
PHYSICAL REVIEW A 87, 053820 (2013)

Dissipative versus conditional generation of Gaussian entanglement and spin squeezing
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Spin squeezing of collective atomic spins can be achieved conditionally via probing with light and subsequent
homodyne detection, as is done in a quantum nondemolition measurement. Recently it has been shown that
squeezing can also be created unconditionally by a properly designed dissipative dynamics. We compare the two
approaches in a Gaussian description and optimize over all Gaussian light-matter interactions. We find that in
the optimal unconditional scheme based on dissipation the level of squeezing scales with optical depth as d−1/2.
In contrast, the optimal conditional scheme based on measurement of light—which in fact is not a quantum
nondemolition measurement—can provide squeezing which scales as d−1. Our results apply directly also to the
creation of entanglement in the form of nonlocal spin squeezing of two atomic ensembles.
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I. INTRODUCTION

Engineered dissipative dynamics can stably generate non-
classical states and nontrivial dynamics of quantum systems,
as was shown in recent theoretical [1–17] and experimental
[18,19] work. Dissipative generation of spin squeezing [1],
entangled states of single atoms [2–4], atomic ensembles
[5–10,18] or micromechanical oscillators [11,20], and quan-
tum states of many-body systems [12,13] is possible, and even
quantum computation [14], quantum communication [15], and
quantum simulations [16,19] can be performed purely based
on dissipation. Another method for engineering of quantum
states and dynamics, which likewise rests upon the coupling
between the system to be controlled and its environment,
is continuous measurement and feedback control [21–26].
Here the state or dynamics of the system is conditioned
upon a measurement performed on the environment and may
be controlled via feedback depending on the measurement
outcomes. Continuous measurement and feedback control is a
well-established method in an equally broad range of physical
systems [18,27–39]. This naturally raises the question of which
methods work best for a given task or figure of merit.

In this article we address this question for the case of
spin squeezing [40] and spin-squeezing-based entanglement
of atomic ensembles [41]. The creation of spin squeezing
can be considered as the prime example for measurement-
and feedback-based quantum control. It relies on the optical
probe of a collective atomic spin by off-resonant light,
homodyne detection of light, and an appropriate feedback on
the atomic spin [42]. The light-matter interaction is thereby
commonly tailored such that a quantum nondemolition (QND)
measurement [43,44] of the atomic spin is realized. Squeezing
of atomic spins via (continuous or pulsed) QND probes with
and without feedback was demonstrated in [42,45–51]. When
squeezing of two collective spins is realized in this way,
entanglement in the form of Einstein-Podolsky-Rosen (EPR)
squeezing is established among the two atomic ensembles
[41], as was done in [52]. In the alternative context of
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dissipative quantum state engineering it was shown recently
that a careful choice of the light-matter interaction can provide
a spin-squeezed or entangled state in steady state without
applying any measurement on the light and feedback on the
atoms [7,8]. This was realized experimentally soon after [18],
albeit with the help of moderate feedback compensating for
experimental imperfections.

Prompted by these theoretical studies and experiments
we investigate here how the light-matter interaction has
to be tailored in order to achieve a maximal amount of
spin squeezing or entanglement. We consider and compare
all three relevant scenarios: unconditional, dissipative state
generation, measurement-based conditional state generation,
and unconditional measurement and feedback-assisted state
generation. In each case we optimize over the class of Gaussian
light-matter interactions [i.e., those which are quadratic in
(collective) creation and annihilation operators; see below].
Crucially, we take into account decoherence induced by
spontaneous emission due to the off-resonant light probe. We
do this on the basis of a minimal, yet microscopically justified,
Gaussian model [53]. This approach allows us to relate the spin
noise reduction or entanglement achievable under optimized
conditions eventually to the optical depth d of the atomic
ensemble.1

Our results are as follows: First, for unconditional, dissi-
pative state generation the optimal (EPR) squeezing scales as
d−1/2. This is the same scaling as is achievable with a QND
measurement [54]. While the scaling with optical depth is the
same in both cases, a QND measurement provides squeezing
which is twice as large for the same parameters. However,
QND squeezing is prepared conditionally and becomes un-
conditional only when feedback is applied. Thus, dissipative
generation of squeezing spares the need for feedback at the cost
of a 50% reduced level of squeezing. Second, measurement-
induced squeezing can exhibit a rather remarkable scaling of
d−1 for the regime of moderate optical depths. In this most

1The optical depth d is the number of atoms in a column along the
propagation direction of light with diameter of a wavelength.
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relevant regime we thus predict an enhancement of d−1/2

in comparison to the scaling for QND squeezing. For large
optical depths the optimal scaling eventually approaches d−1/2

again. The enhancement comes at the cost of the necessity of
applying feedback in order to stabilize the spin state as the
conditional state is unstable (in contrast to the case of QND
squeezing). In each case we determine the optimal light-matter
interaction as a sum of beam splitter and two-mode squeezing
dynamics, with dominating beam-splitter contribution for the
dissipative generation and dominating two-mode squeezing
for the measurement-based scheme.

Our results are formally derived by means of Gaussian
quantum stochastic master equations and corresponding equa-
tions for displacement vectors and covariance matrices (i.e.,
the first and second moments) [55,56]. We supply the basics
and some useful relations for this formalism in Appendix A.

The paper is organized as follows: In Sec. II we introduce
a model describing atomic ensembles interacting with an off-
resonant probe light. In Sec. III we derive the stochastic master
equation for a single bosonic mode probed by light. After that
the corresponding equations for variances of the oscillator
quadratures are introduced and solved for conditional and
unconditional dynamics. In Sec. IV we consider two bosonic
modes (spin ensembles) coupled to a one-dimensional (1D)
field in a cascaded fashion. We show that the evolution of EPR
modes of the two oscillators coincides with the dynamics of
the single bosonic mode considered in the previous section.
The discussion of our main results for spin squeezing and
entanglement is given in Sec. V.

II. MODEL

We want to describe a general interaction of an atomic
ensemble of spin-polarized atoms with a 1D light field which
leads to spin squeezing or generation of entanglement. The
widely used procedure for a macroscopically big collective
spin is to approximate the spin component along its axis of
polarization with its mean value Jx ≈ 〈Jx〉. Rescaling of the
rest of the spin components provides the canonical position
X = Jy/

√〈Jx〉 and momentum P = Jz/
√〈Jx〉 operators with

a proper computational relation [X,P ] = i. The rigorous de-
scription of this procedure is given by the Holstein-Primakoff
transformation [57]. It allows us to work with bosonic modes
and obtain results which can be applied to macroscopic
ensembles of spin-polarized atoms.

The optical probe will inevitably cause decoherence in
the spin systems, which can be taken into account by
introducing decay rates and effective occupation numbers of
the environment:

Ẋ = −γxX + fx(t), 〈fx(t)fx(t ′)〉 = nxδ(t − t ′),
Ṗ = −γpP + fp(t), 〈fp(t)fp(t ′)〉 = npδ(t − t ′).

The relevant decay rates and noise terms due to the interaction
of atoms with the reservoir of electromagnetic modes can
be calculated form first principles, as was done in [53].
Decoherence from other sources (if present) can be added
independently. In order to keep the following discussion
conceptually simple we will assume equal decay rates γx =
γy = γ and occupation numbers nx = ny = n. Our approach

FIG. 1. (Color online) One (a) or two (b) bosonic modes (collec-
tive atomic spins) couple sequentially to a 1D field, which might be
subject to homodyne detection after the interactions.

can be easily adapted in order to account for more general
situations. The equivalent description of the decoherence
process in terms of the master equation is given by

ρ̇ = γ (n + 1)D[a]ρ + γ nD[a†]ρ, (1)

where the Lindblad term is defined as D[x]ρ = xρx† −
1
2 {x†x,ρ}+.

We consider a setup as shown in Fig. 1. A 1D field is coupled
to one or two localized bosonic modes positioned at points z1

and z2. In the latter case the field thus interacts sequentially
with the two localized modes at times t1 = z1/c and t2 =
z2/c > t1. After the interaction the field can be homodyne
detected. We are interested in the stationary state of the
localized bosonic modes, and in particular in its squeezing and
entanglement properties. Stationarity is thereby understood
with respect either to the purely dissipative, unconditional
dynamics or to the dynamics conditioned on the homodyne
detection.

III. A SINGLE OSCILLATOR COUPLED TO A 1D FIELD

A. Conditional master equation

We consider first a system with one localized bosonic mode
coupled to a 1D field as shown in Fig. 1(a). The 1D field is
described by bosonic operators in frequency space bω, or in
time

b(t) =
∫

dω√
2π

bωeiωt , (2)

where t = z/c. The corresponding quadrature operators are
x(t) = [b(t) + b(t)†]/

√
2 and p(t) = −i[b(t) − b(t)†]/

√
2,

and carry dimension Hz1/2. The oscillator is described by a
dimensionless bosonic operator a with corresponding canoni-
cal operators X = (a + a†)/

√
2 and P = −i(a − a†)/

√
2.

We assume a general quadratic interaction of the field
with the oscillator. Without loss of generality [58] any such
interaction can be written as

H int = √
g[αXx(t) + βPp(t)],

where g has dimension Hz and determines the strength of the
coupling, and the coefficients α and β can be parametrized as

α = cos(θ ), β = sin(θ ). (3)

The ratio of these coefficients determines the qualitative
character of the coupling. When written in terms of creation
and annihilation operators the Hamiltonian becomes

H int = √
g[s†b(t) + sb†(t)],
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where

s = 1√
2

(αX + iβP ) = α + β

2
a + α − β

2
a†.

Thus, for θ = 0 the Hamiltonian describes a QND interaction
∼Xx(t), while for θ = π/4 it is a beam-splitter interaction
∼ab†(t) + a†b(t), and for θ = −π/4 it is a two-mode squeez-
ing interaction ∼ab(t) + a†b†(t). Other values of θ cover any
quadratic interaction in between.

The full Hamiltonian for the oscillator and the 1D field is

H = H + Hbath + H int,

where H is a local Hamiltonian for the localized mode, and
Hbath = ∫

dω ωb†ωbω. Eliminating the bath in a Born-Markov
approximation yields a master equation

ρ̇ = −i[H,ρ] + gD[s]ρ, (4)

where the Lindblad term is defined as D[x]ρ = xρx† −
1
2 {x†x,ρ}+.

To the master equation (4) we can now add other processes
relevant to the dynamics, as explained in Sec. II: First, we
assume that the oscillator couples at a rate γ to a thermal
reservoir, causing in thermal equilibrium a mean occupation
number of n, and therefore implies a thermal decoherence
rate γ th = γ n. Second, if the transmitted field is subject to
homodyne detection of both conjugate light quadratures (after
being split on a beam splitter with reflectivity ε; cf. Fig. 1)
the conditional state evolves according to the conditional
stochastic master equation

dρ = −i[H,ρ]dt + gD[s]ρdt

+
√

g(1 − ε)H[seiφ]ρ dW1 + √
gεH[iseiφ]ρ dW2

+ {γ (n + 1)D[a]ρ + γ nD[a†]ρ}dt, (5)

where H[x]ρ = (x − 〈x〉)ρ + ρ(x† − 〈x†〉) and dWi is a
Wiener increment of zero mean and dW 2

i = dt . φ is the
phase of the local oscillator in the homodyne detection. By
convention φ = 0 corresponds to a measurement of the phase
quadrature p(t).

B. Steady-state variances

For Gaussian states the stochastic master equation (5)
implies a time evolution which is described by a stochastic
linear differential equation for the conditional mean values
〈X(t)〉 and 〈P (t)〉 and a deterministic nonlinear differential
equation for the conditional variances

Vc = �X2, Uc = �P 2, (6)

and covariances Cc = 〈XP + PX〉 − 2〈X〉〈P 〉. In [17,55]
compact formulas were derived in order to pass from a general
stochastic master equation such as (5) to the corresponding
equations for Vc, Uc, and Cc. In Appendix A we provide a
summary of this extremely useful formalism.

For an optimal choice φ = 0 of the local oscillator phase
(giving rise to the strongest squeezing) and a beam-splitter
reflectivity ε the conditionally squeezed variance Vc and
the conditionally unsqueezed variance Uc obey the nonlinear

equations of motion

V̇c = −[γ − g(1 − 2ε)αβ]Vc − g(1 − ε)α2V 2
c

+γ (2n + 1) + gεβ2, (7)

U̇c = −[γ + g(1 − 2ε)αβ]Uc − gεβ2U 2
c

+γ (2n + 1) + g(1 − ε)α2, (8)

as follows from Eqs. (A3) in Appendix A. We suppress
the corresponding equation of motion for the conditional
covariance Cc, as it will vanish in steady state for the present
case. The conditional variances have the steady-state solutions

Vc = 1

2(1 − ε)gα2
{(1 − 2ε)gαβ − γ

+
√

(γ − gαβ)2 + 4γgα[(2n + 1)(1 − ε)α + εβ]},
(9)

Uc = 1

2εgβ2
{−(1 − 2ε)gαβ − γ

+
√

(γ + gαβ)2 + 4γgβε[(2n + 1)β − α]}. (10)

The result for the conditional variances in steady state (9)
and (10) can be compared to the unconditional variances Vu

and Uu, which can be obtained by solving (5), neglecting
the stochastic term proportional to the Wiener increments.
Applying again formulas (A3) the master equation implies for
the unconditional squeezed and unsqueezed variances

V̇u = −(γ + gαβ)Vu + gβ2 + γ (2n + 1), (11)

U̇u = −(γ + gαβ)Vu + gα2 + γ (2n + 1) (12)

with the steady-state solutions

Vu = gβ2 + γ (2n + 1)

γ + gαβ
, (13)

Uu = gα2 + γ (2n + 1)

γ + gαβ
. (14)

Equations (9), (10), and (13) are the main results of this section.
Instead of asking for the steady state corresponding to a

continuous-wave drive and a continuous detection of light, we
can also ask for the solution to the equation of motion for
the conditional variance Vc for finite times corresponding to
driving the system with a pulse. Integrating (7) for a time τ ,
measuring only one quadrature of light (ε = 0), neglecting
any losses (γ = 0), and selecting a QND interaction (θ = 0)
with initial condition Vc(0) = 1 yields Vc(τ ) = 1/(1 + gτ ).
We can compare this to the known result for QND squeezing,
which is given by V QND

c (τ ) = 1/(1 + κ2) where κ2 = dη with
optical depth d and η = γ τ the degree of atomic depumping
from a pulse with duration τ ; see, e.g., [41]. We can therefore
conclude that

g = dγ. (15)

Since the expressions for conditional (9), (10) and uncon-
ditional (13), (14) variances in steady state depend only
on the ratio γ /g, the results of the substitution g = dγ

become independent of the decay rate, and depend only on
the optical depth, the effective mean thermal occupation,
and the parameters ε and θ characterizing the measurement
and the light-matter interaction. Substituting (15) and (3) into
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(9), (10) and (13), (14) we arrive at the final results given in
Sec. V, Eqs. (19) and (20). Before we enter into the discussion
of these results we will show that they apply directly also to
the EPR squeezing of two bosonic modes.

IV. CASCADED COUNTER-ROTATING CONFIGURATION

The preparation of a squeezed state for an oscillator is
closely related to the production of an entangled state of two
oscillators. Essentially one needs to prepare EPR modes of
the oscillators in a squeezed state. In order to achieve this we
consider two oscillators coupled to the same field mode in a
cascaded fashion as shown in Fig. 1(b). The full Hamiltonian
for the cascaded system of the two localized modes and the
1D field is

H = H1 + H2 + Hbath + H int
1 + H int

2 ,

where Hi are local Hamiltonians for the two modes, and

H int
i = √

gi[αiXix(ti) + βiPip(ti)],

with t2 > t1. To ease notation we assume couplings of equal
strength gi=1,2 = g. Eliminating the bath in a Born-Markov
approximation yields a cascaded-systems master equation
[4,59–62]

ρ̇ = −i

[
H1 + H2 − i

g

2
(s†2s1 − s

†
1s2),ρ

]
+ gD[s1 + s2]ρ,

(16)

where the Lindblad term depends on a collective jump term
s1 + s2. The effective interaction between the two modes
mediated via the 1D field is

−i
g

2
(s†2s1 − s

†
1s2) = −i

g

2

[
α2β1 − α1β2

2
(a1a2 − a

†
1a

†
2)

+ α2β1 + α1β2

2
(a1a

†
2 − a

†
1a2)

]
.

Note that if both modes couple in the same way to the 1D
field, α1 = α2, β1 = β2, this mediated interaction is a pure
beam-splitter-like coupling.

As we did above with a single oscillator, we can now add to
the cascaded-systems master equation (16) other processes
relevant to the dynamics: First, we assume both modes
couple at a rate γi to a thermal reservoir causing in thermal
equilibrium a mean occupation number of ni , and therefore
implying a thermal decoherence rate γ th

i = γini . Second,
if the transmitted field is subject to homodyne detection
the conditional state evolves according to the conditional
stochastic master equation

dρ = −i

[
H1 + H2 − i

g

2
(s†2s1 − s

†
1s2),ρ

]
dt

+ gD[s1 + s2]ρdt +
√

g(1 − ε)H[(s1 + s2)eiφ]ρdW1

+ √
gεH[i(s1 + s2)eiφ]ρdW2

+
∑

i

{γ (ni + 1)D[ai]ρ + γ niD[a†
i ]ρ}dt.

We now specialize this fairly general model. First, we
assume the “Copenhagen setup” of counter-rotating harmonic
oscillators in which a broad range of quantum information

protocols were performed [41]. In this setup the local Hamil-
tonians are

H1 + H2 = ωa
†
1a1 − ωa

†
2a2

such that one of the ensembles effectively realizes an oscillator
of negative mass. In a rotating frame with respect to H1 + H2

one finds

s1(t) + s2(t) = s+e−iωt + s−eiωt ,

where

s+ = α1 + β1

2
a1 + α2 − β2

2
a
†
2,

s− = α2 + β2

2
a2 + α1 − β1

2
a
†
1.

Assuming g,γ th
i � ω we can perform a rotating-wave approx-

imation such that the conditional master equation becomes

dρ = −i

[−ig(α2β1 − α1β2)

4
(a1a2 − a

†
1a

†
2),ρ

]
dt

+ g

2
D[s+ + s−]ρdt + g

2
D[s+ − s−]ρdt

+
√

g(1 − ε)

2
H[(s+ + s−)eiφ]ρdWc1

+
√

gε

2
H[i(s+ + s−)eiφ]ρdWc2

+
√

g(1 − ε)

2
H[−i(s+ − s−)eiφ]ρdWs1

+
√

gε

2
H[(s+ − s−)eiφ]ρdWs2

+
∑

i

{γi(ni + 1)D[ai]ρ + γiniD[a†
i ]ρ}dt.

Here dWc1(2) and dWs1(2) are independent Wiener increments,
corresponding to noise in sine and cosine modulation modes
at the sideband frequencies ±ω for the x (p) quadrature. For
details we refer to [56] (Sec. 4.5).

For an entirely symmetric situation αi = α, βi = β, γi = γ ,
and ni = n for both i = 1,2, we get

s+ + s− = αX+ + iβP+,

s+ − s− = i(αP− − iβX−),

where the EPR operators are X± = (X1 ± X2)/
√

2 and P± =
(P1 ± P2)/

√
2. In this case the dynamics factorizes in these

modes, and the reduced density operators ρ± for the EPR
modes fulfill the stochastic master equations

dρ+ = g

2
D[αX+ + iβP+]ρ+dt

+
√

g(1 − ε)

2
H[(αX+ + iβP+)eiφ]ρ+dWc1

+
√

gε

2
H[i(αX+ + iβP+)eiφ]ρ+dWc2

+ γ (n + 1)D[a+]ρ+dt + γ nD[a†
+]ρ+dt, (17)
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dρ− = g

2
D[αP− − iβX−]ρ−dt

+
√

g(1 − ε)

2
H[−i(αP− − iβX−)eiφ]ρ−dWs1

+
√

gε

2
H[(αP− − iβX−)eiφ]ρ−dWs2

+ γ (n + 1)D[a−]ρ−dt + γ nD[a†
−]ρ−dt, (18)

where a± = (X± + iP±)/
√

2. One can see that the equa-
tions (17) and (18) obtained for the two EPR modes (+
and −) are equivalent to the stochastic master equation for
a single oscillator considered in Sec. III; cf. (5). Therefore, the
steady-state solutions for the single oscillator’s variances (9),
(10), and (13) describe the squeezing of EPR modes as well.
Entanglement of the two oscillators is established if the sum
of the two squeezed EPR variances falls below two units of
spin projection noise (that is, 2 × 1/2 in our convention).

V. DISCUSSION

Now we come to the discussion of the results obtained for
the squeezing of a collective spin or entanglement of two of
them. As explained at the end of Sec. III the expressions for
the unconditional (13) and conditional (9) variances in terms
of the interaction parameter θ and the optical depth d read

Vu = 2n + 1 + d sin2θ

1 + d sin(2θ )/2
, (19)

Vc = 1

2(1 − ε)

{
(1 + ε) tan θ − 1

d cos2θ

+
√(

1

d cos2θ
−tan θ

)2

+ 4[(2n+1)(1 − ε) + ε tan θ ]

d cos2θ

}
.

(20)

1. Unconditional variance

(a) The unconditional steady state exists only provided θ >

θc where the critical interaction parameter is given by γ +
g sin(2θc)/2 = 0, or

θc = − 1
2 arcsin(2/d). (21)

Otherwise the system becomes dynamically unstable; see
(11). However, this is not the case for the conditional state
which can be stabilized for any interaction parameter θ by the
measurement of both quadratures of the output light (ε 	= 0 or
1) and a feedback (see below).

(b) The unconditional variance (19) exhibits a trade-off
with respect to θ , as is shown in Fig. 2. The minimum of
the variance (maximum of entanglement) is achieved for the
optimal interaction parameter θ

opt
u given in Appendix B, and in

general requires an interaction dominated by the beam-splitter
dynamics. In the limit of high optical depth it reads

θopt
u 


√
2n + 1

d
. (22)

The exact value of θ
opt
u is shown in Fig. 3 as a function of

optical depth.

QND BSTMS
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FIG. 2. (Color online) Unconditional squeezed variance Vu

[Eq. (19)] versus interaction parameter θ . The dynamics is stable
only for θ > θc where θc is given in (21). Vu exhibits a minimum for
an optimal choice of θ

opt
u given in (22) in a region where the beam

splitter (BS) interaction dominates over the two-mode-squeezing
(TMS) interaction. Curves for the following parameter values are
shown: d = 5, n = 0 is the blue (dark gray) line, d = 50, n = 0 is
the green (light gray) line, and d = 50, n = nc is the red (top) line.

(c) Substituting the optimal interaction parameter in
Eq. (19), one obtains the minimal unconditional variance

V opt
u = 2

d
√

(2n + 1)(2n + 1 + d) + 1 − d − 2(2n + 1)

d2 − 4


 2

√
2n + 1

d
, (23)

where the approximation holds for d � 1. Figure 7 below
shows V

opt
u versus optical depth. We recover the scaling of

squeezing as d−1/2 which also applies for a QND measure-
ment. This can be seen directly from (20) by setting θ = 0
and ε = 0. In the asymptotic regime for large d the QND
squeezed variance is then V QND

c = √
(2n + 1)/d , half of the

dissipatively squeezed one.

2. Conditional variance (ε = 0)

(a) The conditional variance (20) exhibits a similar tradee-
off. It has a minimum with respect to θ , as shown in Fig. 4. The
corresponding optimal interaction parameter θ

opt
c is defined in

100 101 102 103
d

π

4

π

8

0

π

8

π

4

O
pt

im
al

 θ

θ c
opt

θu
opt

FIG. 3. (Color online) Optimal interaction parameter θ versus
optical depth. Solid curves show conditional (the lower blue line)
θ

opt
c and unconditional (the upper green line) θ

opt
u optimal interaction

parameters. Dashed lines are asymptotics. For large optical depths
the optimal interaction for dissipative generation of squeezing
approaches the QND interaction (θ = 0), while the best choice
for conditional generation of squeezing becomes the two-mode-
squeezing interaction (θ = −π/4).
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FIG. 4. (Color online) Conditional squeezed variance Vc (solid)
and unsqueezed variance Uc (dashed) versus interaction parameter
θ . The beam-splitter reflectivity is ε = 0. Curves for the following
parameter values are shown: d = 5, n = 0 is the blue (dark gray)
solid line for Vc and dashed for Uc, d = 50, n = 0 is the green (light
gray) solid line for Vc and dashed for Uc, and d = 50, n = nc is the
red (top) solid line for Vc.

Appendix B and shown in Fig. 3, and in general corresponds to
an interaction which is dominated by the two-mode-squeezing
dynamics. It does not have a nice analytical form but in the
limit of high optical depth can be expanded as

θopt
c 
 −π

4
+ 2n + 1

d
+ O(d−2). (24)

(b) From the expression (24) one can see that the optimal
interaction for the maximum entanglement is close to the
two-mode-squeezing regime. The expression for the optimized
conditional variance in the limit of d � 1 reads

V opt
c 
 2(2n + 1)

d
. (25)

The striking feature of the conditional variance (25) is the
inverse scaling with the optical depth in contrast to the ∼ 1/

√
d

scaling of the unconditional (23) squeezing (entanglement) for
dissipative or QND generation for squeezing. The price we
pay for this significantly improved scaling is the unbounded
variance of the unsqueezed component. In the limit of ε → 0
the expression for the conditional variance Uc (10) converges
to the unconditional unsqueezed variance Uu (14) and therefore
too becomes unstable for θ � θc.

3. Stabilized conditional variance (ε > 0)

(a) In order to profit from the enhanced scaling of squeezing
with the optical depth the antisqueezed spin component
therefore has to be actively stabilized via feedback. To do
so it is necessary to detect also the second, conjugate light
quadrature, from which the required information about the
antisqueezed spin component can be gained. This can be
achieved in the measurement setup shown in Fig. 1. For a
reflectivity ε > 0 a little bit of output light is subtracted and
subject to a homodyne detection of the amplitude quadrature.
With appropriate feedback of the corresponding photocurrent
the antisqueezed quadrature can be stabilized to a value which
scales as Uc 
 1/ε (in units of shot or projection noise), at
the cost of a somewhat reduced squeezing of the other spin
component. The variances for a small reflectivity ε are show
in Figs. 5 and 6.

QND BSTMS
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4
π

2θ
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d 5, n 0, 0.05
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FIG. 5. (Color online) Squeezed unconditional variance Vu [green
(light gray)], conditional variance Vc [blue (dark gray)], and un-
squeezed conditional variance Uc [blue (dark gray) dashed] versus
interaction parameter θ for an optical depth d = 5, minimal atomic
noise n = 0, and beam-splitter reflectivity ε = 0.05. Interaction
parameter θ = 0 corresponds to a QND interaction, for 0 < θ < π/2
the beam-splitter interaction dominates, and for −π/2 < θ < 0 the
two-mode-squeezing interaction is dominant. The grayed region
corresponds to the unconditionally stable dynamics.

(b) Most importantly, in Fig. 7 we see that the 1/d scaling
of squeezing can be stabilized for optical depths up to a value
d∗ 
 (2n + 1)/ε. For greater optical depths the scaling of
squeezing is changed back to the inverse square root law
V

opt
c (d > d∗) 
 2

√
(2n + 1)ε/d . The important conclusion

is that for a given optical depth d one can achieve an
enhanced scaling of squeezing as 1/d by using a reflectivity
ε 
 (2n + 1)/d. The corresponding level of antisqueezing will
be given by Uc(d∗) 
 √

2/ε ∝ d.
(c) In the regime of unconditionally stable dynamics

(shown by a gray area in Figs. 5 and 6) the conditional
state is dynamically stable too. Feedback may be applied in
order to convert the unconditional squeezing into conditional
squeezing. Depending on the application it might not be
necessary to do so, and the conditionally squeezed state might
give the same result (e.g., in some quantum information
protocols). On the contrary, the unstable regimes where the
1/d scaling of squeezing can be expected can be accessed
only by applying a continuous feedback. The master equation

QND BSTMS
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FIG. 6. (Color online) Same as Fig. 5 but for critical (effective)
temperature corresponding to decay to a thermal state with mean
occupation number n = nc = d(

√
2 − 1)/4. It is impossible to

unconditionally achieve spin squeezing or entanglement for this or
higher occupation numbers.
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FIG. 7. (Color online) Squeezed and unsqueezed variances vs
optical depth for minimal noise n = 0. Blue (dark gray), conditional
variance for the optimal θ

opt
c ; green (lower light gray), unconditional

squeezed variance for optimized interaction parameter θ
opt
u ; yellow

(upper light gray), unconditional unsqueezed variance for optimized
interaction parameter θ

opt
u ; red (top), conditional unsqueezed variance

for the optimal θ
opt
c . Dashed lines: Blue (dark gray), asymptotic

scaling 2/d for conditional dynamics; green (light gray), 2/
√

d for
the unconditional dynamics; red (top), asymptotic of the conditional
unsqueezed variance 1/ε.

describing the unconditional state of the system with feedback
is given in Appendix C.

4. Finite occupation number

If the decay does not go back to the ground state (fully
polarized state) we can identify an effective temperature giving
rise to a mean thermal occupation n. Figure 6 shows the effect
on the unconditional and conditional variances. For a given
optical depth d there is a critical value of n which should not
be surpassed in order to achieve an entangled state.

(a) The unconditional steady-state squeezing (Vu < 1) can
only be observed only if the occupation number of the
environment is below a critical limit nc = d(

√
2 − 1)/4.

(b) The conditional state can remain squeezed (entangled)
until the temperature reaches ñc ∼ 5d

8 − 3
80d

+ O(d−3), which
is approximately six times higher than the unconditional nc.

(c) Yet another critical temperature for the conditional
squeezing in the dynamically stable regime is given by
˜̃nc ∼ 1

2 + d
2 − 7

16d
+ O(d−3).

VI. CONCLUSION

We have considered spin squeezing and entanglement of
collective atomic spins obtained in a dissipative dynamics.
We performed the optimization over all possible quadratic
light-matter interactions in a Gaussian description. The opti-
mal unconditional squeezing exhibits a scaling with optical
depth as d−1/2. We found that if one performs homodyne
measurements of the probe light it is possible to achieve better
squeezing with a remarkable scaling as d−1 by applying a
feedback.

Our results are based on a Gaussian description of the
light-matter interaction and neglect the spatial extension of
the atomic ensembles along the propagation direction. This
is an excellent approximation for a QND interaction, but
becomes less appropriate for dominant beam-splitter or two-
mode-squeezing interactions. However, we expect that our

approximation still applies for ensembles at room temperature
where thermal motion averages out spatial inhomogeneities. In
view of the possible gain in squeezing a more careful treatment
based on integration of Maxwell-Bloch equations is certainly
desirable.
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APPENDIX A: STOCHASTIC MASTER EQUATIONS AND
COVARIANCE MATRIX EQUATIONS

Consider a system composed of a bosonic modes which
obeys a stochastic master equation

dρ = −i[H,ρ]dt +
b∑

i=1

D[Ji]ρdt +
c∑

i=1

H[Ji]dWi, (A1)

where D[x]ρ = xρx†− 1
2 {x†x,ρ}+ and H[x]ρ = (x−〈x〉)ρ +

ρ(x† − 〈x†〉). For a 2a vector of canonical operators �r T =
(x1,p1, . . . ,xa,pa) the Hamiltonian

H = 1
2 �r T M�r,

is characterized by a real symmetric 2a × 2a matrix M , and
the b jump operators

Ji = �r T �ji,

are determined by b vectors �ji ∈ C2a . We assume that c out of
the b decay channels are monitored, as described by the mea-
surement terms proportional to the Wiener increments dWi .
We restrict attention to the case where dWi are independent
Wiener processes dWidWj = δij dt .

If the state of the system is Gaussian it is fully described
by the vector of first moments collected in the real 2a-
component displacement vector �s, and the real symmetric
2a × 2a covariance matrix � defined by

si = tr{ρri}, �ij = tr{ρ(rirj + rj ri)} − 2sisj , (A2)

such that for a single system and in the notation used in the
main text

� =
(

2Vc Cc

Cc 2Uc

)
.

It is then possible to show that for Gaussian states the
equations of motion for �s and � implied by (A1) are

d�s = Q�s dt + (� �A − σ �B)d �W,

�̇ = (Q + 2σ �B �AT )� + �(QT + 2 �A �B T σT )

+ (P − 2σ �B �B T σT ) − 2� �A �AT �. (A3)

053820-7



VASILYEV, MUSCHIK, AND HAMMERER PHYSICAL REVIEW A 87, 053820 (2013)

The real matrices which enter here are determined from M and
�ji as follows:

Q = σ (M + R), R = − i

2

b∑
i=1

( �j ∗
i

�j T
i − H.c.)

P = 2σSσT , S = 1

2

b∑
i=1

( �j ∗
i

�j T
i + H.c.)

�A = 1

2

c∑
i=1

( �ji + �j ∗
i ), �B = − i

2

c∑
i=1

( �ji − �j ∗
i ),

and finally, σ is the 2a × 2a symplectic matrix

σ =
a⊕

i=1

(
0 1

−1 0

)
.

This can be proven by substituting (A1) into (A2), using the
cyclicity of the trace, the canonical commutator [ri,rj ] = iσij ,
and the property of Gaussian states that

tr{ρ{rl,{rm,rn}+}+}
= 2(�lmsn + �nlsm + �mnsl + 2snsnsm).

APPENDIX B: OPTIMAL θ

An optimization of the expression for the unconditional
squeezing (19) with respect to the interaction parameter
provides the optimal θ

opt
u given by

θopt
u = arctan

[√
(2n + 1)(2n + 1 + d) + 1 − 1

2n + 1 + d

]



√

2n + 1

d
. (B1)

The approximation assumes d � 1.

The conditional variance (20) optimization boils down to
finding a proper root of a cubic equation:

0 = 2x3(1 − 2ε)(2n + 1 + dε) − x2{4(2n + 1)2

− ε[16n(n + 1) + d2] + d(2n + 1)[2 − (1 − 2ε)2]}
− 2x(1 − 2ε)(2n + 1 − dε) + d(2n + 1)(1 − 2ε).

The optimal interaction parameter is then given by θ
opt
c =

arctan(x).

APPENDIX C: FEEDBACK MASTER EQUATION

Based on the light measurement outcome one can apply a
Hamiltonian feedback to the oscillator or to the EPR modes of
a pair of them. The feedback Hamiltonian is proportional to
the measured photocurrents I1(t) and I2(t) of the homodyne
detectors,

Hfb = Ii(t)Fi, (C1)

where the feedback operators are F1 = ξ1P and F2 = ξ2X

with ξ1 and ξ2 being the feedback gains. The resulting master
equation reads

ρ̇ = − i

2
[{

√
g(1 − ε)F1 + i

√
gεF2}s + H.c.,ρ]

+D[
√

g(1 − ε)s − iF1]ρ + gεD[
√

gεs −F2]ρ, (C2)

By choosing appropriate feedback gains ξ1 and ξ2 one can
achieve steady state of the system with variances given by the
conditional dynamics (9) and (10) for any interaction param-
eter θ . Applying Eqs. (A3) to the master equation (C2), we
arrive at the Lyapunov equations for the variances Vfb and Ufb:

V̇fb = −[γ + gαβ − 2αξ1

√
2g(1 − ε)]Vfb

+ γ (2n + 1) + gβ2 − 2βξ1

√
2g(1 − ε) + 2ξ 2

1 , (C3)

U̇fb = −[γ + gαβ − 2βξ2

√
2gε]Ufb

+ γ (2n + 1) + gα2 − 2αξ2

√
2gε + 2ξ 2

2 . (C4)
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L. Rousseau, Phys. Rev. Lett. 97, 133601 (2006).

[35] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Phys. Rev.
Lett. 99, 017201 (2007).

[36] M. Montinaro, A. Mehlin, H. S. Solanki, P. Peddibhotla,
S. Mack, D. D. Awschalom, and M. Poggio, Appl. Phys. Lett.
101, 133104 (2012).

[37] T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith,
S. Whitcomb, and N. Mavalvala, Phys. Rev. Lett. 99, 160801
(2007).

[38] C. M. Mow-Lowry, A. J. Mullavey, S. Goßler, M. B. Gray, and
D. E. McClelland, Phys. Rev. Lett. 100, 010801 (2008).

[39] B. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen,
and R. Amin, New J. Phys. 11, 073032 (2009).

[40] J. Ma, X. Wang, C. Sun, and F. Nori, Phys. Rep. 509, 89 (2011).
[41] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys.

82, 1041 (2010).
[42] A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85,

1594 (2000).
[43] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Science 209,

547 (1980).
[44] P. Grangier, J. A. Levenson, and J.-p. Poizat, Nature (London)

396, 537 (1998).
[45] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff,

N. Kjærgaard, and E. S. Polzik, Proc. Natl. Acad. Sci. USA
106, 10960 (2009).

[46] Z. Chen, J. G. Bohnet, S. R. Sankar, J. Dai, and J. K. Thompson,
Phys. Rev. Lett. 106, 133601 (2011).

[47] R. Inoue, S.-I.-R. Tanaka, R. Namiki, T. Sagawa, and
Y. Takahashi, Phys. Rev. Lett. 110, 163602 (2013).

[48] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Phys. Rev.
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