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Abstract: Global properties of maximal future Cauchy developments of stationary,
m-dimensional asymptotically flat initial data with an outer trapped boundary are ana-
lyzed. We prove that, whenever the matter model is well posed and satisfies the null
energy condition, the future Cauchy development of the data is a black hole spacetime.
More specifically, we show that the future Killing development of the exterior of a suffi-
ciently large sphere in the initial data set can be isometrically embedded in the maximal
Cauchy development of the data. In the static setting we prove, by working directly on
the initial data set, that all Killing prehorizons are embedded whenever the initial data
set has an outer trapped boundary and satisfies the null energy condition. By combining
both results we prove a uniqueness theorem for static initial data sets with outer trapped
boundary.
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1. Introduction and Overview of the Main Results

In this paper we investigate the relationship between asymptotically flat stationary ini-
tial data sets with outer trapped boundary and black holes. By the Penrose singularity
theorem [21] initial data configurations with an outer trapped boundary lead to maximal
Cauchy developments which are geodesically incomplete. On the other hand, physi-
cal arguments of predictability lead to the weak cosmic censorship conjecture (see e.g.
[26]) which asserts that, generically, any singularity that forms during a process of grav-
itational collapse must lie inside the event horizon of a black hole space-time. Black
hole space-times (from now on simply black holes) satisfy strong global properties (see
below) and it is a very difficult task in general to determine whether the global properties
will be satisfied knowing only the initial configuration of the spacetime. In the stationary
setting, where to a certain sense there is no evolution at all, the problem must necessarily
be much simpler. At first sight one might even think that, in fact, determining whether the
maximal Cauchy development of a stationary initial configuration with trapped bound-
ary is a black hole should be direct because one would only need to propagate the initial
information by the isometry. The problem is not nearly as simple because even being
able to carry over the development by the isometry no global information, for example
global hyperbolicity, is a priori evident.

There exist at least two different approaches to show that the maximal globally hyper-
bolic development of a stationary initial data set is a black hole. The first approach tries
to prove directly that the maximal globally hyperbolic development of the data enjoys
sufficient global properties to qualify as a black hole. This is the approach we follow in
the first part (Sect. 2) of this paper.

There exist several definitions of black hole, a priori non equivalent, but following
the same underlying principle. In a stationary setting, a convenient definition, which
we adopt, requires the existence of an asymptotically flat (m + 1)-end with the property
that its causal past does not cover the whole space-time manifold. An asymptotically
flat (m + 1)-end is the natural generalization to higher dimensions of the usual notion
of asymptotically flat four-end, which can be found e.g. in [1]. In essence, the defini-
tion demands that the (m + 1)-end is topologically the product of a real line times the
exterior of a closed ball in R

m , i.e. R × (Rm \ B). The spacetime metric is required to
be invariant by translations along the R factor and the initial data on {0} × (Rm \ B)

to be asymptotically flat in the standard sense which we explain in Definition 1. Since
we are interested only in the future of a Cauchy surface, we restrict the topology of the
(m +1)-end to be R

+ times the exterior of a closed ball in R
m . Under suitable conditions,

this definition is equivalent to the definition using conformal compactifications (see e.g.
the Appendix of [15] for the vacuum, four dimensional case or Proposition 1.9 in [10]
for electrovacuum).

Concerning stationary initial data and black holes we will prove in Sect. 2 (see Def-
inition 1 for the notion of initial datum D):

Theorem 1. Let D be an m-dimensional (m ≥ 3) asymptotically flat stationary initial
data with well posed matter model satisfying the null energy condition Suppose that
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∂� �= ∅ is future outer trapped. Then the maximal Cauchy development (M, g) of D
is a black hole spacetime.

A more precise statement is given in Theorem 4 in Sect. 2.2, where we prove that the
Killing development of the data outside a sufficiently large sphere can be isometrically
embedded into the maximal globally hyperbolic spacetime generated by the whole data.

The second approach to prove that equilibrium initial configurations lead to black
holes is via uniqueness theorems. In the stationary setting, black hole space-times sat-
isfy uniqueness theorems, in particular for arbitrary dimension in the static case and
in dimension four in the non-static electrovacuum case under suitable hypotheses [12].
Thus, if one expects that certain stationary initial data develops well behaved black-hole
space-times then such data should be embeddable in one of the stationary/static black
holes allowed. In other words the data (inside some region) should be one among those
data endowed on sections of the listed black holes. The hope is that, somehow, such
information should be extractable from the initial data itself to deduce, a fortiori, that
the given initial data gives rise to a black-hole space-time.

This strategy has been successfully applied in the past under suitable restrictions. The
first result along these lines is due to P. Miao [23] who proved a uniqueness result for
asymptotically flat, three-dimensional vacuum and time-symmetric static Killing initial
data having an outermost minimal boundary. More precisely, Miao proved that the data
must be isometric to the {t = const.} slice of the Schwarzschild spacetime for some
mass M > 0. A related result was found by Carrasco & Mars [5,6] for data with outer
trapped boundary in the case of non-zero second fundamental form and for more general
matter models, provided a number of conditions were satisfied. The generalization to
a non-vanishing second fundamental form is relevant because, in the absence of global
information about the spacetime generated by the initial data, globally defined time-
symmetric slices may simply not exist in the spacetime under consideration. Although
of interest, the results in [5,6] are not fully satisfactory because they required a number
of hypotheses that were basically dictated by the method of proof, with no fundamen-
tal reason to believe that they should be necessary. One such hypothesis excluded the
presence of so-called non-embedded Killing prehorizons. Recall that a Killing horizon
is a null embedded hypersurface where the Killing vector is null, nowhere zero and
tangent. A Killing prehorizon is a null immersed hypersurface where the Killing vector
is null, nowhere zero and tangent (see [12]). When the surface gravity vanishes, it is a
priori possible that the Killing prehorizon is not embedded (see the discussion in the
Addendum of [9]). In a black hole context (more precisely, assuming that the domain of
outer communications is globally hyperbolic) Chruściel and Galloway [8] have proved
that all prehorizons contained in the domain of outer communications must be embed-
ded. Therefore, in the light of the discussion above, one expects to be able to rule out
non-embedded prehorizons at the initial data level.

Our second aim in this paper, developed in Sect. 3, is precisely to exclude the exis-
tence of non-embedded Killing prehorizons in the exterior region of a static Killing
initial data set. Note that since our global statement in the first part of the paper is only
to the future, we cannot rely on the results by Chruściel and Galloway mentioned above.
This has the advantage that not even the existence of a spacetime containing the initial
data needs to be assumed. This means, in particular, that no field equations whatsoever
are required for this part of the work. The only requirement we make is that the matter
model satisfies the null energy condition. In this part of the paper, however, we restrict
ourselves to static Killing initial data. It is an interesting open question whether the
method extends to the stationary (non-static) setting as well.
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Concerning the relation between static Killing initial data and Killing prehorizons
we will be proving in Sect. 3 (see Definition 8 for the precise notion of horizon we use
in this work).

Theorem 2. Let D be an m-dimensional (m ≥ 3) asymptotically flat static Killing initial
data set satisfying the null energy condition. Suppose that the closure of the exterior,
connected region where the Killing vector is timelike lies in the interior of �, then each
degenerate horizon is a compact embedded submanifold.

Combined with Theorem 1, this result implies the non-existence of non-embedded
Killing prehorizons in static, asymptotically flat spacetimes with Cauchy surface having
an outer trapped boundary.

The third, and final, part of the paper, developed in Sect. 4, is an application of the
previous two and establishes a uniqueness theorem for static, asymptotically flat initial
data with outer trapped boundary for suitable matter models. In the vacuum case, the
statement is as follows

Theorem 3. Let D be a static, vacuum three-dimensional asymptotically flat Killing ini-
tial data with non-empty future outer trapped boundary. Then, the initial data restricted
to the exterior, connected region where the Killing vector is timelike can be isometrically
embedded in a Schwarzschild four-dimensional spacetime of mass M > 0.

The non-vacuum case is treated in Theorem 8 in Sect. 4. This statement gives a sat-
isfactory answer to the problem of uniqueness for static initial data sets with an outer
trapped boundary.

2. Stationary Killing Initial Data

2.1. Background and definitions. In this paper manifolds are defined to be smooth,
Hausdorff, connected and paracompact (hence second countable). Fields on manifolds
are assumed to be smooth. For manifolds with boundary � we use ∂� for the boundary
and �◦(= � \ ∂�) for the usual notion of interior of a manifold with boundary. For
arbitrary subsets U in a manifold we use U for the topological closure, Int(U ) for the
interior and ∂T U for the topological boundary.

We work with (m+1)-dimensional spacetimes (M, g) (m ≥ 3). For a subset U ⊂ M
we define the null boundary ∂ N U as the subset of points p ∈ ∂T U such that there exists
a future directed null geodesic segment γ (s) of (M, g) starting at p and fully contained
in ∂T U . The causal past of a set U is denoted by J−(U ) and the future domain of depen-
dence of U is denoted by D+(U ). The conventions we use for these objects, and for
causality notions in general, follow [32]. In particular, a spacetime (M, g) is globally
hyperbolic if it admits a Cauchy hypersurface �. We denote by M+ the future domain
of dependence of �◦. Note that M+ is a manifold with the smooth boundary �◦. Let n
be the space-time future directed unit normal to �◦. The induced metric on �◦ will be
denoted by g and the second fundamental form by K (in the direction of n). If � has
boundary we assume it is compact and that both g and K extend smoothly to ∂�.

Let G be the Einstein tensor of g, namely G := Ric − 1
2 Rg, where Ric denotes the

Ricci tensor of the metric g and R is the curvature scalar (our sign conventions are such
that the Ricci tensor and curvature scalar of a round sphere are positive)
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We define ρ, J (1-form) and T (symmetric two-tensor) at p ∈ � according to

ρ = G(n, n),

J (v) = −G(n, v), v ∈ Tp�, (1)

T (v,w) = G(v,w), v,w ∈ Tp�.

Remark 1. ρ, J, T are defined in terms of the Einstein tensor, and not as components of
any energy-momentum tensor because we will not assume any specific field equations
relating the Einstein tensor with the energy-momentum tensor of the matter fields. Nei-
ther the matter model nor the field equations will be of concern to us except that we will
require a well posedness property defined later.

The data (�; (g, K ); (ρ, J )) satisfies the energy and momentum constraint equations

Rg − |K |2g + k2 = 2ρ, (2)

divg (K − kg) = −J, (3)

where k = trg K and divg is the divergence with respect to the metric g.
The boundary of � (if any) is said to be future outer trapped if it is compact and

θ+(∂�) := tr
∣
∣
∂�

K + h < 0, (4)

where tr
∣
∣
∂�

K is the trace of K restricted to ∂� and h is the mean curvature of ∂� in
the inward direction to �.

We will assume that we have a Killing vector field ξ on (M, g) having the decompo-
sition ξ = Nn + Y along �. (N , Y ) will be part of the initial data. Because ξ is Killing
we have, over �, the equations (see e.g. [13])

LY g = −2N K , (5)

LY K = −Hessg N + N
(

Ricg + k K − 2K ◦ K
) − N

(

T − 1

m − 1
(trgT − ρ)g

)

,

(6)

where L denotes Lie derivative, Hessg is the Hessian with the metric g, Ricg is the Ricci
tensor of g and K ◦ K is the tensor obtained from K ⊗ K by tracing with g the second
and fourth indices. Concerning the data we make the following definition (cf. [13]):

Definition 1 (AF-KID). The data D := (�; (g, K ); (ρ, J, T ); (N , Y )) is said to be a

1. Killing initial data (KID) if it satisfies (2)-(3) and (5)-(6),
2. and stationary asymptotically flat (AF) if there is a compact set whose complement

�∞ is diffeomorphic to R
m+1 \ {closed ball } and, in the Euclidean coordinates

x̄ = (x1, · · · , xm+1) on �∞ defined by the diffeomorphism we have

gi j − δi j = O2
(

1/rm−2
)

, Ki j = O2
(

1/rm−1
)

, (7)

N − N∞ = O2
(

1/rm−2
)

, Yi − Y∞ i = O2
(

1/rm−2
)

. (8)

and with r = |x̄ | := √

(x1)2 + · · · (xm)2, where N∞, Y∞ i are constants satisfying
N∞ > |Y∞|.

Under these conditions we will say simply that D is a stationary asymptotically flat
initial data.
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Let λ := N 2 − |Y |2g . Since λ → N 2∞ − |Y∞|2 > 0 at infinity, we can assume (after
restricting �∞ if necessary) that λ > 0 on the asymptotically flat end �∞. We denote
by �T (T from time-like) the connected component of {λ > 0} ⊂ � containing �∞.

The Killing development of subregions of �T is defined as follows (cf. [13])

Definition 2 (Killing developments). Let 
 be a connected open subset of �T . Then the
infinite Killing development of the data at 
 is defined as the space-time

K(
) :=
(


 × (0,∞), gD = −λdt2 + Y ⊗ dt + dt ⊗ Y + g
)

, (9)

where Y := g(Y, · ). The restriction of K(
) to t ∈ (0, t̄ ] (t̄ > 0) is denoted by K(
, t̄).

The Killing development is a space-time with Killing field ξ = ∂t and Einstein tensor
G as defined above from ρ, J and T .

In this paper we will also use a related notion of Killing development of hypersurfac-
es V (with or without boundary) embedded in a spacetime (M, g) admitting a Killing
vector ξ . The only requirement is that V is everywhere transverse to ξ . If we denote
by g the first fundamental form of V , by Y the pull-back of the one-form obtained by
lowering the index to ξ and λ := −〈ξ, ξ 〉 (where 〈 , 〉 denotes scalar product with the
spacetime metric g) then, the Killing development K(V ) is defined as the spacetime
V × (0,∞) with the metric gD defined exactly as in (9). It is immediate to see that, ξ

being transverse to V everywhere, gD is a metric of Lorentzian signature. There is no
restriction on the causal character of V , which in particular is allowed to be null. We
emphasize that the Killing development K(V ) is an abstract spacetime defined on its
own which, a priori, has nothing to do with the original spacetime (M, g).

Given (M, g) with a Killing vector ξ , let βq(λ), λ ≥ 0, be the Killing orbit starting
at q ∈ M (i.e. βq(λ = 0) = q). For any W ⊂ M and 0 ≤ a ≤ b satisfying the property
that all the Killing orbits βq(λ), q ∈ W extend to all values λ ∈ [a, b] we will denote
by O[a,b](W ) the set

O[a,b](W ) := {βq(λ) ∈ M/q ∈ W, a ≤ λ ≤ b}.
If a = b we will simply write O[a](W ) for O[a,a](W ). In the following it will be
convenient to use two different notations for Killing orbits: βq(λ) when the orbit sat-
isfies βq(λ = 0) = q and λ takes positive values and αp(μ) when the orbit satisfies
αp(μ = 0) = p and μ takes negative values.

Definition 3 (Well posed matter models). Let D be a Killing initial data. We say that
the matter model is well posed if the field equations are such that a Killing initial data
generates a unique maximal globally hyperbolic space-time (M, g) having a Killing
field ξ extending ξ

∣
∣
�

= Nn + Y .

As usual, we will refer to the maximal globally hyperbolic spacetime (M, g) as max-
imal Cauchy development. The simplest example of well posed matter model is vacuum,
i.e. when the field equations are G = 0. In this case, the Cauchy problem is well posed
and the maximal Cauchy development admits a Killing vector [25]. The same is true
e.g. in electrovacuum [10] and for many other matter models [28,29].

We will say that a matter model satisfies the null energy condition if all Cauchy
developments (M, g) solving the field equations satisfy G(l, l) ≥ 0 for any null
vector l.
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We need some observations on isometric embeddings.1 Let (Ni , gNi
), i = 1, 2 be

two connected Lorentzian or Riemannian manifolds (possibly with smooth boundary).
Let Wi ⊂ N ◦

i , i = 1, 2 be two sets such that Wi ⊂ Int(Wi ), i = 1, 2 and Int(Wi ), i =
1, 2 are connected and non-empty. Let pi ∈ Int(Wi ), i = 1, 2. Let φ : Tp1N1 → Tp2N2
be a linear isometry between the tangent space to N1 at p1 and the tangent space to N2
at p2 = φ(p1). Then we will write (N1,W1) �φ (N2,W2) if there is an open set U1

of N1 containing W1 and a smooth map ϕ : U1 → N2 such that ϕ
∣
∣
Int(W1)

is an iso-

metric embedding of Int(W1) into Int(W2) and dϕ|p1 = φ. In such case ϕ
∣
∣W1

is unique
(and determined only by φ). In the rest of the work we will simply write W1 � W2
and it should be understood that this also entails the existence of companion manifolds
N1,N2 and map φ. The companion objects will be understood from the context. Note
the transitivity property: W1 � W2, W2 � W3 ⇒ W1 � W3. When W1 � W2 we
will say that W1 lies in W2.

The uniqueness of the maximal future globally hyperbolic space-time M+ implies
that any future globally hyperbolic space-time (N , gN ) with Cauchy hypersurface
C = ∂N isometric to a particular connected open subset of (�, g), lies uniquely inside
(M+, g). In other words N � M+. This fact will be of fundamental importance.

We will denote by Sr the coordinate sphere of coordinate radius r in the asymptoti-
cally flat end �∞. Sr separates � into two closed parts (i.e. including their boundaries),
�E (r) (“E” from “External”) and � I (r) (“I” from “Internal”). Note that Sr ⊂ �T and
�E (r) ⊂ �T . For d ≥ 0, we also define T (∂�, d) := {p ∈ �/distg(p, ∂�) ≤ d} and
�d := {p ∈ �/distg(p, ∂�) ≥ d}.
Definition 4. Let (M, g) be a globally hyperbolic space-time with Cauchy surface �

and asymptotically flat stationary data D. Suppose K(�E (r)) � M+. Then we define
the future event horizon (over �) as the topological boundary of J−(K(�E (r))) ∩ �

(as a subset of �).

The Killing development K(�E (r)) is a future asymptotically flat (m + 1)-end as
described in the Introduction.

2.2. The statements of the main results: Theorems 4 and 6. The following theorem is a
precise version of Theorem 1 in the Introduction.

Theorem 4. Let D be an asymptotically flat, stationary initial data set with well posed
matter model satisfying the null energy condition. Suppose that ∂� (if non-empty) is
future outer trapped. Then the maximal Cauchy development (M, g) of D satisfies

1. There is r > 0 such that K(�E (r)) lies in M+.
2. There is d > 0, such that T (∂�, d) ∩ J−(K(�E (r))) = ∅.

In basic terms, if the boundary of � is future outer trapped, then the future event hori-
zon over � exists, is computable or constructible from the data and does not intersect
∂�. Therefore ∂� lies inside the future black hole region.

The constant r in Item 1 is introduced in Proposition 1 later. The constant d is any
positive constant satisfying the property that ∂�d ′ , 0 ≤ d ′ ≤ 2d, is diffeomorphic to
∂� and θ+(∂�d ′) < 0.

1 We warn the reader that the exposition in this paragraph, which at first sight may seem unnecessarily
complicated, is for some technical requirements which will become evident as soon as the proofs evolve. The
main urgency faced is to have a framework able to deal with causal sets “J−(−)” with sufficient flexibility.
Besides that, nothing new is described.
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We have a similar theorem as Theorem 4 for initial data sets with marginally trapped
boundary provided the stationary state can be extended beyond its boundary. Besides
stationary the nature of the extension is entirely arbitrary. In particular the “new bound-
ary” can be arbitrarily close to the “old boundary”. We state the theorem in the following
way, where a marginally outer trapped surface H ⊂ �◦ enclosing ∂� is, by definition,
a compact, embedded (not necessarily connected) hypersurface of � which, together
with ∂�, are the boundary of a region 
. Moreover, the outer null expansion θ+ of
H , defined as in (4), vanishes identically when calculated with respect to the normal
pointing outside 
.

Theorem 5. Let D be an asymptotically flat, stationary initial data set with a well posed
matter model satisfying the null energy condition. Suppose that ∂� is non-empty and that
there is a marginally outer trapped surface H ⊂ �◦ enclosing ∂�. Then the maximal
Cauchy development (M, g) of D satisfies

1. There is r > 0 such that K(�E (r)) lies in M+.
2. H ∩ J−(K(�E (r))) = ∅.

We also have

Theorem 6. Let D be an asymptotically flat stationary initial data with well posed mat-
ter model satisfying the null energy condition. Suppose that ∂� �= ∅ is future outer
trapped. Then, the exterior of the event horizon, i.e. J−(K(�E (r))), contains �T . In
particular, �T ∩ ∂� = ∅.

2.3. Structure and proof of Theorem 4. The proof is constructive. We define first the
future globally hyperbolic region E+

0 . The definition will come out from the following
proposition which we leave without proof.

Proposition 1. Consider the domains of dependence D+(�E (r)) depending on r, as sets
inside the Killing development K(�E (r)). Then, if r is big enough the null boundary
∂ N D+(�E (r)) is a smooth null hypersurface foliated by future complete null geodesic
rays starting at Sr . Moreover D+(�E (r)) � M+.

With one such r fixed we will denote from now on E+
0 := D+(�E (r)) and its Cauchy

surface 
0 = �E (r). Now, starting from E+
0 , we will construct inductively a sequence

E+
0 � E+

1 � E+
2 � . . . � E+∞ = ∪i≥0 E+

i , such that E+
i \ ∂ N E+

i are globally hyperbolic
spacetimes with Cauchy surfaces 
0 � 
1 � 
2 � . . . � 
∞ := ∪i≥0
i � �◦.
Using crucially that ∂� is outer trapped, it is proved that none of the sets 
i touch the
tubular neighborhood T (∂�, d) for some d > 0, namely having 
∞ ∩ T (∂�, d) = ∅.
This is the content of item C2 in Proposition 5 and there is the only place where the con-
dition of ∂� being outer trapped is used. From the uniqueness of the maximally globally
hyperbolic development M+ we conclude that E+

i � M+ for all i and therefore that
E+∞ � M+. Moreover we show explicitly along the construction that K(�E (r)) � E+∞.
This, together with E+∞ � M+, gives K(�E (r)) � M+ which is the claim (1) in
Theorem 4. On the other hand J−(K(�E (r))) ∩ T (∂�, d) ⊂ E+∞ ∩ T (∂�, d) =

∞ ∩ T (∂�, d) = ∅ which is the claim (2), and last, in Theorem 4. We present now
progressively the main definitions and propositions (auxiliary Propositions 2-5) leading
to the construction of the sequence {Ei }. The construction, together with the proof of
Theorem 4, is explained after the statement of Proposition 5 which is the main statement
of this section and which in itself structures the inductive procedure.
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An important collection of regions for the proof are Wt , t ≥ 0 defined as

Wt := K(∂ N E+
0 , t) ∪ E+

0 ⊂
(

�E (r) × [0,∞), gD

)

. (10)

Note that Wt is a Lorentzian manifold with smooth boundary and corners. Suppose that
Wt � M+, t ≥ 0. We consider the sets

Et := J−(Wt ),

E+
t := Et ∩ M+,

where here and in the following J− is taken in the spacetime (M, g). When t = 0 then
E+

t = E+
0 and ∂ N E+

0 is, as we said, smooth. Moreover we will prove

Proposition 2. ξ points strictly outwards from E+
0 at ∂ N E+

0 .

Crucially, this property is generalizable to the sets Et , t ≥ 0 which could fail to have
smooth boundaries (although their boundaries are Lipschitz manifolds). We prove that ξ
points strictly outwards from Et at ∂ N Et in the sense of the following definition which
generalizes the standard sense that we understood in Proposition 2.

Definition 5. Suppose that Wt � M+. Let Et = J−(Wt ). Then, we say that ξ points
strictly outwards to Et at ∂ N Et , if for every p ∈ ∂ N Et , there is μp < 0 such that

D1-1. αp(μ) ∈ Int(Et ), for all μ with μp ≤ μ < 0, where αp(μ) is the Killing orbit
passing through p at μ = 0,

D1-2. there is an m-manifold Vp ⊂ Int(Et ), transversal to ξ at αp(μp) such that, if
we denote by βq(λ), λ ≥ 0 the Killing orbit passing through q ∈ Vp at λ = 0
then
D1-2-(a). there is a first λ > 0 , denoted by λq , for which βq(λq) ∈ ∂ N Et ,
D1-2-(b). the map q → βq(λq) from Vp into ∂ N Et is continuous,
D1-2-(c). for every q ∈ Vp, βq(λ) ∈ (M \ Et ) if λ > λq but close to it.

In other words ξ points strictly outwards to Et at its boundary if every Killing orbit start-
ing at Int(Et ) either remains inside Int(Et ) or crosses ∂ N Et . An obvious consequence
of the definition is that if an orbit starts in Int(Et ) and crosses ∂ N Et , then it never returns
to Et .

Recalling, we will prove

Proposition 3. Suppose that Wt � M+. Let Et = J−(Wt ). Then ξ points strictly
outwards from Et at ∂ N Et in the sense of Definition 5.

On the other hand if ξ points strictly outwards from Et at ∂ N Et in the sense of Def-
inition 5, then we prove that one can abstractly extend Et “along the Killing” any time
t̄ > 0 in the sense of the following definition which generalizes the notion of Killing
development introduced in Definition 2 before.

Definition 6. Suppose that Wt � M+. Let Et = J−(Wt ). The infinite abstract Kill-
ing development of Et , K (Et ), is defined as the manifold formed by the open sets
{Int(Et ),K(Vp), p ∈ ∂ N Et } endowed with their respective metrics and subject to the
following identifications:

D2-1. the points x1 = (q, λ) ∈ K(Vp) = Vp × (0,∞) and x2 ∈ Int(Et ) are identified
iff λ < λq and βq(λ) = x2,
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D2-2. the points x1 = (q1, λ1) ∈ K(Vp1) and x2 = (q2, λ2) ∈ K(Vp2) are identified iff
D2-2-(a). βq1(λq1) = βq2(λq2) and,
D2-2-(b). λq1 − λ1 = λq2 − λ2.

The abstract Killing development at time t̄ ≥ 0 is defined as the following region of
K (Et ):

K (Et , t̄) := Int(Et ) ∪ {βq(λ + λq), q ∈ Vp, p ∈ ∂ N Et , 0 ≤ λ ≤ t̄}.
Similarly one defines

K (E+
t , t̄) := (Int(E+

t ) ∩ M+) ∪ {βq(λ + λq), q ∈ Vp, p ∈ ∂ N E+
t , 0 ≤ λ ≤ t̄}.

Of course we have E+
t � Et � K (Et , t̄). However one must think K (Et , t̄) as a new

spacetime bearing a priori no global relation with M. In general one would not expect
that K (Et , t̄) � M. As we will explain in Proposition 5 the situation will be different
for K (E+

t , t̄) if we select t̄ properly and this is what will allow us eventually to construct
the sequence {E+

i }.
Recalling, we will prove

Proposition 4. Suppose that Wt � M+. Let Et = J−(Wt ). Then, for any t̄ ≥ 0 the
abstract Killing development K (Et , t̄) is a smooth, Lorentzian and second countable
manifold with null and Lipschitz boundary.

The following proposition will structure the construction of the sequence {E+
i } that we

explain thereafter.

Proposition 5. There is t∗ > 0 depending only on the initial data over �d/2 ∩� I (r + 1)

such that if for some t ≥ 0, we have

H1. Wt � M+,
H2. T (∂�, 2d) ∩ E+

t = ∅ with E+
t := J−(Wt ) ∩ M+,

then,

C1. K (E+
t , t∗) � M, and therefore Wt+t∗ � M+,

C2. T (∂�, 2d) ∩ J−(K (E+
t , t∗)) = ∅,

C3. E+
t+t∗ := J−(Wt+t∗) ∩ M+ = J−(K (E+

t , t∗)) ∩ M+.

We are ready to prove Theorem 4.

Proof of Theorem 4. To construct the sequence {E+
i } we proceed as follows. First, when

i = 0, E+
0 is as we defined it before. Now, H1 and H2 hold in Proposition 5 with t = 0.

Then, conclusion C1 gives Wt∗ � M+ which is H1 with t = t∗. In addition conclu-
sions C2 and C3 give E+

t∗ ∩ T (∂�, 2d) = ∅ with E+
t∗ = J−(Wt∗) ∩ M+ which is H2

with t = t∗. Then define E+
1 = J−(Wt� ) ∩ M+. Applying repeatedly Proposition 5

in this way, we are led to define E+
i as E+

i = J−(Wi t� ) ∩ M+ which is the desired
sequence. ��

2.4. On the proof of Theorem 5. The proof of Theorem 5 can be structured in the same
fashion as the proof of Theorem 4 as follows. Let 
 be the region in � enclosed by ∂�

and H . Let d > 0 be such that 2d < distg(H, ∂�) and that for every 0 ≤ d ′ ≤ 2d
the set of points in 
 at a g-distance d ′ from H , conform a smooth hypersurface (in
�) diffeomorphic to H . Among these hypersurfaces let H ′ be the one at a distance 2d
from H and let �′ = (� \ 
) ∪ {p ∈ �, distg(p, H) ≤ 2d}. Then ∂�′ = H ′ and,
following the notation before ∂�′

2d = H . Let D′ be the restriction of the data D to �′.
Then, the proof of Theorem 5 is made, except for one exception, in exactly the same
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way as was done the proof of Theorem 4 if in its statement we use the state D′ and d
the one defined before. The exception is in the proof of item C2 in Proposition 5 which
requires a slightly different argument. This is done in Proposition 6 after the proof of
Proposition 5.

2.5. Proofs of the auxiliary Propositions 2, 3, 4, 5 and of Theorem 6.

Proof of Proposition 2. The proposition is direct from the fact that, as a field inside
K(�E (r)), ξ is time-like and future-pointing and that ∂ N E+

0 is smooth and null. An
alternative argument (to be used later) comes from the observation that on a smooth null
boundary like ∂ N E+

0 , proving that ξ points strictly outwards is equivalent to prove that
for any null geodesic γ (τ) in ∂ N E+

0 (parametrized by affine parameter τ into the future
direction) we have 〈γ ′, ξ 〉 < 0. As ξ is a Killing field we have

〈γ ′(τ ), ξ(γ (τ ))〉 = 〈γ ′(0), ξ(γ (0))〉,
where γ (0) is the initial point of the geodesic at Sr . As ξ is timelike on Sr it is
〈γ ′(0), ξ(γ (0))〉 < 0. The statement follows. ��

The following lemma is useful for the proof of Proposition 3.

Lemma 1. Assume that Wt � M+ and let Et = J−(Wt ). Then, the closure (in M+) of
Int(Et )∩∂ N Wt is compact. Moreover, any null geodesic γ in ∂ N Et satisfies 〈γ ′, ξ 〉 < 0.

Proof. Assume that Int(Et ) ∩ ∂ N Wt does not have compact closure. Given the defini-
tion of ∂ N Wt , this can only happen if there exists a sequence of points {qi }, qi ∈ ∂ N Wt
diverging to infinity with the property that there is a sequence of points {pi } ∈ Wt , and
a sequence of timelike and past directed curves �i (τ ), τ ∈ [0, 1] (in M+), such that, for
every i ≥ 0, �i starts at pi and ends at qi . However, as �i is timelike and past directed,
we claim that to reach qi , �i must first cross the set U = {βq(λ), q ∈ ∂
0, 0 ≤ λ ≤ t}.
Indeed to reach qi from its future the curve �i must first leave Wt , but being timelike
and past directed it cannot cross ∂ N Wt , nor it can enter E+

0 for it could not leave E+
0

again. The claim follows. Denote by Vol(�i )(τ ) = Volumeg(J−(�i (τ )) ∩ M+). Then
Vol(�i )(τ ) is, for every i , a monotonically decreasing function of τ . Moreover as {qi } is
a divergent sequence we must have Volumeg(J−(qi ) ∩ M+) = Vol(�i )(1) → ∞. On
the other hand as, for every i , �i crosses U , and Vol(�i )(τ ) is monotonically decreas-
ing, it must be Vol(J−(�i ))(1) ≤ sup{Vol(J−(q) ∩ M+), q ∈ U } < ∞ for all i ≥ 0,
which gives a contradiction. An important consequence of this, to be used later, is that
every inextensible future null geodesic γ in ∂ N Et becomes eventually a null geodesic
of ∂ N Wt . Constancy of 〈γ ′, ξ 〉 along this geodesic proves the claim 〈γ ′, ξ 〉 < 0. ��
Proof of Proposition 3. We show first D1-1. Through every point p in ∂ N Et there passes
a future inextensible null geodesic γp(τ ), τ > 0, starting at p and fully contained in
∂ N Et (see [32]). By Lemma 1 〈γ ′, ξ 〉 < 0. Moreover, every point p′ = γp(τ ), τ > 0,
is a smooth point of ∂ N Et . But for smooth points we know that if 〈γ ′

p(τ ), ξ(p′)〉 <

0 then ξ points strictly outwards to Et at p′. If τ > 0 is small enough, then p ∈
∂ J−(γp(τ )) and p is a smooth point of ∂ N J−(γp(τ )). But because 〈γ ′

p(0), ξ(p)〉 =
〈γ ′

p(τ ), ξ(γp(τ ))〉 < 0, we deduce that ξ(p) points strictly outwards to J−(γp(τ )) ⊂ Et

at p. Since Int(J−(γp(τ )) ⊂ Int(Et ) there is μp < 0 such that αp(μ) ∈ Int(Et ) for
μ ∈ [μp, 0) thus showing D1-1.

We prove now D1-2-(a). First note that there is a > 0 and a closed smooth three-
submanifold Vp (with smooth boundary) transversal to ξ and containing αp(μp) such
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that for every q ∈ Vp the Killing orbit βq(λ), passing through q at λ = 0, extends to all
values λ ∈ [0,−μp + a]. For every q ∈ Vp define λ̄q = inf{a, λT

q }, where λT
q is the first

λ > 0 such that βq(λ) ∈ ∂ N Et (we take λT = ∞ if βq(λ) never intersects ∂ N Et ). Note
that if λ̄q < a, then βq(λ̄q) ∈ ∂ N Et . From this and because λ̄αp(μp) = −μp we deduce
that if q → λ̄q is continuous at q = αp(μp) then one can take a smaller Vp if necessary
in such a way that λ̄q < a for every q ∈ Vp, and therefore with βq(λ̄q) ∈ ∂ N Et as
claimed in D1-1-(a). We prove now the continuity of λ̄q at q̄ = αp(μp) (q̄ = αp(μp)

from now on).
First, from the proof of D1-1 one knows that p is a smooth point of the boundary of

a past cone J−(γ (τ )) entirely included in Et . Moreover ξ points strictly outwards to
J−(γ (τ )) at p. It follows that for any sequence q j → q̄ we have lim inf{λ̄q j } ≥ λ̄q̄ .

Indeed, let λ̃q j be the first λ > 0 the orbit reaches the smooth boundary of J−(γ (τ ))

near p. Since λ̃q j → −μp and λ̄q j ≥ λ̃q j the claim follows. We need to prove therefore
that lim sup{λ̄q j } ≤ λ̄q̄ . Suppose instead that there is a sequence q j → q̄ such that
lim sup{λ̄q j } > λ̄q̄ + b, for some b > 0 and b < a. Since Et is closed (this is proved
easily), it follows that the piece of orbit {βq̄(λ), 0 ≤ λ ≤ λ̄q̄ + b} lies inside Et . We
claim that, as a consequence, there are points βq̄(λ), for λ > λ̄q̄ but arbitrarily close to
λ̄q̄ lying in the interior of Et . If not, we would have that for λ > λ̄q̄ , the points βq̄(λ)

must lie in ∂ N Et . But by D1-1, if a point in an orbit belongs to ∂ N Et , then the points
(in the orbit) near it and in the direction opposite to ξ are interior points to Et , which is
a contradiction to the fact βq̄(λ̄q̄) ∈ ∂ N Et Thus, the orbit βq̄(λ) satisfies the following
properties:

1. βq̄(λ̄q̄) ∈ ∂ N Et ,
2. βq̄(λ) ∈ Int(Et ), for 0 ≤ λ < λ̄q̄ ,
3. there are points βq̄(λ) ∈ Int(Et ), for λ > λ̄q̄ but arbitrarily close to it.

Let us show that these three facts together contradict D1-1. We work now with the nota-
tion αp(μ) = βq̄(λ̄q̄ + μ) instead of the notation βq̄(λ). Let μ1 > 0 be such that αp(μ1)

belongs to the interior Et . Let now γ (s), s ≥ 0 be a future directed time-like geodesic,
starting at p. Consider the orbits αγ (s)(μ), with αγ (s)(0) = γ (s) and s > 0, but close
to it. We observe that γ (s) /∈ Et (otherwise p ∈ Int(Et )) and if s > 0 is small enough
then αγ (s)(μ1) belongs to the interior of Et . Thus we have

αγ (s)(μ1) ∈ Int(Et ), αγ (s)(0) ∈ (M+ \ Et ).

Since μ1 > 0 is as small as desired this immediately contradicts D1-1 and D1-2-(a) is
proved.

Thus the map q → βq(λ̄q) (making Vp smaller if necessary) is from Vp into ∂ N Et .
We have then λq = λ̄q for λq as defined in Definition 5. Now, the argument that showed
the continuity of λ̄q at q = q̄ shows the continuity of λq at any point q �= q̄ , namely
D1-2-(b), and also D1-2-(c). ��
Proof of Proposition 4. The fact that the infinite Killing development is a smooth man-
ifold is seen as follows. The transition functions from K(Vp) into Int(Et ) (on their
domains of identification) according to identification D2-1 are trivially diffeomorphisms
because they are given by

(q, λ) → βq(λ),
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for q ∈ Vp and 0 < λ < λq . Consider now the transitions functions from K(Vp1)

into K(Vp2) (on their domains of identification) according to the identifications D2-2.
We show that they are also diffeomorphisms. First we show that the transition func-
tions are one to one and then we show that they are locally differentiable. Suppose that
x1 = (q1, λ1) and x ′

1 = (q ′
1, λ

′
1) in K(Vp1) are identified to x2 = (q2, λ2) in K(Vp2) via

D2-2. Then, because βq1(λq1) and βq ′
1
(λq ′

1
) must both be equal to βq2(λq2) it follows

q1 = q ′
1 and λq1 = λq ′

1
. On the other hand

λq1 − λ1 = λq2 − λ2, and λq ′
1
− λ′

1 = λq2 − λ2.

Thus λ1 = λ′
1 and therefore x1 = x ′

1. This shows that the transitions functions from
K(Vp1) into K(Vp2) (on their domains of identifications) are one to one. We show
now that they are locally differentiable. Suppose that x1 = (q1, λ1) ∈ K(Vp1) and
x2 = (q2, λ2) ∈ K(Vp2), are identified according to D2-2. Then, we have βq1(λq1) =
βq2(λq2). Let V be a smooth three-manifold (without boundary) transversal to ξ every-
where satisfying V ⊂ K(Vp1) ∩ Int(Et ), V ⊂ K(Vp2) ∩ Int(Et ) (both intersections
under the natural identification D2-1) and such that the orbit βq1(λ) intersects V . Let

ϕ̂1 : B1 ⊂ Vp1 → K(Vp1),

be the embedding satisfying ϕ̂1(B1) = V . It is clear that B1 is an open neighbourhood
of Vp1 around q1. As a simple example V could be chosen as the image of the graph,

ϕ̂1 : B1 ⊂ Vp1 → K(Vp1),

q̄1 → ϕ̂1(q̄1) = (q̄1, λq1 − ε),

where B1 is a sufficiently small open neighborhood of Vp1 around q1 and ε > 0 is
a sufficiently small fixed number, both chosen in such a way that V ≡ ϕ̂1(B1) ⊂
K(Vp2) ∩ Int(Et )

Since V ⊂ K(Vp2), there exists a neighbourhood B2 of q2 in Vp2 and an embedding
ϕ̂2 : B2 → K(Vp2) such that ϕ̂2(B2) = V ⊂ K(Vp2). Restricting ϕ̂1, ϕ̂2 to their images,
we have two diffeomorphisms,

ϕ1 : B1 → V, ϕ2 : B2 → V .

Consider now two open sets B̃1 and B̃2 defined by

B̃1 = {(q̄1, λ), q̄1 ∈ B1,

λ ∈ (λ(ϕ̂1(q̄1)) − λ(ϕ̂1(q1)) + λ1 − δ, λ(ϕ̂1(q̄1)) − λ(ϕ̂1(q1)) + λ1 + δ)},
B̃2 = {(q̄2, λ), q̄2 ∈ B2,

λ ∈ (λ(ϕ̂2(q̄2)) − λ(ϕ̂2(q2)) + λ2 − δ, λ(ϕ̂2(q̄2)) − λ(ϕ̂2(q2)) + λ2 + δ)},
where δ > 0 is chosen sufficiently small so that B̃1 ⊂ K(Vp1) and B̃2 ⊂ K(Vp2). The
map

φ : B̃1 → B̃2,

defined by φ(q̄1, λ) = (ϕ−1
2 ◦ ϕ1(q̄1), λ − λ(ϕ̂1(q̄1)) + λ(ϕ̂2(ϕ

−1
2 (ϕ1(q̄1))))) is the tran-

sition function according to D2-2 restricted to B̃1 and is a smooth diffeomorphism onto
its image B̃2.

The Hausdorff property of the abstract Killing development is seen as follows. If
x1 = (q1, λ1) ∈ K(Vp1) and x2 ∈ Int(Et ) are different points, then either λ1 ≥ λq1 or
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Fig. 1. Schematic figure illustrating the definitions of slabs D−3, D−2, D−1, D1, D2, D3, layers L−2, L2
and bands B2

t , B3
t . We note that D1 ⊂ D2 ⊂ D3 and analogously for D−1, D−2 and D−3. The initial Cauchy

surface �, the modified Cauchy surface �τ̃ and the sets E+
0 and Et are also shown. The set D used in the text

is the union of all regions in grey in the figure

not, but if not then βq1(λ1) �= x2. In either case it is straightforward to find separating
neighborhoods. Now, if x1 = (q1, λ1) ∈ K(Vp1) and x2 = (q2, λ2) ∈ K(Vp2) and
different points then either βq1(λq1) �= βq2(λq2) or not, and if not then λ1 �= λ2. Also in
any of these possibilities it is straightforward to find separating neighborhoods.

To see that the abstract Killing development is second countable use that ∂ N Et is a
Lipschitz three-manifold, pick a dense and countable set of points {pi } in ∂ N Et and over
each point find a Vpi and construct K(Vpi ). Finally define the countable open subsets
of K(Vpi ), Ui jklm = Bi j × (k/ l − 1/m, k/ l + 1/m) (k, l naturals and k/ l > 1/m),
where Bi j is a countable basis of open sets of Vpi . The sets {Ui jklm} together with a
countable basis of open sets of Int(Et ) gives a countable basis for the abstract Killing
development. ��

Before going into the proof of Proposition 5 we need to introduce some sets and their
terminology. They are in fact simple regions of M although their precise definitions
are somehow lengthy. The relevant sets to be used in the proof of Proposition 5 are: the
slabs Di , i = −3, . . . , 3, the layers Li , i = 1, 2 and the bands Bi

t , i = 2, 3. The graphic
representation of the sets can be seen in Fig. 1.

Given p ∈ �◦ we consider the space-time (inextensible) timelike geodesic γp(τ )(⊂
M) starting perpendicularly to p into the future and parametrized by proper time τ .
Now, given 
 a compact region in �◦, we define the tubular neighborhoods

U (
; τ̄1, τ̄2) := {γp(τ ), p ∈ 
, τ̄1 ≤ τ ≤ τ̄2}.
We define also

∂̄U (
; τ̄1, τ̄2) := {γp(τ ), p ∈ 
, τ = τ̄2},
∂U (
; τ̄1, τ̄2) := {γp(τ ), p ∈ 
, τ = τ̄1}.

For τ̄ small enough these are compact sets inside M. We fix now τ̃ > 0 such that

P1. For every p ∈ �d/2 ∩ � I (r + 1), the geodesic γp(τ ) is defined at least on the
interval [−3τ̃ , 3τ̃ ]. Moreover the map from (�d/2 ∩ � I (r + 1)) × [−3τ̃ , 3τ̃ ] into
M, given by (p, τ ) → γp(τ ), is a diffeomorphism into the image.



Global and Uniqueness Properties of Stationary and Static Spacetimes 647

P2. There is a Cauchy surface �τ̃ for M containing the boundary ∂U (�d/2 ∩ �E (r +
1);−3τ̃ , 3τ̃ ) and coinciding with � outside a compact set in �◦.

P3. The sets U (∂�d/2;−3τ̃ , 3τ̃ ) and U (Sr+1;−3τ̃ , 3τ̃ ) do not intersect the set
(

D+(�d) ∪ J−(�d)

)

\ E+
0 .

Then, given such τ̃ , we define the slabs

Di :=
(

D+(�d) ∩ U (�d/2 ∩ � I (r + 1); 0, i τ̃ )

)

\ E+
0 , i = 1, 2, 3,

Di :=
(

J−(�d) ∩ U (�d/2 ∩ � I (r + 1); i τ̃ , 0)

)

\ J−(E+
0 ), i = −1,−2,−3,

D := D−3 ∪ D3.

Define the layers L2 and L−2 as

L2 = (D+(�2d) ∩ ∂̄U (�d/2 ∩ � I (r + 1); 0, 2τ̃ )

)

\ E+
0 ,

L−2 =
(

J−(�2d) ∩ ∂U (�d/2 ∩ � I (r + 1);−2τ̃ , 0)

)

\ J−(E+
0 ).

Finally, suppose that Wt � M+ and let Et = J−(Wt ). Then, define the bands
Bi

t , i = 2, 3 and their upper and lower boundaries ∂̄ Bi
t , ∂ Bi

t ,

Bi
t = (∂ N Et ) ∩ U (�d/2 ∩ � I (r + 1);−i τ̃ , i τ̃ ),

∂̄ Bi
t = Bi

t ∩ ∂̄U (�d/2 ∩ � I (r + 1),−i τ̃ , i τ̃ ),

∂ Bi
t = Bi

t ∩ ∂U (�d/2 ∩ � I (r + 1);−i τ̃ , i τ̃ ),

Bi ◦
t = Bi

t \ (∂̄ Bi
t ∪ ∂ Bi

t ).

Proof of Proposition 5. We define t∗ as the supremum of the times t̄ > 0 such that
every Killing orbit βq(λ), 0 ≤ λ < 2t̄ , where q ∈ L−2 ∪ L2, and βq(0) = q lies inside
Int(D3 \ D1) ∪ Int(D−3 \ D−1). Note that we are taking the range of λ between 0 and
2t̄ and not between 0 and t̄ .

We proceed now with the proof. Assume then H1 and H2. We prove first C1. We note
two important observations concerning Killing orbits starting at B2

t that will be relevant
for the discussion that follows.

O-1. For any p ∈ B2
t the Killing orbit βp(λ), λ > 0 remains inside Int(D \ Et ) until

a first λ when it reaches ∂T (D \ Et ) \ B3
t . (The orbit cannot touch B3

t because ξ

points strictly inwards to D \ Et at B3
t .)

O-2. Because of O-1, every pair of orbits βp1(λ), λ ∈ (0, λ1) and βp2(λ), λ ∈ (0, λ2)

lying in Int(D \ Et ), with p1, p2 ∈ B2
t but different, do not intersect.

We prove now that O[0,2t∗](B2
t ) ⊂ (D \ Int(Et )). Assume that such is not the case and

let t̄m be the minimum of the times t̄ , with 0 < t̄ < t∗ and such that

O[0,2t̄](B2
t ) ⊂ M and O[2t̄](B2

t ) ∩
(

M \ (D \ Int(Et ))

)

�= ∅.



648 M. Mars, M. Reiris

Let p̄ ∈ B2
t be such that

p = O[2t̄m ]( p̄) ∈
(

∂T (D \ Int(Et )) \ B3
t

)

,

where we are assuming that p is not in B3
t because of O-1. Let γ (τ), τ ∈ [0, 1], be a past

directed null geodesic inside B2
t starting at q̄ ∈ ∂̄ B2

t and ending at p̄. Then O[2t̄m ](γ (τ ))

is a past directed null geodesic starting at q = O[2t̄m ](q̄) and ending at p. But by defi-
nition of t̄m , it is t̄m < t∗ and therefore it must be q ∈ Int(D−3 ∪ D3). Because of O-1
the geodesic O[2t̄m ](γ (τ )) cannot intersect B3

t . Therefore by the definition of D it must
be p ∈ �τ̃ . That this is an impossibility is seen as follows. First note that

∂T O[0,2t̄m ](B2
t ) = B2 ◦

t ∪ O[2t̄m ](B2 ◦
t ) ∪ O[0,2t̄m ](∂ B2

t ) ∪ O[0,2t̄m ](∂̄ B2
t )

and that because of O-2 the union on the right-hand side is disjoint. Second we claim
that inextensible past directed time-like geodesics �(τ), τ ≥ 0, starting at the point p
(found before) at τ = 0 must remain inside Int(O[0,2t̄m ](B2

t )) (for τ > 0) until a first
τ = τ̄ when it reaches

B2 ◦
t ∪ O[0,2t̄m ](∂ B2

t ) ∪ O[0,2t̄m ](∂̄ B2
t ). (11)

Indeed if instead there is such a �(τ) and τ̄ > 0 with �(τ̄ ) ∈ O[2t̄m ](B2 ◦
t )) then

O[−2tm ](�(τ)), with τ near τ̄ , would be a past directed time-like geodesic inside Et and
crossing B2 ◦

t at O[−2t̄m ](�(τ̄ )) which is not possible as B2
t ⊂ ∂ N Et = ∂ N J−(Wt ).

Thus any past directed time-like geodesic � starting at p would eventually touch (11).
But because the set (11) lies to the future of �τ̄ and p ∈ �τ̄ we obtain an impossibility.
We have thus proved that O[0,2t∗](B2

t ) ⊂ (D \ Int(Et )) as we wanted.
Because of this and because of O-2 we claim that we can construct a natural dif-

ferentiable map from O(0,2t∗)(B2 ◦
i )) into K (Et , 2t∗)◦, which is actually an isometry. In

other words we claim that we have naturally O(0,2t∗)(B2 ◦
t )) � K (Et , 2t∗)◦. Roughly

speaking the isometry can be explained in the following terms: We can think of B2
t both

as a set in M or as a set in K (Et , 2t∗), then the map identifies Killing orbits in M
starting at points in B2 ◦

t , as a set in M, with Killing orbits in K (Et , 2t∗) starting in
B2 ◦

t , but now as a set inside K (Et , 2t∗). In precise terms, the map is defined as follows.
Let o be a point in O(0,2t∗)(B2 ◦

t ). We will define the map in a neighborhood of it. We
can write o = O[t̄](p) with 0 < t̄ < 2t∗, and with p ∈ B2 ◦

t . Both, t̄ and p, are unique
because of O-2. Let μp < 0, q = αp(μp), Vp ⊂ Et and K(Vp) be as in Definition 5.
Then for every point o′ in a neighborhood of o there are q(o′) ∈ Vp and λ(o′) (the
correspondences o′ → q(o′) and o′ → λ(o′) being smooth) such that o′ = βq(o′)(λo′).
The map o′ → (q(o′), λ(q(o′)) ∈ K(Vp) ⊂ K (Et , 2t∗) is the desired map. Following
the identifications in Definition 5 (which define K (Et , 2t∗)), it is simple to see that the
map we defined is indeed independent of the choice of Vp.

With this identification in mind we consider now the set


t+2t∗ := (O[0,2t∗)(B2
t ) ∩ �) ∪ 
t ,

as a set inside K (Et , 2t∗)◦, where 
t = Int(Et ) ∩ �. We claim that 
t+2t∗ is a Cauchy
surface of the subset F of K (Et , 2t∗)◦,

F = F1 ∪ F2 ∪ F3,
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where

F1 = E+
t ,

F2 = O[0,2t∗)((∂
N E+

t ) \ B2
t ),

F3 = O[0,2t∗)(B2
t ) ∩ M+,

and where to define F2 and F3 as subsets of K (Et , 2t∗)◦ we are using the identification
constructed before. To see the claim note first that 
t , which is a subset of 
t+2t∗ is a
Cauchy surface for E+

t . Then by noting that every inextensible past directed causal curve
in Et starting at a point in E◦

t cannot reach ∂ N Et , conclude that every inextensible past
directed causal curve in F starting at a point in F2 ∪ F3 must either first reach ∂ N E+

t or
eventually reach 
t+2t∗ \ 
t . The claim follows.

Now as 
t+2t∗ � �◦ we have F � M+. We obtain therefore K (E+
t , t∗) ⊂ (F ∪

O[0,2t∗](B2
t )), but F �M and O[0,2t∗](B2

t )�M, thus K (E+
t , t∗)�M, which proves C1.

We now show C2. Suppose C2 is false. Since by H2 T (∂�, 2d)∩Et = ∅, there exists
0 < t̄ < t∗ such that J−(K (Et , t̄)) intersects T (∂�, 2d) and no smaller 0 < t̄ < t∗ has
this property. Let p ∈ ∂T (∂�, 2d) ∩ J−(K (Et , t̄)) and let γp(τ ) be the future directed
null geodesic on ∂ N J−(K (Et , t̄)) starting at p. Consider γp(τ

′
j ) where τ ′

j → ∞ is a
divergent sequence. Then we know

1. (J−(γp(τ
′
j )) ∩ �) ⊂ (J−(K (Et , t̄)) ∩ �) ⊂ �2d ,

2. p is a smooth point of ∂ N J−(γp(τ
′
j )),

3. ∂ N J−(γp(τ
′
j )) ∩ � is tangent to ∂�2d at p.

Thus a standard comparison of mean curvatures (cf. [18]) implies that the expansion
θ̄+(p) of ∂ N J−({γp(τ

′
j )}) ∩ � at p is less than or equal to the expansion θ+(p) of

∂�2d at p, hence negative. By the Raychaudhuri equation the foliation of null geodesics
of ∂ N J−({γp(τ

′
j )}) must develop a focussing point along γp(τ ) in a parametric affine

parameter less than a fixed value depending on θ+(p). This contradicts the fact that
τ ′

j → ∞ and that γp(τ ) has no focal points between τ = 0 and τ = τ ′
j .

We show now C3. We want to prove

J−(K (E+
t , t∗)) ∩ M+ = J−(Wt+t∗) ∩ M+. (12)

The inclusion of the right-hand side into the left hand side follows directly because
Wt+t∗ � K (E+

t , t∗). We prove now the inclusion of the left-hand side into the right
hand side. Let p ∈ J−(K (E+

t , t∗)) ∩ M+. Then there is q ∈ K (E+
t , t∗) and a future

causal curve γ1 joining p to q. If q ∈ E+
t then we are done as E+

t = J−(Wt ) ∩ M+

and therefore there is a future causal curve γ2 joining q to a point in Wt ⊂ Wt+t∗ . Thus
γ2 ◦ γ1 (the concatenation of γ1 and γ2) is a future causal curve joining p to a point in
Wt+t� . Hence p belongs to the right hand side of (12). If instead q ∈ K (E+

t , t∗) \ E+
t

then q = O[t̄](q ′), where 0 < t̄ ≤ t∗ and q ′ ∈ ∂ N E+
t . Then there is a null geodesic γ2

inside ∂ N E+
t starting at q ′ and eventually becoming a null geodesic of ∂ N Wt . Therefore

O[t̄](γ2) is a future null geodesic starting at q and eventually becoming a null geodesic
of ∂ N Wt+t∗ . Therefore the curve O[t̄](γ2) ◦ γ1 is a future causal curve joining p to a
point in Wt+t� . ��
Proposition 6. Let D be datum and d > 0 a number such that ∂�2d = H is marginally
outer trapped and that all hypersurfaces at distance 0 ≤ d ′ ≤ 2d from ∂� are smooth
and diffeomorphic to H. Then the statement of Proposition 5 holds.
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Proof. The proof is exactly the same as the proof of Proposition 5 except in the proof of
item C2 which we now explain. Suppose C2 is false. Since by H2 T (∂�, 2d)∩ Et = ∅,
there exists 0 < t̄ < t∗ such that J−(K (Et , t̄)) intersects T (∂�, 2d) and no smaller
0 < t̄ < t∗ has this property. Note that the intersection takes place at H because
J−(K (Et , t̄)) ∩ T (∂�, 2d)◦ = ∅. Let then p be a point in J−(K (Et , t̄)) ∩ H and let
γp(τ ), τ ≥ 0 be a future directed geodesic in ∂ N J−(K (Et , t̄)). Then every point in
γp \ {p} is a smooth point of ∂ N J−(K (Et , t̄)) and because of Lemma 1, the congruence
of (future directed) null geodesics in ∂ N J−(K (Et , t̄)) near γp become eventually part
of the congruence of null geodesics in ∂ N Wt+t̄ which has positive expansion θ in the
future direction. Because of this and the (decreasing) monotonicity of θ along γp we
deduce that θ(γp(τ )) > 0 if τ > 0. If we can prove that limτ↓0 θ(γp(τ )) = 0, then by
the monotonicity of θ we would get that θ must be identical to zero all over γp and we
would be getting a contradiction. We prove this in what follows. Let 
 be the closed
region enclosed by ∂� and H , namely 
 = �\�◦

2d . Then, J +(
)∩ J−(K (Et , t̄))◦ = ∅.
Moreover ∂ N J +(
) and ∂ N J−(K (Et , t̄)) are tangent at γp \ {p} at least at the points
γp(τ ), for τ ∈ (0, τ0), with τ0 near 0, where both boundaries are smooth. Let θ̂ (γp(τ ))

be the expansion of the congruence of geodesics ∂ N J +(
) along γp(τ ). By a standard
comparison of the mean curvatures we have, for every τ ∈ (0, τ0),

θ̂ (γp(τ )) ≥ θ(γp(τ )) ≥ 0.

But θ̂ (γp(τ )) → 0 as τ → 0 because θ̂ (γp(τ )) is continuous and θ̂ (γp(0) = p) = 0.
Thus lim θ(γp(τ )) → 0 as τ → 0 as claimed. ��
Proof of Theorem 6. Suppose that �T \
∞ �= ∅ (recall we are using 
∞ = �∩ E+∞ =
� ∩ (∪E+

i )). Let p ∈ ∂T (�T \ 
∞) (where the topological boundary of �T \ 
∞ is
taken as a set in �T ). Then ξ(p) is time-like and future directed. Let {q j } ⊂ �T ∩ 
∞
be a sequence approaching p, namely q j → p. Then, there is ∞ > λ0 > 0 such that the
piece of orbit βq j (λ), λ ∈ (0, λ0] lies in M+ for all j . Note that for every j there is i( j)
such that q j ∈ 
i( j) (and therefore that q j ∈ E+

i ) for all i ≥ i( j). We claim that the piece
of orbit above also lies in E+∞. To see that observe that to leave E+∞ it must first leave
E+

i for all i ≥ i( j). That means that for every (i, j), i ≥ i( j) there are λ ji < λ ji+1 < λ0

such that βq j (λ), λ ∈ (λ ji , λ ji+1) lies inside E+
i+1 \ E+

i and that βq j (λ ji ) ∈ ∂ N E+
i and

βq j (λ ji+1) ∈ ∂ N E+
i+1. Then, because E+

i+1 = J−(K (E+
i , t∗)) ∩ M+, the piece of orbit

βq j (λ), λ ∈ (λ ji , λ ji+1) must lie inside O[0,t∗](∂ N E+
i ) ∩ M+ ⊂ E+

i+1. Therefore it must
be λ ji+1 − λ ji ≥ t∗. It follows from here that, given j , then λ ji → ∞ as i → ∞. Thus
it must be λ0 = ∞ which is a contradiction, and the orbit βq j (λ), λ ∈ (0, λ0] lies in
E+∞. Finally we observe that because βq j (λ), λ ∈ [0, λ0] is a time-like curve starting
at q j and ending at a point in E+∞, and therefore ending in one of the E+

i ’s, then if q j
is sufficiently close to p the point p will lie in the interior of 
∞ which is against the
hypothesis. ��

3. Static Killing Initial Data

3.1. Background and definitions. We start with the notion of static Killing initial data
(cf. [5])

Definition 7. A static Killing initial data (static KID) set D is a KID satisfying the
staticity equations
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NdY + 2Y ∧ Z = 0, (13)

Y ∧ dY = 0, (14)

where Z := d N + K (Y, · ).
In a static KID, consider the open set �Y := �◦\{Y = 0}. By the Fröbenius theorem,

the distribution Y⊥ is integrable. More precisely, each point p ∈ �Y is contained in
a unique, maximal, arc-connected, injectively immersed (m − 1)-dimensional, orient-
able submanifold Lα orthogonal to Y. The collection of {Lα} is a foliation of �Y . The
staticity equation (13) and (5) imply

λdY + Y ∧ dλ = 0. (15)

As a consequence of this equation, if λ = 0 (resp. λ > 0, λ < 0) at any point p ∈ Lα

then λ = 0 (resp. λ > 0, λ < 0) everywhere on Lα . To see this, consider any path γ (s)
contained in Lα . Contracting (15) with Y and γ̇ we obtain the ODE,

dλ(s)

ds
= Q(s)λ(s),

where Q(s) is smooth and λ(s) := λ(γ (s)). The claim follows.
As discussed in the Introduction, the aim of this part of the work is to show that Kill-

ing prehorizons of the exterior region are necessarily embedded. Killing prehorizons are
immersed null hypersurfaces where the Killing vector is null and tangent (hence also
normal). Thus, their intersection with � must correspond to those leaves Lα , where λ

vanishes identically. Since we are interested only on horizons of the exterior region or,
more precisely, on horizons that can be reached from the exterior, timelike region, we
adopt the following definition.

Definition 8. A horizon Hα is a leaf of the foliation {Lα} of �Y which intersects the
topological boundary ∂T �T .

Any two points p1, p2 on a fixed leaf Lα admit transverse sections (i.e. smooth con-
nected curves that are transverse to all the leaves they intersect) �1 and �2 to the foliation
{Lα} and a smooth diffeomorphism φ : �1 → �2 such that for any leaf Lβ ∈ {Lα}
one has φ(Lβ ∩ �1) = Lβ ∩ �2 (this property is the so-called transverse uniformity of
foliations, see e.g. Theorem 3, p. 49 in [3]). Consider a horizon Hα and select a point
p1 ∈ Hα ∩ ∂T �T (this exists by definition of horizon). For any other point p2 ∈ Hα

there exist transverse sections �1 and �2 and the diffeomorphism φ as above. We want
to show that p2 ∈ ∂T �T . Consider a sequence qi → p1 with qi ∈ �1 ∩ �T (this exists
trivially). The leaf containing qi has λ > 0 everywhere and hence it is fully contained
in �T . Consequently the sequence q ′

i := φ(qi ) is such that q ′
i → p2 and q ′

i ∈ �T and
the claim follows. Consequently, any horizon Hα is fully contained in ∂T �T .

Since λ vanishes on a horizon, dλ is necessarily a normal one-form to Hα . Conse-
quently there exists a scalar function κα on Hα , called the surface gravity, satisfying
dλ = 2καY on Hα . It is also convenient to introduce a scalar on � defined as

I1 := 1

4
|dY|2g − 2|Z |2g. (16)

An alternative expression for I1 on the set {N �= 0} (in particular on {λ > 0}) is
obtained from the staticity equation (13), which gives dY = − 2

N (Y ∧ Z). Squaring this
and inserting into the definition of I1 yields
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I1 = 2

N 2 (−λ|Z |2g − 〈Y, Z〉2
g) on {N �= 0}. (17)

Passing to the Killing development (which exists in a neighbourhood of any point
p ∈ Hα since N |p �= 0), it follows from standard properties of Killing horizons that κα

is constant on each horizon Hα (see e.g. [32] p. 334 for a derivation in four dimensions
which is, in fact, valid in any dimension).

The following lemma relates I1 to the surface gravity on horizons.

Proposition 7. I1 = −2κ2
α on Hα .

Proof. From (17), it suffices to show that κα = 〈Y,Z〉g
N . Contracting (5) with Y gives

K (Y, Y ) = − 1
2N Y (|Y |2g) which inserted in Z (see Definition 7) gives, on Hα ,

2〈Y, Z〉g

N
= 1

N 2 Y
(

N 2 − |Y |2g
)

= 1

N 2 Y (λ) = 2κα. (18)

��
Horizons with non-zero surface gravity have properties qualitatively different to hori-

zons with vanishing surface gravity. The following definition is standard.

Definition 9. A horizon Hα is degenerate if κα = 0 and non-degenerate if κα �= 0.

Points where the Killing vector vanishes correspond, at the initial data level, to points
p ∈ � satisfying N |p = Y |p = 0. Such points are called fixed points. The following
lemma is well-known in static four-dimensional spacetimes. At the initial data level, it
has been proved in four dimensions in [4]. We include a proof for m−dimensional static
KIDs in Appendix A.

Lemma 2. I1 < 0 on any fixed point p ∈ ∂T �T .

In this part of the paper we intend to work directly at the initial data level. This has
the advantage that no assumption on well posedness of the matter model needs to be
made. Nevertheless, we still require the null energy condition to hold. The following
definition translates the standard spacetime definition into the initial data setting.

Definition 10. A Killing initial data set D satisfies the null energy condition if and only
if

T (w,w) − 2J (w)|w|g + ρ|w|2g ≥ 0

for any vector w ∈ Tp� and p ∈ �.

3.2. The statements of the main results: Theorem 7 and Corollary 1. Our main result in
this second part of the paper is the following.

Theorem 7. Let D be an asymptotically flat static Killing initial data set satisfying the
null energy condition. Suppose that ∂� (if non-empty) does not intersect �T . Then, each
degenerate horizon is an embedded manifold and compact.

Remark 2. In this theorem, and throughout this section, we make the assumption that
∂� does not intersect �T . Using Theorem 5, this property follows from the condition
that ∂� is outer trapped. However, this implication can also be proved directly at the
initial data level, using a suitable comparison argument along a minimizing geodesic
in the optic metric between a large coordinate sphere and ∂� ∩ �T (assuming this to
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be non-empty) and the monotonicity explained in Proposition 12. We thank one of the
referees for pointing this out.

An immediate Corollary of Theorems 6 and 7 is

Corollary 1. Let D be an asymptotically flat static Killing initial data set with well posed
matter model satisfying the null energy condition. Suppose that ∂� (if non-empty) is
future outer trapped. Then each degenerate horizon is an embedded manifold and com-
pact.

Remark 3. It may be possible to prove, directly from the techniques that we developed
here, a version of Theorem 7 also for stationary data and not just static. We will not enter
into such problem here however.

3.3. Volume monotonicity along “optic” congruences of geodesics. In this section, we
will assume that the datum D is static (Definition 7).

The Killing development of a static KID is static in the sense that the Killing vector
ξ is hypersurface orthogonal (see Lemma 3 in [5]). Static spacetimes necessarily satisfy
G(ξ, X) = 0, where X is any vector field orthogonal to ξ . In terms of the quantities
(ρ, J, T ) defined by (1), this implies

T (Y, · ) = N J +
J (Y )

N
Y − ρY, on {N �= 0} ⊂ �. (19)

In addition to g, �T can be endowed with two further metrics: the so-called quotient
metric

h := g +
1

λ
Y ⊗ Y, (20)

and the optic metric

h := 1

λ
h. (21)

Consider the spacetime (�T × R, gS) with metric

gS = −V 2dt ′ 2 + h, (22)

where V := +
√

λ. Equation (15) implies that λ−1Y is closed on open sets where λ does
not vanish, in particular on �T . Consequently there exists, locally, a function ζ such that
Y = −λdζ . The coordinate transformation t = t ′ − ζ brings the metric gD (see (9))
into gS. This shows that the spacetimes (�T × R, gD) and (�T × R, gS) are locally
isometric. They are also globally isometric if λ−1Y is exact on �T .

Since the data on {t ′ = 0} in the metric (22) is a totally geodesic static KID, it satis-
fies the constraint equations (2)-(3) and the KID equations (5)-(6) with the substitutions
g → h, N → V , Y → 0 and K → 0. With the definitions ρ̂ := V −2G(ξ, ξ) and
T̂ (v,w) := G(v,w), with v,w tangent to {t ′ = 0}, these equations read

Hessh V = V

(

Rich − T̂ +
1

m − 1

(

trh T̂ − ρ̂
)

h

)

, (23)

�V = V

(

trh T̂
m − 1

+
m − 2

m − 1
ρ̂

)

, (24)
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where � is the Laplacian of h and Rich its Ricci tensor. Using ξ = Nn + Y and (1), it
is straightforward to relate ρ̂, T̂ to the datum D, as follows:

ρ̂ = ρ − 1

N
J (Y ), T̂ = T +

1

λ

(
J (Y )

N
− ρ

)

Y ⊗ Y. (25)

The following proposition characterizes the null energy condition of the initial data
set in terms of the geometry associated to h.

Proposition 8. D restricted to �T satisfies the null energy condition if and only if

T̂
(

ŵ, ŵ
)

+ ρ̂|ŵ|2h ≥ 0

for any vector ŵ ∈ Tp�
T and ∀p ∈ �T .

Proof. This Proposition can be proved easily by passing to the Killing development
of �T . For a direct proof on the initial data set, consider any vector vector ŵ and

define w := ŵ + A
V Y , where A := |ŵ|h + 〈Y,ŵ〉g

V . The g-norm of w is calculated to be

|w|2g = N 2 A2

λ
. A straightforward computation which uses (25) and (19) gives

T (w,w) − 2J (w)|w|g + ρ|w|2g = T̂ (ŵ, ŵ) + ρ̂|ŵ|2h .

Since transformation ŵ → w is invertible (with inverse ŵ = w− |w|g
N Y ), the proposition

follows from Definition 10. ��
Expression (23) determines the Ricci tensor of h in terms of V and its derivatives. A

similar expression can be obtained for the Ricci tensor of h, denoted by Rich . We write
∇ for the covariant derivative of h and ∇ for the covariant derivative of h.

Proposition 9. The Ricci tensor of h takes the following form

Rich = (m − 1)
1

V
Hessh V − (m − 1)

|∇V |2h
V 2 h + ρ̂h + T̂ . (26)

Proof. The general expression for the change of Ricci tensor under a conformal rescaling
h = e2 f h is

Rich = Rich + (2 − m) (Hessh f − d f ⊗ d f ) −
(

� f + (m − 2)|∇ f |2h
)

h.

Putting f = −ln(V ) and inserting (23) and (24), the proposition follows. ��
The following proposition is well-known [33] and explains the reason of calling h

the optic metric.

Proposition 10. 1. Let γ (t), t ∈ [t0, t1] be a geodesic segment in (�T , h) parametrized
by h-arc-length. Select c �= 0, define

τ(t) = τ0 +
∫ t

t0
c−1V 2(γ (t))dt,

and denote by t (τ ) its inverse (which obviously exists). Then the curve (γ (t (τ )), t (τ )),
τ ∈ [τ0, τ (t1)] is an affinely parametrized null geodesic segment in (�T × R, gS)

and its tangent vector v satisfies gS(v, ξ) = −c.
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2. Conversely, let (γ (τ ), t (τ )), τ ∈ [τ0, τ1] be an affinely parametrized null geodesic
segment in (� × R, gS) with tangent vector v. Define c = −gS(v, ξ) (which is
obviously constant along the geodesic) and define τ(t) as the inverse of

t (τ ) := t0 +
∫ τ

τ0

c

V 2(γ (τ ))
dτ.

Then, the curve γ (τ(t)), t ∈ [t0, t (τ1)] is a geodesic segment in (�T , h) parame-
trized by h-arc-length.

Consider a smooth, oriented hypersurface S embedded in �T and let ν and ν be posi-
tively oriented normal vectors, of unit length respectively in h and h (they are obviously
related by ν = V ν). Let hS (resp. hS) denote the induced metric on S inherited from h
(resp. h). The following fact is well-known and straightforward.

Proposition 11. With the notation before, the second fundamental form χ of S with
respect to ν in the metric h and the second fundamental form χ of S with respect to ν in
the metric h are related by

χ = χ

V
− ν(V )

V 2 hS .

Squaring in their respective metrics and taking traces the following expressions follow:

θ = V θ − (m − 1)ν(V ),

|χ |2
hS

= V 2|�|2hS
+

V 2

m − 1

(

θ − (m − 1)

V
ν(V )

)2

, (27)

where θ := trhS χ, θ := trhS
χ and � is the trace-free part of χ (in the metric hS). The

expression above for θ and the Ricci tensor of h give rise to the following monotonicity
formula.2

Proposition 12. Let F be a congruence of geodesics in (�T , h) parametrized by arc-
length. Assume that the tangent vector ν to this congruence is orthogonal to a collection
of smooth hypersurfaces {St }. Then, the trace θ of the second fundamental form χ of St
with respect to ν satisfies

ν

(
θ

V

)

+ |�|2hS
+

1

m − 1
θ2 + ρ̂ + T̂ (ν, ν) = 0. (28)

In particular, if the null energy condition is satisfied in (�T , h) then

ν

(
θ

V

)

≤ − 1

m − 1
θ2 ≤ 0.

2 We are greatly indebted to Greg Galloway for pointing out that this monotonicity formula already appeared
in [17] in a context not entirely foreign to the one in the present article.



656 M. Mars, M. Reiris

Proof. The focusing equation for geodesics (see e.g. [7]) is

ν
(

θ
)

+ |χ |2
hS

+ Rich(ν, ν) = 0. (29)

The term Rich(ν, ν) can be directly evaluated from (26):

Rich(ν, ν) = (m − 1)V Hessh V (ν, ν) − (m − 1)|∇V |2h + V 2
(

ρ̂ + T̂ (ν, ν)
)

.

(30)

In order to evaluate the term ν(θ) in (29), the h-acceleration ∇νν is needed. Since ν is
geodesic and affinely parametrized we have ∇νν = 0, which becomes, after applying
the transformation law for metric connections under conformal rescalings,

∇νν = 1

V
ν(V )ν − 1

V
∇(V ). (31)

We then have, from (27),

ν(θ) = ν(V )θ + V ν(θ) − (m − 1)V
[〈∇νν,∇V 〉h + (Hessh V ) (ν, ν)

]

= ν(V )θ + V ν(θ) + (m − 1)
(

|∇V |2h − ν(V )2 − V (Hessh V ) (ν, ν)
)

. (32)

Inserting (30) and (32) into (29), the terms in the Hessian of V cancel out. A simple
rearrangement gives (28). The last claim follows from Proposition 8. ��

3.4. On the volume of horizons of asymptotically flat static KIDs. Recall that �∞ is the
AF end of D. The decay (8) implies that (�∞, h) is also asymptotically flat. Let Sr and
� I (r) be defined as in Sect. 2.1 and define �T

I := � I (r) ∩ �T . We start by showing
that �T

I is complete in the metric h.

Lemma 3. Assume that �T does not intersect ∂�. Then, the Riemannian manifold
(�T

I , h) is complete and has Sr as its only boundary.

Proof. First we make a couple of comments on the structure of the metric h̄ around (I)
a point on a horizon and (II) a fixed point.

(I) Consider a point p lying on a horizon Hα and choose a foliated chart (Vp, {x A, z})
near p adapted to the foliation {Lα}. This means that, in these coordinates, Vp =

 × (−δ, δ), where 
 is a domain on R

m−1 and δ > 0. The coordinate z takes
values in (−δ, δ) and {x A} (A, B = 1, · · · , m − 1) takes values in 
. The inter-
section of any leaf Lα with Vp is a collection (possibly empty) of sets of the form

 × {zi } (called plaques) where {zi } is a countable set (see e.g. Theorem 3.20 in
[24] for this result in the context of the Fröbenius Theorem). Since Y is g-orthogo-
nal to the plaques, we can choose, without loss of generality, the coordinate chart
so that the metric g takes the form g = F2(z, xC )dz2 + ĝAB(z, xC )dx Adx B ,
where F > 0 and ĝAB is positive definite. Furthermore, we can assume that
p = {0}. Let P be the smooth positive function on Vp such that Y = N Pν,
where ν is g-unit and orthogonal to the plaques. This implies λ = N 2(1 − P2).
Inserting all this into (15) yields, after a straightforward calculation,

(

1 − P2
) (

−∂A F

F
+

∂A N

N

)

− 1 + P2

P
∂A P = 0, for all z ∈ (−δ, δ)
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which, upon integration, implies the existence of a smooth function U on Vp,
constant on every plaque (i.e. U (z)), such that

N

F

1 − P2

P
= U.

Using this in the definition of h (21) gives

h = dz2

P2U (z)2 +
1

N F P U (z)
ĝABdx Adx B . (33)

Note that from λ|p = 0 we have U (z = 0) = 0. Also, as U is differentiable, we
have (on �T ) 0 < U ≤ c|z| (where c > 0 is a constant) near p.

(II) Let now p be a fixed point. Then we know from (16) and Lemma 2 that Z |p �= 0.
This in turn implies d N |p �= 0 (see Definition 7). Thus, there exists a neigh-
bourhood Vp of p, where N can be taken as a coordinate. Without loss of gen-
erality, we can choose a coordinate system in Vp so that g = F̃2(N , xC )d N 2 +
g̃AB(N , xC )dx Adx B , where F̃ > 0 and g̃AB is positive definite. By the defini-
tion of h, we have

h ≥ 1

λ
g ≥ 1

N 2 g. (34)

Note that N |p = 0 and that, once more, N is a coordinate in a differentiable
coordinate system.

We are ready to prove completeness of (�T
I , h̄). Assume by contradiction that h̄ is

not complete. Let γ be an incomplete h̄-geodesic not ending at Sr . Then γ , as a curve
over � accumulates (although not necessarily converging to) a point p on a horizon or
a fixed point p. From the structure of the metric h̄ found around such points in (33) and
(34), respectively, one readily deduces that the h̄-length of γ must be infinite which is a
contradiction. ��

On �T
I define B(t, Sr ), t > 0, as the h-ball of center Sr and radius t ,

B(t, Sr ) = {p ∈ �T
I , disth(p, Sr ) < t}.

The boundary component

∂ B(t, Sr ) := ∂T B(t, Sr ) \ Sr

is the set of points lying at h-distance t to Sr . Outside the cut locus C this set of points is
a smooth hypersurface. We want to consider the (m-1)-Hausdorff measure of ∂ B(t, Sr )

in the metric h, which we denote by |∂ B(t, Sr )|h . The following lemma gives an upper
bound for |∂ B(t, Sr )|h .

Lemma 4. Let Sr be the coordinate sphere of radius r in �∞ and assume that the h-
mean curvature with respect to the ingoing unit vector is negative everywhere. Assume
that �T does not intersect ∂� and let |Sr |h be the (m − 1)-volume of Sr in the metric
h. Then, |∂ B(t, Sr )|h ≤ |Sr |h for all t > 0.

Proof. On �T
I consider the congruence F of geodesics minimizing the h-distance to

Sr . An immediate consequence of Lemma 3 is that each geodesic in F has an end-point
in Sr . For any p ∈ �T

I outside the cut locus C of the distance function (which has zero
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measure [22]) the function t (p) = disth(p, Sr ) is smooth and in there the level sets of t
are smooth hypersurfaces. In other words, if p ∈ �T

I \ C then, around p, ∂ B(t (p), Sr )

is a smooth hypersurface. Let p be such a point and let γp(t) be the length minimizing
segment that starts at Sr and ends at p. We define the function θ on �T \C as the h-mean
curvature of ∂ B(t (p), Sr ) at p in the direction of γ ′

p(t (p)). Note that the mean curvature

is with respect to h and not h, but that the congruence F is with respect to h and not h.
Now, from Proposition 12 we have the monotonicity

ν

(
θ

V

)

≤ − θ2

m − 1
≤ 0.

Since θ |Sr < 0 we conclude that θ < 0 on �T \ C. Denoting by ηh(p) the volume-form
of ∂ B(t (p), Sr ) at p ∈ �T \ C, the first variation (m − 1)-volume gives

ν(ηh) = V ν(ηh) = V θ < 0.

This proves |∂ B(t, Sr )|h ≤ |Sr |h . ��
We analyze now the interplay between the (m − 1)-volume of horizons in the static

KID and the (m − 1)-volume of the h−geodesic spheres ∂ B(t, Sr ).
Let Hα be a horizon and let ν be be one of the two possible normal vector fields to

Hα . For every point q ∈ Hα consider the g-geodesic γq(s) starting at q with velocity
ν(q) and parametrized with arc-length. Let 
 ⊂ Hα be open and connected with smooth
and compact boundary in Hα .

Definition 11. Let Hα be a horizon. We say that Hα is isolated on 
 in the direction of
ν if for some s̄ small, the set (tubular neighborhood of 
)

Uν(
, s̄) = {γq(s), q ∈ 
, 0 < s < s̄},
is contained in �T and does not intersect any horizon. A horizon Hα is isolated if there
exists an exhaustion {
i } of Hα such that Hα is isolated on 
i in both normal directions.

Since dλ �= 0 everywhere on a non-degenerate horizon, it follows that non-degenerate
horizons are necessarily isolated.

Proposition 13. Let Hα be an isolated horizon in the direction of ν over 
 and let s̄ be
the corresponding constant in Definition 11. Then

lim inf
t→∞ |Uν(
, s̄) ∩ ∂ B(t, Sr )|h ≥ |
|g.

where |
|g is the g-(m-1)-volume of 
.

Proof. We need several definitions first.

1. At every point p ∈ Uν(
, s̄), let ν be the tangent of the geodesic γq(s) pass-
ing through p. Choose (m − 1) vector fields {e1, · · · em−1} on Uν(
, s̄) such that
{e1, · · · , em−1, ν} is an oriented g-orthonormal basis. Let {ω1, · · · , ωm} be the
corresponding dual basis. Define then the (m − 1)-form

ω = ω1 ∧ · · · ∧ ωm−1.
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Fig. 2. Schematic figure illustrating the definitions involved in Proposition 11. The geodesics γq (s) run along
the generators of the cylinder. The whole solid cylinder corresponds to Uν(
, s̄), while the region in grey
is U+(
, s̃). The top of the cylinder is S(
, s̄). The curly line is St (
) and the region above it is B(t, s̃).
As stated in the text, the topological boundary of B(t, s̃) \ U+(
, s̃) consists of three parts, namely S(
, s̃),
St (
) and a domain in the vertical boundary of the cylinder Note that, since in the metric h horizons are at
infinite distance from Sr , the region B(t, s̃) cannot intersect 


2. For every 0 < s̃ < s̄ define the surface

S(
, s̃) = {γq(s̃), q ∈ 
},
and its one-sided tubular neighbourhoods

U +(
, s̃) = {γq(s), q ∈ 
, s̃ ≤ s < s̄}, U−(
, s̃) = {γq(s), q ∈ 
, 0 < s ≤ s̃}.
Now, for every s̃ there is t0(s̃) such that if t > t0(s̃) then U +(
, s̃) ⊂ B(t, Sr ), namely
U +(
, s̃) lies in the interior of the h-metric ball B(t, Sr ). For such t define B(t, s̃) as the
connected component of Uν(
, s̃) ∩ B(t, Sr ), containing U +(
, s̃). Then ∂T (B(t, s̃) \
U +(
, s̃)) consists of (see Fig. 2):

1. S(
, s̃),
2. an interior component that we will denote St (
) which is in fact equal to a com-

ponent of U−(
, s̃) ∩ ∂ B(t, s̃), and,
3. a domain inside the (m − 1)-surface {γq(s), q ∈ ∂
, 0 < s < s̃}.
Since the metric h is related to g by (20) their volume forms are related by

ηh = (1 +
|Y |2g
λ

)ηg.

Consequently

|St (
)|h ≥ |St (
)|g.
On the other hand we have

|St (
)|g ≥
∫

St (
)

ω = |S(
, s̃)|g +
∫

(B(t,s̃)\U +(
,s̃))
dω.

Integration by parts is justified (for almost all t) because the distance function is Lips-
chitz and therefore of bounded variation [16] (indeed it is semiconcave and therefore
a H2,1 function [22]). But now, as s̃ → 0 and t > t0(s̃) → ∞, the first term on
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Fig. 3. Foliated neighbourhood of 
. The grey regions lie in �T . Schematic plots of the balls B(t, Sr ) are
shown for two values of t , namely t1 and t2 satisfying t1 < t2. As t increases the balls increase and approach
the boundaries of �T . Two values of the sequences {ai } and {bi } defined in the main text are also shown. In
the case of the figure C(t1) = 0 and C(t2) = 1

the right-hand side approaches |
|g and the second converges to zero. Since obviously
|Uν(
, s̄) ∩ ∂ B(t, Sr )|h ≥ |St (
)|h we conclude

lim inf
t→∞ |Uν(
, s̄) ∩ ∂ B(t, Sr )|h ≥ lim inf

t→∞ |St (
)|h ≥ |
|g.
��

Proposition 14. Assume that �T ∩ ∂� = ∅. Let {Hα}α∈J be any collection of horizons
in an asymptotically flat static KID D. Let H = ⋃

α∈J Hα be its union. Then H \ H is
either empty or consists only of fixed points.

Proof. The proof is by contradiction. We will assume that there exists p ∈ H \ H which
is not a fixed point and we will show that limt→∞ |∂ B(t, Sr )|h = +∞, which contradicts
the upper bound found in Lemma 4.

Let p be such a point. Since p is non-fixed (Y |p �= 0), there exists a unique leaf Lβ

containing p. Since H ⊂ ∂T �T (recall that a horizon is fully contained in ∂T �T ) and
the latter is topologically closed, it follows that p ∈ ∂T �T , so in fact Lβ is a horizon
Hβ . By hypothesis, this horizon is not in the original collection {Hα}α∈J . Consider a
foliated chart Vp of p in �Y as in the proof of Lemma 3. Without loss of generality, we
can assume that the foliated chart is centered at Hβ , i.e. that the plaque 
 × {0} ⊂ Hβ .
Also without loss of of generality we assume that 
 is compact with smooth boundary.
By definition of horizon, there exists a sequence of points pi → p with pi ∈ �T (in
particular λ(pi ) > 0). Moreover, since p ∈ H \ H , there must exist a sequence of
plaques in H converging to 
 × {0}. These two facts together imply the existence of
two sequences ai → 0, bi → 0,−δ < ai < bi < δ such that (Fig. 3)

1. 
 × (ai , bi ) ⊂ �T ,
2. 
 × {ai } ∈ ∂T �T ,
3. 
 × {bi } ∈ ∂T �T .
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Let H+
i be the horizon containing the plaque 
×{bi }, and H−

i be the horizon contain-
ing the plaque 
×{ai }. Both horizons are isolated on 
 (the first one in the direction of
decreasing z and the second one towards increasing z). For each t sufficiently large, let
C(t) be the maximum of i ∈ N such that, ∀ j ≤ i , 
 × (a j , b j ) ∩ B(t, Sr ) is non-empty
and has more than one connected component. By Proposition 13, each one of the pieces
∂ B(t, Sr )∩(
×(ai , bi )), i ≤ C(t) contributes to the total (m −1)-volume |∂ B(t, Sr )|h
essentially with an amount of at least 2|
|g . More precisely, for fixed ε > 0, there exists
t0(ε) such that for t > t0(ε),

|∂ B(t, Sr )|h ≥ 2C(t)
(|
|g − ε

)

.

Since C(t) → ∞ when t → ∞, we obtain limt→∞ |∂ B(t, Sr )|h = +∞ and hence a
contradiction to Lemma 4. ��

We can now prove Theorem 7.

Proof of Theorem 7. We first show that any degenerate horizon Hα is topologically
closed. I1 vanishes on Hα and hence also on its closure. Assume that there is a point
p ∈ Hα \ Hα . p must be a fixed point by Proposition 14. However, since Hα ⊂ ∂T �T ,
it follows p ∈ ∂T �T . Lemma 2 gives I1 < 0, which gives a contradiction. Hence Hα

is topologically closed. Closed leaves in foliations are necessarily embedded (see e.g.
Theorem 5, p. 51 in [3]). Moreover, since Hα is contained in the compact set � I (r), Hα

is also compact. ��
The previous results prove not only that a degenerate horizon cannot approach itself

indefinitely, but also that two or more such horizons cannot wrap on themselves indefi-
nitely. More precisely, we have the following corollary:

Corollary 2. Assume that �T ∩ ∂� = ∅. Then all horizons are isolated. Moreover
| ⋃α Hα|g < |Sr |h.

Proof. Assume that Hα is a non-isolated horizon, hence necessarily degenerate. Since
Hα is not isolated, there exists an open set 
 ⊂ Hα with compact, smooth boundary in
Hα such that for all s̄ > 0, the tubular neighbourhood

U (
, s̄) = {γq(s), q ∈ 
,−s̄ < s < s̄},
intersects another horizon Hβ . Selecting a sequence s̄i → 0, we have a collection of
horizons Hβi which approach Hα . By Theorem 7 Hα is embedded. It follows that at
least one of the Hβi �= Hα . Consider the collection A of all {Hβi } different from Hα . It
follows that the set H := ∪AHβi is not closed, as its closure contains 
. This contra-
dicts Proposition 14. Thus Hα is isolated. The last statement is a direct consequence of
Proposition 13 and Lemma 4. ��

4. Uniqueness of Static, Vacuum, Asymptotically Flat Initial Data Sets with Outer
Trapped Boundary

The results of the previous sections allow us to prove a uniqueness theorem for asymp-
totically flat static KID with an outer trapped boundary.

The most powerful method of proving uniqueness of static black holes is the so-
called doubling method of Bunting and Masood-ul-Alam [2]. The framework where this
method applies involves asymptotically flat KID such that the exterior region �T where
the Killing vector is timelike has a topological boundary which is a compact, embedded
C0 manifold without boundary (see [11] for details in the vacuum case). More gener-
ally, the method applies also to settings where the Cauchy boundary of �T is a compact,
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embedded C0 manifold without boundary (the Cauchy boundary is defined as the set of
points lying in the Cauchy completion of the set but not in the set itself). The need of
using Cauchy completions comes from the fact that a point p ∈ ∂T �T may be accessible
from both sides from within �T . In this setting ∂T �T may not be a C0 manifold but the
Cauchy boundary, denoted by ∂C�T may still be a topological manifold. We will see
an example of this behavior later.

A possible strategy for proving a uniqueness theorem for static KID with an outer
trapped boundary is to reduce the problem to a black hole uniqueness theorem. This
suggests the following definition (cf. [6,4]): an asymptotically flat KID D (possibly with
boundary) is a black hole static initial data set if the Cauchy boundary ∂C Int(�T ) of
�T is a topological manifold without boundary and compact.

In agreement with the discussion above, we will also say that a matter model sat-
isfies the static black hole uniqueness theorem if there exists a class of asymptotically
flat static spacetimes {(Ma, ga)} depending an a finite (and usually small) number of
parameters determined from the asymptotic form of the metric and matter fields and such
that any black hole static Killing initial data set D has the property that (�T , g, K ) can
be isometrically embedded in some {(Ma, ga)} within this class (where isometrically
embedded is in the sense of spacetime initial data sets).

As example of matter models satisfying the static black hole theorem we have vacuum
or electrovacuum in four spacetime dimensions (see [11,14,8] and references therein).

An interesting consequence of the results in the previous chapters is that the static
black hole uniqueness theorem can be extended to static, asymptotically flat KID with
outer trapped boundary. More precisely

Theorem 8. Let D be a static, m-dimensional (m ≥ 3) asymptotically flat Killing initial
data satisfying the following assumptions:

A1. The matter model is well posed and satisfies the null energy condition.
A2. The matter model satisfies the static black hole uniqueness theorem.
A3. � has outer trapped boundary, i.e. ∂� is compact and θ+(∂�) < 0.

Then (�T , g, K ) can be isometrically embedded in some (Ma, ga) within the black
hole uniqueness class.

Remark 4. In the case of vacuum and dimension m = 3, this result implies Theorem 3
given in the Introduction. Indeed, the static black hole uniqueness theorem as defined
above holds in the vacuum, 3-dimensional case [11]. One may wonder whether vacuum
also satisfies the static black hole uniqueness theorem (in the sense above) in higher
dimensions. As discussed in the proof of Theorem 1.4 in [12], the arguments in [11]
leading to doubling of (�T , h) across its boundaries extends to arbitrary dimension.
The conformal factor that removes the mass and compactifies all asymptotically flat
infinities but one has been discussed in [20]. This conformal factor leaves unchanged
the asymptotic structure of the asymptotically cylindrical ends. So, the only remaining
piece is the rigidity part of the positive mass theorem. This holds provided the doubled
manifold is spin [27]. Thus, Theorem 3 extends immediatelly to arbitrary dimension for
spin manifolds and to any other situation where a positive mass theorem for manifolds
admitting asymptotically cylindrical ends can be proven (cf. Remark 1.5 in [12]).

We first recall a well-known property of fixed points of Killing vectors in spacetimes
of arbitrary dimension (see e.g. Example 8.1 in [31] for a more general statement, from
which this results follows immediatelly).
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Lemma 5. Let (M, g) be a spacetime with a Killing vector ξ . Let p be a fixed point of
ξ , i.e ξ(p) = 0 and let F := 1

2 dξ (where ξ = g(ξ, · )) be the so-called Killing form of
ξ . Define Wp := {v ∈ TpM; F |p(v, · ) = 0}. Then p lies in a smooth, totally geodesic
embedded submanifold Sp of dimension k = dim(Wp), where the Killing vector ξ van-
ishes identically (if k = 0 then p is an isolated fixed point). Moreover, Sp is spacelike,
null or timelike depending on whether Wp is spacelike, null or timelike.

Proof of Theorem 8. From Theorem 6 it follows that �T does not intersect ∂�. By The-
orem 7 each degenerate horizon of �T is compact and embedded. The same is true for
non-degenerate horizons. Consider any point p in a horizon. Then, near p the Cauchy
boundary ∂C�T either coincides with ∂T �T (if �T only lies to one side of ∂T �T at p)
or with two copies of ∂T � (if p can be accessed from both sides within �T ). In either
case, the Cauchy completion is a smooth manifold near p.

It only remains to analyze the fixed points p ∈ ∂T �T . We know from the proof of
Lemma 2 in Appendix A that d N |p �= 0 and that dY|p = 2b

Q (d N |p ∧ X) for some

b, Q > 0 and X ∈ T �
p� which is both unit and orthogonal to d N |p. Moreover, b2 < Q2

from (36) in the proof of Lemma 2. Let us now view p as a point in M. It is clear that
p is a fixed point for the Killing vector ξ . The Killing form F at p is easily evaluated to
be (cf. Definition 3 in [5])

F |p = (d N ∧ n)|p +
b

Q
(d N |p ∧ X),

where n is the future directed unit normal one-form to � in M. Since the one-form
(n|p + bQ−1 X) is timelike (from Q2 > b2), it follows that d Np and n|p + bQ−1 X
span a timelike two-plane. From the definition of Wp in Lemma 5 we conclude that
Wp is (m − 1)-dimensional and spacelike. Thus p lies on a smooth codimension-two,
totally geodesic spacelike surface of M. In these circumstances, the same construction
performed by Rácz-Wald [30] in dimension four in order to find a canonical coordinate
system near p applies to arbitrary dimension. This gives a coordinate system {u, v, xa}
(a, b = 2, · · · , m) in an open connected neighbourhood Up of p with the following
properties:

• The metric takes the form

g = 2Gdudv + 2vHadxadu + gabdxadxb

with G, Ha, gab smooth functions of (uv, xa), G > 0 and gab positive definite.
• The surface Sp ∩ Up takes the local form {u = 0, v = 0}.
• The Killing vector ξ reads ξ = u∂u − v∂v .
• ∂v is future directed everywhere.

Since ∂v is null and non-zero, the spacelike hypersurface �∩Up can be written as a graph
{v = φ(u, xa)} (in particular, {u, xa} defines a local coordinate system on � ∩ Up).
Since � is spacelike φ satisfies ∂uφ > 0 everywhere. Let u0(xa) be the solution of
φ(u, xa) = 0 (which exists because φ vanishes on p).

Now, since λ = 2Ĝuφ where Ĝ = G(uφ, xa) it follows that either

(i) �T ∩ Up = {u > 0} ∩ {u > u0}, or
(ii) �T ∩ Up = {u < 0} ∩ {u < u0}, or
(ii) �T ∩ Up = ({u > 0} ∩ {u > u0}) ∪ ({u < 0} ∩ {u < u0}).
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The corresponding Cauchy boundaries are:

For (i): {u = max(0, u0(xa)), xa}.
For (ii): {u = min(0, u0(xa)), xa}.
For (iii): The disjoint union of both.

It is now obvious that the Cauchy boundary is a C0 manifold (actually locally Lips-
chitz) without boundary The uniqueness statement follows from hypothesis A2. ��
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Appendix A: Fixed Points Have I1 < 0

In this Appendix we prove Lemma 2. Let p be a fixed point in ∂T �T . In fact, the lemma
also holds for the more general case of p ∈ ∂T {λ > 0}. For the purpose of the proof it is
convenient to assume p ∈ ∂T {λ > 0} and extend the definition of the horizon given in
Definition 8 to any leaf Lα intersecting ∂T {λ > 0}. The constancy of the surface gravity
and Proposition 7 also hold for such horizons.

We know that I1 ≤ 0 on {λ > 0} (see (17)) and, by continuity I1(p) ≤ 0. So, we
only need to exclude the possibility I1 = 0. Let us assume that I1|p = 0 and find a
contradiction.

Our aim is to show that there exists a non-degenerate horizon Hα satisfying p ∈ Hα .
Since I1 = −2κ2

α (see Proposition 7) and κα is constant and non-zero on a non-degen-
erate horizon, we would contradict I1|p = 0. To that aim we only need to find a smooth
path γ (s) lying on a non-degenerate horizon and containing p in its closure.

First we note that dY|p �= 0 and d N |p �= 0. Indeed, if d N |p = 0, then Z |p = 0 and
the definition of I1 (together with I1 = 0) implies dY|p = 0. However, in Lemma 1 in
[5] it is proved that a fixed point cannot have dY = 0 and d N = 0 unless the Killing
data N , Y vanishes identically, which is not the case (the proof of Lemma 1 in [5] is
done explicitly in dimension m = 3 but it carries through to arbitrary dimension with
trivial changes). Thus, d N |p �= 0, and then the vanishing of I1|p also implies dY|p �= 0.

Now, in Lemma 8 in [5] it is proved (again the proof is done there in dimension 3, but
extends to arbitrary dimension) that there exists a positive constant b and a unit one-form
X ∈ T �

p � orthogonal to d N |p such that

dY|p = 2b

Q

(

d N |p ∧ X
)

, (35)

where Q = |d N |p|g . Evaluating I1 at p we find

I1|p = 2(b2 − Q2). (36)

Imposing I1|p = 0 we conclude b = Q. Let us now evaluate the Hessian of λ at p.
Since λ = N 2 − |Y |2g and p is a fixed point a simple calculation yields

Hessgλ |p = −2Q2 X ⊗ X.
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By the Gromoll-Meyer splitting Lemma [19] there exist coordinates {y, x, z A} A =
3, · · · , m, in an open neighbourhood Wp of p such that λ takes the form λ = −Q2 y2 +
f (x, z A) on Wp for some function f and, moreover, p has coordinates (0, · · · 0), X =
dy|p, d N |p = Qdx |p and f vanishes at p together with its gradient and its Hessian.
From (35) we also have Y = Q(xdy − ydx) + O(2), where O(2) means a smooth
quantity which vanishes at p together with its covariant derivative. We are now in a
position where the path γ (s) mentioned above can be constructed.

For that we need to investigate the region {λ > 0} near p. This region corresponds to
f > Q2 y2. Since p ∈ ∂T {λ > 0} it is clear that p ∈ { f > 0} ∩ {y = 0}. If there exists
a smooth curve �̃(s) ⊂ {y = 0} approaching p and satisfying f (�̃(s)) > 0 then we are

done because the curve �(s) := {y = Q−1
√

f (�̃(s)), �̃(s)} has the desired properties

because (i) it lies on ∂T {λ > 0} and (ii) dλ is nowhere zero on the curve (because y �= 0
there) and hence �(s) lies on a non-degenerate horizon.

So, it only remains to show that the curve �̃(s) exists. Define V ⊂ {y = 0} as the set
of points where the component Yy does not vanish. Since Yy = Qx + O(2) it is clear
that V intersects { f > 0} and also that there exists a smooth curve �̃(s) fully contained
in V which approaches p. Our last step is to show that in fact V ⊂ { f > 0}. Consider a
smooth curve �̂(s) starting on a point q ∈ V ∩ { f > 0}. As long as f remains positive

on this curve, consider the smooth curve �(s) := {y = Q−1
√

f (�̂(s)), �̂(s)} which

lies on a non-degenerate horizon. The y component of the equation dλ = 2καY on �(s)
reads

−Q
√

f (�̂(s)) = καYy .

Since κα is constant and Yy �= 0 on V , it follows that f (�̂(s)) cannot become zero while
remaining inside V . This implies V ⊂ { f > 0} as claimed, and the lemma is proved. ��
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