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Abstract: Squeezed states of light are an important tool for optical
measurements below the shot noise limit and for optical realizations of
quantum information systems. Recently, squeezed vacuum states were
deployed to enhance the shot noise limited performance of gravitational
wave detectors. In most practical implementations of squeezing enhance-
ment, relative fluctuations between the squeezed quadrature angle and the
measured quadrature (sometimes called squeezing angle jitter or phase
noise) are one limit to the noise reduction that can be achieved. We present
calculations of several effects that lead to quadrature fluctuations, and use
these estimates to account for the observed quadrature fluctuations in a
LIGO gravitational wave detector. We discuss the implications of this work
for quantum enhanced advanced detectors and even more sensitive third
generation detectors.
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1. Introduction

Over the past decade, the detectors of the Laser Interferometer Gravitational-wave Observatory
(LIGO) have been operating with optical shot noise as the limiting noise source above 150 Hz,
which is a large fraction of their total detection band spanning about 50 Hz to 10 kHz [1].
A natural path to improving upon the shot noise limit is to inject appropriately engineered
squeezed vacuum states into the output port of interferometers [2—4].

Relative to a vacuum state, a squeezed vacuum state has a smaller variance in one (squeezed)
quadrature and a larger variance in the orthogonal (anti-squeezed) quadrature. States with a high
degree of squeezing are not only the most promising method available to improve the astrophys-
ical reach of laser interferometer gravitational wave detectors [5—7], they are also an important
resource for quantum information and precision measurement. Decoherence limits the utility
of highly squeezed states in all these applications. In this letter we show that our theoretical
models explain experimental observations of an important decoherence effect: fluctuations of
the squeezed quadrature relative to the measured signal quadrature.

Relative fluctuations between the squeezed quadrature and the measured quadrature (also
called phase noise or squeezing angle jitter) project noise from the anti-squeezed quadrature
into the measurement [8,9]. When these fluctuations occur faster than the measurement time,
they decrease the average level of measured squeezing [10]; when they are slower than the
measurement time they limit the long term stability of the measurement. Quadrature stability is
especially important in gravitational wave interferometers, where the measurement frequencies
may be as low as 10 Hz and long term stability over weeks or months is required.

Optical losses also reduce the squeezing factor by introducing vacuum fluctuations into the
squeezed field. While optical losses are the most important limit in many current experiments
[5-7,11,12], quadrature fluctuations become an increasingly significant limit to the measured
squeezing level as the optical losses are reduced.

With a quantum noise limited detector the measurable level of squeezing is [13—-15]

. x\2 ~\2
Vio = 1+41x (s1n9) B (cos 9) N
(=02 4@/y ) (102 +4(@/7 )|

if the squeezing angle fluctuations have a Gaussian distribution. Here 7 is the total detection
efficiency (the product of the escape efficiency of the optical parametric oscillator (OPO),the
propagation, homodyne and photo detector efficiencies); x is the normalized nonlinear coupling
(x=1-1/,/g. where g is the parametric gain); 6 is the root mean squared (RMS) quadrature
fluctuation; Q is the measurement frequency; and ! is the cavity field decay rate for the
squeezed field (the sum of the decay rates for each loss mechanism, 2y} = (1 —/R;)/7, where
T is the cavity round trip time and R; is a power reflectivity for each loss mechanism). An
increase in the nonlinear coupling parameter x increases the amount of both squeezing and anti
squeezing generated; in the presence of quadrature fluctuations there is an optimal value of x at
which the benefit due to increased squeezing is balanced against the increase in noise introduced
by quadrature fluctuations from the anti-squeezed quadrature, as will be seen in Section 4. This
means that as long as adequate second harmonic pump power is available and technical noise is
negligible, the losses and total quadrature fluctuations in an experiment determine the maximum
level of squeezing that can possibly be measured, illustrated in Fig. 1.
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Fig. 1. Possible squeezing as a function of the total effective losses 100 x (1 — 1) and total
squeezed quadrature fluctuations, in the absence of technical noise. Here pump power is
optimized for best squeezing given the level of quadrature fluctuations. Squeezing levels in
decibels relative to shot noise are negative for an improvement in sensitivity.

A schematic of an experiment in which squeezed vacuum is injected into a LIGO interferom-
eter is shown in Fig. 2 [5, 16]. In this interferometer 20 Watts of 1064 nm laser light is incident
on a power-recycled Michelson interferometer with 4 km long Fabry-Perot cavities in each arm.
The interferometer optics are suspended from a seismic isolation system inside vacuum to re-
duce environmental noise coupling. The small amount of light that exits the interferometer at
the anti-symmetric port is filtered by an output mode cleaner (OMC) before the gravitational
wave signal is read out through self-homodyne detection at the readout photodetectors [17].
Our squeezed light source uses a traveling wave OPO resonant for the second harmonic pump
at 532 nm and the fundamental field at 1064 nm [11, 18]. To produce squeezing at the low
frequencies required for gravitational wave detection, the OPO is operated with no coherent
circulating field at the interferometer carrier frequency [19-22]. A frequency-offset coherent
field is used to generate two error signals for controlling the quadrature angle: the coherent
field error signal sensed in reflection off the OPO which is fed-back to the phase of the con-
trol laser and the quadrature angle error signal sensed at the interferometer’s anti-symmetric
port which is fed back to the pump laser phase. This squeezed vacuum source was used to im-
prove the sensitivity of this interferometer by -2.1 dB at frequencies above 2 kHz, with some
improvement due to squeezing down to 150 Hz, the lowest frequencies at which squeezing has
been observed in an interferometer [5].

2. Fluctuations of squeezed quadrature produced by an OPO

For an OPO cavity that is on resonance and phase matched, the squeezed quadrature is de-
termined by the phase of the incident second harmonic pump (6p), as illustrated by the red
trace in Fig. 3. Any shift in the phase of the second harmonic pump (865) causes a shift of the
quadrature angle away from the minimum noise point by 66p/2, a mechanism that has long
been considered a limitation to the level of squeezing [8, 9,23]. However, small variations in
cavity length and crystal temperature also influence the squeezing angle, and are likely more
important than pump noise in many experiments. The calculation of the variance of the OPO

#192013 - $15.00 USD Received 11 Jun 2013; revised 25 Jul 2013; accepted 26 Jul 2013; published 2 Aug 2013
(C) 2013 OSA 12 August 2013 | Vol. 21, No. 16 | DOI:10.1364/0OE.21.019047 | OPTICS EXPRESS 19050



output field [24,25] is expanded in Appendix 1 to include cavity detuning and imperfect phase
matching.

A small shift 8L in the cavity length away from resonance will detune the fundamental field
by A, = ®8L/L where L is the cavity length on resonance and @ is the laser frequency. The
second harmonic field will also have a detuning, A, = 2A,. Fig. 3 shows that the effect of OPO
cavity length offsets on the output field variance is well approximated as shift of the pump
phase, meaning that it is well described as a shift of the squeezed quadrature. Because the
cavity length fluctuations will be at frequencies small compared to the cavity linewidths, we
can use this static dependence to approximate the level of quadrature fluctuations caused by
cavity length fluctuations. By taking derivatives around a point where the variance (V) has a
linear dependence on the pump phase (65 = /2 is chosen for convenience), we can find the
first order squeezing angle shift (d6y,;) caused by a cavity length change,

d6sq, 1 dV/dSL o/ 1 1
z_ 1/ ( ) 2

= = — —_— + J—

doL 2 dv/de, og=n/2.5L-0 L Yot Lot (1442)
For our OPO, operated with a nonlinear gain of 10, this gives a coupling of 9044 mrad
squeezed quadrature rotation per nanometer cavity length change. Cavity length fluctuations
that occur above the 10 kHz bandwidth of the quadrature control loop directly couple to quadra-
ture fluctuations in this way.
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Fig. 2. The LIGO interferometer with a squeezed vacuum source. The pump laser, locked
to the LIGO main laser frequency through an optical fiber, pumps the second harmonic
generator (SHG) [19] and the optical parametric oscillator (OPO) [18]. The control laser
— for the quadrature control scheme — is offset locked 29.5 MHz above the pump laser
frequency, and injected into the OPO where the nonlinear interaction generates a symmetric
sideband 29.5 MHz below the pump with, under ideal conditions, a phase determined by
the phase of the circulating pump [19, 20]. The phase of the control laser is then locked
relative to the phase of the circulating pump by the coherent field photo-detector (CF PD).
The squeezed field, with coherent control sidebands, reflects off the interferometer after
which the quadrature control photo-detector senses the phase between the interferometer
beam and the coherent sidebands. This error signal is used to adjust the pump laser phase
and control the quadrature angle. The output mode cleaner (OMC) reflects the coherent
sidebands and transmits the carrier towards the gravitational wave readout photo-detectors
(GW PD) where the squeezing is measured.
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Fig. 3. Variance (in dB relative to vacuum fluctuations) in one quadrature of the OPO output
field as a function of the phase of the incident second harmonic pump. With no detuning
and ideal phase matching (red trace), the minimum variance occurs at g = 7, and the pump
phase alone determines the squeezed quadrature 6y, = 6z/2. However small changes in the
cavity length or crystal temperature shift the location of the minimum variance, introducing
a relative shift between the squeezed quadrature angle and the pump phase. The green trace
shows the variance with the cavity length shifted 6 nm away from resonance, while the
blue trace shows the variance produced when the temperature deviates by 0.01 K from the
phase matching temperature. These predictions assume Q < 10, x| = 1/v/2, Nese = 0.96,
%, =21 x 12 MHz, and %' = 27 x 30 MHz.

Inside the bandwidth of the coherent quadrature control loop, the response of the control sig-
nal needs to be taken into account to understand the impact of cavity length fluctuations on the
squeezed quadrature. The phase shift induced by a cavity length change is smaller for the de-
tuned coherent control field than it is for the squeezed field which is on resonance. This means
that the response of the coherent control scheme is smaller than the response of the quadrature
angle to cavity length changes, 47 + 2 mrad/nm for our parameters, as can be calculated using
Egs. (20) and (21) from Appendix 2. The difference in the response of the quadrature con-
trol sensor from the response of the quadrature angle introduces lock point errors to the control
scheme when cavity length fluctuations are present. Inside the control bandwidth this difference
between the response of the actual quadrature angle and the response of the quadrature control
error signal (43 =4 mrad/nm for our parameters) gives the coupling of cavity length fluctua-
tions to the quadrature angle. Based on our measurements of the cavity length fluctuations we
expect 24.6 + 3 mrad of squeezed quadrature fluctuations below 100 kHz due to cavity length
fluctuations, one of the dominant causes of quadrature fluctuations in our experiment.

Fluctuations in the circulating pump power will cause fluctuations in the temperature of the
nonlinear crystal due to absorption. Changes in the crystal temperature in turn cause a phase
mismatch, and change the resonance condition of the cavity due to thermal expansion and a
change in the refractive index of the crystal [26,27]. For imperfect phase matching the nonlinear
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coupling parameter becomes [28]
£ = goe ) ginc (k(T —Tp)). 3)

where & is the nonlinear coupling parameter at the phase matching temperature, Ty is the
phase matching temperature, and x is a constant that depends on the phase matching type and
crystal used (0.579/K for quasi phase matching in PPKTP as used in this experiment). A change
in temperature will also cause a shift in the cavity resonance condition, the more important
effect in our case. To produce audio frequency squeezing the field used to lock the length of
an OPO must be either the second harmonic [11, 18] or a polarization shifted field offset from
the fundamental frequency [19,20]. In either case, the resonance condition of the field used for
length locking is manually adjusted to coincide with the resonance of the fundamental field and
a change in crystal temperature will shift the two cavity modes away from co-resonance. The
lIength of the OPO in this experiment was locked to the second harmonic field, so the detuning
of the fundamental field due to a temperature change is

Ay =—x(T—Ty)/r, 4)

where 7 is the cavity round trip time. Taking both of these effects into account, the variance as
a function of the input pump phase can be found using Eqs. (11), (13), and (14), and is plotted
as the blue curve in Fig. 3. Again taking derivatives around 6 = m/2 we can find the linear
shift in the squeezed quadrature angle caused by a temperature change:

d o, 1 dv/dT 1 1
=3 / :_K< tot 2 +>' ®)
dT  2.dV/d6y|g, 111 1, ylotg(14+x2) 2

Similar to cavity length fluctuations, crystal temperature fluctuations cause lock point er-
rors in the quadrature control error signal. Although a temperature shift of 1 mK would cause
the squeezing angle to shift 5.5+ 0.6 mrad for our parameters (Eq. (5)), the coherent quadra-
ture control sensor will only sense 1.5 4+ 0.2 mrad/mK based on the calculation in Appendix 2
(Egs. (21) and (20)). Since temperature fluctuations are at frequencies well inside the coherent
control bandwidth, we predict that temperature fluctuations will cause squeezing angle fluc-
tuations of 4 + 0.6 mrad/mK. A measurement confirmed that the lock point had to be shifted
4.6£0.5 mrad/mK to reoptimize the measured squeezing after a temperature change. With
50 mW second harmonic input power incident on our OPO the crystal temperature increased
by approximately 6.9 mK/mW increase in the pump power. The pump power drifts of less than
1% observed on half hour time scales would produce a squeezing angle shift of 5+ 1mrad,
too small to be significant in our experiment. Over 60 hours, our pump power fluctuated by
5%, enough to cause degradation of the measured squeezing as seen in [27]. The total tempera-
ture fluctuations in the crystal are unknown, and caused by a combination of and pump power
fluctuations, environmental temperature changes, and noise of the temperature sensor used for
stabilization.

3. Relative quadrature fluctuations introduced by measurement and control schemes

The squeezed quadrature rotates as the field propagates from the OPO output coupler to the de-
tector with a rotation equivalent to the phase shift a coherent field would experience propagating
along the same path, so path length changes directly couple to relative quadrature fluctuations.
In interferometers squeezing is measured using unbalanced homodyne detection, with the lo-
cal oscillator provided by the interferometer output beam which is filtered by the OMC. This
local oscillator is made up of the interferometer signal field, and a small amount of other light
due to contrast defect and the interferometer control sidebands. The quadrature of the squeezed
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beam that is measured is determined by the relative phase of the local oscillator, so local oscil-
lator phase noise directly causes quadrature fluctuations unless it is suppressed by the control
scheme.

Modulation sidebands at frequencies well above the quadrature control bandwidth are used
to control interferometer length and alignment degrees of freedom, adding phase noise to the
local oscillator. In LIGO an optical cavity at the anti-symmetric port, the OMC, is used to filter
amplitude and phase noise at frequencies above a few MHz. The sidebands that do reach the
output photodetector are in the amplitude quadrature of the interferometer signal field, however
there are two mechanisms by which these modulation sidebands can modulate the phase of the
local oscillator. If the two sidebands are not exactly the same in size, the total modulation will
be described as amplitude modulation with a small component of phase modulation. Likewise,
a small contrast defect field at the carrier frequency which arrives at the anti-symmetric port
out of phase with the interferometer signal field will shift the phase of the total local oscil-
lator at the anti-symmetric port, and therefore a small amount of the amplitude noise on the
interferometer signal field will become phase modulation on the total local oscillator. The total
radio frequency phase modulation of the local oscillator is the quadrature sum of these two
out-of-phase contributions,

Psig Psig 8PSB

where Tsp is the power transmission of the sidebands through the OMC, Psp is the average
power in each sideband, dPsg is the difference between the sidebands powers, Pcp is the power
of the contrast defect field, and Fy;s is the power in the signal field. The squeezing angle jitter
added by this modulation is small in our case due to the excellent filtering provided by the
OMC, and only contributes 3.1+ 0.4 mrad.

The control scheme described in Fig. 2 compensates for path length changes and local os-
cillator phase noise within its bandwidth. The control scheme can also impose noise from the
sensors used onto the squeezing angle fluctuations. Based on measurement of the sensor noise
and the feedback response we project the sensor noise imposes less than 2 mrad of squeezed
quadrature in our experiment. If this noise source were a dominant effect, the level of squeezing
angle fluctuations measured would increase when the gain of the control system is increased.

4. Measurements of relative quadrature fluctuations

The total RMS quadrature fluctuations as well as the total detection efficiency in a squeezing
experiment can be inferred from measurements of squeezing and anti-squeezing made at high
nonlinear gains, as shown in Fig. 4. Because the couplings of both temperature and length fluc-
tuations decrease at high nonlinear gains, this method can lead to a small underestimation of
the total quadrature fluctuations. This can be accounted for using Egs. (2) or (5) if the dominant
noise mechanism is known. In our experiment, measurements made with nonlinear gains of up
to g =100 on a balanced homodyne detector showed that the total quadrature fluctuations intrin-
sic to the squeezed state source were 18.6 + 5.7 mrad before injection into the interferometer,
consistent with the level of squeezed quadrature fluctuations we predict based on OPO length
noise. Assuming that length fluctuations are the dominant source of quadrature angle errors, we
can infer from our high nonlinear gain measurements that the RMS quadrature fluctuations will
be 21 & 6 mrad when the nonlinear gain is 10, the normal operating point.

A similar measurement was performed with the interferometer, as shown in Fig. 5, revealing
larger than expected quadrature fluctuations. This excess noise is caused by lock point errors
introduced by angular misalignment between the interferometer output beam and the squeezed
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Fig. 4. Expected variances of the squeezed (solid lines) and anti-squeezed (dashed lines)
quadratures as a function of nonlinear gain, based on Eq. (1). The level of anti-squeezing
is sensitive to the total losses, while at high gains the level of squeezing is sensitive to the
quadrature fluctuations. Left panel: § =50 mrad and = 90% (blue) 70% (green) and 50%
(red). Right panel: n=70%, and 6=30 (blue), 50 (green), and 100 (red) mrad. Blue and
green dashed lines are below the red dashed line in the right panel.

beam. At the quadrature control photo-detector both the local oscillator beam and the squeezed
beam include higher-order spatial modes that contribute to the error signal with a different phase
than the TEM(y mode because of the Gouy phase shift. This means that relative alignment shifts
change the lock point of the coherent locking loop, and alignment jitter couples to quadrature
fluctuations. A change in alignment will shift the relative quadrature angle by an amount:

.asifoa,clf o3 .

B LY sing;;
ifo 5, clf ’
1-— Eij’}/ij ’}/l] Ccos d)ij

(7

Aealignment =

where yff", yfj” are the ratio of the amplitudes of the ij spatial modes to th amplitude of the 00
mode for the interferometer field and the coherent quadrature control field respectively, and ¢;;
is the difference between the relative phases of the ij modes and the relative phases of TEMqg
modes of the two beams. This coupling becomes second-order when the two beams are well
aligned, as shown by the reduced quadrature fluctuations measured by the green point in Fig. 5
using a finely tuned alignment.

One can measure the spectrum of quadrature fluctuations directly by setting the squeezing an-
gle so that the measured noise level has a linear dependence on the squeezing angle. Measuring
a time series of the noise power in a shot noise limited frequency band provides an out of
loop measurement of the quadrature fluctuations. A measurement of this type, compared to the
quadrature control error signal and sensor noise from the quadrature control sensor confirmed
that the coherent quadrature sensor has lock point errors from 0.1 Hz to 10 Hz, consistent with

the frequencies of alignment jitter in the interferometer.

5. Implications for future gravitational wave detectors with squeezing

As shown in Fig. 6, we measured just over -2 dB of squeezing in Enhanced LIGO with 55%
losses and at least 37 & 6 mrad quadrature fluctuations. Table 1 summarizes the mechanisms
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Fig. 5. Characterization of Enhanced LIGO interferometer as a squeezing detector. Red
points show measured squeezing and anti squeezing between 1.9 kHz and 3.7 kHz. Blue
trace is a fit to the red points with 1 = 38 +-3% and 6 = 81 46 mrad. Control bandwidths
were consistent for measurements at different nonlinear gains. The black and green points
were measured at a later date with 1 =42 +7%. After measurement of the black point
(6 = 109 +9 mrad), the interferometer alignment was adjusted slightly and the squeezing
angle lock point adjusted, reducing the quadrature fluctuations to (6 = 37 &6 mrad) as
shown by the green point.

Table 1. Summary of contributions to total relative quadrature fluctuations (mrad RMS)
and independent measurements made at high nonlinear gains.

Source Estimate | Measurement
g OPO length noise 24.6+3
% Coherent locking field(CLF) sensor noise 1.8+0.5
g OPO and SHG length control sidebands <1
3 Crystal temperature fluctuations unknown
Total intrinsic to squeezer 24.7+2 21+6

8 Interferometer (IFO) sidebands 3.1+04
= | Alignment jitter coupling (inferred from total) | 35-100

Squeezer + IFO total (good alignment) 37+6

considered here that cause quadrature fluctuations, and our estimates and measurements of
their contribution to the total in our experiment. The dominant mechanism for relative fluctua-
tions between the squeezed and measured quadrature in our experiment was lock point errors
introduced by alignment fluctuations, closely followed by length fluctuations of the OPO. Other
smaller contributions were phase noise of the second harmonic pump, temperature fluctuations,
sensor electronics and shot noise imposed by our control scheme, and phase noise of the local
oscillator.

In the early stages of Advanced LIGO [29], the total effective losses are expected to be re-
duced to 20-28%, mainly due to improvements in OMC transmission and mode matching. This
means that a reduction of the quadrature fluctuations to 5-15 mrad would allow for confident
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Fig. 6. Squeezing targets for gravitational wave detectors, in decibels relative to shot noise.
This experiment measured -2.1 dB of squeezing in Enhanced LIGO, with 55% losses and
at least 37 + 6 mrad squeezing angle fluctuations. For Advanced LIGO we would like to
be able to measure at least -6 dB of squeezing in an initial implementation. Since the total
losses are expected to be 20-28%, planning for 15 mrad or less of phase noise would allow
for -6 dB of squeezing. Designs for third generation detectors call for even higher levels of
squeezing [31], which will place very stringent limits on the total quadrature fluctuations
and losses.

planning for -6 dB of noise reduction due to squeezing, as shown by the rectangle in Fig. 6.
These levels of quadrature fluctuations have already been demonstrated with both traveling
wave and standing wave OPO designs [11, 30]. Third generation detectors seek to implement
10 dB or more of squeezing [31], placing very stringent requirements on both optical losses and
quadrature fluctuations.

The performance of the coherent quadrature control schemes is limited by lock point errors
introduced by alignment jitter, OPO length fluctuations, and crystal temperature fluctuations.
The bandwidth of the coherent control scheme is limited by arm cavity resonances in an inter-
ferometer with Fabry-Perot arms; in LIGO this limits the bandwidth to around 10 kHz. Quan-
tum noise locking [32] is an alternative to coherent locking that is immune to lock point errors
and could potentially reduce the quadrature fluctuations to a comfortable level for Advanced
LIGO when used in combination with a coherent lock [7]. However, the dither of the quadrature
angle required to produce a noise locking error signal will need to be small compared to the
acceptable level of quadrature fluctuations, meaning that this technique will have a small signal
to noise ratio and therefore low bandwidth. Ultimately, to achieve the low levels of quadrature
fluctuations needed, the lock point errors of the coherent control scheme need to be addressed.

One option is to derive the coherent control error signal in transmission of the OMC [7],
which should eliminate the alignment coupling to the quadrature angle by filtering the higher
order modes. The OPO may be mounted on a seismic isolation platform inside the vacuum
system in order to meet the requirements for scattered light noise. This will have the benefit of
reducing both the length fluctuations of the OPO and relative alignment fluctuations between
the OPO and the interferometer, mitigating both of the dominant sources of quadrature fluctu-
ations in this experiment. Intensity stabilization of the second harmonic pump [27], or a direct
readout of the crystal temperature similar to the scheme used in [26], may help to mitigate lock
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point errors caused by crystal temperature fluctuations.

We have shown that careful attention must be paid to each of the major causes of quadrature
fluctuations in order to reach high levels of squeezing enhancement in a gravitational wave in-
terferometer, or any experiment where high levels of squeezing are needed. The low frequency
noise requirements of a gravitational wave detector preclude use of a coherent field at the carrier
frequency for sensing and control of the quadrature angle, making it necessary to use either in-
coherent “noise” locking or coherent control schemes with a frequency-shifted sideband. Both
of these techniques have limitations: the coherent locking technique introduces lock point er-
rors due to misalignment, OPO length changes and crystal temperature fluctuations, while noise
locking relies on a dither of the quadrature angle. Ultimately, quadrature fluctuations need to
be mitigated at the source rather than suppressed by high bandwidth feedback. This requires
careful planning and an understanding of each of the sources of quadrature fluctuations.

6. Appendix 1: Calculation of squeezed quadrature angle in an OPO including detun-
ings and imperfect phase matching

The Hamiltonian for an OPO without losses is:
ih
H = 120bb -+ hod'a+ 5 (eah + 'a') @®)

where a,a’ are annihilation and creation operators for the fundamental field at the interferome-
ter carrier frequency @ written in the rotating frame at that frequency, b,b" are operators for the
second harmonic field in the rotating frame at 2m, and € is the nonlinear coupling parameter
which is real when the crystal temperature is exactly tuned for phase matching. We can calcu-
late the spectrum of squeezing at the output of the OPO using the quantum Langevin equations
and introducing two losses to the cavity, one representing all of the intracavity losses and ab-
sorption and another representing transmission through the front coupler [24, 25]. The steady
state solution to the cavity equation of motion for the second harmonic field in the parametric
approximation is:

b 27’5f|Bin| 08 ©)
- ,ybtot 1— l-Ab/,ybtot

where B;, = |B,~,,|ei93 is the incident second harmonic pump field in the rotating frame at 2@,
}/bf is the field decay rate of the front coupler for the second harmonic field, y.*' is the total field
cavity decay rate for the second harmonic field, and A, is a detuning of the second harmonic
field from the cavity resonance. The operators can be separated into constant and time depen-
dent parts, (a =a+ 8a(t),b= b+ 8b(t)), and the equations of motion for the fundamental field
linearized by dropping terms that are the product of two fluctuating components. To avoid noise
couplings that mask low frequency squeezing, there should be no circulating coherent field at
the fundamental frequency so @ = 0 [22]. The equations of motion for the fundamental field
annihilation and creation operators are given in matrix form by:

da = y;"‘MSa ++\/ 2’)/‘; 5A17in +/ 2’)/;5Af_’in (10)
where
Aa ei@g
— / - f
da l+lyt°t 1= iAp ]y 2%, |Bin| ¢
Sa= ¢ ), M= b b, x=X 2= (1)
da e B A ,},tot tot
x* T A oot —1- lia b a
L+iAy /7, stot
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and OAy j, is a vector of the annihilation and creation operator for the vacuum fluctuations that
leak into the cavity through intra-cavity losses and §Ag, are the vacuum fluctuations incident
on the front coupler of the OPO, ' = VL} + Yaf is the total cavity field decay rate for the fun-
damental field, [ is the decay rate for the front coupler for the fundamental field, y! is the
decay rate due to intracavity losses, and A, is the cavity detuning at the fundamental frequency.
The normalized nonlinear coupling x is real when the temperature is tuned to phase match-
ing, and reaches unity when the OPO reaches the threshold for spontaneous parametric down

conversion. Moving into the frequency domain:

8a(Q) = (@—7oM) ' [V218A1n(Q) + 21 Acin(Q)] (12)

Here we have assumed that M does not depend on time, which is a good approximation when
the time dependence is at frequencies much smaller than the cavity linewidths ¥, 31!, as
temperature and length fluctuations will be. Using the input output relations [24]:

SAtoun(Q) 29153(Q) — 5A+in(Q) (13)

(20F (1R - 7M) " 1) 8A4in(Q) + 24/ 17t (11— 7,"M) ' 8A1in(Q)

When the measurement frequency Q is small compared to the optical frequency ®, the quadra-
ture operators of the output field are given in terms of the annihilation and creation operators
by [33]:

8§Zf,out(g) = ( g;lgg; ) = ( _ll- 1 >5gf,out(9') = Ra;f,out(g) (14)

Using the fact that thg incident vacuum fluctuations are uncorrelated [34], the variance of the
output field (V; = |6X; |2) can be calculated using Eqgs. (11), (13), and (14); results are plotted

in Fig. 3. The usual equations for the variance of the output field can be found by setting the
detunings A,, Ay to zero, assuming that € is real:

Vi(6,,Q) = Vi(Q)cos*(6,/2) +V-(Q)sin*(6;/2)
o ANescx
S (E S ea eyiye 1

where Tese = 7/ /7% is the escape efficiency. By propagating this field to the detector and taking
into account additional loses in propagation, homodyne efficiency and photo-diode efficiency,
Eq. (1) is obtained.

7. Appendix 2: Calculation of control signals including detunings and imperfect phase
matching

To calculate the error signal produced by the coherent locking technique, we can use the cav-
ity equations of motion for a non-degenerate OPO, approximating the two coherent control
sidebands as separate modes of the cavity, called the signal (a5) and idler (a;). Assuming that
the signal and idler fields are small compared to the second harmonic field the parametric ap-
proximation holds and the second harmonic field is described by Eq. (9). Ignoring quantum
fluctuations, the equations of motion are:

ds = (iAs — ) as + ebal +/2Y Asin (16)
i = (iA — 7Y a; + ebal (17)
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and their hermitian conjugates, where A; = A, 4+ Qofrs and A; = A, — Qo5 are the detunings of
the signal and idler fields when the frequency offset of the injected field from the fundamental
frequency is Q5. Because the control bandwidth is small compared to the cavity linewidth,
we find the response of the error signals to a static change by setting the derivatives to zero and
solving the set of equations. The input output relations can be used to find the coherent control
fields in reflection off the OPO, Ay, A; ; and transmitted towards the interferometer, Ag ¢, Aj :

As,r = 2ysas _As,in Ai7r = 2y a; (18)
As,t =/ 2Yafas Ai,t =\ Zyafai (19)

The error signal in reflection off of the cavity (demodulated at twice the frequency offset of the
injected field from the interferometer with a demodulation phase ¢4, is proportional to:

E; = Re[Aq (A ] sin §am1 + Im[Aq ;A] ] cOS G (20)

In transmission the beat note with the local oscillator (A ) is demodulated at the offset fre-
quency with a demodulation phase ¢4 to give a signal proportional to:

E =Re[Ag Al +AItAL0] sin Quma + Im[Ag Al +ALAL0] COS Qg1 1)

The relative phase between the main squeezing laser and the coherent sideband injected into the
OPO is adjusted to zero the reflected (coherent field) error signal, so the impact of fluctuations
can be found by setting the error signal to zero and solving numerically for change in the phase
of Ay ;,. This phase is then propagated to the transmitted (quadrature control) error signal, and
the shift of the pump phase required to zero this error signal gives the response of the entire
coherent quadrature control scheme to a disturbance. The response of this scheme is the same as
the response of the quadrature angle itself to fluctuations of the second harmonic pump phase,
local oscillator phase, or path length from the OPO to the detector; this is a good control scheme
to use to correct for fluctuations from those sources. Temperature and length fluctuations give
rise to lock point errors in this control scheme.
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