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Identifying the source parameters from a gravitational-wave measurement alone is limited by our

ability to discriminate signals from different sources and the accuracy of the waveform family employed

in the search. Here we address both issues in the framework of an adapted coordinate system that allows

for linear Fisher-matrix–type calculations of waveform differences that are both accurate and computa-

tionally very efficient. We investigate statistical errors by using principal component analysis of the post-

Newtonian (PN) expansion coefficients, which is well conditioned despite the Fisher matrix becoming ill

conditioned for larger numbers of parameters. We identify which combinations of physical parameters are

most effectively measured by gravitational-wave detectors for systems of neutron stars and black holes

with aligned spin. We confirm the expectation that the dominant parameter of the inspiral waveform is the

chirp mass. The next dominant parameter depends on a combination of the spin and the symmetric mass

ratio. In addition, we can study the systematic effect of various spin contributions to the PN phasing within

the same parametrization, showing that the inclusion of spin-orbit corrections up to next-to-leading order,

but not necessarily of spin-spin contributions, is crucial for an accurate inspiral waveform model. This

understanding of the waveform structure throughout the parameter space is important to set up an efficient

search strategy and correctly interpret future gravitational-wave observations.
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I. INTRODUCTION

Ground-based gravitational-wave (GW) detectors of
the Laser Interferometer Gravitational-wave Observatory
(LIGO) [1–4] and Virgo [5,6] collaborations are currently
being upgraded to provide sensitivities capable of directly
detecting GWs from compact binary coalescences of bi-
nary black holes (BHs) and neutron star (NS) systems [7].
Such detections would constitute the first direct detection
of NS-BH and binary BH systems. The gravitational wave-
forms from these systems will provide unprecedented in-
formation about the physical nature of these systems, and
extracting this information relies on overlapping the noisy
detector data with accurate theoretical signal predictions.

The waveform from a quasicircular inspiraling compact
binary system can be obtained from knowledge of the
energy and energy flux of the system. In general relativity
these can be calculated perturbatively in a v=c expansion
(where v is the relative velocity of the bodies, c is the speed
of light), known as a post-Newtonian (PN) expansion (see,
e.g., [8] and references therein). These calculations provide
the coefficients in such an expansion in terms of the
fundamental physical parameters. Various different expan-
sion schemes exist that lead to different approximants [9].
For quasicircular, adiabatic orbits, the tangential velocity v
can be related to the orbital frequency of the compact
bodies, which, for the dominant GW mode, is equivalent
to half the GW frequency. In this way an expansion in GW
frequency, f, can be obtained, with each successive term
corresponding to a higher order in the PN expansion.

These waveforms depend on a number of physical
parameters such as the masses and magnitudes and orien-
tations of the objects’ spins. An important task will be
extracting as much of this information as possible given
the observational constraints and detector sensitivities.
Although the masses and spins of the constituent objects
are typically the parameters of greatest astrophysical
interest, in practice the detectors are actually sensitive to
combinations of these parameters. This is because rather
than variations in the individual source parameters, only
sufficiently strong waveform variations that are louder than
the noise background can be distinguished by the detector.
An example of this may be seen already in the Newtonian
regime where the waveform of the binary inspiral depends
only on what is commonly called the chirp mass, M, a
combination of the two individual masses m1 and m2,

given by M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5. Systems with
the same chirp mass emit GWs with the same phase in
this simple approximation, and they cannot be distin-
guished. Although this degeneracy is broken by higher
order terms, it remains true that GW detections can put
much stronger constraints on a combination of the masses
characteristic of the binary system, in this case the chirp
mass, than it can on the physical parameters of either
individual object.
One major difference between Newtonian dynamics

and general relativity is that in the relativistic domain the
spin angular momenta of the inspiraling objects affects the
orbit and thus the gravitational waveform. In general rela-
tivity these spin effects first show up in the PN expansion as
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spin-orbit interactions at 1.5PN order, corresponding to
ðv=cÞ3 order corrections. At higher orders one also encoun-
ters spin-spin interactions. With PN corrections beyond the
Newtonian term and in particular spin effects, it is less
obvious which combinations of the physical parameters are
most accurately measured, but empirical overlap studies
[10,11] have recently pointed out that apart from the chirp
mass, there is a close degeneracy between mass ratio and
spins for BHs with spins aligned with the orbital angular
momentum. (The waveforms of spinning NSs exhibit addi-
tional degeneracies, e.g., between the NS spin and the
equation-of-state dependent quadrupole moment, but in
this paper we neglect the spin of the NS as it is expected
to be small in compact binary systems [12,13].)

Here we formalize the search for well-measurable
parameters and degeneracies in the PN inspiral waveform.
We employ a linearization of waveform differences
equivalent to the Fisher-matrix approximation [14], but
we demonstrate that a convenient higher-dimensional
coordinate choice in terms of the PN expansion coefficients
allows for very accurate, yet computationally cheap calcu-
lations of the waveform (dis)agreement.

The method we employ is similar to the one used by
Tagoshi and Tanaka [15], Sathyaprakash and Schutz [16],
Pai and Arun [17], and Brown et al. [18]. We write the
waveform as a series expansion in frequency space and
use the expansion coefficients as model parameters to
construct a Fisher matrix. Using the eigenvalues and
eigenvectors of this Fisher matrix we then determine which
combinations of the expansion coefficients the detector is
most sensitive to, which amounts to finding the principal
components of the Fisher matrix. In contrast to Pai and
Arun our focus is determining the best measured combi-
nations of parameters given aligned spinning general rela-
tivity waveforms and an Advanced LIGO noise curve [19].
We also discuss implications of a parameter dependent
frequency cutoff.

An example of principal commponent analysis (PCA)
of spinning signals for the proposed LISA (Laser
Interferometer Space Antenna) space-based mission was
given in [16]. We, however, consider ground-based detec-
tors, specifically Advanced LIGO, where the expected
signal-to-noise (SNR) of most detections is rather low.
Then it will be especially important to know which
parameters can be measured since it is unlikely that all
physical parameters will be measurable with reasonable
accuracy. The number of principal components with a
prescribed accuracy determined by the PCA will define
an effective dimension of the space of solutions to be
searched [18]. A solution space with a small effective
dimension will need relatively few templates to be
searched, which speeds up search times [15,18].

Our main aim here is to determine what the principal
components represent physically. This cannot reduce any
uncertainty in the measurement of physical parameters,

which is typically large because of the correlation between
the parameters. However, an uncorrelated set of parameters
will give more tightly constrained directions in the like-
lihood space and also provide a convenient coordinate
system in which to evaluate the overlap of differing
waveforms.
In calculating the principal components we use as much

information about the PN coefficients of aligned spinning
systems as is currently available. The functional depen-
dence of the PN coefficients on the physical parameters
dictates how our principal components vary across parame-
ter space. Furthermore, we investigate what the contribu-
tion of various terms in these coefficients are and how
excluding them might affect parameter values through
parameter bias. This helps to show which terms are
important in the parameter estimation problem and gives
some indication of how yet-to-be-calculated terms may
affect our results.
This paper is organized as follows. After a general

introduction of the Fisher-matrix approximation and PCA
in Sec. II A, we specify the waveform model in Sec. II B
and argue by virtue of the Bauer-Fike theorem that even
though the higher-dimensional Fisher matrix may be ill
conditioned, the corresponding principal components with
large eigenvalues can be calculated accurately. In Sec. III
we demonstrate explicitly the superiority of our approach
over standard Fisher-matrix estimates in terms of physical
parameters, and we extensively analyze the physical
dependence of the first principal components. Section IV
extends our algorithm to the case of different waveform
models, which enables us to identify crucial contributions
to the PN phasing. We conclude with Sec. V.

II. WAVEFORM AND METHODOLOGY

A. Fisher matrix and principal component analysis

The fundamental question that is underlying matched-
filter searches for GWs is how different is a waveform h1
(the detected signal) to another waveform h2 (the tem-
plate). Assuming a GW detector with noise spectral density
SnðfÞ, the appropriate difference is commonly defined by

kh1 � h2k2 ¼ hh1 � h2; h1 � h2i; (1)

where the inner product reads

hh1; h2i ¼ 4Re
Z fmax

fmin

~h1ðfÞ~h�2ðfÞ
SnðfÞ df: (2)

Here, ~h denotes the Fourier transform of h and � is the
complex conjugation. Throughout this paper, we shall
assume the noise spectral density of Advanced LIGO, in
the zero detuned high power configuration detailed in [19],
with a lower cutoff frequency at fmin ¼ 15 Hz. The upper
frequency cutoff, fmax , is determined by the signal tem-
plates we assume. Since we are dealing exclusively with
inspiral signals and ignoring the merger and ringdown
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phase, it is common practice to cut the inspiral frequencies
at the equivalent innermost stable circular orbit of the
Schwarzschild spacetime, at

fmax ¼ 1=ð63=2�MÞ (3)

(where M is the total mass of the system). We could use a
more general, possibly spin-dependent, description of the
upper cutoff frequency, but that is not the focus of this
paper, and our algorithm is readily applicable to more
complicated forms of fmax .

By evaluating the distance (1) or the overlap (2) one can,
with some confidence, draw conclusions about the origin
of the detected signal, if the template agrees very well with
the data. Two main issues arise, however. Various tem-
plates with different source parameters may all agree well
in terms of the predicted GW signals, and if the remaining
small differences are buried below the detector noise level
it becomes impossible to definitively identify the true
source parameters from just the GW observation. In addi-
tion, the template family may not be an exact representa-
tion of the real waveform, which again limits our ability to
unambiguously identify the source of the detected signal.

We shall analyze both effects here, statistical uncertain-
ties due to similar waveforms for different parameters and
systematic biases due to inaccuracies in the waveform
model. As such analyses are crucial for the correct inter-
pretation of GWobservations, there are already a number of
publications addressing these issues under various assump-
tions. In particular, PN inspiral waveforms have been ana-
lyzed by several authors, who calculated the measurement
accuracy of various source parameters assuming a similar
frequency-domain model to the one we employ here, but to
lower PN expansion order [20–24] or only for nonspinning
systems [25]. Systematic errors between different PN
approximants describing nonspinning systems have been
studied with extensive overlap calculations in [9].

We elaborate on the existing insights here by improving
the linearization of (1) through a suitable coordinate choice
in combination with a PCA, which allows us to understand
in a systematic way which combinations of physical
parameters are best constrained and which analytical con-
tributions to the inspiral waveform are crucial to correctly
recover the source parameters.

The details of our strategy are as follows. We assume
that h1 and h2 can be parametrized by a common waveform

manifold h such that h1 ¼ hð�Þ and h2 ¼ hð�̂Þ, where � is
the vector of waveform parameters with components �i
(we shall put these in concrete terms in Sec. II B). With a
minimization of the distance (1) in mind, we next apply the
well-known linearization

khð�Þ � hð�̂Þk2 � X
i;j

�ij��i��j; (4)

where �� ¼ �� �̂ and �ij is the Fisher information

matrix,

�ij ¼
�
@h

@�i
;
@h

@�j

�
: (5)

For more details about this approach and the validity of
the Fisher-matrix approximation, see for instance [14]. We
simply use it as a convenient linearization here.
The inverse of the Fisher matrix is the covariance matrix

of the waveform parameters, C ¼ ��1, and instead of
quoting the variances of the used parameters (as done,
e.g., in [20–25]), we proceed by diagonalizing the Fisher
matrix. The result can be written as

�ij ¼
X
k;l

�T
ik�kl�lj; (6)

where�ij denotes the jth component of the ith eigenvector

of the Fisher matrix. �ij is a diagonal matrix with positive

eigenvalues on the diagonal, i.e., �ij ¼ �i�ij. Since the

eigenvectors are also eigenvectors of the covariance
matrix, C, we have thus performed a PCA, and the vector

�i ¼
X
j

�ij�j (7)

describes the principal components of the system.
Working with these coordinates rather than the original

parametrization has the great advantage that the waveform
difference (4) becomes simply

khð�Þ � hð�̂Þk2 ¼ X
i

�i��
2
i : (8)

We can now easily conclude from the size of the
eigenvalues which principal components (or which
principal directions in parameter space) affect the wave-
form strongly. This will be important to understand how
well constrained and therefore measurable certain parame-
ter combinations are, given that waveforms that differ
below the noise floor cannot be distinguished from each
other.
Typically, the smallest difference that is measurable is

quoted to be

khð�Þ � hð�̂Þk2 ¼ 1; (9)

see [26] and further discussions in [27,28]. Here, however,
we follow the recent discussion by Baird et al. [10], who
detail that the 90% confidence interval in the posterior
probability distribution is given to linear order by

khð�Þ � hð�̂Þk2 < �2
k; (10)

where �2
k is the �2 value for which the probability of

obtaining that value or less in a �2 distribution with k
degrees of freedom is 90%.We shall later restrict ourselves
to three physical parameters (the two masses of the com-
pact objects and one spin magnitude) where �2

3 � 6:25 and
waveforms with distance

khð�Þ � hð�̂Þk2 < 6:25 (11)
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cannot be distinguished at 90% confidence. Note that for
SNR 10, this is approximately equivalent to the region of
waveforms with overlap greater than 97% [10].

B. Waveform model

Let us specify in this section what waveform mani-
fold hð�Þ we are using, which set of parameters �i we
are considering, and how we can take advantage of the
methods presented in the previous section.

In GW data analysis, the inspiral waveform of a coales-
cing compact binary is most conveniently expressed in a
closed form in the Fourier domain, which allows for a very
fast evaluation of thousands of templates, if needed. We
shall use the same signal description here, which is com-
monly referred to as the ‘‘TaylorF2’’ approximant. Derived
from the stationary-phase approximation of the PN energy
balance law [29,30], it reads

~hðfÞ ¼ A
�
f

f0

��7=6
eic ðfÞ; (12)

whereA is an amplitude term which we set by requiring a
particular SNR, hh; hi ¼ �2, and f0 is an arbitrary refer-
ence frequency as detailed below. We do not consider
contributions from higher harmonics, which can be found
in [31,32]; henceA is simply a constant determined by the
binary’s total mass, distance, orientation and sky location.
With this assumption (12) is often called the restricted PN
waveform [9].

The phase, c ðfÞ, is given as a series in the gravitational
wave frequency f,

c ðfÞ ¼ XN
k¼0

�
f

f0

�ðk�5Þ=3½c k þ c log
k log ðf=f0Þ�; (13)

where we introduce f0 to make all coefficients dimension-

less. The expansion coefficients c k and c log
k have been

determined within the PN formalism in various publica-
tions (see [8] and references therein). Currently, the highest
PN order to which they are known is 3.5 (k ¼ 7) for non-
spinning contributions. Spin-dependent contributions enter
as leading-order and next-to-leading order spin-orbit
effects at 1.5 and 2.5PN order (k ¼ 3, 5) [33–35]. We
also include the tail-induced spin-orbit contribution to the
flux at 3PN order (k ¼ 6) [36]. In addition, spin-spin
effects are included at relative 2PN order [33,37–39] and
a 2.5PN contribution to the flux is associated with energy
flux into the BH [40]. The explicit set of coefficients we
employ can be read off the phase expansion in Eq. (2.91) of
[41], or equivalently Eq. (A21) of [42], with the exception
of the 3PN term, where we also add the recently calculated
tail-induced spin-orbit term (see Eq. (6.6) of [36]). We
note that in the course of finalizing this paper, PN spin
contributions at even higher expansion order have been
computed in [43] which are not included in this study.

Three physical source parameters define the binaries we
consider: one object is a BH of mass m1, the other is a NS
of massm2. In addition, the BH is allowed to have a spin S1

aligned with the direction of the orbital angular momentum

L̂ of the binary, which we parametrize through the dimen-
sionless quantity,

�1 ¼ L̂ � S1

m2
1

: (14)

The NS spin is assumed to be negligible and set to zero.
We could also include the spin of the second compact
object without any modification to our algorithm, as long
as the spins are aligned with the orbital angular momen-
tum. However, astrophysical expectations are that NSs in
compact binaries do not spin rapidly [12,13], which is
confirmed by the fact that the highest NS spin parameter
in a binary observed to date [44] has a value of �� 0:05. In
addition, it was argued from a purely GW data analysis
point of view that two spin parameters can efficiently be
mapped onto one effective spin parameter, essentially with-
out changing the waveform manifold [45–47]. In that
sense, one spinning BH can simply be seen as a represen-
tative of the class of aligned-spin systems with the same
effective spin.
We thus consider the PN coefficients in (13) generally

as functions of ðm1; m2; �1Þ. Note, however, that we work
under the assumption of general relativity, in which c 1 and
many log terms are exactly zero.1

Two coefficients deserve further attention. c 5 is a
constant phase that comes with no frequency-dependent
factor, and it represents what is usually referred to as an
additional parameter: the ‘‘phase at coalescence’’ or the
initial phase. The corresponding initial time or ‘‘time
at coalescence’’ is included in c 8, which is a linear
contribution to the phase. When we estimate waveform
differences later, we are not interested in any discrepancy
caused by time or phase shifts, so we shall project these
parameters out of the Fisher matrix.
Now that we have defined our parameters and waveform

model, we could proceed by calculating the Fisher matrix
(5) for the parameters ðm1; m2; �1; �0; t0Þ, where �0 and t0
represent the free time and phase shift, or equivalently
for any other five-dimensional parametrization that can
uniquely be mapped to the above parameters. It was found,
however, in various publications that assuming a moderate
SNR (between 10 and 20) and the noise spectral density of
the (initial or advanced) LIGO detector leads to rather large
statistical parameter biases in some parameters of interest.

1In non-Einstein theories some of these terms may not be zero,
for example in Brans-Dicke gravity a term arises already at a
value of k ¼ �2 [48]. In order to capture waveforms of any
gravitational theory, as performed in for example [49], who
include a possible nonzero k ¼ 1 term, these terms would
need to be incorporated. In this work we focus on the general
relativity results and set these terms explicitly to zero.
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The linearization of the waveform difference implies that
waveforms can definitively be told apart only if parameters
like the individual masses or the mass ratio are consider-
ably different [22–24] (to the order of tens of percents
and more). The validity of the linearization is rightly
questioned in these cases, and the true confidence interval
(10) likely has more structure than the ellipsoid predicted
in the Fisher-matrix approach.

We partly circumvent these problems here by using the
PN coefficients themselves as free parameters rather than
the original physical parameters, i.e.,

�i ¼ fc kg [ fc log
k g: (15)

All nonzero PN coefficients up to N ¼ 8 are now consid-
ered to be free parameters, which yields a ten-dimensional
parameter space that includes eight c k (k ¼ 0; 2; 3; . . . ; 8)

and two c log
k (k ¼ 5, 6). As noted above, the same idea,

combined with an eigenvector analysis, has already been
presented by Tagoshi and Tanaka [15] and Brown et al.
[18] in the context of template placing, and by Pai and
Arun [17] to probe PN theory with GW observations. We
shall show below how this trick is also useful to understand
statistical and systematic errors of inspiral waveforms.
One important feature we will exploit is that the Fisher
matrix (5) becomes almost parameter independent for the
choice (15), which makes extrapolating the waveform
difference (4) to large parameter variations much more
accurate [15,50]. Specifically, the only parameter depen-
dence in the resulting matrix

�ij ¼ jAj2
Z fmax

fmin

�
f

f0

�
	 log �ðf=f0Þ

SnðfÞ df (16)

is inherited from the upper cutoff frequency (3). The
exponents 	 and � are solely functions of i and j. [� is
simply 0, 1 or 2, depending on the number of logarithmic
coefficients in f�i; �jg; 	 depends on the PN order that each

� component corresponds to. Given the mapping i � kðiÞ,
we can express 	 ¼ ½kðiÞ þ kðjÞ � 17�=3.]

We shall later show how we can exploit the fact that in
this convenient parametrization, finding the confidence
interval around a given target signal transforms to a
simple geometric exercise in the flat space, assuming we
can fix the cutoff frequency parameter independently
(which we shall do in Secs. III B and IV). An illustration
of advantages and caveats of this geometric interpretation
is provided by Fig. 1. In addition, we shall show in
Sec. III A how a weak nonflatness, inherited by a parameter
dependent fmax , can be incorporated properly in accurate
overlap calculations.

As mentioned earlier, the waveform variations we are
interested in are obtained by projecting the time and phase
shifts out of the Fisher matrix, and we can do so following
the simple procedure [51]

~�ij ¼ �ij �
X
a;b

�ia

ab�bj: (17)

Here, 
ab denotes the inverse of the two-dimensional
submatrix of � corresponding to the parameters c 5

(phase shift) and c 8 (time shift). The projected matrix
~�ij is effectively eight dimensional, thus we shall find eight

eigenvectors and eigenvalues that govern waveform
changes according to (8).
Let us mention two caveats before we continue with

presenting our results. First, in calculating the Fisher
matrix with more than just our five physical parameters,
we implicitly treat all PN coefficients as independent,
which is clearly not true for the underlying lower-
dimensional waveform manifold. So we have to take care
to ‘‘project’’ our results back onto physically meaningful
quantities. We shall do so by reexpressing the principal
components not just as functions of PN coefficients, but
eventually as functions of the physical parameters.
Doing so will render all the principal components as

functions of the physical parameters and in the underlying
lower-dimensional waveform manifold they will not all be
independent. When the number of PN coefficients is larger
than the number of physical parameters (which it typically
will be in our applications) the excess principal compo-
nents will not give additional information about the physi-
cal parameters. In practice we will find that the errors on
these excess principal components will be large anyway
and they can be ignored. Note that a different strategy was
followed in [18] where the authors perform an additional
PCA to rotate the original principal directions onto the
physical manifold. This additional step, however, depends

FIG. 1 (color online). Geometric interpretation of calculating
waveform differences in a higher-dimensional flat space (8).
The actual manifold of inspiral waveforms is illustrated as a
two-dimensional curved surface that can be embedded in a
higher-dimensional flat space [see coordinate choice (15)],
here depicted in three dimensions. The confidence interval has
a trivial geometry in the higher-dimensional space (here illus-
trated as a ball around the target waveform, which is shown as a
white dot), which has to be projected back onto the physical
waveform manifold.
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on a freely chosen sample of source parameters, and we
instead focus on the identification of, in absolute terms,
best measurable combinations of PN coefficients, indepen-
dent of how the particular model is oriented in that space.

C. Numerical stability

The second issue to be aware of is that the condition
number of the Fisher matrix, which we can view as the

ratio of greatest and smallest eigenvalue of ~�ij, can become

quite large for the matrices we are considering. This means
that inverting the matrix can become susceptible to
numerical errors. Calculating the eigenvalues for these
matrices, however, is still a well-conditioned problem by
virtue of the Bauer-Fike theorem which states [52]

j�� � ��þ��j � 	2ð�Þk��k2 (18)

for a diagonalizable matrix � with eigenvalue �� and a
perturbed matrix �þ �� with eigenvalue ��þ��. The fac-
tor 	2 is the condition number of the diagonalizing matrix
� and k��k2 denotes the matrix 2-norm of the perturbation
matrix ��. Since in the case of a real symmetric matrix �,
the diagonalizing matrix � is orthogonal with condition
number 	2ð�Þ ¼ 1, we are guaranteed that the eigenvalue
problem is well conditioned. A small change in � caused
by numerical truncation error will only cause a small
change in the eigenvalues. This well-conditioned property
is in fact true for any normal matrix A satisfying AyA ¼
AAy with well-separated eigenvalues. This means that the
large eigenvalues (and this is what we are interested in) of
the Fisher matrix can be reliably computed even when the
original matrix contains many PN coefficients and is itself
ill conditioned.

There are, of course, more sources of error in addition
to the numerical inversion of a badly conditioned matrix.

In our case of the eight-dimensional matrix ~� (as introduced
in Sec. IIB) we find the largest source of error to be the
numerical integration of (16). We compared various
methods—simple uniform discretization with subsequent
extrapolation to infinite resolution and local adaptive meth-

ods—and the difference we find is of the order k�~�k2 �
10�2 for the target signal we shall analyze in the next section
(see Fig. 2 and Table I). We have to compare this number to
the size of the eigenvalues that we try to calculate, and by
doing so we shall find in Table I that the first (i.e., greatest)
three eigenvalues are guaranteed to be well determined,
subsequent eigenvalues are of the same order or smaller
than the error bound (18). Note, however, that by comparing
the eigenvalues and eigenvectors obtained from different
integration techniques directly, we find that the uncertainty
in the fourth eigenvector is still negligible. The numerical
values of higher eigenvalues cannot be trusted, but we shall
show that this does not harm our calculations.

There is a similar estimate for the eigenvectors xi that
are perturbed by �xi under a perturbation of the Fisher
matrix by ��. In this case we have [52]

�xi ¼
X
j�i

xTj ��xi

ð�i � �jÞ xj þOðk��k2Þ: (19)

For the eigenvectors with large eigenvalues �i, this ensures
that their components are also well conditioned despite the
matrix � being ill conditioned. This is sufficient for our
purposes since we focus on waveform differences calcu-
lated via (8), which are dominated by the eigenvectors with
large eigenvalues. In numerical testing it was observed that

FIG. 2 (color online). The estimated 90% confidence interval
around a NS-BH signal with component masses 1:35M� and
5M�, SNR 20 and a BH spin of �1 ¼ 0:3, as indicated by the
(red) dot. Dashed and solid lines are Fisher-matrix estimates in
terms of the physical parameters (with parameter differences in
terms of the logarithm of parameters, e.g. � log� for the dashed
lines or with parameters linearized as ��=� for the solid lines).
The gray region is obtained by actual waveform overlaps, or
equivalently by the PCA introduced in Sec. II. Both methods
yield indistinguishable results.

TABLE I. The principal components of the Fisher matrix
that treats the PN phase coefficients as free parameters
(see Sec. II B). The target signal is the same as in Fig. 2. We
report the eigenvalues �i and the theoretical spread ��i (Fisher)
in the 90% confidence interval, assuming all PN coefficients to
be free and independent parameters. The latter should be con-
trasted with the actual variation ��i (actual) on the lower
dimensional waveform manifold, which in turn affects the wave-
form difference (8) by the amount stated in the last column. Note
that the numbers shown here depend on the reference frequency
f0 in (13), and we employed f0 ¼ 200 Hz.

i �i ��i (Fisher) ��i (actual) �ið��iÞ2 (actual)

1 45300 0.012 0.011 5.56

2 80 0.28 0.27 5.73

3 0.84 2.7 1.2 1.17

4 0.008 28 16 2.08

5 4	 10�5 390 1.6 �10�4

6 4	 10�8 1	 104 46 �10�4

7 2	 10�10 2	 105 4.9 �10�9

8 1	 10�13 7	 106 41 �10�10
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the large eigenvalues are always well separated and that the
eigenvalues and eigenvector components were stable for
small changes of the Fisher matrix �. This stability of the
diagonalization process applies to both the numerical
errors and also to small deviations in the noise spectral
density, which will also give rise to small changes in the
Fisher matrix.

III. MEASURABLE PARAMETER
COMBINATIONS—STATISTICAL ERROR

Let us now present the results we obtain with the
method and waveform model introduced in Sec. II. We
first estimate statistical errors by asking the question:
Which waveforms in a neighborhood of a given signal
are similar to the latter to an extent that they cannot be
distinguished at a 90% confidence level? We shall show
that

(1) our method of estimating waveform differences is
superior to standard Fisher-matrix estimates (that
are carried out in terms of the physical parameters),
and we find no considerable differences between our
computationally cheap method and full overlap
calculations;

(2) because of an approximate degeneracy between
mass ratio and spin, the individual masses cannot
be determined accurately in GWobservations alone,
but

(3) through a PCAwe are able to identify the parameter
combinations that are accurately measurable.

Our results complement previous publications that esti-
mated the measurability of source parameters of spinning
systems either by Fisher-matrix calculations [22–24] or
recently by direct overlap calculations [10,11].

A. Advantage of different parametrizations

The target system we consider for illustration is a binary
containing a nonspinning NS of mass 1:35M� and a BH
with 5M� and a spin of �1 ¼ 0:3. We further assume a
moderately high SNR of 20. We can now easily demon-
strate the efficacy of our approach by estimating the 90%
confidence interval [defined by (10)] around the target
signal with various strategies and compare the results
with proper overlap calculations.

The standard Fisher-matrix estimate in terms of �i ¼
flogM; log�;�1; t0; �0g is the simplest way of obtaining a
multidimensional ellipse around the target parameters.
Here we adopt the commonly used parametrization in
terms of the symmetric mass ratio � and the total mass M,

� ¼ m1m2

M2
; M ¼ m1 þm2: (20)

Using the logarithms of the mass-dependent parameters
improves the condition number of the Fisher matrix, and
the square root of the diagonal elements of the inverse

matrix (properly scaled) immediately yield the dimensions
of the confidence interval,

�M

M
� 60%;

��

�
� 100%; ��1 � 0:4;

�t0 � 10 ms; ��0 � 52 rad:
(21)

Evidently, these ranges are extremely large, and we would
have to incorporate prior restrictions of the parameters to
obtain a slightly more realistic estimate of the parameter
uncertainties [14,22–24]. However, we merely use it as an
illustration here.
Of course, it is well known that particular parameter

combinations can potentially be measured much more
accurately. The canonical example is the chirp mass

M ¼ M�3=5 (22)

which governs the Newtonian-order PN phase coefficient.
In the above example, Fisher-matrix calculations in
terms of M instead of M (the other parameters remain
unchanged) reveal

�M
M

� 0:32%; (23)

and we shall later formalize the search for such well-
determined parameters.
For now, we focus on the other physical parameters and

show in Fig. 2 the boundaries of the confidence interval,
projected onto the �-�1 plane according to (17). As we use
log� as one parameter, the corresponding variation reads
� log� ¼ log�� log �̂, which gives rise to the dashed
curve in Fig. 2. Since we work only to linear order in the
parameters, we may as well express � log� � ��=� ¼
ð�� �̂Þ=�, which in turn leads to the solid ellipse in
Fig. 2. Already these two linear approximations differ
considerably in the range where we apply them, indicating
that we should not trust the linearization for such high
parameter variations.
Instead, the gray shaded region in Fig. 2 can be ob-

tained by actual overlap calculations according to (1) and
(2), and then simply recording the area where the distance
between target and model waveform satisfies (11). Note
that in order to compare with the projected Fisher matrix,
we optimized the inner product over all parameters not
shown in Fig. 2 (these are t0, �0 and M). This approach,
however, entails nontrivial computational efforts, and a
much more efficient method is to use the parametrization
(15) discussed in Sec. II B that embeds the waveform
manifold in flat space where the Fisher matrix is parame-
ter independent. In that case, calculating the waveform
difference (4) becomes a simple, yet very accurate matrix
multiplication. Indeed, when we calculate the data for
Fig. 2, there is no distinguishable difference between
actual overlap results and Fisher-matrix estimates in terms
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of PN coefficients (15), but the computation times differ
by several orders of magnitude, the latter calculation
being much faster.2

The details of this fast algorithm are as follows.
We calculate and diagonalize �ij in terms of the PN

coefficients (15). Inverting this matrix to estimate the
accuracy of these parameters is likely to introduce large
numerical errors, because as noted in both [17,53], large
Fisher matrices of this form are ill conditioned and nu-
merical inversion routines cannot be trusted. However,
diagonalizing the Fisher matrix is numerically more stable
due to (18) and (19), and we only need to accurately
calculate the eigenvectors with large eigenvalues.

Table I reports these eigenvalues �i that enter the
waveform difference through (8). Assuming a maximally
allowed square difference of 6.25, Eq. (11), we can then
simply scale the inverse square root of �i to obtain the
theoretical range of principal components in the confidence
interval [denoted by ��i (Fisher) in Table I]. However,
this will be of little value, since we cannot easily trans-
form this range back to physical parameters, and the
actual waveform manifold is only a subset of the eight-
dimensional ellipse we have just calculated, see Fig. 1.

Instead, we densely populate the (physical) parameter
space around the target signal, transform these coordinates
to the �i space (by a matrix multiplication) and select all
points that fulfill (11). This is a computationally very cheap
procedure which allows us to find the actual spread in
both physical parameters and principal components. Of
course, ��i, restricted to the physical waveform manifold
(labeled by the word ‘‘actual’’ in Table I), has to be less
than or equal to the theoretical prediction that assumes all
PN coefficients to be independent, and indeed, this is what
we find in Table I. Moreover, we conclude from these
numbers that only the first four principal components
contribute significantly to the waveform difference, and
we can neglect the others for all practical purposes, as their
actual variation is diminished by the small associated
eigenvalue.

The superiority of our PCA over standard Fisher-matrix
estimates is based on two key modifications. First, we
increase the dimensionality of our coordinate space such
that the physically allowed waveform manifold is em-
bedded into a space with only weakly varying matrix
coefficients. As stated before, this makes the extrapolation
to large parameter deviations much more accurate. On the
other hand, one might think about using the first principal
components as new coordinates (instead of the physical

coordinates M, � and �1) without increasing the dimen-
sionality, and although locally this is just a linear trans-
formation, the predicted confidence interval would still be
more accurate. The reason for this is that different coor-
dinate choices yield the same result locally (i.e., to linear
order, as one can also see in Fig. 2), but for larger distances,
it becomes increasingly important which specific set of
parameters is bounded by the Fisher-matrix estimate.
Thus, inverting the ��i whose functional form is adapted
to the PN waveform structure is more accurate than the
simple linear approximation in physical parameters.
Let us make a final remark on the power of our approxi-

mation. Previous uses of PN coefficients as free parameters
in the Fisher matrix have largely neglected a parameter-
dependent cutoff frequency in the inner product (2), mainly
because the considered systems had low enough total mass
to place fmax out of the detector’s sensitivity band. For
mixed NS-BH binaries we still may want to neglect the
merger and ringdown of the signal, but the waveform then
has to be terminated in the detector band with a consistent
cutoff frequency that is at least total-mass dependent as
in (3). Such additional complications do not spoil the
accuracy of the estimate, as the following simple calcula-
tion shows. Assume the waveforms of two systems h1, h2,
with total masses M1 <M2. Their distance is based on an

integral in Fourier space, and due to fð1Þmax > fð2Þmax we can
simply expand

kh1 � h2k2 ¼ ½kh1 � h2k2�f
ð2Þ
max

fmin
þ ½kh1k2�f

ð1Þ
max

fð2Þmax

; (24)

where the brackets indicate the integration range, and the
second part only contains h1 because h2 has been termi-
nated already in this frequency range. The first part can
accurately be estimated with a parameter-independent
Fisher matrix that incorporates the smaller upper cutoff
frequency. The second part is proportional to a simple

integral over f�7=3=SnðfÞ in the respective frequency
range. Both contributions have been included in the data
shown in Fig. 2.
As evident from Fig. 2, the true confidence interval is

considerably smaller than predicted by ‘‘standard’’ Fisher-
matrix estimates. From efficiently calculating waveform
differences for many neighboring points, we can now
simply read off the range of physical parameters that
fulfills (11), and we find

��

�
& 50%; ��1 & 0:25;

�M

M
& 40%;

�M
M

& 0:2%:

(25)

Expressed in individual masses, we find

2:5M� � m1 � 8:0M�; 1:0M� � m2 � 2:5M�: (26)

Hence, at 90% confidence, we would not be able to
tell purely from a GW observation whether the observed

2The actual improvement in computational cost depends on
the details of the implementation. We tested our speed-optimized
single-core implementations of both Fourier-transform and
Fisher-matrix based algorithms, and the latter performed be-
tween 140 and several hundred times faster than the standard
fast-Fourier-transform method, depending on the accuracy of the
time optimization.
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system is composed of two rather heavy and hardly spin-
ning NSs, or a light NS and a significantly spinning BH.
The same conclusion was recently drawn in a detailed
study by Hannam et al. [11].

B. Accurately measurable principal components

Apart from computational benefits, the method of
diagonalizing the Fisher matrix, thereby finding
uncorrelated parameters, enables us to systematically
understand which combinations of physical parameters
are well measurable and, in turn, along which paths GW
signals are almost degenerate. We consider again our
example of a 5M�=1:35M� BH/NS system with a BH
spin of 0.3.

We start with the standard Fisher matrix in terms of the
physical parameters flogM; log�;�1; t0; �0g. Note again
that the Fisher matrix in terms of these parameters is
strongly parameter dependent, and the results we shall
obtain below are only valid for the considered target
system. Nevertheless, we present them as an instructive
illustration of the basic method before moving on to a more
general interpretation.

After projecting out the time and phase shift [see
Eq. (17)], the eigenvalues we find are separated by 4 orders
of magnitude, respectively, and the first principal compo-
nent (with the highest eigenvalue) reads

�1 / logMþ 0:59 log�� 0:02�1: (27)

The spin dependence is rather small, so we neglect it for
simplicity and find that ~�1 ¼ e�1 �M�0:59 is remarkably
similar to the chirp mass (22). It is not surprising, but
reassuring that the PCA indeed finds the parameter that
has already been considered as the best-measured quantity
as the first principal component. Note, however, that the
spread of �1 in the 90% confidence interval is ��1 ¼
�~�1= ~�1 ¼ 0:007%, therefore much smaller than the
variation in M, cf. (23). We can easily understand this
by imagining the long ellipsoidal shape of the estimated
interval that extends to very different lengths along the
principal components. A minimal rotation (such as from
~�1 to M) can dramatically increase the extent of the
ellipse along the given direction.

Nevertheless, it is important to keep in mind that the
results of the above analysis will slightly change with
different values of the source parameters, different variants
of the detector noise curve and other cutoff frequencies.
Thus, it is likely to be more practical to considerM as the
approximately best measured parameter. It is still much
more accurately determined than the second principal
component �2, so we proceed with calculating the Fisher
matrix in terms of flogM; �; �1; t0; �0g. After projection
and diagonalization, M is indeed the dominating contri-
bution to �1, and �2 reads

�2 / �þ 0:42�1: (28)

We have neglected the small logM contribution (that has
an estimated coefficient of 0.05) in (28) as we regard the
chirp mass as essentially measured by �1 and we are now
interested in determining the remaining parameters. As
empirically observed and discussed in Sec. III A, we can-
not simply determine the individual masses by measuring
the two ‘‘best’’ parameters very accurately. Even though
the chirp mass is only mass dependent, the next principal
component is a combination of (symmetric) mass ratio and
spin. Thus, as long as the spin value is not determined by
other means, we cannot neglect it. Neglecting it would
result in the mass ratio being measured incorrectly.
The second principal component within the 90% con-

fidence interval is uncertain by ��2=�2 � 1%, which by
itself is not a large uncertainty. However, to extract the
physically more interesting parameters � and �1 and with
them the individual masses, we need to consider the third
principal component as well, which reads

�3 / �� 2:40�1: (29)

We again neglect the small logM contribution here
(entering with a factor �0:02). This third principal com-
ponent, however, is measurable only by ��3=�3 � 200%
which severely limits our ability to identify the physical
parameters. A visualization of the range of parameters
restricted by the spread in �2 and �3 is shown in Fig. 3.
Note that this is entirely consistent with the standard
Fisher-matrix ellipse in Fig. 2 and the numbers presented
in (21). In particular, we see that due to the tilt of �2

in the �-�1 plane and the fact that � can only take
values between 0 and 0.25, the allowed spin is actually
somewhat restricted, whereas we cannot restrict the mass
ratio of the observed system at all, at 90% confidence

FIG. 3 (color online). Illustration of the mass-ratio/spin
degeneracy through principal components for the same target
signal as shown in Fig. 2. Even though �2 is accurately mea-
surable (� 1%), it only restricts the parameter space to a line in
the �-�1 space. The next principal component, �3, is less well
determined (� 200%) and restricts the parameter space only
weakly. The best measured parameter �1 determines the chirp
mass and does not impact this plot.
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(and the assumptions underlying the detector and wave-
form model).

The arguments we have just provided are simple and
instructive, but, just as in Sec. III A, the results are not very
accurate, and the specific functional forms of �2 and �3

vary throughout the parameter space. Again, the better
suited parametrization in terms of the PN coefficients can
potentially cure both problems to some extent, because we
have already demonstrated that the Fisher-matrix estimates
are much more accurate in this higher-dimensional space.
In addition to that, by using the PN coefficients we auto-
matically impose a waveform-adapted functional depen-
dence upon the physical parameters that will lead to
principal components that are not only simple linear com-
binations of the source parameters.

Let us stress again that using the PN coefficient (15) as
free parameters makes the Fisher matrix only weakly
varying throughout the parameter space, thus we can ana-
lyze principal components for an entire range of source
parameters by diagonalizing just one matrix. The trans-
formation matrix �ij encodes which PN coefficients con-

tribute most significantly to each principal component,
which we illustrate in Table II. We have chosen the cutoff
frequency to be that of our previous target signal, i.e., (3)
with M ¼ ð1:35þ 5ÞM�, fmax � 700 Hz. However, we
also tested cutoff frequencies between 300 and 2000 Hz
(which is even beyond the tidal disruption frequency for
our example system, but a reasonable cutoff for lower mass
systems), and the important contributions in the first two
principal components vary by less than 10%.

It is worth pointing out that the numbers in Table II
depend on the normalization frequency f0 chosen in (13),
and it is a well-known ambiguity of any PCA that it
changes with scale variations of the used variables. We
have chosen f0 ¼ 200 Hz such that Table II gives a good
indication of which PN coefficients are important in the
Advanced LIGO detector band, but �ij alone are not

invariant quantities. The invariant quantity is the waveform

difference in the form of Eq. (8), and our aim is to illustrate
individual contributions to this difference from various
principal components. Therefore, by visualizing the
(f0-dependent) values of �i, we can immediately gauge
how strongly the GW signal changes throughout the
parameter space. To do that, we interpret �i as a function
of the physical parameters by first expressing the individ-
ual principal components as linear combinations of PN
coefficients according to (7). We then replace each PN
coefficient by the appropriate phase expansion term that
in turn depends on M, � and �1.
Figure 4 shows contours of the constant first principal

component. We plot contours in steps of 1000 times
the predicted accuracy of �1 in a 90% confidence interval
(see Table I), hence we see again that �1 is exceptionally
well measurable. In addition, by simple comparison with
constant chirp-mass lines or by the fact that the Newtonian
phase contribution in�1 is clearly dominating, we confirm
once more, in a systematic way, that the chirp mass is to a
good approximation the best measurable parameter in GW
inspiral waveforms. Furthermore, we see in Fig. 4 that
smaller chirp masses can be measured more accurately
(in absolute terms), because the spacing between �1

contours decreases towards the bottom left which allows
for a fine waveform distinction perpendicular to
constant-M lines.
However, we should keep in mind that the actual best-

measurable parameter is a PN-like expansion series with
not only a M-dependent dominant term, but also �- and
�1-dependent higher-order corrections. Indeed, Fig. 4 does
not change very sensitively with varying spin, but we find
noticeable deviations of �1 contours from constant-M
lines when the spin parameter is close to �1.

TABLE II. Contributions of PN phase coefficients to principal
components, obtained with a normalization frequency f0 ¼
200 Hz. The cutoff frequency employed here is fmax �
700 Hz (cutoff of the reference signal in Fig. 2), although this
affects the highest values only weakly.

�i1 �i2 �i3 �i4 �i5 �i6 �i7 �i8

i 0PN 1PN 1.5PN 2PN 2.5PN log 3PN 3PN log 3.5PN

1 0.98 0.17 0.06 0.02 �0:03 0.00 0.00 0.00

2 �0:18 0.77 0.45 0.17 �0:36 �0:07 �0:10 �0:07
3 0.05 �0:47 0.07 0.17 �0:65 �0:20 �0:46 �0:25
4 0.02 �0:32 0.45 0.25 �0:27 0.09 0.68 0.30

5 0.01 �0:23 0.71 0.07 0.53 0.11 �0:30 �0:24
6 0.00 �0:05 0.22 �0:45 �0:03 �0:32 �0:30 0.74

7 0.00 0.02 �0:19 0.77 0.15 0.15 �0:32 0.47

8 0.00 0.00 �0:04 0:27 0.25 �0:90 0.20 �0:13

6 8 10 12 14 16 18 20

0.05

0.10

0.15

0.20

0.25

M M

FIG. 4 (color online). Contours of the first principal compo-
nent �1 (solid lines), decreasing from bottom left to top right in
steps of 1000 times the predicted accuracy within a 90% con-
fidence interval, ��cont

1 ¼ 1000��1 (Fisher), cf. Table I. Here

we assume nonspinning binaries, although the picture is largely
independent of the spin. Dashed (red) lines are contours of
constant chirp mass (22), M=M� ¼ f1; 2; 3; 4; 5g (increasing
from left to right).
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In any case, �1 can be very well constrained by GW
measurements, and we use this fact to analyze the other
principal components in the �-�1 plane only. The other
physical parameter, the total mass M, is then determined
for each point by inverting �1ðM;�; �1Þ ¼ const, where
we use the value of�1 that corresponds to our target signal
(see Fig. 2) as the constant on the right-hand side. Figure 5
illustrates the resulting contours of �i, i ¼ 2, 3, 4. We find
that both �2 and �3 are reasonably well measurable, i.e.,
after detecting a signal, we cannot only be confident about
the value of the chirp mass (under the simplifying assump-
tions made here), the associated values of �2 and �3 also
restrict the range of plausible source parameters to rather
narrow bands in the mass-ratio/spin space. However, these
two bands have very similar structure, and accurately
identifying the values of � and �1 individually remains

hard. This issue is illustrated in Fig. 6, where we overlay
the predicted confidence intervals of�2 and�3 around our
fiducial target signal, and the result we find is entirely
consistent with the confidence interval depicted in Fig. 2.
Note that adding information from higher principal com-
ponents �i, i 
 4, does not add any more constraints as
their uncertainty is too large, which can be seen for �4 in
the right panel of Fig. 5. In fact, as mentioned earlier, in the
specific case we consider the waveforms only depend
on three physical parameters, hence a fourth principal
component such as �4 cannot add any information for
determining physical parameters.
However, it is important to realize that the conclusion

that three parameters are measurable is largely independent
of the functional form of the PN phase coefficients. One
might be tempted to relate this fact to the three physical
parameters we started with, but we just showed that three
well-constrained principal components do not automati-
cally imply that the physical parameters can be determined
to the same accuracy. Even more important is the inverse
conclusion. If we had a waveform model in the form (13),
but with phase coefficients that are functions of more
parameters (e.g., a second spin or tidal parameters of the
NS), we would only be able to constrain three parameter
combinations ð�1; �2; �3Þ, except when the variation of

the PN coefficients c ðlog Þ
k through the parameter space of

interest is dramatically increased. Of course, the functional
form of the principal components might be different, thus
Figs. 4–6 may change, but the PCA is performed before the
phase coefficients have to be specified, so Table II and the
eigenvalues in Table I are generally valid.
For convenience and future reference, it is useful to

explicitly write down a simplified version of �2 that in-
cludes all spin contributions that are known for the relevant
terms. According to Table II, all 8 PN phase coefficients
enter �2 with nonvanishing contributions, some of which,
however, are much smaller than others. We compared the
full �2 expansion with simplified versions that included
only the one (two, three) most dominant�2j contribution(s).
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1.0

0.5

0.0

0.5

1.0

1

0.05 0.10 0.15 0.20 0.25
1.0

0.5

0.0

0.5

1.0

1

0.05 0.10 0.15 0.20 0.25
1.0

0.5

0.0

0.5

1.0

1

FIG. 5. Contours of principal components �i (i ¼ 2, 3, 4), obtained from a PCA in terms of PN phase coefficients, see Table II. We
show slices of constant �1 (essentially constant chirp mass). Contours of �3 and �4 are drawn in steps of 2��i (Fisher) as given in
Table I, i.e., two neighboring lines visualize the 90% confidence interval around any point located on the imaginary line centered
within this interval. For better readability, contours of�2 are drawn in 5 times bigger steps, i.e., 10��2 (Fisher). Values of the contours
increase from bottom to top in all cases.

FIG. 6 (color online). Combination of two principal compo-
nent ranges from Fig. 5 around the target signal indicated by a
(red) circle. The intersection of both ranges is a good approxi-
mation of the 90% confidence interval around the target parame-
ters (cf. the actual interval in Fig. 2), and it is more accurate than
the estimate in Fig. 3. It is still only an upper bound because the
waveform difference is actually governed by the square sum of
deviations in �i (8) and we neglect the effect of a mass-
dependent cutoff frequency here.
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The values of such simplified expressions are different to the
full�2 result, but since we are interested in variations of�2

rather than the values itself, we only have to make sure that
the structure of a simplified �2 preserves the one shown in
the left panel of Fig. 5. (The same argument is underlying
our identification of M as the approximately best-
measurable parameter.) We find including only the 1PN
and 1.5PN phase terms is not sufficient, but by also adding
the 2.5PN log term, we find reasonable agreement between
full and simplified �2.

We therefore conclude

�2 � 0:77c 2 þ 0:45c 3 � 0:36c log
5 ; (30)

where all PN coefficients are understood as the phase
contribution at f0 ¼ 200 Hz. Note again that results of
PCAs generally depend on the initial choice of parameters,
and there is no fundamental principle which would guar-
antee that (30) is similar to �2 found earlier in terms of
physical parameters, (28). However, here we find indeed
that a linear expansion of (30) in � and �1 for constant �1

yields (28). Put differently, the linear tangent to the
constant-�2 line at the point of our target signal in Fig. 5
is accurately described by (28). While this consistency is
reassuring for assigning some physical meaning to the
principal components, we point out it does not hold
for �3 or any higher components that only exist in the
unphysical eight-dimensional space.

For convenience of the reader, we explicitly detail the
phase coefficients appearing in (30) below for the more
general case of two spinning bodies, with spins aligned
to the angular momentum (recall, the PCA remains unaf-
fected if the NS would be spinning, too). In the form used
in [41,42], the PN phase coefficients read

c 2 ¼ 1

�Mf0

�
55

384
þ 3715

32256�

�
; (31)

c 3¼ 1

ð�Mf0Þ2=3
�
113

128�
ð�sþ��aÞ�3�

8�
�19�s

32

�
; (32)

c log
5 ¼38645�

32256�
�65�

384
��s

�
735505

96768�
�12265

1728
�85�

96

�

���a

�
735505

96768�
þ 65

192

�
þ�s

5ð3��1Þ
64�

ð3�2
aþ�2

sÞ

þ��a

5ð��1Þ
64�

ð3�2
sþ�2

aÞ; (33)

where we used � ¼ ðm1 �m2Þ=M and the spin
combinations

�s ¼ �1 þ �2

2
; �a ¼ �1 � �2

2
: (34)

It is interesting to note that while c 2 is spin independent,

c 3 and c log
5 contain the leading order and next-to-leading-

order spin-orbit terms, respectively [35]. The terms cubic

in the spins are due to the energy flow into the BHs [40].
These are less important and not valid for NSs. However,
quadratic self-spin terms [39] and quadrupole-monopole
contributions [38] that appear at relative 2PN order
(i.e., they are part of c 4) affect the overall signal less
strongly, as they have no significant contribution to the
second principal component �2. The same applies to even
higher spin-orbit terms at 3PN order [36]. We shall verify
the importance of particular PN spin contributions in the
next section properly, but the results are already indicated
by the form of the principal components.
We refrain from analyzing �3 in the same detail. It is

mainly determined by c log
5 , c 2 and c log

6 and is thereby

sensitive to even higher spin corrections. Also the highest
order we consider, 3.5PN (c 7), influences �3 to consid-
erably larger extent than �1 or �2. We thus expect that,
of the first three principal components, �3 will be the
most sensitive to higher, as yet uncalculated, PN coef-
ficients. This may imply that the detectors are indeed
sensitive to changes in the values of higher order cor-
rections to the PN expansion, even if their absolute value
is small relative to lower order terms. However, once
more PN terms have been calculated, they can easily be
included in our algorithm and the waveform model can
be analyzed for degeneracies with the method presented
here.

IV. MODEL DEPENDENCE AND PARAMETER
BIASES—SYSTEMATIC ERROR

While the previous section focused on the confusion
caused by very similar waveforms within one (perfectly
known) waveform manifold, we shall now turn to
systematic errors in GW measurements caused by the
imperfect knowledge of the waveform family itself. Put
differently, we shall estimate in this section how the
recovered source parameters and signal strengths are
affected when a given signal (the target signal) is
not necessarily part of the waveform manifold that is
employed in the search.
Fortunately, as long as both the target and search

waveforms can be expressed in the form of (12) and (13),
we can still use the linear Fisher-matrix approximation in
terms of the PN expansion coefficients �i, Eq. (15), to
estimate the effect of different waveform families. The
only difference to Sec. III is that now the PN phase
coefficients change not only due to a change of the physical
source parameters, but also due to a different functional

form c ðlog Þ
k ¼ c ðlog Þ

k ðM;�; �1Þ. This means that the

following study will be restricted to TaylorF2-like wave-
form representations; however, we are free to modify
or even drop individual PN contributions to quantify
their importance in a way meaningful for data-analysis
applications.
Our strategy is as follows. Just as outlined in Sec. II A,

we use the Fisher matrix (5) in terms of the PN phase
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coefficients (15), and the transformation to principal
components detailed in Table II is valid independently
of the functional form of the parameters. Thus, we pick
a target signal by fixing the source parameters and
reference model and transform to the principal compo-
nents as usual,

�̂i ¼
X
j

�ij�̂j: (35)

We then consider a different search model and transform
from the associated PN parameters to the same space of
principal components, such that

��i ¼ �i � �̂i ¼
X
j

�ijð�j � �̂jÞ: (36)

Again, there is no difference to what we did to analyze

statistical errors, just now �j will be different from �̂j for

the same set of physical parameters. We can, however,
vary the parameters of the search model to minimize the
difference,

min
M;�;�1

k�hk2 ¼ min
M;�;�1

X
i

�ið��iÞ2: (37)

Note that we effectively also minimize over time and
phase shifts, but this is implicit in our method through
the projection of the associated parameters. The differ-
ence between target parameters and those that minimize
(37) are referred to as systematic biases, and they
indicate to what extent a model-based GW search would
be confused by the use of an incomplete waveform
model.

As an illustration, let us consider the following scenario.
The target signal we assume is that for aligned-spin
binaries including all known spin corrections as detailed
in Sec. II B. This is the waveform model we analyzed in
Sec. III. Fixing the masses again to m1 ¼ 5M�, m2 ¼
1:35M�, we now ask the question: How well can the
mass parameters be recovered if the BH is possibly spin-
ning and the employed search waveform model is that for
nonspinning objects? We easily address this question by
using standard minimization techniques (we employ a
grid-based minimization followed by a local minimization
along the gradient) and find the values that minimize (37).
Recall, the target parameters define �̂i and the variable �i

are closed-form functions of M and � (or equivalent
parametrizations). As discussed above, we do not need to
employ sophisticated template bank generation algorithms
nor calculate direct overlaps between any waveforms to
answer this question.

The result of this exercise is shown in Fig. 7. Not
surprisingly, we find that the bias in the chirp mass M is
rather small, which is due to the fact that the first principal
component is dominated by this quantity. The second mass
parameter, either total mass M or symmetric mass ratio �,
however, can be massively biased if the search does

not include spin when the source is characterized by a
considerable spin. We did not restrict the best-matching
parameters to physically meaningful ranges, and for target
spins �̂1 * 0:3 we find that � exceeds its physical range
beyond 0.25. We could have anticipated this already from
the confidence interval shown in Fig. 2 (and further inter-
preted in Figs. 3 and 6), because there the 90% confidence
interval, extrapolated by eye, would intersect the �1 ¼ 0
line at larger, unphysical values of �.
Apart from the bias in the recovered parameters, the

actual agreement between the best-match waveform and
the target signal is of interest, as this constitutes an estimate
of the detection efficiency (i.e., howmany signals would be
lost in the search due to an imperfect agreement between
signal and search family). As many authors in the GW
literature before, we shall express the effectualness of the
waveform family by the fitting factor

FF ¼ max
�ph

hhð�Þ; hð�̂Þi
k hð�Þ kk hð�̂Þ k � 1�min

�ph

khð�Þ � hð�̂Þk2
2khk2 ;

(38)

where we optimize over the entire waveform family, i.e.,
over all physical parameters �ph (we added the subscript to

distinguish the actual freedom in the waveform manifold
from the higher dimensional parametrization we are using
in this paper). The right-hand side of (38) can be calculated
efficiently from the outcome of (37). This equals the fitting

factor under the assumptions that khð�Þ k¼khð�̂Þ k¼khk
[54–56], which is true for our simplified model when we
neglect the variable cutoff frequency.
The fitting factor that corresponds to Fig. 7 deviates

from unity by as much as 15% for highly negative BH
spins and less than 2% for positive spin values if we
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FIG. 7 (color online). Systematic bias introduced by a non-
spinning model searching for the waveform of a binary with a
1:35M� nonspinning NS and a 5M� BH with aligned spin as
indicated by the horizontal axis. The solid (blue) line shows the
bias in the recovered total mass, the dashed (red) line indicates
the bias in the symmetric mass ratio (20). The gray dotted line
shows the bias in the chirp mass (22), for which the scale on the
right-hand side is valid.
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allow for unphysical symmetric mass ratios. If we restrict
� � 0:25 then the fitting factor drops without bound for
increasing spin to an extent where we cannot trust our
approximation of the inner product any more.

Comparing spinning against nonspinning models
was a rather extreme case for illustration, and we
shall now turn to smaller differences between the target
model (which we keep fixed as the best model that
includes all known spin terms) and the search family.
We are particularly interested in the effect of various
spin contributions to the PN phasing, which we will
successively drop from the search model to analyze
how well this ‘‘reduced’’ model can identify the original
signal.

We restrict our study to the case we considered before of
a 1:35M� NS and a 5M� BH, but we simulate all BH spins
�0:95 � �1 � 0:95 in steps of 0.05. For each of these
target signals we minimize the difference (37) to various
search models and record the fitting factor as well as the
parameter biases. Each entry of Table III corresponds to
the simulated spin value that was recovered with the maxi-
mal disagreement in terms of fitting factor and bias,
respectively.

The search models we consider are as follows:
no SO tail.—Up to 3.5PN nonspinning and spinning

contributions included (incomplete 3PN and 3.5PN spin
corrections inherited from re-expanded lower-order terms,
see discussion in [57]), but without the 3PN spin-orbit tail
contribution derived in [36];

3.5/2.5PN.—Up to 3.5PN nonspinning and up to 2.5PN
spinning contributions included, i.e., no incomplete spin
terms considered;

3.5/2.0PN.—Up to 3.5PN nonspinning and up to 2.0PN
spinning contributions included, i.e., next-to-leading-order
spin-orbit coupling dropped;

no �2
1.—Same as 3:5=2:5PN, but without quadratic spin

terms at 2PN order;
3.5/1.5.—Up to 3.5PN nonspinning contributions

included plus only the leading order spin-orbit coupling
at 1.5PN;
2.5/2.5.—Up to 2.5PN spinning and nonspinning contri-

butions included.
Interestingly, we find from the results in Table III that the
reduced search models have reasonably high fitting factor
with the full target waveform if at least the dominant and
next-to-leading order spin-orbit coupling are included in
the model. Higher spin-orbit contributions, quadratic self-
spin terms, quadrupole-monopole interactions and even
higher-order nonspinning corrections are less important
for the detection of the signal.
The systematic biases are not as easily interpretable,

because every search model exhibits almost degenerate
regions of parameter space with indistinguishable wave-
forms, similar to what we have analyzed in Sec. III. Thus, a
template waveform with a much lower or higher parameter
bias might agree with the target signal almost equally well,
but the point we report as the result of a numerical opti-
mization procedure does not include this information. We
can, however, compare the results in Table III with the
statistical uncertainty reported under the assumption of a
perfectly known waveform family, Eq. (25), which leads us
to the conclusion that the systematic errors reported in
Table III are acceptable for the models with low fitting
factor, except the 2:5=2:5PN case where nonspinning con-
tributions are truncated.
It is important, however, to point out that neglecting the

2.5PN spin-orbit coupling leads to a severe loss in FF, and
searches employing only the leading-order spin corrections
are prone to miss signals from binaries with considerable
spin. The numbers in Table III were obtained by allowing
unbounded values for the spin of the waveform model, and
indeed, particularly the cases with low fitting factor
achieve the best agreement with unphysical values of �1 <
�1. If we instead restrict the search parameter space to
physically meaningful ranges j�1j � 1, we obtain different
numbers in some cases, given in parentheses in Table III.
Note that the already badly performing models then
become completely disconnected to the target waveform
space which results in absurdly high deviation of FF from
unity. These numbers are an artifact of using the Fisher
matrix to estimate large waveform mismatches and cannot
be trusted. However, the fact that we would be unable to
detect some spinning systems with such models is only
emphasized by these results.
It is interesting to note that we already observed a

similar effect with nonspinning searches and unphysical
values of �, as discussed in connection with Fig. 7. Here
we cannot allow for unphysical � as some spinning
contributions contain � ¼ ðm1 �m2Þ=M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�
p

, see
Eqs. (31)–(33), which has no real solution for �> 0:25.

TABLE III. Systematic errors of various models (see text)
searching for the waveforms that include all known PN terms.
The simulated target signals are from 5M� þ 1:35M� binaries
with the heavier object spinning with �0:95 � �̂1 � 0:95. We
report the maximal disagreement between the best-fit model
waveforms and the target signals in terms of the fitting factor
(38) and the biases in chirp mass, symmetric mass ratio and spin.
Searches were performed with unrestricted and restricted spin
range, and italic numbers in parentheses indicate the values in
case we obtain significantly different numbers when the search
space is restricted to physically meaningful spins �1 � �1 � 1.

Model 1� FF [%] j�Mj
M [%] j��j

� [%] j��1j
no SO tail 0.44 0.20 46 0.24

3:5=2:5 0.25 0.06 28 0.51 (0.23)

3:5=2:0 24 (810) 0.23 (0.48) 49 1.31 (0.63)

no �2
1 0.13 0.08 35 0.32 (0.20)

3:5=1:5 13 (450) 0.18 (0.22) 49 1.04 (0.63)

2:5=2:5 0.61 (1.02) 0.50 74 1.54 (0.60)
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However, we have just illustrated that unphysical values of
the spin(s) may potentially inflate the waveform manifold
enough to increase the detection efficiency such that sig-
nals that are not part of the search family have a higher
chance of being detected.

V. CONCLUSIONS

In this paper, we have considered nonprecessing inspiral
waveforms of GWs emitted by coalescing NS-BH binaries.
Such models are essential ingredients for the ongoing
efforts to directly detect GWs for the first time, and the
success and astrophysical output of such detections will
depend sensitively on our understanding of the waveform
family employed in the search.

By combining the well-known Fisher-matrix approach
with a suitable higher-dimensional coordinate choice, we
have demonstrated that the analysis of degeneracies in the
waveform space can be made considerably more accurate
than previous Fisher-matrix studies of parameter measur-
abilities, while still much faster than full overlap calcula-
tions between individual waveforms. Even though the
high-dimensional Fisher matrix may be ill conditioned, we
argued that the relevant information about the waveforms
can be extracted through, instead of inversion, diagonaliza-
tion of the Fisher matrix. This is because only the eigenvec-
torswith large eigenvalues affect thewaveformconsiderably.
Thus, this procedure (which we identify as a PCA) is still
well conditioned, and we explicitly presented how we can
efficiently find confidence intervals around a given signal
including a parameter-dependent cutoff frequency.

The coordinate choice we employed is based on assum-
ing the PN phase expansion coefficients are free parame-
ters [15–18]. This approach relies on the waveform model
being written as a simple amplitude and a complex phase
which is a sum of purely frequency-dependent functions,
each multiplied by a single parameter at most. Extending
this strategy to accommodate more complicated functions,
such as full inspiral-merger-ringdown models or precess-
ing systems, is difficult as these models do not obey this
simple analytic form. However, we restricted ourselves to a
regime where the merger and ringdown part of the signal
do not contribute significantly, and recent investigations
show that modeling precessing systems may be based on a
modulation of nonprecessing signals [58–60]. In addition,
waveform families that are used for detection purposes are
unlikely to model full precession [47,61,62]. Thus, even
though realistic signals are expected to contain some
amount of precession, it is worth analyzing nonprecessing
signals first.

In agreement with previous publications [10,11,22,23],
we found that the individual masses of the binary’s con-
stituents cannot be well constrained by GW observations
alone. This is because even though the chirp mass is
measurable very accurately, the second mass parameter
can be confused by the presence of spin. Disentangling

spin and mass ratio would require yet another measure-
ment, which is not accurate enough to place useful bounds
on the individual masses.
With the analysis carried out in this paper, we can now

rephrase these results in a more formal manner, following
the results of our PCA. The first, very accurately deter-
mined principal component is dominated by the chirp mass
(with higher-order spin-dependent corrections). The sec-
ond principal component can be seen as a combination of
symmetric mass ratio and spin that may somewhat restrict
the spin magnitude, but does not allow for an unambiguous
measurement of either parameter. A third principal com-
ponent is also measurable to reasonable accuracy, but it
adds little restrictions to the range in mass ratio and spin in
our case. Higher principal components cannot be well
constrained by GW measurements and they do not vary
enough through the parameter space of interest to add
much information.
It is important to point out that the explicit form of the

principal components is model and gauge dependent
(in our case, the scale freedom is expressed by the normal-
ization frequency f0), so the interpretation of the waveform
structure in terms of principal components reveals no
fundamental property of the waveform manifold. It is
nevertheless a useful concept to understand the prospects
and limitations of modeled GW searches. For instance, we
have demonstrated that three parameters can be measured
accurately, but whether or not these lead to astrophysically
meaningful statements has to be determined by the explicit
dependence of these well-measured parameters on physi-
cally interesting quantities.
This explicit form of principal directions in parameter

space is, in turn, derived in terms of PN expansion coef-
ficients. In our analysis, we have found that higher-order
terms also have a noticeable influence on the third principal
component, suggesting that yet undetermined nonspinning
and especially spinning corrections may influence our
ability to measure parameters in the future. Among the
currently determined PN contributions we identified the
leading and next-to-leading order spin-orbit terms as
crucial spin corrections that need to be included in the
waveform model to not change the manifold drastically.
Again, our fitting-factor study of systematic errors was
limited to Fourier-domain models of the form detailed
above. It would be interesting to contrast our results with
comparisons between various approximants in the time and
frequency domain. Note however, that time-domain mod-
els (such as the TaylorTn approximants) can, in principle,
be transformed to an analytic form in Fourier space as well,
where the difference between those models and the
TaylorF2 model employed here would lie entirely in
undetermined higher-order phase corrections. Their effect
can be studied in our framework by allowing the parameter
space to be extending beyond 4PN order, which we leave
for future work.
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As long as such higher-order terms have not been fully
calculated, we need to ensure that the waveform model
chosen for use in GW searches is capable of detecting
signals from other, equally plausible models as well. One
way of doing this is by allowing unphysical source
parameters. We have, somewhat artificially, compared the
full waveform model here with reduced search families
that were lacking certain contributions, which we take as a
guideline to the situation we are actually facing, namely,
that we search for signals in the universe (that may or may
not be well described by the full theory of general relativ-
ity) with a restricted, incomplete, PN model. We have
demonstrated that allowing an unphysical spin parameter
beyond unit magnitude can indeed reduce the systematic
difference of waveform families. It remains to be tested
more thoroughly whether, for the detection problem, that
reduces ambiguities to a negligible extent. Parameter esti-
mation pipelines, on the other hand, obviously cannot use
this freedom. However, our algorithm also provides an
easy way to estimate parameter biases between different
waveform models with physically meaningful bounds.

In summary, our results provide a formal answer to the
question of what can be measured by GW observations
of inspiraling NS-BH binaries. This is important astro-
physically, but also has some immediate applications for
standard GW data-analysis techniques. For instance,
constructing a discrete template bank for spinning signals
with predefined maximal mismatch between templates
becomes much simpler in our adapted coordinates (as
detailed in [18,63]), and our results promote a physical
understanding of the resulting parameter-space coverage.
A related question is important for the relatively small
number of numerical-relativity waveforms that have to be
calculated in order to calibrate complete inspiral-merger-
ringdown models (see [56] for an overview). Their

parameter-space coverage should take advantage of the
dominant directions in waveform space that can be esti-
mated with our method. Equally, testing inspiral degener-
acies in the merger regime is an important task [64] that,
however, requires identifying these degeneracies first.
In addition, our principal coordinates should allow for a

geometric, very efficient parameter estimation beyond the
template with highest overlap, and even more advanced
and accurate parameter-estimation routines (such as
Markov chain Monte-Carlo methods) may benefit from
knowing the preferred directions in parameter space that
we identify.
Finally, calculating inner products between different

waveforms is the core of all matched-filter algorithms,
and the computationally very efficient approximation we
suggest should allow for a tremendous speed-up of all
analyses that are centered in a regime of high overlaps.
We have presented an example study of systematic errors
that otherwise had been computationally very challenging.
Now, however, such studies can quickly be repeated and
extended for other setups (e.g., different PN coefficients,
detector noise curves, etc.) which facilitates easy sanity
checks and on-line comparisons of results obtained with
different waveform families.
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