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The general boundary formulation of quantum field theory is applied to a massive scalar field in two-

dimensional Rindler space. The field is quantized according to both the Schrödinger-Feynman quantiza-

tion prescription and the holomorphic one in two different spacetime regions: a region bounded by two

Cauchy surfaces and a region bounded by one timelike curve. An isomorphism is constructed between the

Hilbert spaces associated with these two boundaries. This isomorphism preserves the probabilities that can

be extracted from the free and the interacting quantum field theories, proving the equivalence of the

S-matrices defined in the two settings, when both apply.

DOI: 10.1103/PhysRevD.87.125001 PACS numbers: 11.10.�z, 04.62.+v

I. INTRODUCTION

The general boundary formulation (GBF) provides a
new axiomatic approach to describe the dynamics of quan-
tum fields [1–17]. The set of axioms, inspired by topologi-
cal quantum field theory [18,19], assigns algebraic
structures to geometrical ones and ensures the consistency
of these assignments. In particular, amplitude maps are
associated with general spacetime regions, and state spaces
are associated with their corresponding boundaries. A
generalization of Born’s rule [20] guaranties a consistent
physical interpretation of such structures.

The main motivation for the development of the GBF
has been represented by conceptual difficulties inherent in
the attempt to formulate a quantum theory of gravity
[19,21] like the so-called problem of time [22], the prob-
lem of providing a fully local description of the quantum
dynamics in a quantum gravitational context, and the
measurement problem. From this perspective, a remark-
able aspect of the GBF is the following: no background
metric is required for the implementation of the GBF.

On one hand, it is very useful to consider quantum field
theories of matter fields on fixed Lorentzian spacetimes to
test the GBF and to gain insight into its structure. On the
other hand, in the standard formulation of these field
theories, only regions with spacelike initial and final data
hypersurfaces are usually considered. Within the GBF, a
much wider class of setups can be implemented. Indeed,
the GBF offers the possibility to construct quantum field
theories in general spacetime regions, in particular, com-
pact spacetime regions with just one connected boundary
with spacelike and timelike parts. This means that the GBF

enables us to have a completely new perspective on the
well-established quantum theory of matter fields.
In recent years, the GBF was applied to many different

physical setups [3,10–16,23], which led to many interesting
results, like the crossing symmetry of the S-matrix of pertur-
bative quantum field theory (QFT) which is a derived prop-
erty within the GBF [15,16] or the rigorous construction in
anti–de Sitter space [10] of an asymptotic amplitude that can
be interpreted as an S-matrix for spatial asymptotic states.
In this article, we apply the GBF to study the quantum

theory of a massive scalar field in two-dimensional Rindler
space in two different spacetime regions: a region bounded
by two Cauchy surfaces given by hyperplanes of constant
Rindler time and a region bounded by one timelike hyper-
surface of a constant Rindler spatial coordinate. The first
region is usually considered in the standard formulation of
QFT and represents an important test for the ability of the
GBF to reproduce known results. In contrast, the timelike
boundary of the second region makes the applicability of
the standard techniques of quantization difficult and rep-
resents a significant departure from the traditional descrip-
tion of dynamics in QFT. We will show that the GBF can
deal with this second setting with no difficulty, and, more-
over, we shall prove that a one-to-one relation can be
established between the state spaces in the two settings.
This result extends previous results obtained in Minkowski
space [15,16]1 and de Sitter spaces [24,25].
The article is structured as follows: In Sec. II, we introduce

theGBFand itsmain structures. In Sec. III, the two spacetime
regions of interest here are introduced, and the solutions of the
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1The one-to-one correspondence established for the standard
spacelike bounded regions in Minkowski space and a particular
family of regions with timelike boundaries was used, in particu-
lar, to show explicitly that the crossing symmetry of QFT is
generic in the GBF.
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classical equations of motion are specified. In Sec. IV, we
present the quantization of the scalar field in both regions, and
in Sec. V, we establish an isomorphism between the two
quantum theories and show that it preserves amplitudes and
probabilities in the free quantumfield theory. In Sec. VIC,we
show that this is also true for the interacting theory. Our
conclusions and outlooks are summarized in Sec. VII.

II. THE GENERAL BOUNDARY FORMULATION
OF QUANTUM FIELD THEORY

In this section, we give a short review on the Schrödinger-
Feynman representation [1] and the holomorphic represen-
tation [4] in which the GBF axioms presented in Ref. [1]
have been so far implemented. We introduce the main
structures that will be used in the rest of the paper such as
state spaces and amplitude maps for both representations.

Let SMð�Þ ¼ R
M dNxLð�; @�; xÞ be the action of a

linear real scalar field theory in a spacetime region M of
an N-dimensional Lorentzian manifold ðM; gÞ. Denoting
the boundary2 of the region M with �, we associate with
this hypersurface the space L� of solutions of the Euler-
Lagrange equations defined in a neighborhood of �.3 The
symplectic potential on � results to be

ð��Þ�ðXÞ :¼
Z
�
dN�1�Xðxð�ÞÞ

�
n�

�L
�@��

�
ðxð�ÞÞ; (1)

wheren� is the unit normal vector to�.Wedefine the bilinear
map ½�; ���: L� � L� ! R as ½�;��� :¼ ð��Þ�ð�Þ for each
�, � 2 L�. Moreover, the space L� is equipped with the
symplectic structure defined as the antisymmetric bilinear
map !�:L��L�!R given by !�ð�;�Þ :¼ 1

2½�;����
1
2½�;���. The last ingredient for the quantum theory we

need to specify is a compatible complex structure J� repre-
sented by the linear map J�:L�!L� such that J2�¼�id

and!�ðJ��;J��Þ¼!�ð�;�Þ and!�ð�; J��Þ is a positive defi-
nite bilinear map. Note that all ingredients but the complex
structure J� are classical data uniquely defined by specifying
the action.

These basic ingredients can now be used in different
ways to specify the Hilbert spaces, which, according to the
axioms of the GBF, are associated with the boundary
hypersurface �.4 In the following sections, we introduce

the two representations developed so far within the GBF,
namely, the Schrödinger representation, usually associated
with the Feynman path integral quantization prescription,
and the holomorphic representation.

A. The holomorphic representation

From the complex structure J�, we define the symmetric
bilinear form g�: L� � L� ! R as

g�ð�;�Þ :¼ 2!�ð�; J��Þ 8�; � 2 L� (2)

and assume that this form is positive definite. Next, we
introduce the sesquilinear form

f�;�g� :¼ g�ð�;�Þ þ 2i!�ð�;�Þ 8�; � 2 L�: (3)

The completion of L� with the inner product f�; �g� turns it
into a complex Hilbert space. The Hilbert space
H h

� ¼ H2ðL�; d��Þ,5 namely, the set of square integrable

holomorphic functions on L�, is the closure of the set of all
coherent states6 [4],

Kh
�;�ð�Þ :¼ e

1
2f�;�g� ; (4)

where � 2 L� and the closure is taken with respect to the
inner product

hKh
�;�; K

h
�;�0 i :¼

Z
L�

d��ð�ÞKh
�;�ð�ÞKh

�;�0 ð�Þ; (5)

where d�� is a Gaussian probability measure constructed
from the metric g� [4]. It can be represented formally as

d��ð�Þ ¼ d��ð�Þe1
4g�ð�;�Þ with a certain translation-

invariant measure d��.
Associated to each spacetime region M, there is an

amplitude %M defined for states belonging to the Hilbert
space associated with the boundary � of this region,

%Mðc hÞ :¼
Z
L ~M

d� ~Mð�Þc hð�Þ; (6)

where L ~M � L� is the set of all global solutions on M
mapped to L� by just considering the solutions in a neigh-
borhood of �.7 The measure d� ~M is again a Gaussian
probability measure constructed from the metric g� [4].8

This amplitude for coherent states turns out to be9

2Notice that whether the boundary hypersurface � is a Cauchy
surface (or a disjoint union of Cauchy surfaces) has no bearing
on the following treatment.

3More precisely, L� is the space of germs of solutions at �,
which is the set of all equivalence classes of solutions where two
solutions are equivalent if there exists a neighborhood of � such
that the two solutions coincide in this whole neighborhood.

4If the boundary of the region considered is given by the disjoint
union of two hypersurfaces, say � ¼ �1 [�2, the associated
Hilbert space is a tensor product of the Hilbert spaces defined
on each hypersurface, H � ¼ H �1

�H �
�2
, where the different

orientation of the hypersurface �2 with respect to �1 is respon-
sible for the dualization of the corresponding Hilbert space.

5To make this mathematically precise, one actually has to
construct H h

� ¼ H2ðL̂�; d��Þ, where L̂� is a certain extension
of L�. For more details about the construction of L̂� and d��,
we refer the reader to Ref. [4].

6States in the holomorphic representation are denoted with
a superscript h.

7More precisely, global solutions are mapped to the corre-
sponding germs at �.

8Again, we refer the reader to Ref. [4], where the constructions
are given that make all the objects used here well defined.
Additionally, in Ref. [5], it was shown that the one-to-one
correspondence between maps �� (which is an important in-
gredient of the Schrödinger-Feynman representation and will be
defined in the next section) and complex structures J� leads also
to mathematically well-defined constructions for all the expres-
sions in Sec. II B.

9See Eq. (31) of Ref. [6] for normalized coherent states and
Eq. (43) in Ref. [4] as well as Ref. [5].
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%MðKh
�Þ¼ exp

�
1

4
g�ð�R;�RÞ�1

4
g�ð�I;�IÞ� i

2
g�ð�R;�IÞ

�
;

(7)

where �R, �I 2 L ~M, and � ¼ �R þ J��
I. A consistent

probability interpretation can be given to this amplitude
using the generalized Born rule [1,20], defined in the GBF.

B. The Schödinger-Feynman representation

In this section, we introduce the Schrödinger-Feynman
representation of the GBF. However, we will not start from
the symplectic form and complex structure we established
in the beginning but directly from the action SMð�Þ. This is
the way the Schrödinger-Feynman representation was es-
tablished originally. The construction of the Schrödinger-
Feynman representation from the symplectic form and
complex structure will be the content of the next section,
which will illuminate the relation between the two
representations.

In the Schrödinger-Feynman representation, quantum
states in the Hilbert space associated with the boundary
� are represented as wave functionals of the space of field
configurations.10 The amplitude associated with the region
M is given by the linear map %M: H � ! C,

%Mðc SÞ ¼
Z

D’c Sð’ÞZMð’Þ; (8)

where the integral is extended over all the configurations ’
on the boundary of the region M, and ZMð’Þ is the field
propagator, formally defined as

ZMð’Þ ¼
Z
�j�¼’

D�eiSMð�Þ; (9)

where SMð�Þ is the action of the field inM and the integral is
extended to the spacetime field configurations� that reduce
to the configuration ’ on the boundary hypersurface �.

As in the holomorphic representation, coherent states
can be defined in the Schrödinger representation, too. They
are given as

KS
�;�

ð’Þ¼	�;� exp

�Z
d3s�ðsÞ’ðsÞ�1

2
��ð’;’Þ

�
; (10)

where 	�;� is a normalization constant and�� is a bilinear

map from two copies of the space of field configurations on
the boundary hypersurface � to the complex numbers. The
vacuum state is obtained from Eq. (10) by setting � ¼ 0.

With the coherent states above, we can again define the
Hilbert space associatedwith the boundary� as the closure of
the spaceof coherent stateswith respect to an inner product. In
the Schrödinger representation, this is the expression

hc �jc 0
�i :¼

Z
D’c S

�
ð’Þc S0

�
ð’Þ: (11)

C. Relation between the two representations

In this section, we show how to develop the
Schrödinger-Feynman representation starting from the
symplectic form and the complex structure. We also clarify
the relation between the two representations.
We start by defining what plays the role of the ‘‘space of

momentum’’ in the Schrödinger-Feynman representation:

M� :¼ f� 2 L�: ½�; �� ¼ 0 8� 2 L�g: (12)

It can be shown thatM� is a Lagrangian subspace of L�.
11

Next, we consider the quotient space Q� :¼ L�=M�,
which corresponds to the space of all field configurations
on �. We denote the quotient map L� ! Q� by q�. The
last ingredient needed for the Schrödinger representation is
the bilinear map defining the vacuum state,

��: Q� �Q� ! C;

ð’;’0Þ � 2!�ðj�ð’Þ; J�j�ð’0ÞÞ � i½j�ð’Þ; ’0��;
(13)

where j� is the unique linear mapQ� ! L� such that q� �
j� ¼ idQ�

and j�ðQ�Þ � J�M. Coherent states are given

in terms of �� by the expressions

KS
�;�

ð’Þ¼ exp

�
��ðq�ð�Þ;’Þþ i½�;’��

�1

2
��ðq�ð�Þ;q�ð�ÞÞ� i

2
½�;����1

2
��ð’;’Þ

�
:

(14)

It was shown in Ref. [5] that there is a one-to-one corre-
spondence between bilinear maps �� appropriate for the
Schrödinger representation and complex structures J�. This
means that given a complex structure, we uniquely fix all the
algebraic structures of the two representations.12 In particu-
lar, an isomorphism exists between the Hilbert spaces in the
holomorphic representation and the Schrödinger-Feynman
representation that preserves the amplitude map. Hence, the
two representations can be used equivalently.

III. CLASSICAL THEORY

Rindler space R is given by the metric ds2 ¼ 
2d�2 �
d
2, where 
 2 Rþ and � 2 R. The free action of the
Klein-Gordon field in a spacetime region M is

SM;0ð�Þ ¼ 1

2

Z
M
d�d



�
�ð@
�Þ2 þ 1


2
ð@��Þ2 �m2�2

�
;

(15)

where m is the mass of the field and @
 and @� denote the

partial derivatives with respect to 
 and �, respectively.
From the action, we can deduce the equation of motion:

10We denote states in the Schrödinger-Feynman representation
with a superscript S.

11It is this subspace M� that defines the Schrödinger polariza-
tion of the prequantum Hilbert space constructed from L�; see
Ref. [5] for details.
12This one-to-one correspondence sends Eq. (14) into Eq. (10).
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ð�
@

@
 þ @2� þm2
2Þ� ¼ 0: (16)

Solutions of the field equation (16) can be expressed in
terms of the modes

�pðxÞ ¼ i

2
ðsinh ðp�ÞÞ�1=2Iipðm
Þe�ip�;

�pðxÞ ¼ ðsinh ðp�ÞÞ1=2
�

Kipðm
Þe�ip�; p 	 0;

(17)

where Iip and Kip are the modified Bessel functions of the

first and second kind, respectively; see the Appendix.
In the following, we will study the field in two different

spacetime regions. The first is a regionM1 bounded by two
semilines of constant Rindler time �1 and �2, respectively,
with �1 <�2; namely, M1 ¼ ½�1; �2� � Rþ and all the
relevant quantities referring to this region will be indicated
with the subscript ½�1; �2�. Additionally, we will consider
the region M2 bounded by one hyperbola of constant

 ¼ 
1, namely, M2 ¼ R� ½
1;1Þ. Because of the
asymptotic behavior (A4), in both regions, the field will
be expanded in the basis of the modes �pðxÞ.

A. Region with spacelike boundary: M1

Consider the region bounded by the two semilines of
constant �, namely, the region M1. We denote by ’1 and
’2 the configurations of the field on the boundaries �1 at
� ¼ �1 and �2 at � ¼ �2, respectively: �j�1

¼ ’1 and

�j�2
¼ ’2. It will be useful to express the solution of the

Klein-Gordon equation (16) in terms of these boundary
field configurations. In particular, the general solution to
Eq. (16) can be written as

�ð�;
Þ ¼ ðXað�ÞYaÞð
Þ þ ðXbð�ÞYbÞð
Þ; (18)

where each Xið�Þ is understood as an operator acting on a
mode decomposition of Yi. In particular, we can choose
Xað�Þ ¼ cos ðp�Þ and Xbð�Þ ¼ sin ðp�Þ. Expressing each
Yi in terms of the boundary field configurations ’i leads to

�ð�;
Þ¼
�
sinpð�2��Þ
sinpð�2��1Þ’1

�
ð
Þþ

�
sinpð���1Þ
sinpð�2��1Þ’2

�
ð
Þ;
(19)

where p is to be understood as the operator p :¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
@
Þ2 �m2

q
acting on a mode decomposition of the

boundary field configurations. As mentioned above, the
divergent character of Iip at infinity forces us to retain in

this mode expansion only the modified Bessel function of
the second kind, Kip, also known as Macdonald function;

see the Appendix. The free action (15) in terms of the
boundary field configurations reads

S½�1;�2�;0ð’1;’2Þ¼1

2

Z 1

0

d




’1 ’2

� �
W½�1;�2�

’1

’2

 !
; (20)

where the W½�1;�2� is a 2� 2 matrix given by

W½�1;�2�¼
p

sinpð�2��1Þ
cospð�2��1Þ �1

�1 cospð�2��1Þ

 !
:

(21)

B. Region with timelike boundary: M2

In contrast to the spacetime region considered before,
the region M2 presents only one boundary �
1

defined by

the hyperbola 
 ¼ 
1, i.e., M2 ¼ R� ½
1;1Þ. The sub-
script 
1 will be used for the quantities referring to this
region. The field configurations will then contain only the
modified Bessel function of the first kind, and a solution of
the Klein-Gordon equation in this region, reducing to the
boundary configuration ’ at 
1, can be written as

�ð�;
Þ ¼
�
Kipðm
Þ
Kipðm
1Þ’

�
ð�Þ; (22)

where
Kipðm
Þ
Kipðm
1Þ has to be understood as an operator acting on

the field configuration ’ð�Þ as
Kipðm
Þ
Kipðm
1Þ e

ip0� ¼ Kip0 ðm
Þ
Kip0 ðm
1Þ e

ip0�: (23)

The action of the field (22) in the regionM2 is expressed in
terms of ’ as

S
1;0ð’Þ ¼
1

2

Z 1

�1
d�’ð�Þ


�
d

d


Kipðm
Þ
Kipðm
1Þ’

�
ð�Þj
¼
1

:

(24)

IV. QUANTUM THEORY

In this section, the quantum theory of the free field in the
different regions considered above will be presented. In
Ref. [11], a general treatment of the GBF description of the
quantum dynamics of a scalar field in a certain class of
spacetimes and spacetime regions has been presented. The
scalar field in the two spacetime regions inRindler spacetime
considered here satisfies the conditions of Ref. [11], and the
results obtained there can then be used in the present work.

A. Quantization in M1

1. Holomorphic representation

To constitute valid initial data on the hypersurfaces �1

and �2, the field�must vanish at spacelike infinity, which
excludes the modes containing the Bessel functions of the
first kind and leaves us with the decomposition

�ðxÞ ¼
Z 1

0
dpð�ðpÞ�pðxÞ þ c:c:Þ: (25)

From the second variation of the action in Eq. (15), we
obtain the symplectic form as

!�i
ð�;�0Þ ¼ 1

2

Z 1

0

d




ð�@��

0 ��0@��Þð
Þ: (26)

Now, we obtain for two modes �p and �p0 at �i with

i ¼ 1, 2 the following expressions:
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!�i
ð�p;�p0 Þ ¼ �ðp� p0Þ;

!�i
ð�p;�p0 Þ ¼ !�i

ð�p;�p0 Þ ¼ 0:
(27)

With the complex structure

J�i
¼ @�ffiffiffiffiffiffiffiffiffiffi

�@2�

q ; (28)

which corresponds to the timelike Killing vector
field @�, we obtain, for two general solutions �

and c ,

!�i
ð�; c Þ ¼ i

2

Z 1

0
dpð�ðpÞc ðpÞ ��ðpÞc ðpÞÞ; (29)

g�i
ð�; c Þ ¼

Z 1

0
dpð�ðpÞc ðpÞ þ�ðpÞc ðpÞÞ; (30)

f�; c g�i
¼ g�i

ð�; c Þ þ 2i!�i
ð�; c Þ

¼ 2
Z 1

0
dp�ðpÞc ðpÞ: (31)

These are all the algebraic objects necessary for the hol-
omorphic quantization of the Klein-Gordon field in the
region M1.

2. Schrödinger-Feynman representation

Substituting in Eq. (9) the free action (20) of the classi-
cal solution (19) in the spacetime region M1, we can
express the field propagator in terms of the boundary field
configurations ’1 and ’2,

Z½�1;�2�;0ð’1; ’2Þ
¼
�
det

�ip

2� sinpð�2 � �1Þ
��1=2

eiS½�1 ;�2�;0ð’1;’2Þ; (32)

where again p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
@
Þ2 �m2

q
has to be understood as an

operator. This field propagator satisfies the composition
property

Z½�1;�3�;0ð’1; ’3Þ
¼
Z

D’2Z½�1;�2�;0ð’1; ’2ÞZ½�2;�3�;0ð’2; ’3Þ: (33)

Following Refs. [11,16,25], we define by Eq. (10) the
coherent states in the Hilbert space H � associated to

the semiline of constant Rindler time �. These states
have the property to remain coherent under the evolution
implemented by the field propagator (32). In the interaction
picture, they take the form

KS
�;�ð’Þ ¼ exp

�
� 1

2

Z 1

0
dp

1

2p
ðe�2ip��2ðpÞ þ j�ðpÞj2Þ

�

� exp

�Z 1

0
dpe�ip��ðpÞ’ðpÞ

�
c �;0ð’Þ;

(34)

where c �;0 is the vacuum state13 in H �,

c �;0ð’Þ ¼ det

�
p

�eip�

�
1=4

exp

�
� 1

2

Z
dp0’ðp0Þp0’ðp0Þ

�
:

(35)

We have now at our disposal all the ingredients to compute
explicitly the free amplitude for a coherent state in the
spacetime region M1. In particular, we consider the coher-
ent state defined by two complex functions �1 and �2 as

KS
�1;�1

�KS
�2;�2

in the Hilbert spaceH �1
�H �

�2
associated

with the boundary of M1. The free amplitude results to be

%½�1;�2�ðKS
�1;�1

� KS
�2;�2

Þ ¼
Z

D’1D’2K
S
�2;�2

ð’2ÞKS
�1;�1

ð’1ÞZ½�1;�2�;0ð’1; ’2Þ;

¼ exp

�
� 1

2

Z 1

0

dp

2p
ðj�1ðpÞj2 þ j�2ðpÞj2 � 2�2ðpÞ�1ðpÞÞ

�
; (36)

where we used again the expansion of the functions �1;2ð
Þ
in the basis of the modes upð
Þ. Notice that this amplitude
does not depend on the Rindler times �1 and �2.

B. Quantization in M2

In this section, we will give all elements of the two
representations of the GBF in the region M2.

1. Holomorphic quantization

For the holomorphic representation, we start with the
symplectic form:

!�
1
ð�;�0Þ ¼ 1

2

Z 1

�1
d�
ð�@
�

0 ��0@
�Þð�Þ: (37)

The solutions to the Klein-Gordon equation in Rindler
space at �
1

only exist locally around �
1
and thus are

not expected to vanish at spacelike infinity. They can be
parametrized using the modified Bessel functions of the
first kind as14

��
1
ðxÞ ¼

Z 1

�1
dpð��
1

ðpÞ�pðxÞ þ c:c:Þ; (38)

13In the notation of Ref. [11], the coefficients ca and cb have be
chosen to be 1 and i, respectively.
14The only solutions we have to consider at the boundary are
the Bessel functions of the first kind since the Bessel functions of
the second kind are not independent solutions [see Eq. (A1)].
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In contrast, solutions in the interior of M2 must vanish for

 ! 1 and thus can be parameterized using just the modi-
fied Bessel functions of the second kind as

�M2
ðxÞ ¼

Z 1

0
dpð�M2

ðpÞ�pðxÞ þ c:c:Þ: (39)

For the parameterization in Eq. (38) and with the
Wronskian of two Bessel functions of the first kind [see
Eq. (A2)], we find for the symplectic form the expression

!�
1
ð��
1

; �0
�
1

Þ ¼ � i

2

Z 1

�1
dpð��
1

ðpÞ�0
�
1

ðpÞ � c:c:Þ:
(40)

To obtain the metric and the inner product on the space of
solutions L�
1

at �
1
we define the action of the complex

structure J�
1
as J�
1

�pðxÞ ¼ �i�pðxÞ. Hence, we obtain

J�
1
��
1

ðxÞ ¼ �i
Z 1

�1
dpð��
1

ðpÞ�pðxÞ � c:c:Þ (41)

and the metric and the inner product result,

g�
1
ð��
1

; �0
�
1

Þ ¼ 2!�M
ð��
1

; J�
1
�0

�
1

Þ

¼
Z 1

�1
dpð��
1

ðpÞ�0
�
1

ðpÞ þ c:c:Þ;
(42)

f��
1
; �0

�
1

g�
1
¼ g�
1

ð��
1
; �0

�
1

Þ þ 2i!�M
ð��
1

; �0
�
1

Þ

¼ 2
Z 1

�1
dp��
1

ðpÞ�0
�
1

ðpÞ: (43)

By defining coherent states and their amplitudes, we obtain
the free quantum theory for the Klein-Gordon field in the
region M2. In the next section, we will establish the iden-
tification between states on the boundary of M2 and M1.

2. Schrödinger-Feynman quantization

The field propagator is expressed in terms of the action
(24) as

Z
1;0ð’Þ ¼ det

�4�2K2
ijpjðm
1Þ

m sinh ðjpj�Þ
��1=4

eiS
1 ;0ð’Þ; (44)

where the expression in the determinant is to understood as
an operator acting as

4�2K2
ijpjðm
1Þ

m sinh ðjpj�Þ eip
0� ¼ 4�2K2

ijp0jðm
1Þ
m sinh ðjp0j�Þ e

ip0� (45)

on the Fourier expansion of field configurations. We will
consider the vacuum state

c 
1;0ð’Þ ¼ C
1
exp

�
� 1

2

Z
d�’ð�Þ

�
�
i


d

d

ln ðIijpjðm
ÞÞ’

�
ð�Þj
¼
1

�
; (46)

giving rise to the Hilbert space H �
1
. C
1

in the above

equation is the normalization factor of the vacuum state. A
coherent state in H �
1

, in the interaction picture, reads

KS

1;�

ð’Þ ¼ 	
1;� exp

�Z 1

0

dp

Iijpjðm
1Þ
½�ðpÞ’ð�pÞ

þ �ð�pÞ’ðpÞ�
�
c 
1;0ð’Þ; (47)

where �ðpÞ and ’ðpÞ are the coefficients of the expansion
of �ð�Þ and ’ð�Þ, respectively, in the basis of the plane

waves eip�=
ffiffiffiffiffiffiffi
2�

p
. 	
1;� is the normalization factor given by

	
1;� ¼ exp

�
�
Z 1

0
dp

�

4sinh ðp�Þ
�
Iipðm
1Þ
Iijpjðm
1Þ

2�ðpÞ�ð�pÞ

þ j�ðpÞj2 þ j�ð�pÞj2
��

: (48)

The free amplitude for a coherent state results to be

%
1
ðKS


1;�
Þ ¼

Z
D’c 
1;�Z
1;0ð’Þ

¼ exp

�
� 1

2

Z 1

0
dp

�

2 sinh ðp�Þ ðj�ðpÞj
2

þ j�ð�pÞj2 þ 2�ðpÞ�ð�pÞÞ
�
; (49)

which is independent of 
1, as it should be.

V. IDENTIFICATION OF STATES

In the last section, we derived all the objects necessary
for the GBF onM2. We will now establish an isomorphism
between the states on the boundary �
1

and @M1 using the

coherent states. Since the coherent states form a dense
subset in the respective Hilbert spaces, it suffices if we
can identify them.

A. Holomorphic representation

We have for the amplitude for a generic region M and a
coherent state Kh

 the following expression:

%MðKh
 Þ ¼ exp

�
1

4
g@Mð̂; ̂Þ

�
; (50)

with ̂ ¼ R � iI and R, I 2 L ~M such that  ¼ R þ
J@M

I. The reader can easily verify that Eq. (50) coincides
with Eq. (7).
For regionM1, we obtain for solutions�, �0 in L ~M1

that

g@M1
ð�;�0Þ ¼ 2

Z 1

0
dpð�ðpÞ�0ðpÞ þ c:c:Þ: (51)

For the solution ��
1
in L ~M2


 L�
1
, we obtain by

projecting the solution � to a neighborhood of �
1
with

the decomposition (38) and using relation (A1) the
identities
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��
1
ðpÞ ¼ �ðpÞ and ��
1

ð�pÞ ¼ �ðpÞ:
For the metric, we find then

g�
1
ð��
1

; �0
�
1

Þ ¼
Z 1

�1
dpð��
1

ðpÞ�0
�
1

ðpÞ þ c:c:Þ
(52)

¼ 2
Z 1

0
dpð�ðpÞ�0ðpÞ þ c:c:Þ: (53)

Hence, identifying the expression in Eq. (50) for the am-
plitude in M2 and M1 is equivalent to the identification

̂ �
1
¼ ̂@M1

(54)

for the two different regions. For region M2, let us define
R~M2

ðpÞ and I~M2
ðpÞ such that

R�
1

¼
Z 1

0
dpðR~M2

ðpÞ�pðxÞ þ c:c:Þ;

I�
1

¼
Z 1

0
dpðI~M2

ðpÞ�pðxÞ þ c:c:Þ:
(55)

Then, we obtain with the action of the complex structure
corresponding to �
1

the identity

�
1
¼ R�
1

þ J�
1
I�
1

¼
Z 1

0
dp½ðR~M2

ðpÞ � iI~M2
ðpÞÞ�pðxÞ þ ðR~M2

ðpÞ

þ iI~M2
ðpÞÞ��pðxÞ þ c:c:�: (56)

By comparing this with Eq. (38) (replacing ��
1
by ), we

obtain

�
1
ðpÞ ¼ R~M2

ðpÞ � iI~M2
ðpÞ;

�
1
ð�pÞ ¼ R~M2

ðpÞ þ iI~M2
ðpÞ;

(57)

for p > 0, which can be inverted as

R~M2
ðpÞ ¼ 1

2
ð�
1

ðpÞ þ �
1
ð�pÞÞ;

I~M2
ðpÞ ¼ i

2
ð�
1

ðpÞ � �
1
ð�pÞÞ:

(58)

Then, we find the expression

̂�
1
¼
Z 1

0
dp½�
1

ðpÞ�pðxÞ þ �
1
ð�pÞ�pðxÞ�: (59)

For region M1, we have for a solution ð1; 2Þ 2 L�1
�

L
�2

¼ L@M1
that R ¼ 1=2ð1 þ 2; 1 þ 2Þ and

J@M1
I ¼ 1=2ð1 � 2; 2 � 1Þ, and hence ̂ ¼ 1=2ð1þ

iJ�1
Þ1 þ 1=2ð1� iJ�1

Þ2, and we obtain

̂@M1
ðxÞ ¼

Z 1

0
dpð�pðxÞ1ðpÞ þ�pðxÞ2ðpÞÞ; (60)

which leads to the identification

1ðpÞ ¼ �
1
ðpÞ; 2ðpÞ ¼ �
1

ð�pÞ; (61)

with p > 0. These expressions give an isomorphism be-
tween the Hilbert spaces on the boundary ofM2 andM1. In
particular, this isomorphism preserves the amplitude by
construction and, thus, preserves the probability for the
quantum field theory. It also preserves the vacuum state
since c 0;�h

¼ K0;�h
is mapped to c 0;@M�

¼ K0;@M�
.

In Sec. VI, we will find that also the observable ampli-
tudes for certain Weyl observables of the form

W ¼ exp ðiDÞ with Dð�Þ ¼ R
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detgðxÞp
�ðxÞ�ðxÞ

and �ðxÞ a general test function are preserved. Since the
corresponding amplitude can be used as a generating func-
tional for the perturbative quantization of interacting scalar
field theories, this means that the amplitudes for interacting
scalar field theories in the two regions are equivalent.

B. Schrödinger-Feynman representation

In Schrödinger-Feynman representation, we proceed in
a way analogous to what we did in the holomorphic rep-
resentation. Based on previous results [14–16], and, in
particular, according to formula (75) of Ref. [11], in the
region M1, we have

�̂ð
;�Þ ¼ � i

2p
ðe�ip��1ð
Þ þ eip��2ð
ÞÞ; (62)

where e�ip�

2p is to be understood as an operator; expanding

the function �1;2ð
Þ according to Eq. (A6), we get

�̂ð
;�Þ ¼ �i
Z 1

0

dp

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p sinh ð�pÞp

�
Kipðm
Þðe�ip��1ðpÞ

þ eip��2ðpÞÞ: (63)

On the other hand, in the region M2, according to formula
(91) of Ref. [11], we have

�̂ð
;�Þ ¼ �Kijpjðm
Þ�ð�Þ; (64)

where Kipðm
Þ is to be understood as an operator; the

substitution of �ð�Þ with its expansion �ð�Þ ¼R dpffiffiffiffiffi
2�

p eip��ðpÞ leads to

�̂ð
;�Þ ¼ �
Z 1

�1
dpffiffiffiffiffiffiffi
2�

p Kijpjðm
Þeip��ðpÞ

¼ �
Z 1

0

dpffiffiffiffiffiffiffi
2�

p Kipðm
Þðeip��ðpÞ þ e�ip��ð�pÞÞ:

(65)

Identifying Eq. (63) with Eq. (65) leads to the following
relations, valid for p > 0:
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�ðpÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ð�pÞ

�p

s
�2ðpÞ; and

�ð�pÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ð�pÞ

�p

s
�1ðpÞ:

(66)

Then, the substitution of these expressions for �ð�pÞ in the
free amplitude (49) in region M2 reduces to the free
amplitude (36) in region M1. It must be noted that the
isomorphism implemented by Eq. (66) results to be an
isometric isomorphism.

1. Equivalence of states on the boundary of Rindler space

Consider the vacuum state (46) defined on the hyper-
bola. We notice that the surface of constant 
 in the limit
where 
 tends to zero approaches the union of the surfaces
defined by � ! �1 and � ! þ1.15 It is then to be
expected that the vacuum state (46) at 
 ¼ 0 reduces to
the tensor product of two vacuum states (35) for � ! �1
and � ! þ1, which implies that the operator appearing
in the exponential of Eq. (46) tends to the one in the
exponential of Eq. (35). This can be easily checked
by the asymptotic property (A3) of the modified Bessel
function Iijpj,

lim

!0

i

d

d

ln ðIijpjðm
ÞÞ ¼ jpj; (67)

which is indeed the operator characterizing the vacuum
state (35). The normalization factor C
1

appearing in

Eq. (46) satisfies

jC
1
j2 ¼ det

�
� i

2�

1

d

d
1

ln ðIijpjðm
1ÞÞ

þ i

2�

1

d

d
1

ln ðIijpjðm
1ÞÞ
�
1=2

¼ det

�
1

�2

sinh ðjpj�Þ
jIijpjðm
1Þj2

�
1=2

: (68)

In the limit 
1 ! 0, using Eq. (A3) we have that

jIijpjðm
1Þj2  j�ðijpj þ 1Þj�2 ¼ jijpj�ðijpjÞj�2

¼ sinh ð�jpjÞ
�jpj : (69)

The modulus square of the normalization factor C
1
, in the

limit 
 ! 0 can then be written as

jC
1
j2 ¼ det

�jpj
�

�
1=2

; (70)

and the vacuum state reads in this limit

c 
1!0;0ð’0Þ ¼ det

�jpj
�

�
1=4

ei arg ðC
1
Þ

� exp

�
�
Z 1

0
dp’0ðpÞp’0ð�pÞ

�
: (71)

In order for this state to correspond to the state c �!�1;0 �
c �!1;0 2 H�1 �H �1,

c �!�1;0ð’�1Þ � c �!1;0ð’1Þ
¼ det

�
p

�

�
1=4

exp

�
� 1

2

Z 1

0
dp½’1ðpÞp’1ðpÞ

þ ’�1ðpÞp’�1ðpÞ�
�
; (72)

the following equality must be satisfied:

1

2
½’1ðpÞ’1ðpÞ þ ’�1ðpÞ’�1ðpÞ� ¼ ’0ðpÞ’0ð�pÞ:

(73)

With this equality, which relates the coefficient of the
modes expansion of the field in the asymptotic hypersur-
faces � ! �1 and 
1 ! 0, it can be shown that also
asymptotic coherent states coincide, namely,

c 
1!0;�ð’0Þ ¼ c �!�1;�1ð’�1Þ � c �!1;�2ð’1Þ; (74)

where c 
1!0;� 2 H 
1!0 and c �!�1;�1
� c �!1;�2 2

H�1 �H �1.

2. Equivalence of probability

In this section, we show how the probability computed
in the two regions M1 and M2 are related. In the GBF,
probabilities can be computed from the amplitude maps
and are encoded in the formula

PðA=SÞ ¼ h%M�PS ; %M�PAi
h%M�PS ; %M�PSi ; (75)

where A and S are subspaces of the Hilbert space H @M

associated to the boundary @M of the region M and PA
and PS the orthogonal projectors onto these subspaces.
The symbol � denotes the composition of maps.
Consequently, %M�PS and %M�PA are linear maps
from H @M to the complex numbers. Two conditions
must be required for this composition: (i) the maps
%M�PS and %M�PA are continuous, and (ii) the map
%M�PS does not vanish. Then, these maps can be viewed
as elements in the dual Hilbert space H �

@M, and the inner
product h�; �i appearing in Eq. (75) is the inner product of
this dual Hilbert space. PðA=SÞ represents the condi-
tional probability for observing A given that S has been
prepared.
We consider first the regionM1. In this case, there exists

a natural decomposition of the boundary Hilbert space
H @M1

, namely,H @M1
¼ H 1 �H �

2. We can then choose

the subspaces SM1
and AM1

as

15The Hilbert spaces associated to these hypersurfaces will be
denoted as H�1 and H1, respectively.
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SM1
¼ fc � � : � 2 H �

2g and

AM1
¼ fc � � : c 2 H 1g:

(76)

In order to evaluate the numerator and denominator of
Eq. (75), it is convenient to introduce an orthonormal basis
of the boundary Hilbert space H @M1

. In particular, since

H @M1
decomposes as the tensor product H 1 �H �

2, we

introduce two orthonormal bases f�1
kg and f�2

kg for the

spaces H 1 and H 2, respectively. Then, we have

h%M�PSM1
; %M�PAM1

i ¼ X
k;l

%M1
�PSM1

ð�1
k � �2

l Þ

� %M1
�PAM1

ð�1
k � �2

l Þ
h%M�PSM1

; %M�PSM1
i ¼ X

k;l

j%M1
�PSM1

ð�1
k � �2

l Þj2:

(77)

Without loss of generality, we can choose �1
1 ¼ c and

�2
1 ¼ �, and the probability (75) takes the form

PðAM1
=SM1

Þ ¼ j%M1
ðc � �Þj2P

l j%M1
ðc � �2

l Þj2
: (78)

Also without loss of generality, we can choose the states c
and � to be coherent states that we denote as K�1

and K�2
,

respectively:

PðAM1
=SM1

Þ ¼ j%M1
ðK�1

� K�2Þj2P
l j%M1

ðK�1
� �2

l Þj2
: (79)

In order to give a more useful expression of the denomi-
nator, we use the resolution to the identity provided by the
coherent states to obtainX

l

j%M1
ðK�1

� �2
l Þj2

¼X
l

��������D�1
Z

d�d �� C�2
k
;� %M1

ðK�1
� K� Þ

��������2

; (80)

where C�2
k
;� ¼ h�2

k; K� iH 2
and D is the coefficient ap-

pearing in the resolution of the identity satisfied by the
coherent states [11]. The isomorphism expressed by
the relations (66) can be used to map the subspaces
AM1

and SM1
of the Hilbert space associated to the

boundary of the region M2 to the corresponding sub-
spaces AM2

and SM2
defined for the theory in the

region M2. In particular, as we have seen, the relations
in equation Eq. (66) transform the free amplitude
%M1

ðK�1
� K�2

Þ into the free amplitude %M2
ðK�Þ; more-

over, the number C�2
k
;� is invariant under the action of

the isometric isomorphism (66). We can consequently
conclude that the probabilities computed in the region
M1 for the free theory are the same as the one com-
puted in the region M2,

PðAM1
=SM1

Þj ^ð�1;�2Þ¼�̂ ¼ PðAM2
=SM2

Þ: (81)

VI. PRESERVATION OFAMPLITUDES IN THE
INTERACTING THEORY

In this section, we will first compare the observable
amplitude for Weyl observables Wð�Þ ¼ exp ðiDð�ÞÞ
with Dð�Þ ¼ R

d2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detgðxÞp

�ðxÞ�ðxÞ, where �ðxÞ is a
general test function in the regions M1 and M2.

A. Holomorphic representation

For a general region M, we have from proposition 4.3
of Ref. [6] the following expression for the observable
amplitude:

%W
MðKÞ ¼ %MðKÞ exp

�
i
Z
M
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgðxÞ

q
�ðxÞ̂ðxÞ

þ i

2

Z
M
d2xd2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgðxÞ detgðx0Þ

q
�ðxÞ

�GM
F ðx; x0Þ�ðx0Þ

�
; (82)

where GM
F ðx; x0Þ is the Feynman propagator constructed

such that

ð�D � iJ@M�DÞðxÞ ¼
Z
M
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgðxÞ

q
GJ

Fðx; x0Þ�ðx0Þ;
(83)

where �D is the unique element of J@ML ~M fulfilling the
condition Dð�Þ ¼ 2!@Mð�; �DÞ for all � 2 L ~M.
Since we constructed the isomorphism between H �
1

and H @M1
such that the expressions for ̂ for the two

regions coincide, we have that the observable maps coin-
cide if the Feynman propagators coincide. In region M1,
we obtain for the Feynman propagator the following
expression [23]:

GM1

F ðx; x0Þ ¼ i
Z

dpð�ð�0 � �Þ�R
pðxÞ�R

pðx0Þ

þ �ð�� �0Þ�R
pðxÞ�R

pðx0ÞÞ;
¼ i

Z 1

0

dp

2p
ð�ð�0 � �Þeipð���0Þ

þ �ð�� �0Þeipð�0��ÞÞKipðm
0ÞKipðm
Þ

� p sinh ðp�Þ
�2

2: (84)

For region M2, we derive the Feynman propagator in the
following. Let us assume that we are given a function
� ~M2

2 L ~M2

 L�
1

such that J�
1
� ~M2

¼ �D. Let us de-

compose � ~M2
as in Eq. (39). Then, we find that
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�DðxÞ ¼
Z 1

�1
dpð�DðpÞ�pðxÞ þ c:c:Þ;

¼ �i
Z 1

0
dpð� ~M2

ðpÞð�pðxÞ � ��pðxÞÞ

�� ~M2
ðpÞð�pðxÞ � ��pðxÞÞÞ; (85)

from which we obtain that �DðpÞ ¼ �i� ~M2
ðpÞ for p > 0

and �DðpÞ ¼ �i� ~M2
ð�pÞ for p < 0. Hence, we have for

� 2 L ~M2
using the identities in Eq. (52) that

!�
1
ð�; �DÞ ¼ � i

2

Z 1

0
dpð��
1

ðpÞi� ~M2
ðpÞ

þ ��
1
ð�pÞi� ~M2

ðpÞ � c:c:Þ;

¼
Z 1

0
dpð�ðpÞ� ~M2

ðpÞ þ c:c:Þ: (86)

From the condition Dð�Þ ¼ R
d�d

�ðxÞ�ðxÞ ¼

!�
1
ð�; �DÞ, we obtain

� ~M2
ðpÞ ¼

Z
d�0d
0
0�ðx0Þ�pðx0Þ; (87)

and with Eq. (85), we find an expression for �D. Now, we
are interested in the projection of the Feynman propagator
to the boundary �D � iJ�
1

�D. We obtain

�D � iJ�
1
�D ¼ ðiþ J�
1

Þ� ~M2

¼ 2i
Z 1

0
dpð� ~M2

ðpÞ��pðxÞ
þ� ~M2

ðpÞ�pðxÞÞ: (88)

Using that �pðxÞ ¼ ��pðxÞ, we find for the Feynman

propagator the symmetrized expression

GM2

F ðx; x0Þ ¼ i
Z 1

�1
dp½�ð
0 � 
Þ��pð�; 
Þ�pð�0; 
0Þ

þ �ð
� 
0Þ��pð�0; 
0Þ�pð�; 
Þ�;
¼
Z 1

�1
dp

2�
½�ð
0 � 
ÞKijpjðm
0ÞIijpjðm
Þ

þ �ð
� 
0ÞKijpjðm
ÞIijpjðm
0Þ�eipð���0Þ:

(89)

B. Schrödinger-Feynman quantization

A way to compute the expectation value of the Weyl
observable W is to modify the action as

SM;�ð�Þ¼SM;0ð�Þþ
Z
M
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detgðxÞ

q
�ðxÞ�ðxÞ: (90)

The form of the corresponding field propagator (9) can be
obtained by shifting the integration variable by a classical
solution �cl that matches the boundary configuration ’ on
the boundary @M,

ZM;�ð’Þ ¼
Z
�j@M¼’

D�eiSM;�ð�Þ

¼
Z
�j@M¼0

D�eiSM;�ð�clþ�Þ ¼ NM;�e
iSM;�ð�clÞ;

(91)

where NM;� ¼ R
�j@M¼0 D�eiSM;�ð�Þ. The propagator can

be expressed in terms of the propagator ZM;0ð’Þ of the free
theory as

ZM;�ð’Þ ¼ ZM;0ð’Þ exp
�
i
Z
M
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgðxÞ

q
�cl�ðxÞ

þ i

2

Z
M
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detgðxÞ

q
�ðxÞ�ðxÞ

�
; (92)

where the quantity � is the solution of the inhomogeneous
equation ð�
@

@
 þ @2� þm2
2Þ�ð�; 
Þ ¼ �ð�; 
Þ,
with the vanishing boundary condition �j@M ¼ 0. In the
region M1, a classical solution with boundary configura-
tions ’1 and ’2 is given by Eq. (19), and the function �
results to be

�ð�;
Þ¼
Z �2

�1

d�0

�
�ð�0��Þsinpð���1Þsinpð�2��0Þ

psinpð�2��1Þ
þ�ð���0Þsinpð�

0��1Þsinpð�2��Þ
psinpð�2��1Þ

�
: (93)

Notice that �ð�1; 
Þ ¼ �ð�2; 
Þ ¼ 0. Substituting these
quantities in the expression of the propagator (92) and
performing the integration in Eq. (8) leads to the amplitude

for a coherent state KS
�1;�1

� KS
�2;�2

:

%W
½�1;�2�ðKS

�1;�1
�KS

�2;�2
Þ

¼%½�1;�2�ðKS
�1;�1

�KS
�2;�2

Þexp
�Z

M1

d2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
�̂ðxÞ�ðxÞ

�

�exp

�
i

2

Z
M1

d2xd2x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞgðx0Þ

q
�ðxÞGM1

F ðx;x0Þ�ðx0Þ
�
;

(94)

where %½�1;�2�ðKS
�1;�1

� KS
�2;�2

Þ is the free amplitude (36), �̂

is the complex solution given by Eq. (62), andGM1

F ðx; x0Þ is
the Feynman propagator in region M1 given by Eq. (84).
Taking the limit �1 ! �1 and �2 ! þ1 in the ampli-
tude (94) reduces to substitute the subindex M1 with the
whole Rindler space.
In the region M2, a classical solution with boundary

configuration’ is given by Eq. (22), and� can be expressed
in integral form as �ð�;
Þ ¼ R1


1
d
0
0~gð
; 
0Þ�ð�;
0Þ,

where
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~gð
; 
0Þ ¼ ��ð
0 � 
ÞðLipðm
0ÞKipðm
Þ
� Lipðm
ÞKipðm
0ÞÞ þ Lipðm
0ÞKipðm
Þ

� Kipðm
Þ Lipðm
1Þ
Kipðm
1ÞKipðm
0Þ; (95)

where Lip is the real part of Iip. Notice that � satisfied the

vanishing boundary condition �ð�;
1Þ ¼ 0. The expres-
sion for the amplitude of a coherent state in the interacting
theory results to be

%W
M2
ðKS


1;�
Þ

¼ %M2
ðKS


1;�
Þ exp

�Z
M2

d2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
�̂ðxÞ�ðxÞ

þ i

2

Z
M2

d2xd2x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞgðx0Þ

q
�ðxÞGM2

F ðx; x0Þ�ðx0Þ
�
;

(96)

where x is a global notation for the coordinates �, 
 and

GM2

F ðx; x0Þ is given by Eq. (89). Taking the limit 
1 ! 0 in
the amplitude (96) reduces to substitute the subindex M2

with the whole Rindler space.

C. Equality of the Feynman propagators
in region M1 and M2

In this section, we show in two different ways the equal-
ity of the propagators in the region M1 and M2, i.e., we

show the identity GM2
F ðx; x0Þ ¼ GM1

F ðx; x0Þ. This result
means that the observable amplitudes %W

M1
ð�Þ and

%W
M2
ð�0Þ coincide for all Weyl observables of the form

Wð�Þ ¼ eiDð�Þ with Dð�Þ ¼ R
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detgðxÞp
�ðxÞ�ðxÞ

when the state � is mapped to �0 with the isomorphism
we identified in Sec. Vand �ðxÞ has support in the interior
of both regions. These amplitudes can be used as generat-
ing functionals to derive all the n-point functions of the
field �, which, thus, also coincide for the two regions.
For a quantum field theory of two interacting scalar fields
�1 and �2, the corresponding amplitude can also be gen-
erated using the amplitude in Eq. (82) as a generating
functional [15]. Hence, the coincidence of the vacuum
state, amplitudes, and probabilities is also valid for the
interacting theory.

1. First method

We start from expression (84) of the Feynman propaga-
tor in region M1. The integral can be extended to negative
values of p by substituting p with jpj; then, using the
relation

i

2jpj ð�ð�
0 � �Þeijpjð���0Þ þ �ð�� �0Þeijpjð�0��ÞÞ

¼ �lim
�!0

Z 1

�1
dq

2�

e�iqð���0Þ

q2 � p2 þ i�
(97)

and expressing the Macdonald function in terms of the
modified Bessel functions of the first kind, Eq. (A1), we
obtain

GM1
F ðx;x0Þ¼1

4

Z 1

�1
dq

2�

Z 1

�1
dp

e�iqð���0Þ

q2�p2þ i�
ðI�ipðm
0Þ

�Iipðm
0ÞÞðI�ipðm
Þ�Iipðm
ÞÞ p

sinhðp�Þ;

¼
Z 1

�1
dq

2�
e�iqð���0ÞðIþþþI���I�þ�Iþ�Þ;

(98)

where we introduced the notation

I lm ¼ 1

4

Z 1

�1
dp

1

q2�p2þ i�

p

sinh ðp�Þ Ilipðm
0ÞImipðm
Þ;

ðl¼þ;�Þ; ðm¼þ;�Þ: (99)

In the following, we will perform the integration over p for
every term I lm with l, m ¼ �1 separately. First of all, we
notice that each term I lm apparently contains an infinite
number of poles for p ¼ in, where n is an integer.
However, it can be shown that only the two poles p� ¼
�ðjqj þ i�Þ contribute to the sum in Eq. (98). We apply the
complex contour integration to evaluate their contribution.
We start with the integral Iþþ, which is equal to

Iþþ ¼�1

4

Z 1

�1
dp

1

p2 � q2 � i�

p

sinhp�
Iipðm
ÞIipðm
0Þ:

(100)

We rewrite this integral using formula (5.7.1) of Ref. [26],

I�ðzÞ ¼
X1
k¼0

ðz=2Þ�þ2k

�ðkþ 1Þ�ðkþ �þ 1Þ ; (101)

which is valid for jzj<1, j arg zj<�. Substituting the
above expression in Iþþ, we get

I þþ ¼ � 1

4

Z 1

�1
dp

1

p2 � q2 � i�

p

sinhp�

� X1
k;k0¼0

ðm
=2Þ2kðm
0=2Þ2k0
�ðkþ 1Þ�ðk0 þ 1Þ

� ðm
=2Þipðm
0=2Þip
�ðkþ 1þ ipÞ�ðk0 þ 1þ ipÞ : (102)

We compute this integral by closing the contour of inte-
gration in the complex p plane. To do this, we look at the
behavior of the gamma functions for large values of the
argument. We use the asymptotic expansion (1.4.23) of
Ref. [26],

�ðzÞ ¼ eðz�1=2Þ log z�zþ1=2 log 2�ð1þOðjzj�1ÞÞ; (103)

which is valid for j arg zj<�. Substituting in Iþþ, we get
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Iþþ � � 1

4

Z 1

�1
dp

1

p2 � q2 � i�

p

sinhp�

X1
k;k0¼0

ðm
=2Þ2kðm
0=2Þ2k0
�ðkþ 1Þ�ðk0 þ 1Þ � exp ðipðlog ðm2

0=4Þ

� log ðkþ 1þ ipÞ � log ðk0 þ 1þ ipÞ þ 2ÞÞ � exp ð�ðkþ 1=2Þ log ðkþ 1þ ipÞ
� ðk0 þ 1=2Þ log ðk0 þ 1þ ipÞ � log ð2�Þ þ kþ k0 þ 2Þ: (104)

We write p ¼ rei�; consequently,

log ðkþ 1þ ipÞ ¼ log ðkþ 1þ irei�Þ
¼ log ðkþ 1þ ir cos �� r sin�Þ
¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1� r sin �Þ2 þ r2cos 2�

q
þ i arctan

r cos �

kþ 1� r sin �

¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1Þ2 � 2ðkþ 1Þr sin �þ r2

q
þ i arctan

r cos �

kþ 1� r sin �
; (105)

which for r � ðkþ 1Þ reduces to log ðkþ 1þ ipÞ �
log rþ i arctan ð� cot�Þ. Then, we have that the argument
of the first exponential in Eq. (104) can be rewritten as

ipðlogðm2

0=4Þ� logðkþ1þ ipÞ� logðk0þ1þ ipÞþ2Þ

¼ irei�

0
@logðm2

0=4Þ�2logrþ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~r

�2iarctanð�cot�Þ
1
A

¼ iðr~rcos�þ2rsin�arctanð�cot�ÞÞ
�rð~rsin��2cos�arctanð�cot�ÞÞ: (106)

Let us have a close look at the factor in the last term:

~r sin �� 2 cos � arctan ð� cot�Þ
¼ ðlog ðm2

0=4Þ � 2 log rþ 2Þ sin �

� 2 cos� arctan ð� cot �Þ: (107)

For finite 
, 
0 and � 2 ½��; 0�, we can always choose r
large enough to get this factor positive. We find that we can
close the contour of integration in the lower half plane,
namely, � 2 ½��; 0�, send r ! 1, and apply the residue
theorem. The pole in the lower half plane is located in
�jqj � i�, and the result of the integration is

Iþþ ¼ � 1

4
i

�

sinh jqj�I�ijqjðm
ÞI�ijqjðm
0Þ: (108)

We obtain the same expression for I��, namely, Iþþ ¼
I��. For the integral Iþ� and I�þ, applying similar
techniques, we obtain

Iþ� ¼ I�þ

¼ � 1

4
i

�

sinh ðjqj�Þ ð�ð
� 
0ÞIijqjðm
ÞI�ijqjðm
0Þ
þ �ð
0 � 
ÞI�ijqjðm
ÞIijqjðm
0ÞÞ: (109)

Finally, the Feynman propagator in the region M1 results
to be

GM1

F ðx; x0Þ
¼
Z 1

�1
dq

2�
e�iqð���0Þ½�ð
� 
0ÞKijqjðm
ÞI�ijqjðm
0Þ

þ �ð
0 � 
ÞI�ijqjðm
ÞKijqjðm
0Þ�; (110)

where relation (A1) has been used. This propagator coin-
cides with the propagator (89) in the region M2, namely,

GM1

F ðx; x0Þ ¼ GM2

F ðx; x0Þ.

2. Second method

We consider formula 7.213 of Ref. [27],

Z 1

0

x tanh ð�xÞ
�2 þ x2

P�1
2þixðcosh�Þdx ¼ Q��1

2
ðcosh�Þ;

<ðaÞ> 0; (111)

where Pn and Qn are the associated Legendre functions of

the first and second kind, respectively. We set � ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � i�

p ’ ijpj þ �, with � > 0 and � � 1. Therefore,

Z 1

0

x tanh ð�xÞ
�jpj2 þ i�0 þ x2

P�1
2þix

�
a2 þ b2 þ c2

2ab

�
dx

’ Qijpjþ��1
2

�
a2 þ b2 þ c2

2ab

�
; (112)

where we also have replaced cosh� with a2þb2þc2

2ab ,

�0 ¼ jpj� is still very small, and equality holds for
�0 ! 0. Consequently, the above equation is valid for
a2þb2þc2

2ab 	 1. We now consider formula 6.672.3 of

Ref. [27],

Z 1

0
K�ðaxÞK�ðbxÞ cos ðcxÞdx ¼ �2

4
ffiffiffiffiffiffi
ab

p sec ð��Þ

� P��1
2

�
a2 þ b2 þ c2

2ab

�
;

<ðaþ bÞ> 0; c > 0; j<ð�Þj< 1

2
: (113)

We multiply by cos ðcyÞ, (y > 0) both sides and then
integrate with respect to c. It is easy to show that the
integrals in the lhs of Eq. (113) result to be equal to
�
2 K�ðayÞK�ðbyÞ. Then,
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K�ðayÞK�ðbyÞ ¼ �

2
ffiffiffiffiffiffi
ab

p sec ð��Þ
Z 1

0
dc cos ðcyÞ

� P��1
2

�
a2 þ b2 þ c2

2ab

�
; (114)

which is valid for y > 0, <ðaþ bÞ> 0, j<ð�Þj< 1
2 .

We now consider formula 6.672.4 of Ref. [27]:

Z 1

0
K�ðaxÞI�ðbxÞcos ðcxÞdx¼ 1

2
ffiffiffiffiffiffi
ab

p Q��1
2

�
a2 þ b2 þ c2

2ab

�
;

<ðaÞ> j<ðbÞj; c> 0;<ð�Þ>�1

2
: (115)

By applying the same technique, namely, by multiplying
by cos ðcyÞ, (y > 0), to both sides and then integrating with
respect to c, we obtain

K�ðayÞI�ðbyÞ ¼ 1

�
ffiffiffiffiffiffi
ab

p
Z 1

0
dccos ðcyÞQ��1

2

�
a2þb2þ c2

2ab

�
;

(116)

which is valid for y > 0, <ðaÞ> j<ðbÞj, <ð�Þ>� 1
2 .

We multiply by cos ðcyÞ, (y > 0), both sides of Eq. (112)
and then integrate with respect to c,

Z 1

0
dccosðcyÞ

Z 1

0

xtanhð�xÞ
�jpj2þ i�þx2

P�1
2þix

�
a2þb2þc2

2ab

�
dx

’
Z 1

0
dccosðcyÞQijpjþ��1

2

�
a2þb2þc2

2ab

�
; (117)

and invert the integral on the lhs, which leads to, using
Eqs. (114) and (116),

Z 1

0

x tanh ð�xÞ
�jpj2 þ i�þ x2

KixðayÞKixðbyÞ 2
ffiffiffiffiffiffi
ab

p
�

cos ð�ixÞdx

¼ �
ffiffiffiffiffiffi
ab

p
Kijpjþ�ðayÞIijpjþ�ðbyÞ (118)

or, equivalently,

Z 1

0

x sinh ð�xÞ
�jpj2 þ i�þ x2

KixðayÞKixðbyÞdx

¼ �2

2
Kijpjþ�ðayÞIijpjþ�ðbyÞ; (119)

which is valid for y > 0, <ðaþ bÞ> 0, <ðaÞ> j<ðbÞj,
� > 0, � � 1.

We now rewrite the Feynman propagator in the region
M2 (89) as

GM2
F ðx;x0Þ¼ lim

�!0

Z 1

�1
dp

2�
½�ð
0 �
ÞKijpjþ�ðm
0ÞIijpjþ�ðm
Þ

þ�ð
�
0ÞKijpjþ�ðm
ÞIijpjþ�ðm
0Þ�eipð���0Þ:

(120)

We use relation (119) with the following identifications
[which satisfy the conditions for the validity of (119)]:

y ¼ m> 0; (121)

a ¼ 
; b ¼ 
0; for 
 > 
0; (122)

a ¼ 
0; b ¼ 
; for 
0 > 
; (123)

we obtain

GM2

F ðx;x0Þ ¼ lim
�!0

Z 1

�1
dp

2�

2

�2
eipð���0ÞZ 1

0

x sinh ð�xÞ
�jpj2 � i�þ x2

�Kixðm
ÞKixðm
0Þdx: (124)

We invert the order of integration and perform first
the integral over dp. For �> �0, we close the contour of
integration in the upper half plane, and we do the same
for �< �0 in the lower half plane; the poles are
p� ¼ �ðjxj � i�Þ. We obtain

Z 1

�1
dp

2�

eipð���0Þ

�p2 � i�þ x2

¼ i

2ðjxj � i�Þ ½�ð�� �0Þe�iðjxj�i�Þð���0Þ

þ �ð�0 � �Þeiðjxj�i�Þð���0Þ�: (125)

The Feynman propagator takes the form

GM2

F ðx; x0Þ ¼ lim
�!0

Z 1

0

i

2ðjxj � i�Þ ½�ð���0Þe�iðjxj�i�Þð���0Þ

þ �ð�0 ��Þeiðjxj�i�Þð���0Þ�Kixðm
Þ

�Kixðm
0Þ2x sinh ð�xÞ
�2

dx;

¼
Z 1

0

i

2x
½�ð���0Þe�ixð���0Þ

þ �ð�0 ��Þeixð���0Þ�Kixðm
ÞKixðm
0Þ

� 2x sinh ð�xÞ
�2

dx; (126)

which coincides with the expression (84) of the Feynman

propagator in region M1, G
M1
F ðx; x0Þ ¼ GM2

F ðx; x0Þ.

VII. SUMMARYAND OUTLOOK

We constructed the general boundary quantum field
theory for a scalar field in two-dimensional Rindler
space in two different regions: a region M1 with space-
like boundaries and a region M2 with a purely timelike
boundary. More specifically, the boundary of region M1

was given by the disjoint union of two equal Rindler
time hypersurfaces, and the boundary of region M2 was
given as a timelike curve of a constant Rindler spatial
coordinate. We showed the existence of an isomorphism
between the Hilbert spaces associated with these
boundaries.
The isomorphism we identified preserves the amplitude

map, and, thus, the probabilities that can be extracted
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from the free quantum field theories are also preserved.
We showed that the amplitude is also preserved when an
interaction of the quantum field with a classical source is
considered. That was done by showing that the isomor-
phism preserves the generating functional for perturba-
tive quantum field theory. To obtain this result, we
showed that the Feynman propagators for the quantum
field theories in the two regions are equivalent.
Consequently, we have obtained two equivalent repre-
sentations of the Feynman propagator in Rindler space.
This generalizes previous results obtained for QFT in
Rindler space [28].

In particular, the generating functional for a given source
term is equivalent with the expectation value (operator
amplitude [9]) of a particular local Weyl observable asso-
ciated with that source term. We concluded that the expec-
tation values for these observables are also preserved under
the action of the isomorphism we identified.

Let us emphasize again that regions with timelike
boundaries like M2 cannot be considered in the standard
formulation of quantum field theory. The case investi-
gated in this article shows that pairs of regions exist in
Rindler space where one of these regions has timelike
boundaries and the other region has spacelike boundaries
such that both regions can be used equivalently to de-
scribe the same physical situation. Analogous results have
been obtained within the GBF in Minkowski space
[15,16], a Euclidean space [14], and de Sitter space
[24,25]. In Minkowski space, this result was used to
show explicitly that the crossing symmetry is generic in
the GBF.

The result presented here will find an immediate appli-
cation in the context of the so-called Unruh effect, which is
often derived from a comparison between the QFT in
Minkowski and Rindler spaces. From such a perspective,
it is of particular interest that the regionM2 does not extend
to the spacelike infinity of Rindler space at 
 ¼ 0. If
Rindler space is embedded in Minkowski space as the right
Rindler wedge, this point is mapped to the origin of
Minkowski space. The mathematical problems arising
from the singular behavior of the mode expansions used
for the derivation of the Unruh effect at the origin of
Minkowski space led to a critique of the mathematical
basis of the Unruh effect by Narozhnyi et al. in
Refs. [29–33].16 By investigating the Unruh effect using
region M2, such problems would be completely avoided.
Moreover, the hypercylinder region and isomorphism con-
structed between the Hilbert spaces used in the different
regions can provide a new representation of the mixed state
involved in the Unruh effect. This will offer the possibility
to study the properties of such a state from a novel per-
spective. We shall elaborate on that elsewhere.
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APPENDIX: MODIFIED BESSEL FUNCTIONS

The modified Bessel function of the first kind Iip, with

imaginary order, and the modified Bessel function of the
second kind Kip, also known as the Macdonald function,

are related by [27]

Kip ¼ i�

2 sinh ð�pÞ ðIip � IipÞ: (A1)

The Wronskian between the modified Bessel function of
the first kind and its complex conjugate results to be

WzðIijpjðzÞ; IijpjðzÞÞ ¼ 2 sinh ð�pÞ
i�z

; (A2)

Both these Bessel functions have an oscillatory behavior
in a neighborhood of the origin ð
 ¼ 0Þ [36],

Iipðm
Þ �
�
m


2

�
ip
=�ðipþ 1Þ;

Kipðm
Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

p sinh ð�pÞ
s

cos

�
�p ln

m


2
þ arg �ðipÞ

�
:

(A3)

The behavior of the Bessel functionKip for a small value of

the argument has been derived in Ref. [37]. For asymptotic
values of their argument, the modified Bessel functions
behave very differently,

Iipðm
Þ � em
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�m


p ;

Kipðm
Þ �
ffiffiffiffiffiffiffiffiffiffi
�

2m


s
e�m
; for 
 � 1:

(A4)

The MacDonald function satisfies the identity

Z 1

0

d




Ki�ð
ÞKi�0 ð
Þ 2� sinh ð��Þ

�2
¼ �ð���0Þ; (A5)

which allows us to expand the field configuration ’ð
Þ on
the hypersurface of constant Rindler time as

’ð
Þ ¼
Z

dp’ðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p sinh ðp�Þp

�
Kipðm
Þ; p 	 0:

(A6)

16See also the answer by Fulling and Unruh in Ref. [34] and a
reply by Narozhnyi et al. in Ref. [35].
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