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Abstract. We analyze the description of quantum many-body mixed states
using matrix product states and operators. We consider two such descriptions:
(i) as a matrix product density operator of bond dimension D; and (ii) as a
purification that is written as a matrix product state of bond dimension D′. We
show that these descriptions are inequivalent in the sense that D′ cannot be upper
bounded by D only. Then we provide two constructive methods to obtain (ii) out
of (i). The sum of squares (sos) polynomial method scales exponentially in the
number of different eigenvalues, and its approximate version is formulated as a
semidefinite program, which gives efficient approximate purifications whose D′

only depends on D. The eigenbasis method scales quadratically in the number
of eigenvalues, and its approximate version is very efficient for rapidly decaying
distributions of eigenvalues. Our results imply that a description of mixed states
which is both efficient and locally positive semidefinite does not exist, but that
good approximations do.
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1. Introduction

Quantum many-body systems appear in a variety of fields in physics, such as condensed matter,
quantum chemistry or high-energy physics. Since their Hilbert space description is intractable
(as it scales exponentially with the system size), a number of methods have been proposed to
describe them efficiently. One of them are tensor networks [1], which have been particularly
successful in describing one-dimensional pure states with matrix product states (MPS) [2].
Its canonical form has facilitated the distinction between injective and non-injective MPS [3],
(which determines the ground state degeneracy of the parent Hamiltonian, and is linked to many
other physical properties, see e.g. [4–6]), which has led to the classification of gapped phases
of one-dimensional systems [7]. This mathematical understanding has allowed to characterize
global properties of the state, such as topological order or symmetries, in a local way [8, 9].
This is in contrast with one-dimensional mixed states, whose description with tensor networks
is much more scarce. While the class of matrix product density operators (MPDOs) has been
defined [10, 11], a canonical form has not been found. This is despite the fact that mixed
states are used to describe quantum many-body systems at finite temperature, systems out of
equilibrium, dissipative dynamics or lack of knowledge of the state of the system.

One of the difficulties in defining a canonical form for mixed states is that with MPDOs
one cannot verify locally that the global tensor is positive semidefinite. This implies that local
truncations of the tensors generally destroy the global positivity, causing instability in numerical
algorithms. An alternative is to use the local purification form, where the mixed state is purified
and the purification is expressed as an MPS. While its local tensors are positive semidefinite,
it is not known if an efficient MPDO form guarantees an efficient local purification. That is,
are the two descriptions equivalent, or can the local purification be much more costly than the
MPDO form (see figure 1)?
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Figure 1. (Left) the MPDO form of a mixed state writes it as a sum of D tensor
products. The matrices Mi are generally not positive semidefinite. (Right) the
local purification form of ρ, where the purifying state is written as an MPS of
bond dimension D′. The question is: can D′ be upper bounded by D?

In this paper we address this question and show that these two descriptions are inequivalent.
Specifically, we provide classical multipartite states whose MPDO form has a fixed cost, but
whose local purification form has an unbounded cost. Then, we provide two constructive
purification methods applicable to all multipartite density matrices, which relate the two forms
but also involve the number of (different) eigenvalues. The sum of squares (sos) polynomial
method has an exact version which scales exponentially in the number of different eigenvalues.
Its approximate version is formulated as a semidefinite program (SDP), which shows an efficient
and robust behavior for all the tested distributions of eigenvalues. The eigenbasis method has an
exact version which scales multiplicatively with the number of eigenvalues, and its approximate
version gives very efficient purifications for rapidly decaying distributions of eigenvalues.

This paper is organized as follows. First, we present the problem in section 2. Then we
show the inequivalence of the MPDO form and the local purification form in section 3. In
section 4 we present the two purification methods: the sos polynomial method (section 4.1),
and the eigenbasis method (section 4.2), both with its main idea, its exact and its approximate
version, and in section 4.3 we compare the two approximate methods. Finally we conclude and
mention further directions in section 5.

2. The setting

We now present the question that concerns us, which is whether the MPDO form and the
local purification form of a mixed state can be related. We will first present some notation
and definitions (section 2.1), and then introduce the problem (section 2.2).

2.1. Definitions

Let us first fix some notation. We write A � 0 to denote that the matrix A is positive semidefinite
(i.e. Hermitian with non-negative eigenvalues), and A > 0 to denote that it is non-negative
(i.e. with non-negative entries). We also write rank(ρ) (rank(A)) to denote the number of non-
zero eigenvalues (non-zero singular values) of the matrix ρ (A). The trace norm of a matrix
A is defined as ‖A‖1 =

∑r
i=1 si , where r = rank(A) and si are its singular values. Given a

multipartite state with N subsystems arranged on a one-dimensional line (henceforth called a
1D state), we call a linear bipartition a splitting of the form 1, . . . , k versus k + 1, . . . , N for any
k. Finally, given a multipartite state |ψ〉 =

∑
ψi1...iN |i1 . . . iN 〉 with Schmidt rank D′

k across the
bipartition i1, . . . , ik versus the rest, we define the Schmidt rank of |ψ〉 as SR(ψ)= maxk D′

k .
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We focus on 1D mixed states with N d-level systems and open boundary conditions,
described by a density matrix ρ,

ρ =

d∑
i1, j1,...,iN , jN =1

ρ
j1,..., jN

i1,...,iN
|i1, . . . , iN 〉〈 j1, . . . , jN |. (1)

The are two natural ways of describing ρ locally. The first one is the MPDO form [10, 11],
which is defined as

ρ =

D1∑
α1=1

. . .

DN−1∑
αN−1=1

Mα1
1 ⊗ Mα1,α2

2 ⊗ . . .⊗ MαN−1
N , (2)

where Mαk−1,αk
k are d × d matrices for 1< k < N , and Mα1

1 (MαN−1
N ) is a row (column) vector of

size d . Note that the subindex only indicates the subsystem that the matrix is describing. Here
Dk (for all k) is the minimal dimension such that (2) holds5. The operator Schmidt rank of ρ is
defined as6

OSR(ρ) := max
k

Dk = D. (3)

The second form is the local purification form, which is obtained by purifying the mixed
state ρ (living in system S) into a pure state |9〉 (living in S, S′), and expressing |9〉 as
an MPS7

ρ = TrS′|9〉〈9| (4)

|9〉 =

D′

1∑
β1=1

. . .

D′

N−1∑
βN−1=1

Aβ1
1 ⊗ Aβ1,β2

2 ⊗ . . .⊗ AβN−1
N . (5)

Here Aβk−1,βk
k are d × dak matrices for 1< k < N , where dak is the dimension of the local ancilla,

and Aβ1
1 (AβN−1

N ) is a row (column) vector of size d × da1 (d × daN−1). Here D′

k is the Schmidt
rank of |9〉 of the bipartition Trk+1...N |9〉〈9| versus the rest. We define the purification rank of
ρ as

rankpuri(ρ) := max
k

D′

k = D′. (6)

2.2. The problem

We want to find out if the MPDO and the local purification form are equivalent, or if the latter
can be arbitrarily more costly than the former. The advantage of the local purification form is
that the local tensors are positive semidefinite, since they are of the form Ak A†

k . In contrast,
in the MPDO form this is generally not true, i.e. Mαk−1,αk

k � 0, thus it is locally invisible that

5 The minimal Dk (for all k) is unique as it does not depend on the order on which the decompositions are made.
To see this, note that Dk is the bond dimension of the bipartition i1 j1 . . . ik jk versus the rest of the pure state
|ψ〉 =

∑
ρ

j1,..., jN

i1,...,iN
|i1, . . . , iN 〉| j1, . . . , jN 〉.

6 The operator Schmidt rank of ρ must not be confused with its tensor rank, which is the minimal r such that
ρ =

∑r
α=1 Mα

1 ⊗ Mα
2 ⊗ . . .⊗ Mα

N .
7 There are infinitely many purifications of a given mixed state, and they are all related by an isometry on the
ancillary system. We always consider the purification which minimizes the Schmidt rank of the purifying state
along every linear bipartition and which is local (i.e. an ancillary subsystem S′

i is attached to each subsystem Si ).
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Figure 2. The Hilbert space H of mixed states. How much larger is the family
of states with fixed operator Schmidt rank D compared to that with fixed
purification rank D′? Are they comparable in size, or are there states requiring
very small D and very large D′ (such as the one marked with a cross)?

ρ � 0. This is a problem theoretically as well as numerically, as local truncations destroy the
global positivity.

On the other hand, the problem of the local purification form is that it is not known
how much larger the purification rank D′ may be compared to the operator Schmidt rank D
(see figure 2). Thus, we want to see if there is a transformation from the MPDO to the local
purification form in which the bond dimension increases in a controlled way. That is, we want
to find out if D′ can be upper bounded by a function of D.

Observe that it is very easy to obtain a bound in the other direction, namely D 6 D′2,
simply by choosing

[Mk]ik , jk =

dak∑
zk=1

[Ak]ik ,zk ⊗ ([Ak] jk ,zk )
†, (7)

where ik, jk, zk are physical indices. On the other hand, both ranks can be upper bounded by the
physical dimension,

D 6 d N , D′ 6 d N . (8)

3. Inequivalence of the two forms

We now show that the MPDO form and the local purification form are inequivalent. More
precisely, we provide a family of multipartite classical states with a constant operator Schmidt
rank across every linear bipartition, and an unbounded purification rank (result 2). We will
first show the separation for bipartite states (section 3.1), and then for multipartite states
(section 3.2).

3.1. Inequivalence for bipartite classical states

We now show the inequivalence of the two forms for bipartite classical states, which follows
from recent results in convex analysis shown by Gouveia et al [12].

Result 1. Let ρ denote a bipartite classical mixed state. Let D = O S R(ρ) and D′
= rankpuri(ρ).

Then D′ cannot be upper bounded by a function f that only depends on D (in particular, f does
not depend on ρ), i.e.

@ f : D′ 6 f (D). (9)
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Before proving the result, we establish a relation between the MPDO and the local
purification form of classical states and two other known decompositions. Consider the
family of classical bipartite states (i.e. diagonal in the computational basis {|x〉}) of physical
dimension t

ρt =

t∑
x,y=1

St(x, y)|x, y〉〈x, y|, (10)

where St is a non-negative matrix of size t × t and St(x, y) denotes its x, y component. Now,
the MPDO form of ρt corresponds to the singular value decomposition of St . Hence, the
operator Schmidt rank of ρt corresponds to the rank of St , rank(St). On the other hand, the local
purification form of ρt corresponds to the positive semidefinite factorization of St , in which St

is expressed as

St(x, y)= Tr(Ex Fy) Ex , Fy � 0 (11)

for all x, y (the local purification form is obtained by expressing Ex = Ax A†
x and Fy = By B†

y ).
Thus, the purification rank of ρt corresponds to the positive semidefinite rank of St , rankpsd(St),
which is defined as the minimal r such that there exist matrices Ex , Fy � 0 of size r × r
such that (11) holds (see figure 3). The positive semidefinite factorization was very recently
introduced in [13] and shown to be related to the quantum communication complexity [13] and
the quantum correlation complexity of St [14]. In summary, for classical states such as ρt , it
holds that8

OSR(ρt)= rank(St),

rankpuri(ρt)= rankpsd(St).
(12)

Now we are ready to prove result 1.

Proof. We consider classical bipartite states of the form (10), and we focus on a class of non-
negative matrices St called slack matrices of polytopes, defined as follows (see e.g. [12]). A
convex polytope is defined as the intersection of a finite set of halfspaces {h j(x)6 b j}, or as
the convex hull of a set of vertices {vi} [16]. Its slack matrix S is defined so that its (i, j) entry
contains the distance from hyperplane j to vertex i , i.e. S(i, j)= b j − h j(vi) (see figure 4).

Now we let St be the slack matrix of the two-dimensional (2D) regular polytope with t
vertices (and thus also t faces), called the regular t-gon9. Gouveia et al [12] show that10

rank(St)= 3 ∀t

rankpsd(St)∼ log t.
(13)

8 The non-negative factorization [15] of non-negative matrices such as St has also been defined, and has
traditionally received more attention, in particular in its connections to classical communication complexity. In this
case, St is expressed as a product of two non-negative matrices X and Y . The non-negative rank of St , rank+(St ), is
the minimal r such that there exist X, Y > 0 of size t × r and r × t , respectively, such that St = XY . Note that this
factorization cannot be defined for general quantum states.
9 If centered at the 0 point, the regular t-gon is defined by Pt = conv{(cos(2πk/t), sin(2πk/t)) : 06 k < t} ⊆

R2 [16].
10 More precisely, they show that �(logt)6 rankpsd(St )6 logt . We use the O and � notation as customary, see
e.g. [17].
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Figure 3. (Left) the classical bipartite state ρt (equation (10)) (with a joint ket
and bra index for the party in state x and the party in state y), and below its
associated non-negative matrix St . (Middle) the operator Schmidt decomposition
of ρt (with dimension OSR(ρt)) corresponds to the singular value decomposition
of St (with dimension rank(St)). (Right) the local purification form of ρt (with
dimension rankpuri(ρt)) corresponds to the positive semidefinite factorization of
St (with dimension rankpsd(St)).
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Figure 4. The slack matrix of the regular hexagon S6 contains in its (i, j) entry
the distance from vertex i (here labeled with lowercase letters) to hyperplane j
(labeled with uppercase letters). Note that the matrix is circulant.

Using the equivalences (12), this implies that

OSR(ρt)= 3 ∀t
rankpuri(ρt)∼ log t.

(14)

That is, the operator Schmidt rank of ρt is constant for all t , whereas its purification rank grows
unboundedly with t . It follows that there does not exist an upper bound of rankpuri(ρt) that
depends only on OSR(ρt). ut

3.2. Inequivalence for multipartite classical states

Now we show a more general form of separation, namely we provide classical multipartite
states with a constant operator Schmidt rank across every linear bipartition, and an unbounded
purification rank.

Result 2. Let ρ denote a mutipartite classical mixed state. Let D = O S R(ρ) and D′
=

rankpuri(ρ). Then D′ cannot be upper bounded by a function f that depends only of D (in
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particular, f is independent of ρ), i.e.

@ f : D′ 6 f (D). (15)

Proof. Consider the family of states ρt (equation (10)) with t = 2m (with natural m). That is, St

is the slack matrix of the square, octagon, etc. Let the binary representations of the row index x
and column index y be (x1, . . . , xm) and (y1, . . . , ym), respectively.

Since the polygon is regular, St is a circulant matrix. Hence, it is diagonalized by the
Fourier transform Ft , with components Ft(x, y)= ωxy , where ω = exp(i2π/2m). That is,

St(x, y)=

3∑
α=1

Lαx1,...,xm
Rα

y1,...,ym
, (16)

where

Lαx1,...,xm
= exp [−2π iα 0.x1 . . . xm] λα,

Rα
y1,...,ym

= exp [2π iα 0.y1 . . . ym]
(17)

and {λα} are the eigenvalues of St . Now we decompose the tensors L and R into smaller tensors,

Lαx1...xm
= (M1)

α
x1
. . . (Mm)

α,α
xm
,

Rα
y1...ym

= (Mm+1)
α,α
y1
. . . (M2m)

α
ym
,

(18)

where each Mk depends only on one bit (xk or yk),

(Mk)
xk
α,α = exp

[
−2π iα xk

2k

]
1< k < m,

(Mm)
xm
α,α = exp

[
−2π iα xm

2m

]
λα,

(Mk)
yk−m
α,α = exp

[
2π iα yk−m

2k−m

]
m < k < 2m.

(19)

That is, each Mk is a 3 × 3 diagonal matrix, except for M1 and M2m , which are a row and a
column vector, respectively, defined analogously. This shows that ρt has operator Schmidt rank
3 across every linear bipartition.

We know from equation (14) that the purification rank of ρt along the x versus y bipartition
grows unboundedly like log t . Clearly, a small purification rank across any bipartition would
imply a small purification rank across the x versus y bipartition. Thus, the purification rank is
unbounded at least across one bipartition (see figure 5). ut

This shows that a small operator Schmidt rank across all linear bipartitions does not imply
a small purification rank.

Let us make a final remark. Note that a possible purification of ρt is

ρt = tranc|ϕt〉〈ϕt |,

|ϕt〉 =

t∑
x,y=1

√
St(x, y)|x, x, y, y〉, (20)

where the second and fourth index refer to the ancillary states. Thus, rankpuri(ρt)6 SR(ϕt).
Above we have seen that rankpuri(ρt)∼ log t , thus the Schmidt rank of |ϕt〉 grows with t , and
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Figure 5. The classical state ρt (equation (10)), where St is the slack matrix of the
regular t-gon, shows the separation of the MPDO form and the local purification
form. (Middle) in the bipartite case, ρt has operator Schmidt rank 3 for all t ,
and purification rank ∼ log t . (Right) in the multipartite case, for t = 2m , ρt has
operator Schmidt rank 3 across every linear bipartition, and purification rank
∼ logt at least across one bipartition.

so does its preparation cost11. Now consider the state obtained by taking the square of the
coefficients of |ϕt〉,

|ϕ�2
t 〉 :=

t∑
x,y=1

St(x, y)|x, x, y, y〉. (21)

From result 2 it follows that the Schmidt rank of this state across any linear bipartition is 3.
Hence its preparation cost is constant with t [18]. Thus, we see that transforming (21) to (20),
i.e. taking the Hadamard square root of the coefficients, may have a high cost in the Schmidt
rank, and thus in the preparation cost of a pure state.

4. Purification methods

We will now present two constructive purification methods: the sos polynomial method
(section 4.1) and the eigenbasis method (section 4.2). Both are applicable to all multipartite
mixed states, and can be used to construct exact and approximate purifications. We will compare
both approximation methods and see that they are complementary for various eigenvalue
distributions in section 4.3.

4.1. sos polynomial method

We will first present the idea of the sos polynomial method (section 4.1.1), and then explain
how to use it to construct exact (section 4.1.2) and approximate purifications (section 4.1.3).

4.1.1. The idea. The idea of the sos polynomial method is the following: given a mixed state
ρ, we construct a purifying state as a sum of powers of ρ (up to certain degree), where each
power is attached to an ancillary state. If the degree is large enough, there exists a choice of the
ancillary states such that this purifying state is an exact purification for ρ. If the degree is not
large enough, one can find the ancillary states with an ansatz of sos polynomials or with an SDP.

11 In the sense of the dimension of the ancilla required to prepare the state in a sequential scheme [18].
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Figure 6. The sos polynomial method constructs a state |9k〉 as a sum of powers
of ρ, from 0 to k − 1, each attached to an ancillary state, |al〉. |9k〉 is used as
purification of σk , which has the same eigenvectors as ρ, but its eigenvalues are
a sos polynomial of the eigenvalues of ρ. If k = m, where m is the number of
different non-negative eigenvalues of ρ, σk can be an exact purification of ρ. If
k < m, one can search for the σk closest to ρ with an SDP.

Specifically, consider a multipartite density matrix ρ of size d N
× d N , with spectral

decomposition

ρ =

n∑
i=1

λi |φi〉〈φi | +
d N∑

i=n+1

λi |φi〉〈φi |, (22)

where λi = 0 for i > n. We construct a purifying state |9k〉 as a sum of powers of ρ, from 0 to
k − 1, where each power is attached to an ancillary state (see figure 6),

|9k〉 =

k−1∑
l=0

|ρl
〉K B ⊗ |al〉A, (23)

where |ρ〉 denotes a vectorized matrix ρ (i.e. given ρ =
∑

i, j ρi, j |i〉〈 j | we define |ρ〉K B =∑
i, j ρi, j |i〉K | j〉B). We use |9k〉 as the purifying state of a density matrix σk ,

σk = TrB A|9k〉〈9k| =

d N∑
i=1

pk(λi) |φi〉〈φi |. (24)

Here pk is a polynomial that can be written as

pk(λ)= (1, λ, . . . , λk−1) Rk (1, λ, . . . , λ
k−1)T , (25)

where Rk is a positive semidefinite matrix which is the Gram matrix of the ancillary states,
i.e. its (i, j) component is Rk(i, j)= 〈ai |a j〉. This polynomial is sos, as can be readily seen by
writing Rk = AT A,

pk(λ)=

r∑
u=1

yu(λ)
2 (26)

yu(λ)= Au(1, λ, . . . , λk−1)
T , (27)
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where Au denotes the uth row of A, and r = rank(Rk). Note that, since the polynomial is
univariate, the set of sos polynomials is identical to the set of non-negative polynomials (i.e. with
the property p(x)> 0 for all x) [19].

Now, by construction, the purification rank of σk is at most the Schmidt rank of |9k〉

(equation (24)). Denoting OSR(ρ)= D, this is at most 1 + D + D2 + · · · + Dk−1 (equation (23)),
and thus

rankpuri(σk)6 SR(9k)6
Dk

− 1

D − 1
. (28)

We are interested in making σk as close as possible to ρ. We will show that if k = m, where
m is the number of different non-negative eigenvalues of ρ,12 there exists ancillary states such
that pk(λi)= λi for all i , and thus σm = ρ, i.e. σm is an exact purification of ρ (section 4.1.2).
If, on the contrary, k < m, one can choose k − 1 points and construct the pk that passes through
them, or one can find the pk that minimizes the distance between σk and ρ (in trace norm) with
an SDP (section 4.1.3).

4.1.2. Exact case. We now show how to build exact purifications with the sos polynomial
method.

Result 3. Let ρ denote a multipartite density matrix with m different non-negative eigenvalues.
Let D = O S R(ρ) and D′

= rankpuri(ρ). The sos polynomial method provides an exact
purification of ρ with

D′ 6
Dm

− 1

D − 1
. (29)

Proof. To ease the notation we consider that the different non-negative eigenvalues are the first
m (i.e. λi 6= λ j for i 6= j and i, j = 1, . . . ,m). Consider the construction of the purifying state
σk as explained in section 4.1.1. Define the vector |vi

k〉 as

|vi
k〉 = (1, λi , . . . , λ

k−1
i )T (30)

so that the sos polynomial evaluated at λi can be written as pk(λi)= 〈vi
k|Rk|v

i
k〉 (compare with

equation (25)). Now we choose k = m. The important observation is that the set of vectors
{|vi

m〉}
m
i=1 is linearly independent (since only different eigenvalues are considered). Hence, there

exists another set {|w j
m〉}

m
j=1 which is biorthogonal to it, i.e. 〈vi

m|w j
m〉 = δi j for all i, j . Then we

choose Rm as follows:

Rm =

m∑
j=1

λ j |w
j
m〉〈w j

m|. (31)

This satisfies that pm(λi)= 〈vi
m|Rm|vi

m〉 = λi for all i . From equation (24) it follows that σm = ρ

and thus σm is an exact purification of ρ. Finally, using equation (28) with k = m, the claim of
the result follows. ut

Note that result 3 depends on the number of different non-negative eigenvalues m because
σk = ρ requires that p(λi)= λi for all i , and these are only m independent conditions.

12 By non-negative eigenvalues, we mean that the 0 should also be counted as an eigenvalue. That is, if ρ is rank
deficient, m is the number of different non-zero eigenvalues plus one.
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4.1.3. Approximate case: SDP. Building approximate purifications with the sos polynomial
method can be done analytically or numerically, as we show next.

Result 4. Let ρ denote a multipartite density matrix of dimension d N
× d N , with rank(ρ)= n.

Let D = O S R (ρ). The sos polynomial method provides a density matrix σk with

rankpuri(σk)6
Dk

− 1

D − 1
(32)

and

‖ρ− σk‖1 =

n∑
i=1

|λi − pk(λi)| + (d N
− n)pk(0), (33)

where pk is a sos polynomial of degree 2(k − 1). pk can be constructed by choosing k − 1 non-
negative points through which it must pass. Alternatively, the optimal pk can be found with an
SDP.

Proof. sos polynomial that passes through k − 1 points. We construct the sos polynomial pk by
letting it pass through k − 1 chosen points {µ1, . . . , µk−1}. We use the Lagrange basis ‘squared’
to this end

pk(λ)=

k−1∑
j=1

µ j l j(λ), (34)

l j(λ)=

k−1∏
i=1,i 6= j

(
λ−µi

µ j −µi

)2

, (35)

where we have omitted the dependence of l j on k. This satisfies pk(µ j)= µ j for j = 1, . . . ,
k − 1. Note that the degree of pk is 2(k − 1) as required. The distance (33) depends on the
points {µi}, thus the difficulty lies in choosing them.

The optimization problem as an SDP. Let {λi}
d N

i=1 denote the eigenvalues of ρ, with λi = 0
for n < i 6 d N . We search for the sos polynomial pk that minimizes the distance (33), i.e. for the
positive semidefinite matrix Rk that minimizes it (see equation (25)). The optimization problem
thus reads

min
d N∑
i=1

|λi − 〈vi
k|Rk|v

i
k〉| (36)

s.t. Rk � 0.

The objective function can be made linear by introducing the slack variables z

min
d N∑
i=1

zi (37)

s.t. zi > λi − 〈vi
k|Rk|v

i
k〉 i = 1, . . . , d N ,

zi >−λi + 〈vi
k|Rk|v

i
k〉 i = 1, . . . , d N ,

Rk � 0.

New Journal of Physics 15 (2013) 123021 (http://www.njp.org/)

http://www.njp.org/


13

The optimization variables are now Rk � 0 and z > 0, and the constraints are linear in them.
Thus, this is an SDP optimization problem (see appendix A for the precise formulation). ut

In words, the SDP searches for the sos polynomial pk (of degree 2(k − 1)) whose distance
to the eigenvalue distribution is minimal in trace norm. This formulation is consistent with the
fact that optimization over sos polynomials can be done with SDPs [19].

Note that the non-trivial condition is that the polynomial be sos (equivalently, non-
negative), since otherwise one could take p(λ)= λ. Approximating λ for 06 λ6 λmax and
another non-negative function elsewhere has the problem that the function at λ= 0 is non-
analytical.

We remark that there may exist exact solutions for m/2< k < m, since pk(λ)− λ has
degree 2(k − 1), and thus can have 2(k − 1) real roots. However, we only know how to construct
the exact solution for the case k = m (with the idea of the proof of result 3).

Remark 1. Non-orthogonal ancillary states. Observe that the exact solution for k = m involves
non-orthgonal ancillary states, since Rm is non-diagonal (equation (31)).

This is so because the basis {|vi
m〉}

m
i=1 is not orthogonal, and neither is the biorthogonal

basis {|ω j
m〉}

m
j=1. More generally, the solution for k < m also involves non-orthogonal ancillary

states, since orthogonal states result in a diagonal Rk , which renders a polynomial with only
even powers with non-negative coefficients (i.e. a monotonously increasing polynomial for
positive λ). In contrast, a non-diagonal R yields polynomials with possibly odd powers with
negative coefficients, thus with various minima, rendering a better approximation of λ in the
desired interval.

Remark 2. Real ancillary vectors. The ancillary vectors {|a j〉} can be taken real without loss
of generality. To see this, first write the polynomial (equation (25)) as

pk(λ)=

k−1∑
s,t=0

Rk(s, t)λs+t
=

2(k−1)∑
l=0

clλ
l, (38)

where cl =
∑

s+t=l Rk(s, t).

That is, each coefficient cl is the sum of the lth antidiagonal of Rk . Thus cl depends on
diagonal elements of Rk , which are non-negative, or on the sum of an element and its transposed
(Rk(s, t)+ Rk(t, s)), which is real. Therefore cl only depends on the real part of R. If R � 0, then
Re(R) is positive semidefinite for all real vectors |r〉, since 〈r |Re(R)+ iIm(R)|r〉> 0, which
implies i〈r |Im(R)|r〉 = 0. Since we only consider contractions with real vectors (namely |vi

k〉),
we can restrict R to its real part. Thus, its spectral decomposition reads R = O DOT, where O is
orthogonal, and D is diagonal and nonnegative. This readily yields R = O

√
D

√
DOT

= AAT,
where the i th row of A contains the coefficients of the ancillary state 〈ai | expressed in the
eigenbasis of R, which are real.

While the exact sos polynomial method depends on m (result 3) and the approximate on d N

(result 4),we will see in section 4.3 that in practice there exists good ansätze of sos polynomials
which make it independent of both. We will also compare this approximate method with the
eigenbasis method, which we present next.
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4.2. Eigenbasis method

Now we turn to the eigenbasis method, for which we present the main idea (section 4.2.1), and
how to use it to construct exact (section 4.2.2) and approximate purifications (section 4.2.3).

4.2.1. The idea. The idea of the eigenbasis method is to consider the standard purification of
ρ, which is the spectral decomposition, and upper bound the Schmidt rank of each eigenstate of
ρ. This is done by constructing a basis of the range of ρ where each basis element is the image
(under the map ρ) of a product state. Thus, each has Schmidt rank at most D, where D is the
operator Schmidt rank of ρ. Expressing each eigenstate in terms of this basis, we see that each
can have Schmidt rank at most Dn, where n is the number of non-zero eigenvalues of ρ. Thus
the purification rank of ρ is at most Dn2.

To be more precise, consider the standard purification of ρ, obtained from its spectral
decomposition (see equation (22)) as

ρ = TrA|9〉〈9| (39)

|9〉 =

n∑
i=1

√
λi |φi〉S|i〉A. (40)

By construction, the purification rank of ρ is at most the Schmidt rank of |9〉, which is at most
n times the maximum Schmidt rank of |φi〉,

rankpuri(ρ)6 SR(9)6 n max
i

SR(φi). (41)

Our goal is to upper bound maxi SR(φi) as a function of D. To this end, we build a basis of the
range of ρ where each basis element |χα〉 is the image (under the map ρ) of a certain product
state |pα〉 (see figure 7),

|χα〉 = ρ |pα〉, (42)

|pα〉 =

N⊗
i=1

|pαi 〉i , (43)

where α = (α1, . . . , αN ), αi is a label of the i th product state, and the subindex outside the ket
denotes the subsystem that the state is describing.

Now, consider the MPDO form of ρ as in equation (2), with operator Schmidt rank D. The
Schmidt rank of |pα〉 is one, and applying ρ to |pα〉 increases the Schmidt rank by at most D. It
follows that

SR(χα)6 D. (44)

On the other hand, we consider the spectral decomposition of ρ (equation (22)), and use
the eigenstates as a basis of the range. In particular, we express |χα〉 in terms of this basis, with
coefficients fiα of the linear combination,

|χα〉 =

n∑
i=1

|φi〉 λi〈φi |pα〉︸ ︷︷ ︸
fiα

. (45)

Since the range has dimension n, there are at most n linearly independent |χα〉. The idea of
the exact result (section 4.2.2) is to show that one can invert the relation (45) and express |φi〉

as a linear combination of (at most n) |χα〉. The approximate method discards the smallest
eigenvalues, and applies the exact result to the truncated density matrix (section 4.2.3).
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Figure 7. The eigenbasis method constructs a state |χα〉 as the image (under ρ)
of the product state ⊗

N
i=1|pi〉α, here shown for N = 3. (Upper line) using the

operator Schmidt decomposition of ρ we see that SR(χα)6 D. (Lower line)
using the spectral decomposition of ρ, we express each eigenstate |φi〉 as a linear
combination of (at most n) |χα〉 (equation (47)), and upper bound the Schmidt
rank of each eigenstate by Dn.

4.2.2. Exact case. We now show how to use the eigenbasis method to construct an exact
purification.

Result 5. Let ρ denote a multipartite density matrix with rank(ρ)= n. Let D = O S R(ρ) and
D′

= rankpuri(ρ). Then the eigenbasis method constructs an exact purification of ρ with

D′ 6 Dn2. (46)

Proof. Let ρ be a multipartite density matrix with spectral decomposition as in (22) (thus with
rank(ρ)= n). Building upon section 4.2.1, we only need to show that there exist n product states
{|pα〉}n

α=1 such that their images under ρ, {|χα〉 = ρ|pα〉}n
α=1, form a basis of the range of ρ. Take

a product basis {|x〉} with x = 1, . . . , d N , which spans the whole space. Then {ρ|x〉} spans the
range of ρ. Then, we can select a basis ρ|xs〉 of the range of ρ with s = 1, . . . , n. We call the
latter product states |pα〉 with α = 1, . . . , n. Then for every |ψ〉 in the support of ρ there exist
{cα} such that |ψ〉 =

∑n
α=1 cα|pα〉. Now for every state |φ〉 in the range of ρ there exists |ψ〉 in

the support of ρ such that |φ〉 = ρ|ψ〉 =
∑n

α=1 cαρ|pα〉, where we have used the linearity of ρ.
Thus, {ρ|pα〉}n

α=1 forms a basis of the range of ρ.
This implies that the coefficient matrix ( fiα) (equation (45)) is full-rank and hence can be

inverted. We denote the elements of the inverse by gα j , i.e.
∑n

α=1 fiαgα j = δi j , and we invert
equation (45) to express the eigenvector |φi〉 as a linear combination of the vectors |χα〉,

|φi〉 =

n∑
α=1

gαi |χα〉. (47)

Since SR(χα)6 D, we obtain

SR(φi)6 Dn, (48)

for all i . Finally, using (41), the claim of the result follows. ut
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4.2.3. Approximate case. We now show how to use the eigenbasis method to build
approximate purifications.

Result 6. Let ρ denote a multipartite density matrix with spectral decomposition as in (22), and
let D = O S R(ρ). The eigenbasis method provides a density matrix σs with rank(σs)= s such
that

rankpuri(σs)6 Ds2, (49)

and its distance to ρ is

‖ρ− σs‖1 6 2
n∑

i=s+1

λi . (50)

Proof. We construct σs with the largest s eigenvalues of ρ, i.e.

σs =
1

N

s∑
i=1

λi |φi〉〈φi |, (51)

where N =
∑s

i=1 λi . By direct calculation one can see that (50) holds with equality. Applying
result 5 to σs yields equation (49). ut

Clearly, this method yields good approximations for rapidly decaying distributions of
eigenvalues, for which the distance (50) is small. In the next section we make these statements
precise, and compare this method to the sos polynomial method.

4.3. Comparison of approximation methods

We now compare the two approximation methods for a state ρ with rank(ρ)= n with
the following eigenvalue distributions (where the eigenvalues are ordered in non-increasing
magnitude).

(i) Uniform distribution, defined as λ j = 1/n for all j .

(ii) Equally spaced distribution, defined as λ j = j 2
n(n+1) for j = 1, . . . , n.

(ii) Random distribution, defined as λ j =Nb j , where b j is a random number in a fixed interval
and N = 1/

∑n
j=1 b j .

(iv) One fixed eigenvalue and the rest equally spaced, defined as λ1 = 1/2 and {λ j = jN }
n
j=2

where N = 1/(n(n + 1)− 2).

(v) Exponentially decaying distribution, defined as λ j =N exp(−bj) where N = (1 −

e)/(e−n
− 1).

For each distribution, each method provides a matrix σ at distance ε from ρ,

‖ρ− σ‖1 6 ε, (52)

such that

rankpuri(σ )6 f (D, ε, n), (53)

where D = OSR(ρ). Our goal is to determine f (D, ε, n) with the sos polynomial method
(section 4.3.1) and the eigenbasis method (section 4.3.2).
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4.3.1. sos polynomial method. We start with the sos polynomial method, for which we first
present analytical and then numerical results obtained with the SDP, both based on result 4.

Firstly, the uniform distribution is the easiest for this method. Using the exact result
(result 3) with m = 1 we obtain D′

= 1, since this distribution describes the maximally mixed
state. The sos polynomial that constructs this exact purification is p1(λ)= 1/n.

Secondly, the sos polynomial that best approximates the line λ in the interval [0, λ1] is a
good ansatz for the equally spaced and random distribution. Moreover, these polynomials can
be chosen so that their distance to the distribution is independent of n, as we show next.

Result 7. Consider a distribution of n eigenvalues whose largest eigenvalue λ1 ∼ 1/n, such as
the equally spaced or the random distribution. Then there exists a sos polynomial pk such that∑n

i=1 |λi − pk(λi)| is independent of n.

Proof. Let pk denote the sos polynomial of degree 2(k − 1) that best approximates the straight
line λ in the interval [0, 1]. This can be rescaled to approximate the straight line in [0, λ1],

p′

k(λ)= λ1 pk(λ/λ1). (54)

Now, let ε = maxλ∈[0,1] |pk(λ)− λ|. Then maxλ∈[0,λ1] |p′

k(λ)− λ| = λ1 ε, which implies that
n∑

i=1

|p′

k(λi)− λi |6 nλ1 ε. (55)

If λ1 ∼ 1/n, this upper bound is independent of n. ut

For the distribution with one fixed eigenvalue and the rest equally spaced, it holds that λ2 ∼

1/n, hence the sos polynomial qk(λ)= pk−1(λ)(λ− λ1)
2, where pk−1 is defined in the proof of

result 7, also has a distance independent of n. Denoting the distance ‖ρ− σk‖1 = ε = g(k), and
using result 4, this implies that one can upper bound the purification rank of σ of these three
distributions by a function independent of n, namely rankpuri(σ )6 O(Dg−1(ε)−1).

Finally, for the exponentially decaying distribution, we present an ansatz of sos
polynomials whose distance decreases exponentially with k and is independent of n.

Result 8. Consider the exponentially decaying distribution of eigenvalues λ j = ae−bj (with
a, b > 0) for j = 1, . . . , n, and the sos polynomial that passes through the largest k − 2
eigenvalues and 0, constructed as

pk(λ)= λ2
k−2∑
r=1

1

λr
lr(λ), (56)

lr(λ)=

k−2∏
j=1, j 6=r

(
λ− λ j

λr − λ j

)2

. (57)

The distance from this polynomial to the distribution decays exponentially in k, i.e.
n∑

i=1

|λi − pk(λi)|6 O(e−k). (58)

New Journal of Physics 15 (2013) 123021 (http://www.njp.org/)

http://www.njp.org/


18

0 1 2 3 4 5 6 7 8 9 10

10
−3

10
−2

10
−1

10
0

k

ρ−
σ k

1

 

 

equally spaced
random
exponentially decaying
λ

1
=1/2 and rest eq. spaced

Figure 8. The distance ‖ρ− σk‖1 versus k for the distributions (ii) to (v) with
n = 100 as found by the SDP (solid lines) and the exponential fits (dashed lines).
The figure shows an exponential decrease in the distance for small values of k,
and the program does not reduce the distance further due to numerical errors.

Proof. See appendix B. ut

The exponential decrease in the distance

‖ρ− σk‖1 6 A exp(−Bk) (59)

implies that the purification rank of σ scales polynomially in D

rankpuri(σ )6
Dln(A/ε)/B

− 1

D − 1
= O(Dln(1/ε)−1). (60)

For the exponentially decaying distribution, we provide A and show that B = b in appendix B.
Let us now analyze how well these eigenvalue distributions are approximated with the

SDP. For distributions (ii) to (v), the SDP gives an exponential decrease of the distance in k and
independent of n (equation (59)) with A ≈ 4 and B ≈ 2 for distributions (ii), (iii), A ≈ 3 and
B ≈ 1.3 for (iv) and for (v) with b = 1 we find A ≈ 4 and B ≈ 1.3 (see figures 8 and 9). The
sos polynomials found by the SDP for the equally spaced distribution are shown in figure 10.
We remark that the numerics does not improve beyond k ≈ 4, as very small numbers (such as
powers of small eigenvalues) are numerically treated as 0. We have rescaled the eigenvalues
λi → λi/λ1 for all i , which allows us to use the SDP until k ≈ 7 for some distributions.

4.3.2. Eigenbasis method. We now use the eigenbasis method (result 6) to upper bound the
purification rank of σ (equation (53)) for the eigenvalue distributions (i)–(v).

(i) Uniform distribution. This is the hardest distribution, since the smallest eigenvalues are as
large as possible. We obtain

rankpuri(σ )6 Dn2(1 − ε/2)2. (61)
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(ii) Equally spaced distribution. We obtain

rankpuri(σ )6
D

4

(√
1 + 4n(n + 1)(1 − ε/2)− 1

)2

≈ Dn2(1 − ε/2). (62)

(iii) Random distribution. The distance depends on the particular random distribution; in the
worst case, it is the uniform distribution, hence it is upper bounded by equation (61).

(iv) One fixed eigenvalue and the rest equally spaced. We obtain

rankpuri(σ )6
D

4

(√
1 + 4n(n + 1)(1 − ε)+ 8ε− 1

)2

≈ Dn2(1 − ε). (63)

(v) Exponentially decaying distribution. Assuming that e−n
� ε, the purification rank of σ

grows linearly in D and quadratically in ln(1/ε), i.e.

rankpuri(σ )6
D

b2
(ln(2/ε))2

= O(D ln(1/ε)2). (64)

In summary, for the uniform distribution, the sos polynomial is the best, as it shows exactly
that D′

= 1. For the equally spaced, random, and one large eigenvalue and the rest equally
spaced distributions, the sos polynomial method is better as it is independent of n and scales
polynomially in D. Finally, for the exponentially decaying distribution, the eigenbasis method
is better, as it scales linearly in D (and quadratically in ln(1/ε)). We thus see that the sos
polynomial method is very robust, as it yields the same scaling for very different eigenvalue
distributions, while the eigenbasis method works well only for rapidly decaying distributions of
eigenvalues, in which case it works better than the other.

5. Conclusions and outlook

In this paper we have analyzed the efficiency of representing a mixed state as an MPDO and
as a local purification, and we have shown that the latter can be arbitrarily more costly than the
former. In particular, we have provided a family of multipartite classical states with a constant
operator Schmidt rank D across each linear bipartition and an unbounded purification rank D′

(result 2). This shows that, in the exact case, one cannot upper bound D′ by a function of D
only.

Then we have presented two constructive purifications methods which are applicable to
any multipartite density matrix. The exact sos polynomial method implies that D′ 6 O(Dm−1),
where m is the number of different eigenvalues. Its approximate version consists of finding the
sos polynomial which passes through certain points, and the optimal one can be found with
an SDP (result 4). For the four tested eigenvalue distributions, this method upper bounds D′

by a polynomial function of D which is independent of n, thus showing a robust and efficient
behavior.

The exact eigenbasis method implies that D′ 6 Dn2, where n is the number of eigenvalues.
Its approximate version discards the smallest eigenvalues (result 6), and for the exponentially
decaying distribution it yields D′ scaling linearly in D (and independent of n).
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Our inequivalence result (result 1) implies that a single canonical form which is both
efficient and locally positive semidefinite cannot exist in the exact case. Note that this is
also a numerical limitation, as contracting 2D projected entangled pair states (PEPS) requires
determining the 1D density matrices which are at the boundary [20]. In order to have an efficient
algorithm for 2D PEPS it is thus necessary to use an efficient description of such 1D mixed
states, hence to work with the MPDO form. On the other hand, for the algorithm to be stable,
it is necessary that the positivity of the operator can be checked efficiently, which means for
example, that it can be checked locally. While in practice one can work with MPDOs of low
dimension, one would hope to reexpress such MPDOs in terms of a purification fulfilling the
latter requirement, but without increasing significantly the bond dimension. Our results show
that this may not be possible. At the same time, the results of section 4.3 show that one can
construct efficient approximate purifications of various relevant eigenvalue distributions. One
should nonetheless analyze how successive truncations of this approximate purification affect
the total error.

Let us now mention some open questions. Concerning the inequivalence of the two forms,
we believe that a larger separation could be obtained with states of the form ρ = I ⊗ I − P1 ⊗

Q1 − P2 ⊗ Q2 where Pi , Qi are Hermitian operators constrained by the fact ρ � 0, but otherwise
with random entries. Concerning the sos polynomial method, it would be interesting to find sos
polynomials whose distance to the equally spaced distribution decreases exponentially with the
degree k. It would also be appealing to combine both purification methods in a single one with
the best of each, but this requires to split the density matrix into different ‘eigenspace sectors’
(such as in ρ = ρ1 + ρ2 where ρ1,2 =

∑
i6r,i>r λi |φi〉〈φi |), and it is not clear how the operator

Schmidt rank of ρ relates to that of ρ1 or ρ2. On a more practical level, it would be worth
devising a purification method that works sequentially and does not require to know the spectral
decomposition of the density matrix.

Our results also have connections to other research areas. In particular, the results on
decomposability of mixed states translate one-to-one to divisibility properties of completely
positive (CP) maps via the Choi–Jamiołkowski isomorphism. While the divisibility of CP maps
with a fixed dimension of the intermediate space has been studied e.g. in [21, 22], our approach
would allow to extend this study to varying middle dimension. Finally, our investigations are
also related to communication complexity, since the positive semidefinite rank determines the
quantum communication complexity [13] and the quantum correlation complexity [14] of the
associated matrix.
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Appendix A. Semidefinite program

Here we give an exact formulation of optimization problem of (36) as an SDP. As mentioned
in the text, we first make the objective function linear by introducing slack variables {zi > 0}
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which upper bound the absolute values, as in equation (37). Then we rewrite the constraints so
that the variables (z, R) appear on one side of the inequality and the data λ on the other,

min
d N∑
i=1

zi (A.1)

s.t. − zi − 〈vi
k|Rk|v

i
k〉6−λi i = 1, . . . , d N ,

− zi + 〈vi
k|Rk|v

i
k〉6 λi i = 1, . . . , d N ,

Rk � 0.

It is now straightforward to verify that this is an SDP optimization problem, whose standard
formulation is given by

min
X

〈C, X〉

s.t. 〈A j , X〉6 b j j = 1, . . . , s (A.2)

X � 0.

Comparing this with (A.1), we identify that variables take the following values in our problem.
First,

X = diag(z1, . . . , zd N )⊕ R, (A.3)

where ⊕ denotes direct sum. Thus X is a positive semidefinite matrix (of size d N + k) because
the variables z are non-negative and R is positive semidefinite. Then,

C = Id N ⊕ 0k, (A.4)

where Id N is the identity matrix of size d N and 0k the zero matrix of size k × k. The matrix
constraints are given by

A j = diag(0, . . . ,−1, . . . , 0)⊕ (−|v
j
k 〉〈v

j
k |) 16 j 6 d N , (A.5)

A j = diag(0, . . . ,−1, . . . , 0)⊕ (|v
j−d N

k 〉〈v
j−d N

k |) d N < j 6 2d N , (A.6)

where the −1 is in the j th position. Thus we have s = 2d N constraints. Note that one can always
write the constraints of (A.2) with equalities by introducing additional slack variables [23].
Finally,

b = (−λ1, . . . ,−λd N , λ1, . . . , λd N )T. (A.7)

We remark that the SDP is strongly feasible for k < m. To see that, note that the vectors
{|vi

k〉}
k
i=1 are linearly independent, hence there exists a biorthogonal basis {|wi

k〉}
k
i=1. We use

them to define R =
∑k

i=1 |wi
k〉〈w

i
k|. This R is positive definite (R � 0) and we choose z to be

strictly positive (z > 0). This point is in the interior of the feasible region. It follows that there
exists no duality gap in the SDP [23].

We have implemented the SDP with SeDuMi 1.3 [24] and the add-on Yalmip [25], with
default options.
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Appendix B. sos polynomials for the exponentially decaying distribution of eigenvalues

Here we prove result 8. That is, we show that the distance from the sos polynomial of
equation (57) (which passes through the largest k − 2 eigenvalues and 0) to the exponentially
decaying distribution λ j = ae−bj (with a, b > 0) decays exponentially with k,

n∑
i=1

|λi − pk(λi)|6 O(e−k). (B.1)

We first upper bound the distance using the triangle inequality

n∑
i=1

|λi − pk(λi)| =

n∑
i=k−1

|λi − pk(λi)|6
n∑

i=k−1

λi +
n∑

i=k−1

pk(λi). (B.2)

The first term in the last expression is equal to

e−b(k−1)
− e−b(n+1)

1 − e−b
(B.3)

and thus it decreases exponentially with k. In the remaining of the appendix, we will show that
the last term also decreases exponentially with k.

First note that the last term of (B.2) can be upper bounded by

n∑
i=k−1

pk(λi)6
n∑

i=k−1

λ2
i

k−2∑
r=1

lr(0)

λr
, (B.4)

where the first sum can again be computed exactly

n∑
i=k−1

λ2
i = a2 e−2b(k−1)

− e−2b(n+1)

1 − e−2b
. (B.5)

Now we consider lr(0),

lr(0)=

k−2∏
j=1, j 6=r

1

(e−b(r− j) − 1)2
(B.6)

and split the product into a term with j < r times a term with j > r . To upper bound the term
with j < r , we lower bound its denominator as

r−1∏
j=1

(1 − e−b(r− j))2 >
r−1∏

j=−∞

(1 − e−b(r− j))2 (B.7)

=

[
exp

(
∞∑

x=1

ln(1 − e−bx)

)]2

, (B.8)

where we have defined the variable x = r − j . Now, note that 0> ln(1 − e−bx)> ln(1 − e−b).
We lower bound this function by a straight line of the variable e−bx , i.e. ln(1 − e−bx)>−αe−bx ,
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where α is the slope of the function. We determine α by imposing ln(1 − e−b)= −αe−b, thus
yielding [

exp

(
∞∑

x=1

ln(1 − e−bx)

)]2

>

[
exp

(
−α

∞∑
x=1

e−bx

)]2

(B.9)

= (1 − e−b)2/(1−e−b)
=: C. (B.10)

Alternatively, this can be lower bounded by noting that the leftmost term is the Pochhammer
function ((e−b

; e−b)∞)
2, where (a; q)n is defined as (a; q)n =

∏n
x=0(1 − aq x). The function

f (b)= ((e−b
; e−b)∞)

2 is lower bounded by a finite value if b is larger than 0).
Now we consider the term with j > r and lower bound its denominator as

k−2∏
j=r+1

(e−b(r− j)
− 1)2 >

j?∏
j=r+1

(1 − e−b(r− j))2 =: D, (B.11)

where j ? is the smallest j such that e−b(r− j)
− 1> 1, that is, j ? = r + d(ln 2)/be (for example,

for b > 1, j ? = r + 1). Note that C and D are independent of k, and the number of terms in D is
independent of r (it only depends on b).

Using the lower bounds for the denominators of the parts with j < r and that with j > r ,
we find

lr(0)6
1

C D
. (B.12)

We are interested in the sum of lr(0)/λr , which is

k−2∑
r=1

lr(0)

λr
= (eb(k−1)

− eb)
1

(eb − 1)aC D
. (B.13)

Finally, putting together (B.5) and (B.13) we find

n∑
i=k

pk(λi)6 (e
−2b(k−1)

− e−2b(n+1)) (eb(k−1)
− eb)

a

(1 − e−2b)(eb − 1)C D

= Ae−bk + O(1), (B.14)

where we have defined the constant A as the prefactor of e−bk and the rest as independent of k.
This proves the claim (B.1) and thus result 8.

References

[1] Hastings M 2006 Phys. Rev. B 73 085115
[2] Fannes M, Nachtergaele B and Werner R F 1992 Commun. Math. Phys. 144 443
[3] Perez-Garcia D, Verstraete F, Wolf M M and Cirac J I 2007 Quantum Inform. Comput. 7 401
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[6] Wahl T B, Pérez-Garcı́a D and Cirac J I 2012 Phys. Rev. A 86 062314

New Journal of Physics 15 (2013) 123021 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevB.73.085115
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1103/PhysRevB.88.115108
http://arxiv.org/abs/1308.0316v2
http://dx.doi.org/10.1103/PhysRevA.86.062314
http://www.njp.org/


25
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