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We consider a Friedmann-Robertson-Walker universe with a fluid source obeying a nonideal equation

of state with ‘‘asymptotic freedom,’’ namely ideal gas behavior (pressure changes directly proportional to

density changes) both at low and high density regimes, following a fluid dynamical model due to Shan and

Chen. It is shown that, starting from an ordinary energy density component, such fluids naturally evolve

towards a universe with a substantial ‘‘dark energy’’ component at the present time, with no need of

invoking any cosmological constant. Moreover, we introduce a quantitative indicator of darkness

abundance, which provides a consistent picture of the actual matter-energy content of the Universe.
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I. INTRODUCTION

Current improvements in cosmological measurements
strongly favor the standard model of the Universe being
spatially flat, homogeneous, and isotropic on large scales
and dominated by dark energy consistently with the effect
of a cosmological constant and cold dark matter. Such a
concordance model is referred to as a �-cold dark matter
(�CDM) model in the literature and depends on six
cosmological parameters: the density of dark matter, the
density of baryons, the expansion rate of the Universe,
the amplitude of the primordial fluctuations, their scale
dependence, and the optical depth of the Universe. These
parameters are enough to successfully describe all current
cosmological data sets, including the measurements of
temperature and polarization anisotropy in the cosmic
microwave background (see, e.g., Ref. [1] and references
therein). Therefore, according to the �CDM model the
Universe is well described by a Friedmann-Robertson-
Walker (FRW) metric, whose gravity source is a mixture
of noninteracting perfect fluids including a cosmological
constant.

Observations of distant type Ia supernovae (SNe Ia) first
pointed to the so-called dark energy as a major actor in
driving the accelerated expansion of the Universe [2,3].
Combined observations of large scale structure and the
cosmic microwave background radiation then provided in-
direct evidence of a dark energy component with negative

pressure, which gives the dominant contribution to the
whole mass-energy content of the Universe (see, e.g.,
Refs. [4–6]). At present, all existing observational data
are in agreement with the simplest picture of dark energy
as a cosmological constant effect, i.e. the �CDM model.
Nevertheless, no theoretical model determining the nature of
dark energy is available as yet, leaving its existence still
unexplained. Other possibilities of a (slightly) variable
dark energy have also been considered in recent years.
These models include, for instance, a decaying scalar field
(quintessence) minimally coupled to gravity, similar to the
one assumed by inflation [4], scalar field models with non-
standard kinetic terms (k essence) [7], the Chaplygin gas [8],
braneworld models, and cosmological models from scalar-
tensor theories of gravity (see, e.g., Refs. [9,10] and refer-
ences therein). The possibility that the acceleration of the
Universe could be driven by the bulk viscosity of scalar
theories has also been explored [11]. Relaxation processes
associated with viscous fluid have been shown to reduce
the effective pressure, which could become negative for a
sufficiently large bulk viscosity, so mimicking a dark energy
behavior [12]. The present paper falls in the line of cosmo-
logical models with modified equation of state [13]. The
main idea is to postulate that the cosmological fluid obeys a
nonideal equation of state with ‘‘asymptotic freedom,’’
namely, ideal gas behavior (pressure and density changes
in linear proportion to each other) at both low and high
density regimes, with a liquid-gas coexistence loop in
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between. Such a nonideal equation state supports a phase
transition, which models the growth of the dark matter-
energy component of the Universe, as a natural consequence
of the fluid evolution equations.

The idea of an asymptotic-free, nonideal equation of state
was first proposed by Shan and Chen (SC) in the context of
lattice kinetic theory, with the primary intent of producing a
liquid-vapor coexistence curve with purely attractive inter-
actions [14] (see the Appendix). Its distinctive feature is to
replace hard-core repulsive interactions, as needed to tame
unstable density buildup, with a purely attractive force, with
the peculiar property of becoming vanishingly small above a
given density threshold, i.e. a form of effective ‘‘asymptotic
freedom’’ [15]. The SC motivation was purely numerical,
namely, do away with the very small time steps imposed by
the hard-core repulsion in the numerical integration of the
lattice kinetic equations. Indeed, in the last two decades, the
SC method has met with major success for the numerical
simulation of a broad variety of complex flows with phase
transitions [16,17].

In this work, we maintain that the peculiar properties of
the SC equation of state may offer fresh new insights into
cosmological fluid dynamics, and most notably for the
development of a new class of cosmological models with
scalar gravity. In particular, given that the SC approach has
proven very successful in dispensing with hard-core repul-
sion in ordinary fluids, it might be envisaged that, in the
cosmological context, it would permit to do away with the
repulsive action of the cosmological constant.

As we shall see, this is just the case: a cosmological
FRW fluid obeying the SC equation of state naturally
evolves towards a present-day universe with a suitable
dark-energy component, with no need of invoking any
cosmological constant.

II. BASIC EQUATIONS OF THE MODEL

The Friedmann-Robertson-Walker metric written in
comoving coordinates is given by [18]

ds2 ¼ �dt2 þ a2½dr2 þ �2
kðd�2 þ sin 2�d�2Þ�; (2.1)

where a ¼ aðtÞ is the scale factor and �k ¼ �kðrÞ ¼
½sin r; r; sinh r� corresponding to closed, flat, and open
universes, respectively. The matter-energy content of the
universe is assumed to be a perfect fluid at rest with respect
to the coordinates (i.e., with u ¼ @t as the fluid 4-velocity,
u�u

� ¼ �1) satisfying a Shan-Chen-like equation of
state, i.e.,

pðscÞ ¼ wðinÞ�ðcritÞ;0
�

�

�ðcritÞ;0
þ g

2
c 2

�
;

c ¼ 1� e
�� �

�ðcritÞ;0 ;
(2.2)

where �ðcritÞ;0 ¼ 3H2
0=8� is the present value of the critical

density (H0 denoting the Hubble constant) and the dimen-
sionless quantities wðinÞ, g � 0 and � � 0 can be regarded

as free parameters of themodel.A short reviewof the original
Shan-Chen model is presented in the Appendix. Notice that

in principle one should havewritten c / 1� e�
�
�� , �� being

the typical density above which c undergoes a ‘‘saturation
effect,’’ c � 1. Equivalently, here we have denoted �� ¼
�ðcritÞ;0=�, and expressed the saturation scale in terms of

the free parameter �.
The quantity c can be interpreted as the density of a

chameleon scalar field [19], reducing to ordinary matter,
i.e., c ! �, in the low density limit � � �� and asymp-
totically goes to a uniform constant in the opposite limit.
This scalar field carries a purely attractive interaction and
consequently it contributes a negative pressure to the
equation of state. Since the associated force vanishes in
the limit � � ��, this regime corresponds to an effective
form of ‘‘asymptotic freedom,’’ occurring at cosmological
rather than subnuclear scales. Similarly to the case of
lattice kinetic theory, in which the stabilizing effect of
hard-core repulsion is replaced by an asymptotic-free
attraction, the repulsive effect of the cosmological constant
is here replaced by a scalar field with asymptotic-free
attraction. At present, the existence of such an extra scalar
field cannot be taken for more than a speculation, but wewill
show below that such a speculation permits us to interpret
actual cosmological data in a very natural and elegant way,
with no need of invoking any cosmological constant.
The associated stress-energy tensor is given by

TðscÞ
�� ¼ ð�þ pðscÞÞu�u� þ pðscÞg��; (2.3)

where a self-pressure-induced contribution to the energy
density [SC pressure hereafter, pðscÞ, related to � by

Eq. (2.2)] arises as a typical feature of the model. The
evolution of the energy density � ¼ �ðtÞ is obtained from
Einstein’s field equationsG�� þ�g�� ¼ 8�T��, which in

this case can be reduced to the energy conservation equation

_� ¼ �3
_a

a
ð�þ pðscÞÞ; (2.4)

and the Friedmann equation

_a2 ¼ �kþ 8

3
��a2 þ�

3
a2; (2.5)

where k ¼ ½1; 0;�1� for the case of closed, flat, and open
universes, respectively. The dot and prime denote derivative
with respect to time and r, respectively. The Friedmann
equation (2.5) can be equivalently rewritten in terms of
Hubble parameter H ¼ _a=a and critical density �ðcritÞ ¼
3H2=8� as

H2 	 _a2

a2
¼ � k

a2
þH2 �

�ðcritÞ
þ�

3
: (2.6)

Introducing then the SC density parameter �ðscÞ, the

curvature parameter �k and the vacuum energy parameter
�� defined by
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�ðscÞ ¼ �

�ðcritÞ
; �k ¼ � k

H2a2
; �� ¼ �

3H2
;

(2.7)

Eq. (2.6) takes the simple form

�ðscÞ þ�k þ�� ¼ 1: (2.8)

The corresponding present-day values (at t ¼ t0) will be
denoted by a subscript ‘‘0.’’ It is also useful to introduce the
deceleration parameter q ¼ � €a=ðaH2Þ with the associated
acceleration equation

€a

a
¼ � 4�

3
ð�þ 3pðscÞÞ þ�

3
; (2.9)

which describes the acceleration of the scale factor (it is
obtained from both Friedmann and fluid equations), so that

q ¼ �ðscÞ
2

þ 3

2

pðscÞ
�ðcritÞ

���: (2.10)

A. General features

In order to investigate the general features of
Shan-Chen cosmologies it is convenient for us to cast
the model equations in a form which is suited to numeri-
cal integration by introducing the following set of
dimensionless variables:

	 ¼ �

�ðcritÞ;0
; x ¼ a

a0
; 
 ¼ H0t: (2.11)

The dimensionless density 	 is related to the SC density
parameter �ðscÞ introduced in Eq. (2.7) by

	 ¼ �ðscÞ
H2

H2
0

: (2.12)

The equation of state (2.2) thus assumes the (rescaled)
simplified form

pðscÞ ¼ wðinÞ�ðcritÞ;0
�
	þ 1

2
gð1� e��	Þ2

�
	 wðinÞ�ðcritÞ;0P ð�;gÞð	Þ; (2.13)

so that the SC pressure has the same sound speed

c2s 	
@pðscÞ
@�

¼ wðinÞ½1þ g�ð1� e��	Þe��	� (2.14)

both in the low and high density limits, where c2s ! wðinÞ
for fixed values of �. In fact, for 	 � 1 the function
P ð�;gÞð	Þ 
 	, and for 	 � 1 it goes to P ð�;gÞð	Þ 
 	þ
g=2, which looks exactly like the bag-model equation of
state of hadronic matter [20]. Here, g < 0 plays the role of
the bag constant, i.e., the difference between the energy
density of the true vacuum versus the perturbative one.
fWe refer to the high-density branch as ‘‘ideal gas’’ behav-
ior, in the sense that pressure and density changes are

directly proportional to each other. On the other hand,
varying the parameter � in the allowed range the SC
pressure behaves again as pðscÞ 
 wðinÞ� for � ! 0,
whereas for � ! 1

pðscÞ 
 wðinÞ�þ�p; �p ¼ g

2
wðinÞ�ðcritÞ;0: (2.15)

The energy conservation equation (2.4) and the
Friedmann equation (2.5) can then be written as

d	

d

¼ � 3

x

dx

d


�
ð1þ wðinÞÞ	þ wðinÞ

2
gð1� e��	Þ2

�
; (2.16)

dx

d

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k;0 þ x2ð	þ��;0Þ

q
; (2.17)

which can be numerically integrated with initial conditions
	ð
0Þ ¼ �ðscÞ;0 and xð
0Þ ¼ 1. The � sign in front of

the right-hand side of the second equation corresponds to
increasing (þ ) and decreasing (� ) behavior of the scale
factor. The value of 
0 must be chosen in such a way

FIG. 1 (color online). The function F�ð	�Þ determining the
equilibrium solutions in the case of a flat universe [see
Eq. (2.20)] is plotted for different values of � ¼ ½1; 2; 5�. The
existence of two solutions is evident by drawing horizontal
lines. F� has a minimum at 	min� ¼ � 1

2� ½2W�1ð� 1
2
ffiffi
e

p Þ þ 1� �
1:256=�, with value F�ð	min� Þ � 2:455=�. Here WkðzÞ denotes
the k branch of the Lambert W function satisfying the equation
WðzÞeWðzÞ ¼ z, where k is any nonzero integer [29]. If the variable
z is real, then there are two possible real values of WðzÞ in
the interval �1=e � z < 0. The branch satisfying WðzÞ � �1
is denoted by W0ðzÞ and is referred to as the principal branch
of the W function, whereas the branch satisfying WðzÞ � �1 is
denoted by W�1ðzÞ. The existence of two roots for Eq. (2.20) is
thus guaranteed if 2:455=� & wðinÞjgj=2ð1þ wðinÞÞ.
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that the numerical integration gives the correct behavior
of the solution approaching the initial singularity, i.e.,
x ! 0 for 
 ! 0.

Note that Eq. (2.16) can also be formally integrated to
give x ¼ xð	Þ as

x ¼ e�Lð	Þ; Lð	Þ ¼ 1

3

Z 	

�ðscÞ;0

d�

�þ wðinÞP ð�;gÞð�Þ :

The evolution x ¼ xð
Þ then follows from Eq. (2.17).
The system (2.16) and (2.17) admits as equilibrium

solutions ð	�; x�Þ the pair of constants satisfying the

conditions d	=d
 ¼ 0 and dx=d
 ¼ 0. Such solutions
do exist in the flat case (�k;0 ¼ 0) and for positively

curved (i.e., closed) universes only. In the latter case
the equilibrium is characterized by arbitrary values of
	� and

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�k;0j

	� þ��;0

s
: (2.18)

For a flat universe, Eqs. (2.16) and (2.17) lead to the
single equation

FIG. 2 (color online). The solutions for 	 (a), x (b), and P ð�;gÞ (c) are shown as functions of 
 for the choice of parameters
wðinÞ ¼ 1=3, g ¼ �8, �k;0 ¼ �0:01, ��;0 ¼ 0 and different values of � ¼ ½1; 2; 5�, with initial conditions 	ð
0Þ ¼ 1:01 and

xð
0Þ ¼ 1. The corresponding values of 
0 are 
0 � ½0:668; 0:847; 1:343�, respectively. (d) shows instead the behavior of pðscÞ as a
function of � in units of �ðcritÞ;0. Note that for � ¼ 5 the integration stops approaching the equilibrium solution 	
 1 and P ð�;gÞ 
 �3,

implying weff 	 pðscÞ=�
�1. Here (and below) a dot on each curve marks the corresponding present-day value.
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d	

d

¼ �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	þ��;0

q �
ð1þ wðinÞÞ	þ wðinÞ

2
gð1� e��	Þ2

�
:

(2.19)

In this case, besides 	� ¼ ���;0, there exist in general

two different equilibrium solutions such that

F�ð	�Þ 	 	�
ð1� e��	� Þ2 ¼

wðinÞjgj
2ð1þ wðinÞÞ ; (2.20)

for fixed values of �, as shown in Fig. 1.

B. Dark energy without vacuum energy

The most likely cosmology describing the universe
(�CDMmodel) has a nearly spatially flat geometry (�k;0 ¼
�0:010� 0:005) with a matter density (dark matter plus
baryons) of �m;0 ¼ 0:266� 0:029 and a cosmological

constant responsible of a dark energy density of ��;0 ¼
0:734� 0:029 [21]. At early times the Universe was radia-
tion dominated, but the present contribution of radiation is
negligibly small. The dominant contribution to the mass-
energy budget of the Universe today is due to dark energy,
obeying an equation of state pde ’ ��de, i.e., with

FIG. 3 (color online). The evolution of dimensionless SC density, scale factor, and SC pressure are shown in (a)–(c), respectively, for
the choice of parameters wðinÞ ¼ 1=3, g ¼ �8,��;0 ¼ 0,�m;0 ¼ 0:266,�k;0 ¼ �0:01, and different values of � ¼ ½1; 2; 2:7; 5�, with
initial conditions 	ð
0Þ ¼ 0:734 and xð
0Þ ¼ 1. The corresponding values of 
0 are 
0 � ½0:682; 0:876; 1:007; 1:097�, respectively.
(d) shows instead the behavior of pðscÞ as a function of � in units of �ðcritÞ;0. Note that for � ¼ 2:7 and � ¼ 5 the integration stops

approaching the equilibrium solutions.
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wde ’ �1. The cosmological constant thus acts as an effec-
tive negative pressure, allowing the total energy density of
the Universe to remain constant even though the Universe
expands. We show below that a simple SC model does not
need any cosmological constant to account for the presence
of dark energy today.

Consider for instance the case of an initially radiation-
dominated universe, i.e., with wðinÞ ¼ 1=3. The coupled set
of equations (2.16) and (2.17) is numerically integrated for
a fixed value of the parameter g and different values of �,
by assuming��;0 ¼ 0 (i.e., � ¼ 0) and�k;0 ¼ �0:01, so
that�ðscÞ;0 ¼ 1��k;0 ¼ 1:01. The evolution with time of

dimensionless density 	, scale factor x, and SC pressure is
shown in Fig. 2 for different values of �. We see that
pressure changes its sign at a certain time in the past and
remains negative on a large time interval, including the
present epoch, so that the equation of state governing the
evolution of the present Universe is typical of dark energy.
The case � ¼ 5 exhibits a saturation effect, with the equi-
librium solution 	
 1 and P ð�;gÞ 
 �3 being eventually

reached during the evolution, leading to an effective
weff 	 pðscÞ=�
�1.

C. Including a matter component

In order to account for the presence of matter density
today one has to add to the SC fluid the contribution due to
pressureless matter, i.e.,

�m ¼ �m;0

�
a0
a

�
3
; (2.21)

with associated density parameter

�m ¼ �m;0

x3
H2

0

H2
; (2.22)

so that the Friedmann equation (2.8) becomes

�ðscÞ þ�m þ�k þ�� ¼ 1; (2.23)

with �ðscÞ ¼ 	ðH2
0=H

2Þ, as from Eq. (2.12). The evolution

equation (2.17) for the dimensionless scale factor is thus
replaced by

dx

d

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k;0 þ x2ð	þ��;0Þ þ�m;0

x

s
: (2.24)

The results of the numerical integration of the system
(2.16) and (2.24) are shown in Fig. 3 for the choice of
density parameters ��;0 ¼ 0, �m;0 ¼ 0:266, and �k;0 ¼
�0:01 and different values of �. The evolution of SC
density exhibits a twofold behavior as a function of �.
For � * 2 it indefinitely grows as the initial singularity is
approached, while it vanishes at late times. As � increases,
there exists a critical value of � above which the density
reaches an equilibrium solution by integrating both back-
ward and forward in time, i.e., it evolves between two
equilibrium states.
Figure 4 then shows the behavior of the effective weff

both as a function of time and as a function of the redshift,
which is related to the scale factor in the standard way, i.e.,

1þ z ¼ a0
a

¼ 1

x
: (2.25)

The curves for� ¼ 1 and� ¼ 2 approach the valueweff ¼
1=3 ¼ wðinÞ, whereas those for � ¼ 2:7 and � ¼ 5 go to

FIG. 4 (color online). The evolution of the effective weff 	 pðscÞ=� is shown in (a) for the same choice of parameters and initial
conditions as in Fig. 3. (b) shows instead its behavior as a function of the redshift.
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the value weff ¼ �1 corresponding to the equilibrium
solutions for the SC density. In particular, the effective
equation of state for � ¼ 2:7 is pðscÞ 
 �� at all times, so

mimicking quite well the effect of the cosmological con-
stant. Therefore, we expect the corresponding SC cosmol-
ogy to be very close to the standard model, as we will show
in the next section. We have also checked the fulfillment of
the energy conditions for the above choice of parameters.
The strong energy condition turns out to be satisfied all
along the evolution for small values of �ð� & 1Þ only,
whereas the null energy condition fails for � * 5.
[Recall that the �CDM model satisfies the null energy
condition, but not the strong one.]

Finally, the expression (2.10) for the deceleration
parameter becomes

q ¼ �ðscÞ
2

þ 3

2

pðscÞ
�ðcritÞ

þ�m

2
���; (2.26)

due to the inclusion of the matter density contribution
(2.21) to the acceleration equation (2.9).

III. OBSERVATIONAL TESTS

The distance-redshift relation of SNe Ia is one of the
most powerful tools available in observational cosmology.
In Fig. 5 below we compare the fits of the supernova data
(gold sample of Ref. [22]), obtained by plotting the dis-
tance modulus� versus redshift z, both in a SC cosmology

without vacuum energy and according to the concordance
model. The distance modulus is defined by

� ¼ 5 log
dL
Mpc

þ 25; (3.1)

in terms of the luminosity distance

dL ¼ ð1þ zÞ dHffiffiffiffiffiffiffiffiffiffiffiffi
j�k;0j

q �k

� ffiffiffiffiffiffiffiffiffiffiffiffi
j�k;0j

q dc
dH

�
; (3.2)

where dH ¼ 1=H0 is the Hubble distance and dc is the
comoving distance. The comoving distance is defined by

FIG. 5 (color online). Distance modulus vs redshift for differ-
ent values of the parameter � ¼ ½1; 2; 2:7; 5�. Data are taken
from Ref. [22] (gold sample). The model equations (2.16),
(2.24), and (3.4) have been numerically integrated for the same
choice of parameters and initial conditions as in Fig. 3, plus the
additional condition rð
0Þ ¼ 0 (i.e., dcð
0Þ ¼ 0). For the Hubble
constant we have used the value H0 ¼ 71 km s�1 Mpc�1 [21].
The curve for � ¼ 2:7 is practically superimposed to the �CDM
one (thick black dashed curve).

TABLE I. The results of the �2 analysis applied to the 184
supernova data set from the gold sample [22] with redshift
greater than z � 0:023. The value of the Hubble constant we
used is different from the best fitting value of Ref. [22], leading
to a greater reference value of �2

�CDM � 331.

� �2=�2
�CDM

1 3.79

2 1.59

2.7 0.97

3 0.83

4 0.66

5 0.68

6 0.73

7 0.79

8 0.84

9 0.88

10 0.91

FIG. 6 (color online). Hubble parameter as a function of the
redshift for different values of the parameter � ¼ ½1; 2; 2:7; 5�.
Data are taken from Ref. [24]. The prediction from the �CDM
model is also shown (thick black dashed curve). The Hubble
parameter is expressed in units of km s�1 Mpc�1 (the value ofH0

is the same as in Fig. 5).
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dc ¼ a0r, where r is obtained by integrating the radial null
geodesic equation dr=dt ¼ �1=a for a light signal emitted
at a certain time in the past, by a galaxy comoving with the
cosmic fluid and received at the present time (i.e., r ¼ 0
at t ¼ t0).

In the case of the concordance model, the comoving
distance is given by (see, e.g., Ref. [23])

dc ¼ dH
Z z

0

dz0

Eðz0Þ ;

E 	 H

H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��;0 þ�k;0ð1þ zÞ2 þ�m;0ð1þ zÞ3

q
:

(3.3)

In the case of a SC cosmology, instead, we have to add the
following equation to the system (2.16) and (2.24):

d

d


�
dc
dH

�
¼ � 1

x
: (3.4)

Subsequently, we numerically solve them all together, with
the further initial condition rð
0Þ ¼ 0 [i.e., dcð
0Þ ¼ 0].
The resulting curve for � ¼ 2:7 is practically superim-
posed to the �CDM one.
In order to measure the goodness of fit one can use the

method of least squares, which consists in minimizing the
function

�2ð
AÞ ¼
Xn
i¼1

½�ðzi;
AÞ ��i�2
�2

i

(3.5)

with respect to the whole set of parameters 
A ¼
ð�; g;wðinÞ; H0;�k;0;�m;0Þ of the model. The n data points

ðzi; �iÞ with errors �i as inferred from the chosen super-
nova data set are thus compared with the corresponding
expected values of the distance modulus at a given redshift
z ¼ zi for each parameter choice. We list in Table I the
results of the �2 statistics for varying � and fixed values of
the remaining parameters as in Fig. 3, showing that the best

FIG. 7 (color online). Deceleration parameter as a function
of the redshift for different values of the parameter � ¼
½1; 2; 2:7; 5�. The choice of parameters as well as initial con-
ditions is the same as in Fig. 3. The curve corresponding to the
�CDM model is also shown for comparison (thick black dashed
curve).

FIG. 8. Present-day value of the deceleration parameter q0 and age of the Universe t0 ¼ 
0=H0 (expressed in Gyrs) as functions of
the parameter �. The choice of parameters as well as initial conditions is the same as in Fig. 3.
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fit is for � ’ 4. A more accurate analysis would require
determining the most likely values as well as the confi-
dence intervals for all parameter sets used in our model by
constructing the corresponding likelihood function, but it is
beyond the aim of the present work.

Observational Hubble parameter data have been mea-
sured through the aging of passively evolving galaxies [24]
and baryon acoustic oscillations [25]. In Fig. 6 we show
how the fit of the relation Hubble parameter vs redshift,
obtained by using the same set of parameters as in Fig. 3, is
in agreement with the �CDM prediction, despite the small
size of the data set.

Figure 7 shows the behavior of the deceleration parame-
ter (2.26) as a function of the redshift for different values of
the parameter �. The curve corresponding to the �CDM
model with

q ¼ 1

H

dH

dz
ð1þ zÞ � 1 (3.6)

is also shown for comparison. Finally, for the same parameter
choice as above, one can evaluate the present-dayvalue of the
deceleration parameter q0 as well as the age of the universe
t0 ¼ 
0=H0. For instance, for � ¼ 2:7 we obtain q0 �
�0:63 and t0 � 13:86 Gyrs, respectively, ingoodagreement
with current estimates (q0 ¼ �0:67� 0:15 and t0 ¼
13:75� 0:17 Gyrs) [21], having assumed for the Hubble
constant thevalueH0 ¼ 71 km s�1 Mpc�1. The dependence
of both q0 and t0 on the parameter � is also shown in
Fig. 8.

IV. STABILITYANALYSIS

During the evolution, the cosmological fluid could suffer
the formation of small inhomogeneities due to the develop-
ment of density gradients as well as the growth of gravita-
tional instabilities which may invalidate the hydrodynamic
description.

At a microscopical level, in the Shan-Chen model phase
separation is triggered by attractive interactions between
neighboring cells in the lattice. Attractive interactions
enhance density gradients and promote a subsequent pro-
gressive steepening of the interface, eventually taking the
system to a density blowup. In dense fluids and liquids such
density blowup is prevented by hard-core repulsive forces,
which stop the indefinite buildup of density gradients,
thereby stabilizing the fluid interface. As discussed in the
Appendix, in the SC model, such a stabilizing effect is
obtained by imposing a saturation of the intermolecular
attraction for densities above a reference value. This is an
effective form of ‘‘asymptotic freedom,’’ which implies
vanishing interactions at short distance (high density).

Therefore, a perturbation analysis of our model is in
order. Below, we study scalar linear perturbations of a
FRW universe with a SC fluid plus a pressureless matter
component in the synchronous gauge, following Ref. [26].
The set of equations for scalar perturbations is given by

0 ¼ �pðscÞ þ @t½ð�þ pðscÞÞ�u� þ 3 _a

a
ð�þ pðscÞÞ�u;

0 ¼ � _�þ 3 _a

a
ð��þ �pðscÞÞ þ r2½a�2ð�þ pðscÞÞ�u�

þ ð�þ pðscÞÞc ;

0 ¼ _c þ 2 _a

a
c þ 4�ð��þ 3�pðscÞ þ ��mÞ;

0 ¼ � _�m þ 3 _a

a
��m þ �mc ; (4.1)

where � and pðscÞ are the background values for the SC

density and pressure, �� and �pðscÞ the corresponding first
order perturbations, �m and ��m the matter density and its
perturbation, �u the perturbed scalar velocity potential,
and c a suitable combination of metric perturbations
[not to be confused with the SC extra pressure term in
Eq. (2.2)]. The (scalar) anisotropic stress tensor for the SC
fluid has been assumed to be zero. Fourier transforming all
perturbation quantities, one obtains the evolution equations
for the corresponding amplitudes, with r2 ! �k2 and
comoving wave number k. The resulting set of equations
in dimensionless form is given by

0 ¼ wðinÞ�P ð�;gÞ þ ð	þ wðinÞP ð�;gÞÞ dð�~uÞd


þ
�
d	

d

þ wðinÞ

dP ð�;gÞ
d


þ 3

x

dx

d

ð	þ wðinÞP ð�;gÞÞ

�
�~u;

0 ¼ dð�	Þ
d


þ 3

x

dx

d

ð�	þ wðinÞ�P ð�;gÞÞ

þ ð	þ wðinÞP ð�;gÞÞ
�
�

~k2

x2
�~uþ ~c

�
;

0 ¼ d ~c

d

þ 2

x

dx

d

~c þ 3

2
ð�	þ 3wðinÞ�P ð�;gÞ þ �~�mÞ;

0 ¼ dð�~�mÞ
d


þ 3

x

dx

d

�~�m þ�m;0

x3
~c ; (4.2)

where

�P ð�;gÞ ¼
@P ð�;gÞ
@	

�	 ¼ c2s
wðinÞ

�	; (4.3)

�~u ¼ H0�u, ~c ¼ c =H0, �~�m ¼ ��m=�ðcritÞ;0, and ~k ¼
k=ða0H0Þ. Numerically integrating the above system of
equations together with Eqs. (2.16) and (2.24) gives the
evolution of the density contrast �ðscÞ 	 �	=	 associated

with the SC fluid. We assume here initial conditions such
that, at the present time, the values of the perturbation

quantities are small enough, i.e., �	ð
0Þ 
 �~uð
0Þ 

~c ð
0Þ 
 �~�mð
0Þ � 1, in agreement with the observatio-
nal evidence for a smooth dark energy component.
Integration of the perturbation equations is then performed
both backward and forward in time, exactly as is the case of
Eqs. (2.16) and (2.24). Figure 9(a) shows that the pertur-
bation remains small over a significant time interval.
It indefinitely grows as the initial singularity is approached,
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for all fixed values of �. However, in this limit the pertur-
bative analysis is no longer appropriate. For those solutions
evolving between two equilibrium states (� * 2), the
perturbation undergoes oscillations remaining bounded
all the way down to very early times and vanishes at late
times. For � & 2, instead, the perturbation increases at late
times, since the SC background density 	 ! 0 there.
Furthermore, in this case the exponential growth in the
past starts even before, very close to the present time value,
indicating a sudden onset of instability. It is observed that
the presence of a pressureless matter component in the
cosmological fluid thus leads to a stabilization of the whole
system for � * 2. This is apparent from Fig. 9(b), which
shows the evolution of the SC density contrast for a plain
SC model, without any additional component. Integrating
backward in time shows that the system becomes soon
unstable for every value of �. Therefore, the inclusion of
a matter component in the model plays a role in contrasting
formation of instabilities naturally arising in simple SC
fluids. We note that, although pressureless, the matter
component also affects the evolution of the background
SC density (2.16) via the equation (2.24) for the evolution
of the scale factor. The details of this nontrivial stabiliza-
tion effect will be deferred to a future study. Similarly, we
leave to a future investigation also the problem of the
possible growing of instabilities if the system is assumed

to evolve forward in time starting from adiabatic initial
conditions at early times (see, e.g., Ref. [26]), conse-
quently implying a different choice of initial conditions
for the associated Eqs. (2.16) and (2.24).

V. CONCLUDING REMARKS

We have presented a new class of cosmological models
consisting of a FRW universe with a fluid source obeying a
nonideal, Shan-Chen-like equation of state. The aim of this
studywas to explain the dark energy abundance todaywithin
a different approach with respect to the standard one, which
postulates the existence of a mixture of noninteracting per-
fect fluids as a source of a FRW cosmology, including a
cosmological constant being responsible for the accelerated
expansion of theUniverse.We have shown that, in the case of
a simple model without any additional component in the
cosmological fluid, starting from an ordinary equation of
state at early times (e.g., satisfying the energy condition
typical of a radiation-dominated universe), the SC pressure
changes its sign at a certain time in the past and remains
negative for a large time interval, including the present
epoch. This implies that the equation of state governing the
evolution of the present-day Universe is typical of dark
energy. As a result, such a dark energy component develops,
with no need of invoking any cosmological constant. In order

FIG. 9 (color online). The evolution of the density contrast associated with the SC fluid is shown in (a) for different values of the
parameter �. The linear perturbation equations (4.2) have been numerically integrated with a representative value of ~k ¼ 10�2 and
initial conditions �	ð
0Þ ¼ �~uð
0Þ ¼ ~c ð
0Þ ¼ �~�mð
0Þ ¼ 10�3. The choice of remaining parameters as well as initial conditions for
the background SC density 	 and scale factor x is the same as in Fig. 3. (b) corresponds, instead, to a simple SC model without any
additional component in the cosmological fluid. The choice of parameters as well as initial conditions in this case is the same as in
Fig. 2. Integrating backward in time shows that now the system becomes soon unstable for every value of �. The presence of a
pressureless matter component has then a stabilizing effect on the whole system for � * 2. In fact, the perturbation undergoes
oscillations remaining bounded all the way up to very early times and vanishes at late times.
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to account for the presence of matter density today we have
then added to the SCfluid the contribution due topressureless
matter. The latter is shown to significantly affect the evolu-
tion of the SC density, which exhibits a twofold behavior
depending on the parameter choice: it either evolves between
two equilibrium states or indefinitely grows as the initial
singularity is approached and vanishes at late times.
Furthermore, the additional matter component acts so as to
contrast the onset of SC instabilities. In fact, a first-order
perturbation analysis reveals that a plain SC model is in
general unstable against perturbations, whereas the inclusion
of a pressureless matter component has a stabilization effect
on the SC fluid, at least for those solutions evolving between
two equilibrium states. We have also provided some obser-
vational tests in support to our model. More precisely,
we have drawn the Hubble diagram (distance modulus vs
redshift) as well as the expansion history of the Universe
(Hubble parameter vs redshift), showing that they are con-
sistent with current astronomical data. The model opens up
several directions for future investigations, for instance a
systematic exploration of the remaining parameters of the
model, the analysis of different forms c ¼ c ð�Þ of the
Shan-Chen excess pressure field, and the inclusion of further
additional components in the cosmological fluid, as well as a
more accurate stability analysis exploring different initial
conditions for the perturbation equations.
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APPENDIX: THE SHAN-CHEN MODEL OF
NONIDEAL FLUIDS

It is well known that nonideal fluid equations of state,
say of van der Waals type, result from underlying atomic
potentials exhibiting short-range (hard-core) repulsion and
long-range (soft-core) attraction. The prototypical example
are Lennard-Jones fluids, whose spherically symmetric
potential takes the so-called 6-12 form

VðrÞ ¼ 4U

��
r

r0

��12 �
�
r

r0

��6
�
; (A1)

where r0 is the typical equilibrium intermolecular distance,
U the typical strength of the interaction and � ¼ r=r0 is a
natural dimensionless radial variable. The short-range�12
branch leads to very strong repulsive forces on molecules

penetrating the hard-core region r < r0 (actually r <

21=6r0 � 1:12r0), and consequently to impractically short
time steps in the numerical integration of the equations of
motion of molecular fluids. To circumvent this problem,
and with specific reference to lattice fluids for which the
time step is fixed by the lattice size—hence cannot be
reduced on demand—Shan and Chen [14] proposed a

‘‘synthetic’’ repulsion-free potential. More precisely,
repulsion is replaced by a density-dependent attraction,
and the density dependence is tuned in such a way that
attraction becomes vanishingly small beyond a given den-
sity threshold, so as to prevent the onset of instabilities due
to uncontrolled density pileup. Since high-density implies
short spatial separation, the Shan-Chen potential imple-
ments a form of effective ‘‘asymptotic freedom,’’ meaning
by this that molecules below a certain separation behave
basically like free particles.
Mathematically, the Shan-Chen interaction leads to the

following pair pseudopotential:

Vðx;x0Þ ¼ c ðxÞGðx� x0Þc ðx0Þ; x0 ¼ xþ ea; (A2)

where ea denotes a generic spatial direction in the lattice
(the explicit dependence on time of the various functions
has been omitted here to simplify notation). For instance, a
typical two-dimensional lattice features one rest particle
(je0j ¼ 0), four nearest neighbors (jeaj ¼ cL�t), and four

next-nearest neighbors (jeaj ¼ cL�t
ffiffiffi
2

p
), cL ¼ �x

�t being

the lattice ‘‘light speed.’’
In the above, c ðxÞ ¼ c ½�ðxÞ� is a local functional of

the fluid density andGðx� x0Þ is the Green function of the
interaction. For the sake of simplicity, Shan and Chen took

Gðx� x0Þ ¼ G < 0 for jeaj> cL�t
ffiffiffi
2

p
and zero else-

where, so that G < 0 codes for attractive interaction. The
associated force per unit volume of the fluid is then

FðxÞ ¼ �c ðxÞGX
a

c ðxþ eaÞea; (A3)

which equals �rV in the limit �t ! 0.
Taylor expansion of the above expression gives

FðxÞ ¼ �Gc ðxÞrc ðxÞ þOð�t3Þ; (A4)

where we have taken into account that
P

ae
i
a ¼ 0 andP

ae
i
ae

j
a ¼ ðc2L�t2=3Þ�ij. Higher order terms describe

physical properties such as surface tension, which play a
crucial role in the dynamics of complex fluids, and are not
discussed here. Confining our attention to the contribution
of the above force to the equation of state, it is easy to show
that such contribution writes as an excess pressure of the
form (in lattice units �t ¼ �x ¼ cL ¼ 1Þ:

p

c2s
� � ¼ G

2
c 2ð�Þ: (A5)

Note that for attractive interactions, i.e., G < 0, this excess
pressure is negative. The functional form c ð�Þ was chosen
in Ref. [14] in such a way as to realize a vapor-liquid
coexistence curve:

c ð�Þ ¼ �0ð1� e
� �

�0Þ; (A6)

where �0 is a reference density, above which ‘‘asymptotic
freedom’’ sets in. The definitions of c and G adopted here
slightly differ from those used in Sec. II in order to follow
the notation of the original work [14].
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It is readily checked that, via the equations @p=@� ¼ 0
and @2p=@�2 ¼ 0, the excess pressure (A5) gives rise to the
following set of critical values �c ¼ ln 2, Gc ¼ �4, and
pc ¼ ðln 2� 1=2Þ=3
 0:063 at which phase separation
starts off, having set �0 ¼ 1, for simplicity. In the low
density region, � � �0, c ! � and the Shan-Chen equa-
tion of state reduces to p=c2s ¼ �þ G�2=2, cs being the
sound speed of the ideal fluid. This is clearly unstable for
G < 0, as it yields c2s ¼ @�p < 0 for � > �G 	 1=jGj.
This instability is tamed by letting the Shan-Chen force go
to zero for � � �0. In the high density limit, the Shan-Chen

equation of state reduces to p=c2s ¼ �þ G
2 �

2
0. Consistently

with the formal analogy with ‘‘asymptotic freedom,’’ this
equation of state bears a close formal resemblance to the bag
model of quark matter [20]. These considerations suggest
that the Shan-Chen model might have a bearing beyond the
purpose of a mere technical trick.

In the cosmological context, c ðxÞ is best interpreted as a
scalar field, interacting via gauge quanta, whose propaga-
tor is given by Gðx� x0Þ in Eqs. (A2) and (A3). It is worth
noting that nonideal, ‘‘exotic’’ fluids have been proposed
before as models of dark energy, one popular example in
point being the (generalized) Chaplygin gas, with equation
of state p ¼ �A=��, A being a positive constant and
0<� � 1 [8]. A remarkable property of the Chaplygin

model is the fact of supporting negative pressure, jointly
with positive sound speed (squared). The Chaplygin gas
was derived as an approximation to a fluid dynamic equa-
tion of state, most notably as a mathematical approxima-
tion to compute the lifting force on a wing of an airplane
[27]. Lately, it has been capturing increasing interest
within the high-energy and cosmological communities in
view of its large group of symmetry and the fact that it
can be derived from the Nambu-Goto d-brane action in
(dþ 1, 1) spacetime [28]. However, to the best of the
authors’ knowledge, no microscopic basis for the
Chaplygin gas model has been provided as yet.
Interestingly, the Shan-Chen equation of state also sup-

ports negative pressure regimes, jointly with positive c2s , for
values of jGj sufficiently above jGcj ¼ 4. Even though any
connection of the Shan-Chen model to string theory remains
totally unexplored at the time of this writing, we note that its
equation of state is grounded into a sound microscopic basis,
namely, according to the expression (A3), a scalar field
interacting through (short-ranged) gauge quanta.
Based on the above, it appears reasonable to speculate

that the Shan-Chen fluid, by now a very popular model for
investigating a broad variety of complex flows with phase
transitions, might have an interesting role to play in cos-
mological fluid dynamics as well.
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