of 2, corresponding
to a squeezed variance of about 4, i.e., a noise power reduc-
tion of 6 dB. Actual experiments achieve noise power reduc-
tions of almost 20 (13 dB).26

The second example is shown in Fig. 3. Here, a coherent
state Ein

cs;f and its second-harmonic pump field Ein
2f enter the

picture from below. Their relative phase determines what type
of squeezed state is produced. For the phase chosen in Fig. 3,
the coherent displacement at the fundamental frequency is
deamplified, and so is the uncertainty of the field’s amplitude.
The uncertainty area of the input field is thus converted into
the depicted uncertainty of the output field as shown on the
right side of the figure. It belongs to an amplitude-squeezed
state as shown in Fig. 1(e). Squeezed states having a coherent
displacement are sometimes called bright squeezed states.42

The output field also has higher-order frequency components
at 2f, 3f, and 4f that need to be separated to extract the state at
fundamental frequency f. Again, in actual experiments, the

higher-order frequencies are usually largely suppressed due to
the lack of phase matching. Phase-shifting the second-
harmonic pump field by half of its wavelength results in an
amplified coherent displacement at the fundamental frequency
exhibiting phase-squeezing.

V. CONCLUSIONS

We have presented a graphical picture that describes the
conversion of vacuum states and coherent states of light to
squeezed states via optical parametric amplification. It com-
bines the quantum uncertainties of optical fields with the
nonlinear dielectric polarization of the crystal medium. The
latter’s uncertainty as induced by the input field can also be
deduced from our graphical description. However, our pic-
ture does not explain the general origin of quantum uncer-
tainties. Those are quantified by the Heisenberg uncertainty
relation and are taken here as given. In accordance with Eq.
(1), our graphical description represents the physics of OPA
at one location inside the pumped crystal. Quantitatively our
picture is correct only for an infinitesimally small effect. In
actual experiments, the infinitesimal steps accumulate over
the crystal length and usually also over several cavity round
trips, providing a measurable effect. Because our graphical
description boosts a single step to make it visible, our picture
cannot be used to exactly affirm Heisenberg’s uncertainty
relation. Our picture, however, does affirm Heisenberg’s
uncertainty relation to the order of approximation we use.
Our graphical approach can be expanded in a straightforward
manner to describe the effects of higher-order polarizations
on quantum uncertainties, such as four-wave mixing and the
Kerr effect.22–24
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