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Most protocols for quantum information processing consist of a series of quantum gates, which are

applied sequentially. In contrast, interactions between matter and fields, for example, as well as

measurements such as homodyne detection of light are typically continuous in time. We show how the

ability to perform quantum operations continuously and deterministically can be leveraged for inducing

nonlocal dynamics between two separate parties. We introduce a scheme for the engineering of an

interaction between two remote systems and present a protocol that induces a dynamics in one of the

parties that is controlled by the other one. Both schemes apply to continuous variable systems, run

continuously in time, and are based on real-time feedback.
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Most protocols in quantum information science are dis-
crete in the sense that they consist of a sequence of unitary
operations and measurements. Schemes for quantum tele-
portation or dense coding are typical examples. These
elementary protocols are the building blocks of other
applications such as quantum repeaters or quantum com-
puting. However, some implementations are intrinsically
continuous. The most prominent example are atomic
ensembles interacting with light, where schemes based
on the continuous detection of quadrature operators are
realized [1–3]. In this system, protocols can be performed
that are intrinsically deterministic and continuous in time.
Here we address the question how this property can be
exploited by designing primitives that take advantage of
this fact. Continuous schemes have been devised in several
subfields of quantum information science, for example for
phase estimation [4,5], error correction [6], and the prepa-
ration and protection of quantum states [7–10], in particu-
lar in the context of dissipative schemes [11–17]. Here we
introduce two protocols that achieve a qualitatively new
goal—to control and transmit quantum evolutions between
remote locations. We consider two separate systems that
cannot interact directly but exchange quantum states and
classical information. One scheme implements an effective
nonlocal dynamics, where the two systems evolve as if
they were interacting with each other. The other protocol
realizes the quantum teleportation of a time evolution,
which uses the dynamics of one system to steer the evolu-
tion of the other.

Figure 1(a) shows the setup under consideration. Two
spin ensembles interact with a propagating light field,
which is constantly measured. By performing real-time
feedback on both samples, an effective interaction is

established between the systems. Since this is done con-
tinuously, the dynamics of the two systems corresponds to
the evolution under the desired interaction Hamiltonian at
any instant of time. Remarkably, this scheme results
ideally in a joint unitary evolution of the two remote
systems. This is the case even though the protocol is based
on measurements yielding random outcomes and therefore
random projections of the states involved [18]. We show
that using a quantum nondemolition (QND) interaction
between spins and light, any Hamiltonian that is quadratic
in the atomic operators can be realized by tuning the
feedback operation only, i.e., without variation of the
system parameters. In the ideal case, any quadratic
Hamiltonian can be implemented perfectly.
The second protocol realizes a continuous teleportation.

Teleportation [19] offers a practical solution to the delicate
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FIG. 1 (color online). Dynamical teleportation and creation of
an interaction between two remote systems. (a) The setup
consists of two atomic ensembles in constant magnetic fields.
A freely propagating light field interacts with both samples and
is continuously measured. The result is fed back to the atoms.
(b) Illustration of the light-matter interaction in terms of
discretized spatially localized light modes.
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task of transmitting quantum states [20]. It is a pre-
requisite for quantum networks [22,23] and a primitive
for quantum computation [24]. A standard teleportation
scheme consists of three separate steps, which involve
(i) establishment of a highly entangled link, (ii) a projec-
tive measurement that destroys the state to be teleported,
and (iii) the recovery of the state on the receiver’s side by
applying a feedback operation. Here, we consider a con-
tinuous process involving weakly entangled states and
measurements that disturb the quantum state only a little
at each instant of time. In contrast to previous approaches,
which transmit a (static) state using a single feedback
operation at the end of the protocol, we consider the trans-
mission of a whole time evolution using real-time feed-
back. To illustrate this point, we consider the continuous
teleportation between two parties, Bob and Charlie, when a
time-dependent magnetic field is applied to Charlie’s sys-
tem. The resulting displacements on Charlie’s side trans-
late into a corresponding evolution on Bob’s system, which
evolves as if it was placed in a time-dependent magnetic
field: it evolves as if interacting with a field whose time
dependence is determined by Charlie’s evolution.

We consider two separate systems that are characterized
in terms of continuous variables xI, pI and xII, pII, which
commute canonically ½x; p� ¼ i. We assume that both
systems can be rotated locally and interact with a prop-
agating auxiliary bosonic system via a QND interaction
[Eq. (2)]. For concreteness, we consider two atomic spin
ensembles interacting with coherent light [25]. The free
evolution of the atomic system,

HA ¼ �I

2
ðx2I þ p2

I Þ þ
�II

2
ðx2II þ p2

IIÞ;

describes the atomic rotation (Larmor precession) in
homogeneous magnetic fields along x̂ with Larmor fre-
quencies �I and �II [see Fig. 1(a)]. In the following, we
use transformed atomic variables

~xI=II

~pI=II

 !
¼Rð�I=IIÞ

xI=II

pI=II

 !
;

Rð�I=IIÞ¼
cosð�I=IItÞ �sinð�I=IItÞ
sinð�I=IItÞ cosð�I=IItÞ

 !
xI=II

pI=II

 !
;

(1)

which rotate at the Larmor frequencies of the respective
fields. The light propagates along ẑ, passing both ensem-
bles. We adopt here a discretized one-dimensional model.
The interaction time T is divided into N infinitesimally
small time steps of length �, and the light is accordingly
described in terms ofN short pulse pieces. The quadratures
associated with the nth localized light mode are denoted by
xL;n and pL;n with ½xL;n; pL;n0 � ¼ i�n;n0 . The nth pulse piece
interacts with the atoms during the time window from t ¼
ðn� 1Þ� to t ¼ n� [Fig. 1(b)] according to the interaction
Hamiltonian [27]

HQND;n ¼ �ffiffiffiffi
N

p
�
ðpIðn�Þ þ pIIðn�ÞÞpL;n; (2)

where � is a dimensionless coupling constant. Such a QND
interaction can, for example, be realized using a Faraday
interaction in atomic vapors [28,29] or in optomechanical
systems [30]. The total Hamiltonian is given byH ¼ HL þ
HA þP

N
n¼1 HQND;n, whereHL accounts for the free propa-

gation of the light. By virtue of the consecutive QND
interactions shown in Fig. 1(a), the quantum state of the
atoms is mapped to the x quadrature of the light field. The
corresponding input-output relation for an infinitesimal
time step is given by

xoutL;n ¼ xinL;n þ
�ffiffiffiffi
N

p ~VT
Lðn�Þ ~RAð½n� 1��Þ; (3)

with

~VT
LðtÞ ¼ ð� sinð�ItÞ; cosð�ItÞ;� sinð�IItÞ; cosð�IItÞÞ;
~RT
AðtÞ ¼ ð~xIðtÞ; ~pIðtÞ; ~xIIðtÞ; ~pIIðtÞÞ;

where�� � 1 has been assumed [31]. The p quadrature is
conserved pout

L;n ¼ pin
L;n. The atomic evolution is given by

~xI=IIðn�Þ
~pI=IIðn�Þ

 !
¼ ~xI=IIð½n�1��Þ

~pI=IIð½n�1��Þ

 !
þ �ffiffiffiffi

N
p cosð�I=IIn�Þ

sinð�I=IIn�Þ

 !
pin
L;n:

We assume that xL is continuously measured and that the
result is instantaneously fed back onto the atoms by apply-
ing a conditional displacement. We apply here feedback
operations with temporally modulated gain factors

ð1= ffiffiffiffi
N

p Þgx;I=IIðtÞ and ð1= ffiffiffiffi
N

p Þgp;I=IIðtÞ such that

~xfinI=IIðn�Þ
~pfin
I=IIðn�Þ

0
@

1
A¼ ~xI=IIðn�Þ

~pI=IIðn�Þ

 !
þ 1ffiffiffiffi

N
p gx;I=IIðn�Þ

gp;I=IIðn�Þ

 !
xoutL;n: (4)

We show now how this setup can be used to establish an
arbitrary quadratic interaction between two ensembles.
Using suitable local rotations [33], any interaction
Hamiltonian for two continuous variable systems, which
is quadratic in the system operators, can be expressed as

H ¼ �ð�HA þ �HPÞ ¼ �

�
Zx1p2 þ 1

Z
p1x2

�
; (5)

where � ¼ ð1=2ÞðZþ ð1=ZÞÞ and � ¼ ð1=2ÞðZ� ð1=ZÞÞ
[34]. � characterizes the overall coupling strength of the
interaction while Z parametrizes the imbalance between
the active (entanglement creating) and the passive (energy
conserving) components, HA and HP [35]. After the light-
matter interactions, the measured quadrature xL contains
information on both ensembles [see Eq. (3)]. Feedback of
xL according to Eq. (4) leads therefore to terms that cor-
respond to the evolution under both local and interaction
Hamiltonians. The feedback of information of each en-
semble onto itself leads to an effective evolution according
to local squeezing Hamiltonians. In order to suppress these
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contributions, we use the fact that the quadratures of
each ensemble are mapped to the light with an oscillatory
time dependence. For implementing a purely nonlocal
evolution, the gain function for ensemble I (II) is chosen
to oscillate with �II (�I), such that information is trans-
ferred with high efficiency between the ensembles,

while contributions due to the feedback from the samples
to themselves are out of phase and average out. This
becomes apparent by considering the time varying gain

functions gx;I=IIðtÞ¼ ð1= ffiffiffiffi
N

p Þga=b sinð�a=btÞ and gp;I=IIðtÞ¼
ð1= ffiffiffiffi

N
p Þgb=acosð�a=btÞ. In the continuous limit,

_~xfinI ðtÞ
_~pfin
I ðtÞ

 !
¼ �

T

2
4M�a;�I

ga;gb ðtÞ ~xIðtÞ
~pIðtÞ

 !
þM�a;�II

ga;gb ðtÞ ~xIIðtÞ
~pIIðtÞ

 !35þ N x;IðtÞ
N p;IðtÞ

 !
;

_~xfinII ðtÞ
_~pfin
II ðtÞ

 !
¼ �

T

2
4M�b;�II

gb;ga ðtÞ ~xIIðtÞ
~pIIðtÞ

 !
þM�b;�I

gb;ga ðtÞ ~xIðtÞ
~pIðtÞ

 !35þ N x;IIðtÞ
N p;IIðtÞ

 !
;

where the coupling matrix M�1;�2
g1;g2 ðtÞ is defined by

M�1;�2
g1;g2 ðtÞ ¼ �g1 sinð�1tÞ sinð�2tÞ g1 sinð�1tÞ cosð�2tÞ

�g2 cosð�1tÞ sinð�2tÞ g2 cosð�1tÞ cosð�2tÞ

 !
:

N x;I=II and N p;I=II are noise terms due to the mapping of the input light field onto the atomic systems,

N x;I=IIðtÞ
N p;I=IIðtÞ

 !
¼ 1ffiffiffiffi

T
p ga=b sinð�a=btÞ � cosð�I=IItÞ

gb=a cosð�a=btÞ � sinð�I=IItÞ

 !
�xLðct; 0Þ
�pLðct; 0Þ

 !
:

We use here continuous light modes with quadratures
�xLðct; 0Þ ¼ xinL;n=

ffiffiffi
�

p
and �pLðct; 0Þ ¼ pin

L;n=
ffiffiffi
�

p
[36]. As

shown in the Supplemental Material (SM), the equations
above can be approximated by their coarse-grained version

using coarse-graining time intervals �t � ��1
I=II, j�I �

�IIj�1. In this limit, the coupling matrices M�1;�2
g1;g2 lead

to a negligible contribution for �1 � �2, since their ma-
trix elements average out. Similarly, they can be approxi-
mated by a constant diagonal matrix for �1 ¼ �2 [37].
The noise termsN x;I=IIðtÞ andN p;I=IIðtÞ give rise to noise
modes, which are approximately independent for �t �
��1

I=II, j�I ��IIj�1 and can therefore be squeezed simul-
taneously such that their contributions become negligible.
A detailed analysis is provided in [37]. For establishing an
interaction according to Eq. (5) with � ¼ �g=2T, we
consider the case �a=b ¼ �II=I, ga=b ¼ �gZ�1, which
leads to

_~xI
_~pI

 !
¼ �g

2T

1
Z
~xII

�Z~pII

 !
;

_~xII
_~pII

 !
¼ �g

2T

Z~xI

� 1
Z
~pI

 !
:

By tuning the feedback parameters ga=b, it is therefore
possible to realize any time evolution that corresponds to
a quadratic interaction Hamiltonian.

Using a modified configuration, a continuous teleporta-
tion can be realized. A teleportation scheme [19] involves
three parties—Alice, Bob, and Charlie. It allows Alice to
teleport an unknown quantum state provided by Charlie to
Bob. Here, Charlie’s state is stored in ensemble II and tele-
ported to ensemble I, representing Bob, while the light field
plays the role of Alice. Step (i) in the standard protocol
outlined in the Introduction corresponds to the interaction

between the light and ensemble I, resulting in an entangled
state. The distribution of entanglement between the remote
sites is realized by the free propagation of the light. Step
(ii) corresponds to the interaction of the light with ensemble
II and the measurement of xL. Step (iii) is implemented in
the form of a feedback operation realizing a conditional
displacement on ensemble I, which can be done using
magnetic fields. Using this protocol, the deterministic tele-
portation of a quantum state between two ensembles has
been demonstrated recently [38]. We present now an exten-
sion to a time-continuous operation, which facilitates the
teleportation of quantum dynamics. For this purpose, we
consider the special case of the scheme above where �I ¼
�II ¼ � and feedback is applied only to the first ensemble

gx;IðtÞ ¼ ð1= ffiffiffiffi
N

p Þ �gx sinð�tÞ, gp;IðtÞ ¼ ð1= ffiffiffiffi
N

p Þ �gp cosð�tÞ.
With this choice, Eq. (4) yields

_~xfinI ðtÞ
_~pfin
I ðtÞ

 !
¼ �

T
M�;�

�gx; �gp
ðtÞ ~xIðtÞ

~pIðtÞ

 !
þ �

T
M�;�

�gx; �gp
ðtÞ ~xIIðtÞ

~pIIðtÞ

 !

þ 1ffiffiffiffi
T

p �gx sinð�tÞ �cosð�tÞ
�gp cosð�tÞ � sinð�tÞ

 !
�xLðct;0Þ
�pLðct;0Þ

 !
:

(6)

The second term in Eq. (6) allows us to control Bob’s
dynamics using Charlie’s system. For demonstrating the
transmission of a time evolution, we add an extra
Hamiltonian corresponding to a time-dependent transverse
magnetic field on Charlie’s side Hextra;II ¼ �xðtÞxII þ
�pðtÞpII, where �x=pðtÞ are real time-dependent functions.

Accordingly,
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~xIIðtÞ
~pIIðtÞ

 !
¼
Z t

0
dt0

~�pðt0Þ
�~�xðt0Þ

 !
þ ~xinII

~pin
II

 !

þ �ffiffiffiffi
T

p
Z t

0
dt0

cosð�t0Þ
sinð�t0Þ

 !
�pLðct0; 0Þ; (7)

where ~�x=pðtÞ describe the time dependence of Hextra;II in

the rotating frame [see Eq. (1)]. The resulting time evolu-
tion on Bob’s side can be evaluated by inserting Eq. (7) into
Eq. (6). As in the general case above, the resulting differ-
ential equation can be approximated by the coarse-grained

equation with M�;�
g;�g ! �ð1=2Þ1 for ��t � 1, where �t

is the coarse graining time interval. This yields

_~xfinI ðtÞ
_~pfin
I ðtÞ

� �
¼ ��

2T

Z t

0
dt0

�gx ~�pðt0Þ
�gp ~�xðt0Þ

� �
þ �

2T

� � �gx½~xinI þ ~xinII �
�gp½~pin

I þ ~pin
II �

 !
þ �2

T3=2

�
Z t

0
dt0

� �gx cosð�t0Þ
�gp sinð�t0Þ

� �
�pLðct0; 0Þ þ 1ffiffiffiffi

T
p

� �gx sinð�tÞ � cosð�tÞ
�gp cosð�tÞ � sinð�tÞ

� �
�xLðct; 0Þ
�pLðct; 0Þ

� �
:

(8)

The first term on the right is equivalent to a field experi-
enced by Bob. Bob’s ensemble evolves as if it was placed
in a magnetic field, whose time dependence is given by
Charlie’s evolution [see Eq. (7)]. This way, the effect of the
magnetic field applied at Charlie’s side is teleported to
Bob. This is possible, since entanglement generation, mea-
surement, and feedback are performed continually. In con-
trast to a traditional teleportation, Charlie’s quantum state
is therefore not destroyed in a single step and subsequently
restored on Bob’s side, but rather transmitted continuously,
which offers the possibility to include the effect of a time
evolution.

In the following, we discuss imperfections and consider
the case, where real-time feedback is applied to both
ensembles. This discussion can also be applied for evalu-
ating the added noise in the teleportation protocol. For
analyzing the performance of the scheme, we introduce a
figure of merit which quantifies the deviation of the real-
ized time evolution from the desired one using the
Jamiolkowsi isomorphism between quantum maps and
states. Both the imperfect map and the ideal one are trans-
formed into their corresponding states and then compared
as explained in the SM. The time evolution "T acting on the
atomic system is described in terms of an entangled state of
twice the system size that can be used to teleport a given
input state �in through "T , such that the output "Tð�inÞ is
obtained. This entangled state consists of two copies of a
two-mode squeezed state with squeezing parameter R. For
R ! 1, which corresponds to a quantum state with infinite
energy, any input state can be teleported through "T . For

finite R, this holds for a restricted set of input states. We
start by considering the fidelity for fixed R. As explained in
the SM, the scheme involves two types of imperfections,
fast rotating terms in the evolution and light noise added
to the atomic system. If a time window �t � �1, �2,
j�1 ��2j is considered, the former are negligible and the
latter can be suppressed using squeezed input light fields.
The inset in Fig. 2 shows the fidelity for fixed R versus the
squeezing of the light field r for �2 ¼ 2�1. For increasing
�1�t, the optimal squeezing parameter ropt increases,

which leads to an increased accuracy of the scheme. For
�1�t ! 1, ropt ! 1, and F ! 1. For increasing values of

R, correspondingly high values of�t are required to obtain a
good fidelity. The required value of �t increases with eR as
shown in Fig. 2, which displays the fidelity F for fixed
Larmor frequencies�1 and�2 ¼ 2�1. This graph features
a fine substructure since for time windows �t ¼ 2	=�1,
local maxima are obtained, which gives rise to stripelike
regions of high fidelity. In general, realizing a desired time
evolution with high temporal resolution requires high
Larmor frequencies. For fixed �1 and �2, the attainable
precision depends on the temporal resolution as shown in
Fig. 2. Higher fidelities can be obtained if a stroboscopic
interaction is implemented where points of interest in time
are chosen to coincide with the local maxima.
In conclusion, we proposed a dynamical teleportation

scheme, where entangling operations, measurement, and
feedback are performed continuously and simultaneously.
Moreover, we demonstrated how a generalized version of
this protocol can be used to implement arbitrary quadratic
interactions between remote systems.
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