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Abstract
Heterosis, the greater vigor of hybrids compared to their parents,
has been exploited in maize breeding for more than 100 years to
produce ever better performing elite hybrids of increased yield.
Despite extensive research, the underlying mechanisms shaping the
extent of heterosis are not well understood, rendering the process
of selecting an optimal set of parental lines tedious. This study is
based on a dataset consisting of 112 metabolite levels in young
roots of four parental maize inbred lines and their corresponding
twelve hybrids, along with the roots' biomass as a heterotic trait.
Because the parental biomass is a poor predictor for hybrid biomass,
we established a model framework to deduce the biomass of the
hybrid from metabolite profiles of its parental lines. In the proposed
framework, the hybrid metabolite levels are expressed relative to the
parental levels by incorporating the standard concept of additivity/
dominance, which we name the Combined Relative Level (CRL). Our
modeling strategy includes a feature selection step on the parental
levels which are demonstrated to be predictive of CRL across many
hybrid metabolites. We demonstrate that these selected parental
metabolites are further predictive of hybrid biomass. Our approach
directly employs the diallel structure in a multivariate fashion,
whereby we attempt to not only predict macroscopic phenotype
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(biomass), but also molecular phenotype (metabolite profiles).
Therefore, our study provides the first steps for further investigations
of the genetic determinants to metabolism and, ultimately, growth.
Finally, our success on the small-scale experiments implies a valid
strategy for large-scale experiments, where parental metabolite
profiles may be used together with profiles of selected hybrids as a
training set to predict biomass of all possible hybrids.

Introduction
Maize is one of the most important crop plants and its total annual
production of 883 Mt, as of 2011, exceeds the production of other major
crops, like rice or wheat, by 20% (http://faostat.fao.org). In addition to its
agronomic importance, maize has been a model organism for biological
research for nearly a century. The integration of scientific knowledge
into the breeding practice resulted in a nearly linearly increasing
average yield in maize production from about 1.9 to 5.2 t/ha over the
last 40 years. Besides improvements in cultural practices, like irrigation
and fertilization, a constant development of superior cultivars and the
exploitation of the heterosis phenomenon contributed to this success,
with estimated genetic contribution to yield increase due to hybrid
breeding of 50–60% [1].
Heterosis describes the phenomenon that hybrids exhibit superior
performance relative to parental phenotypes [2]. In an outbreeding
crop, like maize, absolute heterosis of more than 100% can be observed
relative to the better of the inbred parents for some traits [3], but the
extent of heterosis generally depends highly on the parental genetic
backgrounds and the environmental conditions [4], [5]. Breeding
programs try to identify the most promising hybrids among various
parental combinations. As this becomes labor intensive for higher
numbers of parental lines, prediction of hybrid performance (HP) based
on parental traits has long been under scientific investigation [6].
Traditionally, phenotypic measures like General and Specific Combining
Ability (GCA and SCA) were obtained for this purpose. These measures
estimate HP based on the performance of Test Crosses (TC) of the
parents with other lines and was originally conducted by modeling
univariate traits with linear models given parental labels (see [7], [8] for
modern examples), but can be expanded to model vectors of traits as
demonstrated in [9].
Parental labels alone are often not sufficiently predictive of HP. Utilizing
technological advances, various genetic markers have been extensively
tested as new or refined additional predictors for HP using various
mathematical approaches, including: linear regression (LR), best
linear unbiased predictors (BLUP), support vector regression (SVR),
and Bayes approaches [10]–[14]. The achieved predictive power for a
given trait (e.g., grain yield) varies greatly (for a nice review, see [15]).
Riedelsheimer [19] is a recent example whereby the hybrid biomass
and bioenergy related traits are combined into a single GCA value for
the corresponding parents, and the GCA value is then predicted using
‘omics’ data measured on the parents.

http://faostat.fao.org
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In an extensive in situ experiment [16] to quantitatively investigate
major influencing factors on prediction accuracy, inter-population
structure and type of validation group were shown to be the main
contributors to the observed variance with obtained prediction
accuracies varying from 0.65 to 0.95 and measured as correlation r
between predicted and observed trait value. In short, it is less difficult
to achieve a good prediction performance for (i) hybrids produced from
divergent parental populations, i.e., where parental lines are genetically
more unrelated, compared to convergent parental populations, and
(ii) hybrids for which TCs (half-siblings) from one or both parents are
evaluated within the training set compared to hybrids where no such
lines were included. Marker density, in contrast, had only a minor effect
on prediction accuracy, setting a limit to the usefulness of additional
genetic markers in a model.
Important agronomic traits are typically highly polygenic, and are
under the control of a large number of quantitative trait loci (QTL)
with small effects–a hard nut to crack with QTL-based marker-assisted
selection methods. Additionally, the identity, the genetic function and
interaction of specific genes associated with heterosis of different
traits is mostly unknown. More detailed information may be obtained
by inspection of other molecular traits, like transcript or metabolite
levels, which integrate genetic and environmental influences [17], [18].
The first complementary testing of large-scale genomic and metabolite
data to predict important agronomical traits in hybrid maize test-
crosses concluded that the prediction accuracies of heterotic traits
in adult maize plants using metabolite profiles of the young leaves
were only slightly lower than with Small Nucleotide Polymorphisms
(SNPs), although metabolites represent approximately 300 times smaller
number of variables compared to SNPs [19].
Heterosis is typically investigated in adult hybrid plants, however,
this phenomenon already manifests during the very early stages of
seedling development [20]. The development of the primary root as first
organ allows the comprehensive analysis of maize seedlings prior to
the shoot emergence a few days after germination since a number of
heterotic traits were described on the macroscopic (morphological and
histological) [20] as well as on molecular (transcriptome and proteome)
[21], [22] levels during early postembryonic development. Although, the
primary root system contributes little to the season-long maintenance of
the corn plant, it helps sustain seedling development by virtue of water
uptake, and is important for early vigor of the maize seedlings [23]. In
order to enable tight control over environmental parameters for plant
growth and metabolite data collection, primary root was used as model
system in this study.
Previously, we reported metabolite and biomass data of primary roots
obtained by full diallel mating design of four European maize lines
(two dent and two flint lines). The results led us infer that hybrids
show optimized metabolic flux configurations with respect to biomass
optimization [24]. It is reasonable to assume that the metabolic levels
leading to optimized metabolic flux configurations are constrained by
the genetic possibilities inherent in the particular parental combination
(along with the 'standard' biochemical constraints) and, therefore,
that parental metabolite levels may allow the prediction of complex
heterotic traits, e.g., hybrid primary root biomass. This question was
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already investigated with some success in a large Arabidopsis data set
[25], [26] where it was shown that feature selection, i.e., a filtering
process retaining only a minimal set of markers containing the relevant
information, was a critical step to improve HP prediction and, further,
that variable importance in the projection (VIP) can be used for this
purpose [26].
There are many frameworks for prediction of macroscopic phenotype
directly from the parents. To our knowledge, prediction of molecular
phenotype such as hybrid metabolic profiles has not been previously
attempted, although this could enhance prediction of macroscopic
phenotype. In this work, we aim to investigate the prediction value of
parental metabolite profiles for hybrid metabolite levels and biomass
production during the very early stage of maize seedling development.
Here, we present methods to (1) transform hybrid metabolite levels
relative to parental levels by using standard concepts of additivity and
dominance, thereby implicitly retaining the diallel structure, (2) predict
hybrid metabolite phenotype given parental metabolite profiles and (3)
use the results of (2) as a feature selection method to predict hybrid
biomass directly from parental profiles. We find a subset of parental
metabolites which are not only predictive of hybrid molecular phenotype
but also of biomass.

Methods
Plant Material and Growth Conditions

The maize inbred lines UH002, UH005, UH250 and UH301 as well
as their 12 hybrid combinations were generated in the nursery of
the University of Hohenheim in the summer season of 2003. Seeds
were surface sterilized, thoroughly rinsed in twice distilled water,
transferred on moistened filter paper (193×290 mm Grade 603 N,
Munktell&Filtrak, Bärenstein, Germany) which was rolled up with 10
seeds of a genotype per filter paper and germinated in a phytochamber
(Versatile Environmental Test Chamber, MLR-350, Sanyo, Japan) at
26°C, with a 16 h light and 8 h dark cycle [20]. For further analyses,
the 3.5-day-old roots were excised with a razor blade, the roots growing
on the same filter paper were pooled, weighted, snap frozen in liquid
nitrogen and stored at −70°C. This procedure was repeated six times
per genotype leading to six biological replicates. Altogether six times ten
kernels of 12 hybrid and 4 inbred genotypes were in randomized order
independently germinated and harvested. For each sample the average
biomass (fresh weight of 10 pooled primary roots) was calculated, these
values represent the primary root biomass in the very early stage of
maize seedling development. Frozen samples were randomly grinded in
2.0 ml round bottom micro-vials (Eppendorf, Germany) with prewashed
0.25 inch steel balls in a mixer mill (Retsch, Haan, Germany). Per sample
100 mg of frozen homogenized pooled root material was subjected to
subsequent sample extraction.
Root material was preferred over analyzing kernels to account for
heterosis effects during seed formation (accumulation of storage
compounds) as well as seedling establishment (storage compound
utilization and environmental influences).
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Metabolomics Analyses and Data Normalization
A targeted analysis [27] evaluating the levels of 112 distinct metabolites
was conducted for six biological replicates of each individual genotype
following the procedure outlined in [28] and modified as described
in [29] with respect to the extraction mixture (MeOH:MTBE:H2O
instead of MeOH:CHCl3:H2O). The 112 metabolites are a subset of the
extractable polar fraction of metabolites which are accessible by gas-
chromatography-mass spectrometry (GC-MS) and where selected after
manual inspection of several chromatograms. Sixty nine metabolites
were identified by comparison with the Golm Metabolome Database
[30] as a reference based on Retention Index and spectra similarity.
For 19 of the remaining 43 unidentified metabolites we could assign a
putative chemical class (aa: amino acid, acid: organic acid, cho: sugar,
chop: sugar phosphate) according to selective masses from the spectra.
All samples were measured in completely randomized order in three
consecutive batches (measurement days).
Metabolite intensities were log10-transformed to better resemble a
normal distribution. A two-way analysis of variance (ANOVA) was
applied using genotype and sample batch as factors. Systematic
differences due to the latter factor were thus removed. Values with
studentized residues larger than four were eliminated. In a further
normalization step, we corrected for differences in metabolite levels due
to variation in initial sample amount. Here, we calculated a correction
factor for each sample as the ratio of its median peak height (i.e.
metabolite level) and the median peak height for all replicates of the
similar genotype. By dividing each sample with its correction factor, we
scaled biological replicates to a similar median peak size.

Notation
Let  be the set of parental genotypes with , and  denote a member of
, i.e., . A hybrid genotype is denoted by , where  In total, there are 12
different hybrid and 4 different parental genotypes.
Let  denote the cardinality of a given set .
Let  denote the number of available replicates for each measurement.
The  matrix  gathers the profiles of  metabolites from  parents and 
replicates, thus, . The matrix  will be referred to as the data matrix of
parental metabolic profiles. Analogously, the  data matrix  gathers the
hybrid metabolic profiles, where . Columns of  and , corresponding to
metabolites, are mean-centered and scaled to unit variance.
Let  denote the  row of a matrix , and  its  column.
We next construct an  matrix  where each row represents a hybrid as a
concatenation of two parental profiles  also mean-centered and scaled to
unit variance.
Notation regarding replicates is suppressed and it is always implied
that a group of replicates is meant when a genotype is discussed, unless
otherwise stated.

Problem Setting
Every  can be represented on 4 levels:
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• A: the labels g1 and g2 of its parents
• B: the combined metabolic profiles of both of its parents
• C: its own metabolic profiles
• D: its biomass.
In practical terms (e.g., a breeding program), it is desirable to predict
macroscopic quantities such as D given an easily obtainable quantity
describing its parents. Efforts have been made for decades to predict D
given A by using linear models, culminating in the Bayesian formulation
found in [7].
A black-box approach would be to predict D given B, however, level C
is skipped which potentially has predictive information. Levels B and C
could also stand for other types of molecular data, such as transcript or
protein levels. Additionally, there would be the need to select features
of B to gain biological insight or develop a small number of predictive
biomarkers for use.
Here, we aim to predict C given B. In general, it is hard to predict one
profile given another, hence we apply the following simplification: if 
is the matrix of profiles corresponding to C, and  corresponds to B, we
predict  given  for each . The trade-off of this simplification is that the
individual metabolites in the hybrid profiles are treated as if they are
independent of each other, which is clearly not true for each metabolite.
The output of the parallel prediction problems ( given ) is aggregated
and some parental metabolites (labelled as either maternal or paternal)
show an overall higher predictive power of than others. Therefore, we
use this as a biologically-motivated feature-selection method and find
that these parental metabolites are also predictive of biomass, i.e., allow
to predict D given B.

Problem Formulation
A new  matrix  is first constructed, quantitatively capturing the concept
of additivity and dominance, by comparing the levels of each metabolite
in  to those in the respective parents. As a result, hybrid metabolite
levels are expressed relative to the corresponding parental levels and
not to a common reference (zero). This captures the genetic constraints
imposed by the parents, and is achieved by using moderated t-statistic
[31], as detailed below.
For every metabolite  and every hybrid , we consider the following two
null hypotheses for i = 1 (maternal) and i = 2 (paternal):

Because for each , there is a multiple testing situation, moderated t-
statistics are calculated over  for each .
Using this approach, each metabolite  within each hybrid  is given a
label  specified by:
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where, for succinctness, the notation for expectation  is neglected
for all  and ±2 corresponds to positive/negative overdominance, ±1
corresponds to positive/negative dominance and 0 corresponds to
additivity, respectively. Therefore, in the alternative formulation, the
problem is that of classifying the parental matrix  according to:

where  is a classifier to estimate  given the parental matrix  as input.
Let  denote the number of genotypes with the corresponding class label
in metabolite . Hybrid metabolites are then filtered so that only those
with reasonably balanced classes are predicted by assigning each hybrid
metabolite  a weight  where:
 such that 
 such that  and , otherwise. For two of the remaining metabolites where ,
such that , we removed only the rows of the corresponding genotype.
In a classification problem, given a data set of points, belonging to
one of at least two classes, it is required to determine a function of the
features, specifying the points, to infer the class labels. Depending on
the properties and constraints the function should satisfy, there are
several approaches available, and a thorough overview can be found
in [32]. Here, the class labels are given by the CLR, and the features
are the parental metabolites. To infer the class labels, we employ five
classification methods: support vector machines (SVM) VAPNIK, linear
discriminant analysis (LDA) [32], random forests (RF) [33], RF preceded
by a partial-least-squares dimension reduction step (PLS-RF) [34] and
LDA preceded by a partial-least-squares dimension reduction step
(PLS-LDA) [34]. Selecting a classification method  (: SVM, LDA, PLS-
LDA, PLS-RF, RF) for a problem based on lowest class error rate of
an individual method can give an 'optimistic bias' [35]. Therefore, we
used the following strategy to obtain those metabolites which are well
classified regardless of the classification method employed (available
from the Bioconductor package CMA [36]):
For each  with :
1. Construct a new , after permuting the rows  and , corresponding to

each .
2. Split  into 3 groups of samples for 3-fold cross validation (sampling

balanced across classes)
3. Construct the classifier  3 times using each group once as the test

set, and apply different classification methods to estimate either the
observed labels  or a permuted version  thereof.

4. Report the median misclassification rate  for method  and  for  and 
respectively.

5. Repeat steps one to four 25 times.
6. For each method, report the median misclassification rate  over the

25 replicates. Select the two methods  with  in both .
7. Define , where  and  denote the first and third quartiles, respectively,

of 25 median errors . First and 3rd quartiles are used to be stricter
than comparing medians.
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If , then  is considered to be predictable using . For these metabolites, it
is now desired to select the features of  which are most predictive of . To
do so, ranked feature weights of SVM is used (regardless of performance
compared to other methods, as this remains unknown), i.e., for each ,
there is a -vector of parental metabolite feature weight ranks , where
 and indexes the parental metabolites. Ranks are used to avoid the
problem of feature weights being on different scales for each , and to
avoid the problem of threshold selection.
To summarize the combined performance of all hybrid metabolite
classifiers, the parental metabolites  are ranked based on the median of
, i.e., their importance in predicting each . Parental metabolites with a
low  are often important in predicting  and conversely metabolites with a
high median, are not very often important in predicting .

Validation of Selected Parental Metabolites Using
Hybrid Fresh Weight

To test if the informative parental metabolites, which are low ranked in
hybrid metabolite prediction, are also predictive of biomass (), we form a
final ranking for parental metabolites .
We form a biomass predictor  using support vector regression on 60% of
the samples as a training set and measuring performance calculating the
Pearson correlation between the predicted () and actual biomass values.

To determine the subset of columns (metabolites) of  selected we define
 as being 5 randomly selected metabolites out of those with , and , and 
with  and . This is compared to  for  with the  values block permuted, i.e.
biological replicates for each  remain together. For each ,  is constructed
500 times, each time with rows randomly assigned in  and , as well as 
replicates also being randomly assigned.
A schematic representation of our analysis pipeline can be found in
Figure S6.

Results
Description of the Experimental Setup and Conceptual
Framework

We used four European parents, two of each from the flint (UH002 and
UH005) and the dent (UH250 and UH301) pool, and all their reciprocal
hybrids. The full experimental design is displayed in Figure S1 B and
was also previously described [24].
Based on our earlier observation that biomass was correlated to the
deviation from a set of optimal metabolic levels, we concluded that in
order to complete a targeted breeding approach, it is crucial to establish
the link between parental and hybrid profiles. While it is easy to select
promising parental lines () and measure their metabolic profiles (),
we set out to devise a method to infer from  the hybrid profile (), or a
derived version () thereof, retaining sufficient information to predict
hybrid biomass () ultimately based on parental traits alone (Figure S1 A,
Materials and Methods).
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As metabolism is sensitive to changing environmental conditions [37],
our experiment was designed to keep environmental influences at
minimum. Therefore, we performed our study on the germinating root
system in maize, where heterosis was previously shown to occur in
a highly controlled setup [20]. Six biological replicate samples, each
containing 10 pooled roots, were analyzed by gas-chromatography
time-of-flight mass-spectrometry (GC-TOF-MS) to obtain the metabolic
profiles comprising the levels of 112 metabolites [24].
We initially tested if biomass can be predicted based solely on
knowledge of the parental genotype and biomass, utilizing a Bayesian
framework [7] to estimate the posterior densities of the inherent effects.
However, hybrid outcome is essentially arbitrary in the absence of
further information, and there is no power for further generalization
(e.g., parent X improves hybrid biomass independent of the other
parental genotype). Therefore, to gain a deeper insight, we next
investigated the connections between parental and hybrid metabolite
profiles and average root´s biomass.

Re-encoding the Hybrid Metabolite Profiles According
to Individual Heterosis Mode of Action

Hybrid metabolic levels depend on parental levels, albeit in an unknown
way. To investigate the connection, we do not work with absolute
hybrid metabolic levels but rather we transformed them to relative
values with respect to the corresponding parents. However, here each
hybrid metabolite is compared to two separate quantities, namely the
corresponding maternal and paternal metabolite levels, and a decision
must be made on how to combine the parental levels. Representing the
parental levels by the mean may not suffice, because the separation
between the parental levels is lost and this is essential information
about the diallel structure. Instead, we define the Combined Relative
Level (CRL) by applying the concept of additivity/dominance/over-
dominance to each metabolite. If the hybrid level is significantly greater/
smaller than both respective parental levels, then CRL is +/−2. If it is
significantly greater/small than just one parent, CRL is +/−1. When it
is indistinguishable from both parents or greater than one and smaller
than the other, CRL is 0 (cf. Methods). While information about the
diallel is retained through the consideration of the separation of each
parental combination in the calculation of the CRL, it is evident that the
magnitude of the hybrid shift is lost.
Our aim was to examine whether certain regions of parental metabolite
space favor certain shift directions, as a consequence of common
genetic and biochemical constraints. However, while we did the
classification individually per metabolite, hybrid metabolite levels are
likely to be the outcome of complex combinatorial patterns of multiple
parental metabolites levels [38]. The corresponding parental metabolite
levels of metabolite  may even be less influential for the hybrid outcome
of  than the parental levels of metabolites  and , which potentially allows
the prediction of hybrid outcome based on a reduced set of parental
metabolite levels.
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Predicting the Hybrid Class Label Profile
We asked for every hybrid metabolite which of the parental metabolites
is predictive of the hybrid class labels based on their levels. The parental
input matrix  is constructed as a concatenation of maternal (m) and
paternal (p) profiles (cf. Methods) and, therefore, contains every
metabolite twice (e.g. alaninem and alaninep).
Before classification, hybrid metabolites which show the same class
label at least nine times (out of 12 combinations) were removed. This is
necessary to avoid an overly unbalanced set of class labels, narrowing
down the profiles to 69 metabolites (Figure 1). The threshold of nine was
chosen based on a visual inspection of class label balance distribution.
We then tested several classification methods (support vector machines
(SVM), linear discriminant analysis (LDA), random forests (RF) and
combinations of partial least squares (PLS) with the previous: PLS-LDA
and PLS-RF, cf. Methods for details) which are ideally evaluated against
an independent test data set to avoid choosing the ‘best’ method.
Because such a test data set is currently not available, we compared
our results to classification with permuted class labels using 3-fold
cross-validation on both permuted and original datasets, each time
with 25 replicates. For the 54 metabolites where the minimum original
median error from one of the classification methods was lower than
the minimum permuted median error we considered parental profiles
to have predictive power for the hybrid class label. The median miss-
classification frequency for the SVM method, which often has a low CV
error, is shown in Figure S2.

Figure 1
Object ID: 10.1371/journal.pone.0085435.g001
Hybrid class label matrix.
The hybrid class label matrix is established using moderated t-statistics
(cf. Methods). It shows the observed metabolite heterosis mode of
action in all hybrids. Metabolites with unbalanced class labels (e.g.
predominantly showing similar class, upper 53 rows) were excluded
before conducting classification methods. Various classification methods
were used on parental metabolite data to investigate which parental
metabolites allow to predict the observed classes within hybrids.

Identifying the most Influential Parental Metabolites
The next question to address was which parent metabolites are
influential in the prediction of hybrid class labels which requires a
feature selection procedure. As SVM performs well overall, we decided
to use the embedded feature selection method, i.e., recursive feature
selection. However, the feature weights appeared to be on different
scales for each hybrid metabolite, and, furthermore, there was the
additional problem of choosing an appropriate feature weight threshold.
To circumvent these challenges, the feature weight rankings were
used, where a low rank corresponds to high feature weight or variable
importance. The median ranks over all 54 hybrid metabolite class label
predictions were scaled between 0 and 1, allowing the identification of
parental metabolites with global importance, rather than individually
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choosing and interpreting a set of features for each metabolite. The rank
distribution within each feature (parental metabolite) over all predicted
hybrid metabolites is shown in Figure 2, where metabolites are sorted
by their median rank.

Figure 2
Object ID: 10.1371/journal.pone.0085435.g002
Ranking of the parental features.
Parental metabolite levels (224 features in total) are used to predict
the observed class labels of 54 hybrid metabolites. In each prediction
model all features can be ranked according to their weights. The ranks
are scaled between 0 and 1 by dividing by the total feature number.
The scaled median rank distribution of a feature, i.e. the individual
boxes in the plot, then gives an estimate regarding the importance of
the absolute parental level of the respective metabolite on the heterosis
pattern of all hybrid metabolites.

It can be seen that features with low median rank are also highly
skewed to the left, meaning they are low ranked more often than high
ranked. At the other end, there are features which are never of low rank.
This implies that there is a set of parental metabolites which may be
implicated in the outcome of the discretized hybrid metabolite profiles
(CLR), i.e. they are informative not only for the hybrid heterosis mode
of action for the respective metabolite itself but for several up to many
metabolites.
To assess how robust our feature ranking would be if not all genotypes
are included in the modeling step we performed a leave-one-out
(LOO) approach excluding all replicates of a specific hybrid. This is
important for a later application in breeding where we would like to
make predictions on hybrid traits based on their parental properties
without measuring the hybrid itself. While it is obvious that a LOO
strategy is less strict compared to an independent test set, we found the
feature ranking to be very stable (Figure S3).

Predicting Hybrid Root’s Biomass from Parental
Metabolite Profiles

We have been able to predict the CRL class labels of each hybrid
metabolite individually given the parental profiles, and some parental
metabolites are overall more influential than others. Furthermore, this
ranking does not appear to be dominated by any genotype in particular,
given that the feature ranking is stable using a LOO approach.
It would be of practical use to predict the biomass of primary roots
in the progeny given parental profiles, and thus we now investigate
whether the feature ranking can also be used for feature selection.
We predict the biomass given the parental profiles using support
vector regression (SVR), and as a baseline, we use all metabolites, with
prediction quality measured by correlation between actual and predicted
biomass values (Figure 3, Box L). Comparing the prediction quality
to that of permuted biomass values, the parental profiles are indeed
predictive of average fresh weight (Figure 3, Box M).
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Figure 3
Object ID: 10.1371/journal.pone.0085435.g003
Prediction evaluation.
The correlation between observed and predicted HP in models
incorporating 5 metabolites. The metabolites have been selected based
on a previous ranking (cf. Figure 2). It can be seen that good prediction
accuracies are only obtained for high ranked metabolites and not for low
ranked metabolites, which perform comparable to permuted data sets.
Metabolite input matrices Xpp were established as described in Methods.

We would like to know whether all features are necessary for prediction,
or whether a small number of features may achieve comparable
predictive power. We find that using only the top 5 ranked features in
the SVR gives comparable results to using all features (Figure 3, Box A).
We would like to know how many of the top ranked features are equally
good predictors. To this end, we randomly select 5 out of the top 10,
20 and 50. The top 5, 10 and 20 features have comparable prediction
quality (Figure 3, Box B and C), and there is a decrease in prediction
quality by using the top 50 (Figure 3, Box D). Note that the number
of features used in the SVR remains fixed at 5, as a higher number of
features was found to improve prediction quality for the top 10 and top
20. Furthermore, prediction quality progressively decreases as more
bottom ranked metabolites are included in the SVR (Figure 3, Boxes E, F
and G).
The results of the top 5 and random 5 can be compared to predictions of
permuted biomass (Figure 3, Boxes H and I), and the top 5 features are
also predictive of biomass, while it is not true in general that randomly
selected features are predictive. Note that even predictions on permuted
biomass gives results which are better than random (median correlation
is greater than 0). As expected, prediction is truly random when the
correlation structure of the parental profiles is destroyed by permuting
the cells of the parental profile matrix (Figure 3, Boxes J and K). Thus,
the feature ranking found by predicting hybrid CRL class labels is of
direct relevance to the prediction of average fresh weight.

Discussion
In every plant, the genetic information is processed in a multitude of
downstream processes (transcription, translation, post-translational
modification, and metabolism) and in response to fluctuating
environmental conditions, ultimately giving rise to a phenotype. For
any given genome, the complete downstream process is highly complex
and largely unknown, rendering the phenotype prediction based on
genotype alone difficult. The combination of two parental genomes
in a hybrid further leads to different levels of heterosis and adds yet
another layer of complexity to the prediction problem. On the other
hand, metabolic levels already integrate some of these processing steps
(genetic predisposition and environmental conditions), are inexpensive
to measure and have been shown to be closely connected to macroscopic
traits such as biomass [39].
Here, we describe the analysis of the metabolic patterns of germinating
roots of corn hybrids and their corresponding parental lines to
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ultimately predict HP. Little is known about the connection of parental
and hybrid metabolite levels and all possible heterosis mode of action
have been observed in the population under study [24]. We devised
the concept of CRL which compares the hybrid level to each parent
separately, thereby incorporating the diallel structure of the data. The
discretization induced by the CRL also avoids potential non-linearity in
hybrid metabolic levels.
We then classified the parental profiles with respect to the CRL
labels for each metabolite, assuming that the outcome of each
hybrid metabolite is influenced by the entire profile and not just its
corresponding parental metabolite levels. We then aggregate the
results of the separate classification problems to discover the parental
metabolites which are most often influential in the hybrid outcome.
To complete the chain of our model framework, we demonstrate that
these same parental metabolites are more predictive of biomass than
metabolites selected at random.
While each metabolite for each hybrid is compared to the corresponding
parental metabolite levels in a univariate manner, it is not assumed that
parental metabolites are determining hybrid levels independently of
each other, but rather that the entire profile of both parents may be
predictive. A simplified example is given in Figure S4. Presume that the
level of metabolite X is low in genotypes A, B and C and high in D and
E. If relationship between the average parental level and hybrid level
is examined, it can be seen that even though both hybrids AxB and BxC
have low average parental levels, the hybrid outcome is high and low,
respectively. However, this disparity is in fact being driven by metabolite
Y, whose average parental levels are, too, low and high, respectively.
Furthermore, the interaction between parental metabolites may also
be a function of level. For instance, when the average parental levels of
DxE are high in X, this becomes the dominant influence, and causes the
hybrid level to be moderate. This is despite the levels of Y being very
close together in A, B, C and D.
To obtain a black-box predictor, we could have simply regressed parental
profiles against root´s biomass and for added interpretability we could
have used a purely statistical scheme for feature selection. However,
this is a difficult task and ideally would require some form of validation.
Additionally, prediction of biomass requires further optimization to
choose the 'best' features, and it is not clear what criteria should be
optimized. We circumvent this by choosing features that are highly
relevant to metabolite shifts that have a solid biological interpretation,
and validate them by demonstrating that they are additionally predictive
of biomass.
We cannot claim that the predictive metabolites from this study are
optimal predictors of biomass in experimental setups differing from
ours. Additionally, the existence of multiple metabolic optima may
confound a more straightforward prediction problem. Although it is not
obvious how parental metabolic profiles influence HP and given that
the genetic combining rules and the genetic-metabolic connections are
unknown and likely to be complex, here, we demonstrate within one
set of genotypes that the metabolic layer can be used as a proxy for the
genetic layer, and by extension, that the parental profiles are predictive
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of biomass. Therefore, we have given a framework which can be easily
applied to larger sets of genotypes.
The top ranked metabolites are postulated to have the greatest
predictive power of fresh weight. However, it is not certain how
robust the ranking is, or whether the most influential metabolites
are interchangeable. From Figure 3 we can conclude that between
10 and 20 top metabolites are interchangeable, as beyond this point,
inclusion of further metabolites decreases prediction accuracy. On
the other end, regarding the bottom 50 metabolites, we see that
these are rarely influential in predicting hybrid metabolite profiles
and also have no predictive power for biomass. This suggests that
either these metabolites do not act as a proxy for the genetic layer,
or that it is encoded in a more complex manner than our model can
capture. Amongst the top 5 metabolites are prolinem, ketoglutaric
acidm, histidinem and trehalosem. In these cases always the maternal
level (indicated by m) is more important in the prediction of hybrid
outcome. This seems to be a general trend, as we find amongst the top
20 features only 5 paternal metabolite levels (Figure S5), and may be
caused by both gene dosage effect in metabolite composition of kernel's
triploid endosperm, the primary energy reserve as well as source for
nourishment for a young corn seedling [40], [41] and the maternal
inheritance of the plastidal genome in angiosperms. In accordance with
our initial expectations regarding the usefulness of a feature selection,
the hybrid class labels for histidine cannot be significantly predicted
from parental levels, while the maternal level of histidine is highly
predictive of the hybrids class labels of many other metabolites.
The present data set certainly is too small to allow more than
speculative conclusions about these features. However, we have devised
a conceptual framework of how genetic information may be processed
when two genotypes are crossed, and attempted to apply machine
learning methods to mimic such a process. The results of the described
feature selection method might be better accessible to biological
interpretation compared to black-box approaches. The results give a
foundation for future investigation.

Supporting Information
Figure S1
(A) Idealized prediction workflow. The aim of this study was to
establish a mathematical framework, which allows to predict an
integrative hybrid trait (Fresh Weight) from molecular parameters,
namely levels of metabolites, obtained in the respective homozygous
parents. (B) Experimental setup and color scheme. Root samples
of four European maize lines and their twelve reciprocal hybrids were
analyzed throughout this study.
(PDF)

Click here for additional data file.
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Figure S2
Class labels miss-classification frequency. The median miss-
classification frequency for class labels (indicating heterosis mode
of action) of 69 metabolites showing balanced label sets obtained by
SVM and compared against the minimum value obtained for permuted
data sets (minperm). Metabolites are ordered according to the SVM
misclassification rate for non-permuted data.
(PDF)

Click here for additional data file.

Figure S3
Leave-one-out validation of feature ranking. Feature ranking in a
LOO approach compared to the original rank position of the parental
metabolites. In general, ranking order is preserved, which potentially
allows to apply the model to novel genotypes not included in the model
building process.
(PDF)

Click here for additional data file.

Figure S4
Independence of metabolite levels. Metabolite levels cannot be
regarded as independent from each other. In this example the hybrid
level of metabolite X is dependent on the level of metabolite Y and can
therefore not be predicted from the average parental value of X.
(PDF)

Click here for additional data file.

Figure S5
Importance of maternal and paternal effects. Parental metabolic
features can be ranked according to their importance in hybrid class
label prediction. Low ranks indicate metabolites which often important
in prediction models. Maternal parental features are overrepresented
among the top 20 metabolites from such a ranking. The Figure displays
the number of maternal and paternal features up to a certain rank
position. The further apart both lines are the stronger the effect is. At
rank 20 for example we find 15 maternal and only 5 paternal metabolic
features.
(PDF)

Click here for additional data file.

Figure S6
Final model workflow. Model workflow to perform a feature selection
based on mid-parent heterosis, ultimately allowing to predict HP from
parental metabolic profiles.
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(PDF)

Click here for additional data file.

Acknowledgements
We thank Dr. A. Melchinger (University of Hohenheim), Dr. F. Hochholdinger
(University of Bonn) and their coworkers for providing seeds of the inbred lines and
hybrids used in this study.

References
1 DN Duvick (2005) Genetic Progress In Yield Of United States Maize (Zea mays

L.). Maydica50: 193–202
2 G Shull (1914) Duplicate Genes for Capsule Form in Bursa bursa-pastoris. Z

Indukt Abstamm Vererbungsl12: 97–149
3 U Zanoni, JW Dudley (1989) Comparison of different methods of identifying

inbreds useful for improving elite maize hybrids. Crop Sci29: 577–582
4 Melchinger AE (1999) Genetic diversity and heterosis. In:Cors JG and Pandey

S (eds) The Genetics and Exploitation of Heterosis in Crops. Crop Science
Society of America, Madison, WI, 99–118.

5 JR McWilliam, B Griffing (1965) Temperature-dependent heterosis in maize.
Austral J Biol Sci18: 569–583

6 TA Schrag, J Möhring, AE Melchinger, B Kusterer, BS Dhillon, et al (2010)
Prediction of hybrid performance in maize using molecular markers and
joint analyses of hybrids and parental inbreds. Theor Appl Genet120: 451–
46119916002

7 AB Lenarcic, KL Svenson, GA Churchill, W Valdar (2012) A general Bayesian
approach to analyzing diallel crosses of inbred strains. Genetics190: 413–
43522345610

8 J Möhring, AE Melchinger, HP Piepho (2011) REML-based Diallel Analysis. Crop
Sci51: 470–478

9 C Cilas, P Bouharmont, M Boccara, AB Eskes, P Baradat (1998) Prediction of
genetic value for coffee production in Coffea arabica from a half-diallel with
lines and hybrids. Euphytica104: 49–59

10 R Bernardo (1996) Best Linear Unbiased Prediction of Maize Single-Cross
Performance. Crop Sci36: 50–56

11 M Vuylsteke, M Kuiper, P Stam (2000) Chromosomal regions involved in hybrid
performance and heterosis: their AFLP(R)-based identification and practical
use in prediction models. Heredity85: 208–21811012724

12 S Maenhout, B De Baets, G Haesaert, E Van Bockstaele (2007) Support vector
machine regression for the prediction of maize hybrid performance. Theor
Appl Genet115: 1003–101317849095

13 J Fu, KC Falke, A Thiemann, TA Schrag, AE Melchinger, et al (2012) Partial
least squares regression, support vector machine regression, and
transcriptome-based distances for prediction of maize hybrid performance
with gene expression data. Theor Appl Genet124: 825–83322101908

14 W Yang, RJ Tempelman (2012) A Bayesian antedependence model for whole
genome prediction. Genetics190: 1491–150122135352



Hybrid Performance Prediction Framework 17

15 TA Schrag, M Frisch, BS Dhillon, AE Melchinger (2009) Marker-based
prediction of hybrid performance in maize single-crosses involving doubled
haploids. Maydica54: 353–362

16 F Technow, C Riedelsheimer, TA Schrag, AE Melchinger (2012) Genomic
prediction of hybrid performance in maize with models incorporating
dominance and population specific marker effects. Theor Appl Genet125:
1181–119422733443

17 Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of
heterosis. Nat Rev Genet 14, 471–482.

18 M Frisch, A Thiemann, J Fu, TA Schrag, S Scholten, et al (2010) Transcriptome-
based distance measures for grouping of germplasm and prediction of hybrid
performance in maize. Theor Appl Genet120: 441–45019911157

19 C Riedelsheimer, A Czedik-Eysenberg, C Grieder, J Lisec, F Technow, et al
(2012) Genomic and metabolic prediction of complex heterotic traits in
hybrid maize. Nat Genet44: 217–22022246502

20 N Hoecker, B Keller, HP Piepho, F Hochholdinger (2006) Manifestation of
heterosis during early maize (Zea mays L.) root development. Theor Appl
Genet112: 421–42916362278

21 N Hoecker, B Keller, N Muthreich, D Chollet, P Descombes, et al (2008)
Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line
primary root transcriptomes suggests organ-specific patterns of non-additive
gene expression and conserved expression trends. Genetics179: 1275–
128318562640

22 A Paschold, C Marcon, N Hoecker, F Hochholdinger (2010) Molecular
dissection of heterosis manifestation during early maize root development.
Theor Appl Genet120: 441–45019911157

23 F Hochholdinger, R Tuberosa (2009) Genetic and genomic dissection of
maize root development and architecture. Curr Opin Plant Biol12: 172–
17719157956

24 J Lisec, L Römisch-Margl, Z Nikoloski, HP Piepho, P Giavalisco, et al (2011)
Corn hybrids display lower metabolite variability and complex metabolite
inheritance patterns. Plant J68: 326–33621707803

25 T Gärtner, M Steinfath, S Andorf, J Lisec, RC Meyer, et al (2009) Improved
Heterosis Prediction by Combining Information on DNA- and Metabolic
Markers. PLoS ONE4: e522019370148

26 M Steinfath, T Gärtner, J Lisec, RC Meyer, T Altmann, et al (2010) Prediction
of hybrid biomass in Arabidopsis thaliana by selected parental SNP and
metabolic markers. Theor Appl Genet120: 239–24719911163

27 A Cuadros-Inostroza, C Caldana, H Redestig, M Kusano, J Lisec, et al (2009)
TargetSearch - a Bioconductor package for the efficient preprocessing of GC-
MS metabolite profiling data BMC Bioinform. 10: 428

28 J Lisec, N Schauer, J Kopka, L Willmitzer, AR Fernie (2006) Gas chromatography
mass spectrometry-based metabolite profiling in plants. Nat Protoc1: 387–
39617406261

29 P Giavalisco, Y Li, A Matthes, A Eckhardt, HM Hubberten, et al (2011)
Elemental formula annotation of polar- and lipophilic-metabolites using (13)
C, (15) N and (34) S isotope-labelling in combination with high-resolution
mass spectrometry. Plant J68: 364–37621699588



18 Hybrid Performance Prediction Framework

30 J Kopka, N Schauer, S Krueger, C Birkemeyer, B Usadel, et al (2005)
GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics. 21: 1635–
1638

31 GK Smyth (2004) Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol3:
Article316646809

32 Hastie T, Tibshirani R, Friedman JJH (2009) The Elements of Statistical
Learning, Springer, 2nd. Ed.

33 L Breiman (2001) Random Forests, Machine Learning. 45: 5–32
34 AL Boulesteix (2004) PLS dimension reduction for classification with

microarray data. Stat Appl Genet Mol Biol3: 33
35 AL Boulesteix, C Strobl (2009) Optimal classifier selection and negative bias

in error rate estimation: an empirical study on high-dimensional prediction.
BMC Med Res Methodol9: 8520025773

36 M Slawski, M Daumer, A-L Boulesteix (2008) CMA: a comprehensive
Bioconductor package for supervised classification with high dimensional
data. BMC Bioinformatics9: 43918925941

37 AR Fernie, RN Trethewey, AJ Krotzky, L Willmitzer (2004) Metabolite
profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol5: 763–
76915340383

38 R Sulpice, S Trenkamp, M Steinfath, B Usadel, Y Gibon, et al (2010) Network
analysis of enzyme activities and metabolite levels and their relationship
to biomass in a large panel of Arabidopsis accessions. Plant Cell22: 2872–
289320699391

39 RC Meyer, M Steinfath, J Lisec, M Becher, H Witucka-Wall, et al (2007) The
metabolic signature related to high plant growth rate in Arabidopsis thaliana.
Proc Natl Acad Sci U S A104: 4759–476417360597

40 JA Birchler, H Yao, S Chudalayandi (2007) Biological consequences of dosage
dependent gene regulatory systems. Biochim Biophys Acta1769: 422–
42817276527

41 M Guo, MA Rupe, ON Danilevskaya, X Yang, Z Hu (2003) Genome-wide mRNA
profiling reveals heterochronic allelic variation and a new imprinted gene in
hybrid maize endosperm. Plant J36: 30–4412974809


