
Analytical solutions and moment analysis of general rate model

for linear liquid chromatography

Shamsul Qamara,b,∗, Javeria Nawaz Abbasib, Shumaila Javeeda,b, Andreas
Seidel-Morgensterna

aMax Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany
bDepartment of Mathematics, COMSATS Institute of Information Technology,

Park Road Chak Shahzad Islamabad, Pakistan

Abstract

The general rate model (GRM) is considered to be a comprehensive and reliable math-

ematical model for describing the separation and mass transfer processes of solutes in

chromatographic columns. However, the numerical solution of model equations is com-

plicated and time consuming. This paper presents analytical solutions of the GRM for

linear adsorption isotherms and different sets of boundary conditions at the column inlet

and outlet. The analytical solutions are obtained by means of Laplace transformation.

Numerical Laplace inversion is used to transform back the solution in the time domain

because analytical inversion cannot be obtained. The first four temporal moments are de-

rived analytically using the Laplace domain solutions. The moments of GRM are utilized

to analyze the retention times, band broadenings, front asymmetries and kurtosis of the

elution profiles. Relationships are derived among the kinetic parameters to match the first

four moments of GRM and the simpler lumped kinetic model (LKM). For validation, the

analytical solutions are compared with numerical solutions of a second order finite volume
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scheme. The good agreements in the results verify the correctness of analytical solutions

and the accuracy of the numerical scheme.

Key words: Dynamics of chromatography, general rate model, analytical solutions,

moments analysis, finite volume schemes.

1. Introduction

Column liquid chromatography is one of the most versatile separation techniques. It is

widely used for analysis and purification in several industries aiming to produce pharma-

ceuticals, food, and fine chemicals. The concept is successfully applied to perform numerous

difficult separation processes, for instance the separation of enantiomers and the isolation of

specific proteins from fermentation broths. In the column liquid chromatography, a mobile

phase percolates through a bed of fixed porous particles, carrying the mixture components

which interact differently with the stationary phase. Components interacting strongly with

the particles will be transported (elute) slowly along the column as compared to the com-

ponents with weaker interactions. Therefore, each component will form a concentration

band profile moving with a specific velocity in the column. These velocity differences make

possible, for long enough columns, to collect pure fractions of components at the outlet of

the column.

Mathematical modeling of chromatographic processes is useful for understanding and an-

alyzing dynamic composition fronts in chromatographic columns without extensive exper-

iments. Different mathematical models with different degrees of complexity describing the

mass transfer and partition processes are available in the literature. The most important
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of these models are the general rate model (GRM), the lumped kinetic model (LKM),

the equilibrium-dispersive model (EDM), and the ideal model of chromatography, see e.g.

Guiochon (2003); Guiochon and Lin (2003); Guiochon et al. (2006); Ruthven (1984); Carta

(1988).

The EDM assumes that the mass transfer is of infinite rate. The LKM incorporates with

the rate of variation of the local concentration of solute in the stationary phase and local

deviation from equilibrium concentrations. The analytical solutions and moment analysis

of these models are already presented in detail in our previous publications Javeed et al.

(2013); Qamar et al. (2013). In this paper, the analysis of GRM is our main concern.

The GRM is considered to be a very comprehensive model and has the potential to achieve

an accurate description of chromatographic profiles. It incorporates several important

factors of the mass transfer process in the column, such as the axial dispersion, external

mass transfer resistance, pore diffusion and surface diffusion.

In this work, the analytical solutions of GRM are obtained for different sets of boundary

conditions considering a single component fluid. The model equations are solved by using

the Laplace transformation. Moment analysis has been comprehensively discussed in the

literature, see for example Kubin (1964, 1965); Kucera (1965); Schneider and Smith (1968);

Suzuki (1973); Wolff et al. (1979, 1980); Ruthven (1984); Lenhoff (1987); Antos (2003);

Guiochon et al. (2006), Miyabe et al. (2000, 2003, 2007, 2009) and Javeed et al. (2013).

In these partly classical papers analytical expressions have been generated for specific

chromatographic models and boundary conditions. The analysis typically covered just the

most important first and second moments, i.e. retention times and band broadening. In a
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few studies also the third moment, which describes peak and front asymmetries, was derived

and evaluated. In the present paper we address several aspects that have not been treated

in this detail up to now. We will derive and compare also the fourth moment, i.e. the

kurtosis or flatness. Using low-noise detectors and complete capture of the responses this

moment appears to be still experimentally accessible. Since the influence of the boundary

conditions is often not discussed in sufficient depth, we will further compare the moment

expressions for Danckwerts and Dirichlet conditions considering both rectangular pulses

and steps as inlet profiles. In order to compare quantitatively the first four moments of

GRM and LKM are derived. With this analysis it is intended to elucidate the connections

between the specific kinetic parameters, including for the first time the results for the

fourth moments. Finally, going beyond previous studies, we will provide a comparisons of

the analytically derived moments with moments calculated independently by integrating

numerically calculated effluent profiles. For this advanced high resolution methods are

applied Javeed et al. (2011), which are capable to treat also the more general case of

nonlinear equilibria.

The structure of the article is as follows: The GRM is described in Section 2. Section 3

presents the derivation of analytical solutions and moments of the GRM. Numerical test

problems are presented in Section 4. Concluding remarks are given in Section 5.

2. The General Rate Model (GRM)

The GRM considers, besides functions for the distribution equilibria, several contributions

of mass transfer processes occurring in chromatography which cause band broadening.
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More specifically, axial dispersion, mass transfer between mobile and stationary phases

and intraparticle pore diffusion are included in the mass balance equations. Limiting finite

rates of adsorption-desorption are sometimes also included but not considered below. Thus,

the GRM contains two mass balances for each solute, one for the column and one for the

particles of stationary phase.

The mass balance for a single solute component percolating through a column filled with

spherical particles of radius Rp is given as

∂c

∂t
+ u

∂c

∂z
= DL

∂2c

∂z2
− 3

Rp
Fkext (c − cp(r = Rp)) . (1)

In the above equation, c and cp are the concentrations of a solute in the bulk of the fluid

and in particle pores, respectively. The phase ratio F is defined as F = (1 − ǫ)/ǫ, where

ǫ is the external porosity. Moreover, u is the interstitial velocity, DL represents the axial

dispersion coefficient, kext is the external mass transfer coefficient, and t and z denote time

and axial coordinate of the column. In addition, r is the radial coordinate of spherical

particles of radius Rp.

The mass balance equation for the solute in the stationary phase can be expressed assuming

two mechanisms of intraparticle transport:

ǫp
∂cp

∂t
+ (1 − ǫp)

∂q∗

∂t
=

1

r2

∂

∂r

(

r2

[

ǫpDp
∂cp

∂r
+ (1 − ǫp)Ds

∂q∗

∂r

])

, (2)

where q∗ is the local concentration of solute in stationary phase, ǫp is the internal porosity,

Dp is the pore diffusivity, and Ds is the surface diffusivity.

Eqs. (1) and (2) are connected at r = Rp via the following expression which quantifies the
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temporal change of the average loading of the particles:

[

ǫpDp
∂cp

∂r
+ (1 − ǫp)Ds

∂q

∂r

]

r=Rp

= kext(c − cp|r=Rp
) . (3)

The initial condition of the Eq. (1) for an initially regenerated column is given as

c(0, z) = 0 , (0 < z < L) , (4)

and initial conditions of Eq. (2) considering empty particles are given as

q∗(0, z, r) = 0 , cp(0, z, r) = 0 . (5)

Because rapid adsorption or desorption rates are assumed, the concentrations of solute in

the pores and that in the stationary phase are in the state of equilibrium.

Only linear adsorption isotherms are considered in this work:

q∗ = acp . (6)

By using Eq. (6), the right hand side term in the square brackets of Eq. (2) can be simplified

as

ǫpDp
∂cp

∂r
+ (1 − ǫp)Ds

∂q∗

∂r
= Deff

∂cp

∂r
, (7)

where

Deff = ǫpDp + (1 − ǫp)Dsa . (8)

Thus, in linear from, Eq. (2) can be rewritten as

a∗
∂cp

∂t
=

Deff

r2

∂

∂r

(

r2∂cp

∂r

)

, (9)
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with

a∗ = ǫp + (1 − ǫp)a . (10)

Similarly, Eq. (3) simplifies to

Deff
∂cp

∂r

∣

∣

∣

∣

r=Rp

= kext(c − cp|r=Rp
) . (11)

Moreover, appropriate inlet and outlet boundary conditions (BCs) are required for Eqs.

(1) and (2).

The following two types of boundary conditions are considered for Eq. (1).

Boundary conditions of type I: Robin (or Danckwerts) type inlet BCs

In this case, the Robin type boundary condition, known in chemical engineering as Danck-

werts boundary condition, is applied at the column inlet (e.g. Danckwerts (1953))

− DL

u

∂c

∂z
+ c

∣

∣

∣

∣

z=0

=















cinj , if 0 < t ≤ tinj ,

0 , t > tinj ,

(12a)

where cinj denotes the concentration of the solute in the injected sample and tinj is the

time of injection. At the outlet of the column of finite length L, the following Neumann

outflow boundary condition is used:

∂c(L, t)

∂z
= 0 . (12b)

Boundary conditions of type II: Dirichlet inlet BCs

Alternatively, the simpler Dirichlet boundary conditions was considered at the column inlet

c|z=0 =















cinj , if 0 < t ≤ tinj ,

0 , t > tinj ,

(13a)
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together with a Neumann boundary condition for a column of hypothetically infinite length,

L = ∞

∂c(t,∞)

∂z
= 0 . (13b)

For sufficiently small dispersion coefficient, for example DL ≤ 10−5 m2/s, this Dirichlet

inlet boundary condition is well applicable.

The natural boundary condition for Eqs. (2) and (9) at the center of pore is

∂cp

∂r

∣

∣

∣

∣

r=0

= 0 . (14)

The full analytical solution of this linear GRM is not possible, but analytical expressions

for moments can be derived from the achievable solution of GRM in the Laplace domain.

Two famous limiting models of GRM are the lumped kinetic model (LKM) and the equi-

librium dispersive model (EDM), see Guiochon and Lin (2003); Guiochon et al. (2006).

The LKM can be obtained by simplifying the description of the mass transfer processes.

The model lumps contributions of internal and external mass transport resistances quan-

tified by kext and Deff into a single mass transfer coefficient kLKM . The mass balance law

of the LKM is expressed as

∂c

∂t
+ u

∂c

∂z
= D

∂2c

∂z2
− kLKM

ǫ
(q∗ − q) , (15a)

∂q

∂t
=

kLKM

1 − ǫ
(q∗ − q) , (15b)

q∗ = ac . (15c)

The EDM assumes that all mass transfer kinetics are of infinite rate, i.e. kext → ∞,

Ds → ∞ and Dp → ∞. Analytical solutions and a moment analysis for the LKM and
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EDM were recently presented in Javeed et al. (2013). In this work, relationships are

derived between the kinetic parameters of GRM and LKM in order to match their first

four moments (see Appendix C).

3. Analytical Solutions of GRM for Linear Isotherms

In this section, solutions of linear GRM are presented for Danckwerts (Eq. (12a)) and

Dirichlet (Eq. (13a)) inlet boundary conditions. The GRM can conveniently be solved by

means of Laplace transformation. The Laplace transformation is defined as

c̄(s, z) =

∞
∫

0

e−stc(t, z)dt, t ≥ 0. (16)

By applying the above Laplace definition to the model Eq. (1), we obtain

sc̄ + u
dc̄

dz
= DL

d2c̄

dz2
− 3

Rp
Fkext(c̄ − c̄p|r=Rp

) . (17)

While, the Laplace transformation of Eq. (9) is given as

a∗sc̄p = Deff

(

d2c̄p

dr2
+

2

r

dc̄p

dr

)

. (18)

The general solution of Eq. (18) is given as (see Appendix A)

c̄p(s, z, r) =
1

r

[

d1
√

α(s)
sinh

(

√

α(s) r
)

+ d2 cosh
(

√

α(s) r
)

]

. (19)

By using the boundary conditions (9) and (14), Eq. (19) gives

d1 =
Bpc̄/ sinh(

√

α(s)Rp)

(Bp − 1)/
√

α(s)Rp + coth(
√

α(s)Rp)
, d2 = 0 . (20)

At r = Rp, Eqs. (19) and (20) gives

c̄p|r=Rp
= c̄f(s) , (21)
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where

f(s) =
Bp

Bp − 1 +
√

α(s) Rp coth(
√

α(s)Rp)
, Bp =

kextRp

Deff

, α(s) =
a∗s

Deff

. (22)

Introducing Eqs. (21) in Eq. (17), we get the following ordinary differential equation

φ(s)c̄ + u
dc̄

dz
= DL

d2c̄

dz2
, (23)

where

φ(s) = s + kext
3

Rp
F (1 − f(s)) . (24)

The solution of this equation is given as

c̄(s, z) = Aeλ1z + Beλ2z , (25)

where

λ1,2 =
u

2DL

(

1 ∓
√

1 +
4DLφ(s)

u2

)

. (26)

The boundary conditions considered above can be used to obtain the values of integration

constants A and B in Eq. (25).

Boundary conditions of type I: Robin (or Danckwerts) type BCs

First, the boundary conditions in Eqs. (12a) and (12b) are considered to obtain the values

of A and B in Eq. (25). The inlet Danckwerts boundary condition in Eq. (12a) can be

rewritten as

− 1

v

∂c

∂z
+ c(t, z)

∣

∣

∣

∣

z=0

=















cinj , 0 < t ≤ tinj ,

0 , t > tinj .

(27)
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It has the Laplace transformation

c̄(s, 0) =
cinj

s

(

1 − e−stinj
)

+
1

v

dc̄

dx

∣

∣

∣

∣

z=0

, (28)

where

v =
u

DL
. (29)

Similarly, the Laplace transformation of Eq. (12b) is given as

dc̄(s, z)

dz

∣

∣

∣

∣

z=L

= 0 . (30)

Thus, the values of A and B have the following forms

A =
cinj (1 − e−stinj)

s

λ2 exp(λ2L)

(1 − λ1

v
)λ2 exp(λ2L) − (1 − λ2

v
)λ1 exp(λ1L)

, (31)

B = −cinj (1 − e−stinj)

s

λ1 exp(λ1L)

(1 − λ1

v
)λ2 exp(λ2L) − (1 − λ2

v
)λ1 exp(λ1L)

. (32)

When tinj → ∞, the injection causes just a breakthrough curve. In such a situation, the

values of A and B in Eqs. (31)-(32) reduce to

A =
cinj

s

λ2 exp(λ2L)

(1 − λ1

v
)λ2 exp(λ2L) − (1 − λ2

v
)λ1 exp(λ1L)

, (33)

B = −cinj

s

λ1 exp(λ1L)

(1 − λ1

v
)λ2 exp(λ2L) − (1 − λ2

v
)λ1 exp(λ1L)

. (34)

The complete solutions for pulse responses and breakthrough curves are given by Eq. (25)

together with Eqs. (31)-(32) and Eqs. (33)-(34), respectively.

Boundary conditions of type II: Dirichlet BCs

Now, we consider the boundary conditions given by Eqs. (13a) and (13b). Their Laplace

transformations are given as

c̄(s, 0) =
cinj(1 − e−stinj)

s
,

dc̄

dz
(s,∞) = 0 . (35)
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Thus, the values of A and B take the following forms

A =
cinj(1 − e−stinj)

s
, B = 0 . (36)

Using the values of A and B in Eq. (25), we get

c̄(s, z) =
cinj(1 − e−stinj)

s
exp

[

uz

2DL

(

1 −
√

1 +
4DLφ(s)

u2

)]

. (37)

When tinj → ∞, the injection causes again a complete breakthrough curve. For this case,

the solution in Eq. (37) reduce to the following form

c̄(s, z) =
cinj

s
exp

[

uz

2DL

(

1 −
√

1 +
4DLφ(s)

u2

)]

. (38)

This completes the discussion of analytical solutions for the single component linear GRM

in the Laplace domain.

There is no possibility to analytically transform back the Laplace domain solution in time

domain. Numerical Laplace inversion can be applied to obtain a discrete solution in time.

In this technique, the integral of inverse Laplace transformation is approximated by Fourier

series, see for example Rice et al. (1995). However, this solution is not helpful to study

the behavior of chromatographic bands in the column. For that reason, an analysis of the

moments is presented in the next section to serve this purpose.

4. Moments of the General Rate Model

Moment analysis is an effective method for deducing important information about the

retention and mass transfer processes in chromatographic columns, see e.g. Guiochon et

al. (2006); Kucera (1965); Miyabe et al. (2007, 2009); Ruthven (1984); Schneider and Smith
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(1968) as well as Suzuki et al. (1971). The Laplace transformation can be used as a basic

tool to obtain moments. The retention equilibrium-constant and parameters of the mass

transfer kinetics in the column are related to the moments in the Laplace domain. In

this section, the description of chromatographic peaks by means of statistical moments is

presented. The central moments up to fourth order for the GRM are calculated for different

sets of BCs. In order to calculate analytical moments for rectangular concentration pulses

of finite width, the following moment generating property of the Laplace transform is

exploited (e.g. Van der Laan (1958))

µ0 = lim
s→0

(c̄(s, z = L)) , µn = (−1)n 1

µ0
lim
s→0

dn(c̄(s, z = L))

dsn
, n = 1, 2, 3, · · · . (39)

For the case of continuous injection (t → ∞), the above formulas need to be modified to

generate closed responses:

µ0 = lim
s→0

(sc̄(s, z = L)) , µn = (−1)n 1

µ0
lim
s→0

dn(sc̄(s, z = L))

dsn
, n = 1, 2, 3, · · · . (40)

In this manuscript, the first four moments for GRM related to injected rectangular con-

centrations profiles (finite feed volumes) are calculated. Appendix B presents the complete

derivation of the moments and Table 1 summarizes the moment results for the two sets of

BCs. It is well known that the first moment µ1 corresponds to the retention time tR. The

value of the equilibrium constant a can be estimated from the slopes of a straight lines,

µ1 = tR over 1/u for constant column length and porosity. The effects of longitudinal

diffusion are not significant with respect to retention time or first moment. The second

central moment µ′

2 i.e. the variance of the elution profile provides information about the

rates of the mass transfer processes in the column. The third central moment µ
′

3 quantifies
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the front asymmetries. Finally, the considered fourth central moment µ
′

4 measures the

kurtosis. Kurtosis determines the ”peakedness” that describes the shape of a probabil-

ity distribution. A comparison of analytical moments based on solutions in the Laplace

domain and numerically calculated moments is provided below for various test problems.

Furthermore, a comparison of the derived moment expressions with the recently presented

model of the LKM in Javeed et al. (2013) is given.

5. Numerical Test Problems

In this section, the analytical solutions presented above are validated by considering sev-

eral test problems. A second-order accurate finite volume scheme (FVS) of Koren was

chosen to solve Eqs. (1)-(14) for verifying the analytical results. For complete derivation

of this numerical method, readers are referred to the article by Javeed et al. (2011). All

parameters used in the test problems are given in Table 2.

Comparison of analytical and numerical solutions

In this part, analytical and numerical solutions are compared by considering the two pairs

of boundary conditions (BCs), given by Eqs. (12a)-(12b) and Eqs. (13a)-(13b). In Figure

1, a rectangular pulse of finite width is injected and described by the Danckwerts inlet

boundary condition (12a) considering for illustration two velocities u = 0.3 cm/min and

u = 0.6 cm/min. The figure compares the solutions of numerical inversion of the Laplace

domain solution (Eq. (25) together with Eqs. (31) and (32)) in the time domain and FVS.

Figure 2 shows the comparison of solutions for continuously injected concentrations. Good
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agreements of the obtained concentration profiles verify the accuracy of numerical Laplace

inversion and FVS.

In Figures 3 and 4 results are shown for rectangular pulses of finite and infinite widths

injected as Dirichlet inlet BCs. Good agreement of the solution profiles demonstrates

again the consistency and accuracy of both methods. Numerical Laplace inversion is a

suitable method when analytical Laplace inversion of the solution from Laplace domain is

not possible.

Effect of boundary conditions

The results shown in Figure 5 illustrate the importance of using the more accurate Danck-

werts BCs when the Peclet numbers are relatively small, e.g. Pe ≤ 10. Hereby the Peclet

number is defined as

Pe =
Lu

DL

, (41)

where L denotes the column length. For such large effects of dispersion, visible differences

can be observed between the results for Dirichlet and Danckwerts BCs. On the other

hand, for larger values of Peclet number (Pe >> 10) or smaller effects of axial dispersion,

solutions with Dirichlet and Danckwerts boundary conditions are analogous.

In the following calculations, only Danckwerts boundary conditions were considered.

Effects of axial dispersion and diffusion

As the effect of dispersion via the Pe number (Eq. (41)), the effect of intraparticle diffu-

sion can be quantified in a dimensionless way using the following Biot number Bi which
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quantifies the ratio of diffusion and convection time constants:

Bi =
Deff/R

2
p

u/L
. (42)

Figure 6 (left) shows the effect of Peclet number by considering different values of Pe

(or DL) using u = 0.3 cm/min and keeping Bi = 1 fixed. It demonstrates that for this

Biot number in the range considered relative small differences are observed by significantly

varying the values of Pe (or DL).

Figure 6 (right), shows the effects of Bi (or Deff) using u = 0.3 cm/min for a fixed

Pe = 100. This figure shows that larger values of Bi sharpen the concentration profiles.

Discussion on analytically and numerically determined moments

This part presents a comparison and analysis of analytically and numerically determined

temporal moments of the GRM. Appendix B presents the first four moments for considered

BCs. The numerical moments were obtained by integrating profiles generated with the high

resolution FVS, see Javeed et al. (2011).

The normalized n-th temporal moment of the band profile at the outlet of a column of

length z = L is given as

µn =

∫

∞

0
c(t, z = L) tndt

∫

∞

0
c(t, z = L)dt

. (43)

While, the corresponding n-th central moment is expressed as

µ
′

n =

∫

∞

0
c(t, z = L) (t − µ1)

ndt
∫

∞

0
c(t, z = L)dt

. (44)

The trapezoidal rule is applied to approximate the integrals in Eqs. (43) and (44). For

continuous injections (tinj → ∞) derivatives of the concentration profiles were used to
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calculate the moments of the transformed step responses, see Javeed et al. (2013). Eqs.

(43) and (44) were also used to evaluate the solutions obtained by numerical inversion of

the analytical Laplace domain solutions.

A quantitative comparison of analytical, numerical Laplace inversion and FVS moments is

presented in Figure 7 over different powers of the inverse flow rates considering Danckwerts

BCs. The first moments µ1 reveal the expected linear trends over 1/u, c.f. Figure 7 (top:

left). Figure 7 (top: right) displays the second central moments µ
′

2 that quantifies the

variance. The third central moments µ
′

3 that describes the skewness of the profiles is shown

in Figure 7 (bottom: left). The fourth central moments µ
′

4 is related to kurtosis and is

presented in Figure 7 (bottom: right). A similar quantitative comparison of analytical and

numerical moments over different inverse flow rates considering Dirichlet BCs is shown in

Figure 8. Good agreements of results demonstrate the correctness of analytical calculations

and high precision of FVS. It is well known that these moments can be used to calculate

the frequently applied number of theoretical plates N (e.g. Guiochon and Lin (2003))

N =
(µ

′

1)
2

µ
′

2

. (45)

The skewness is a measure of the degree of asymmetry of a distribution. It can be evaluated

using

β =
µ

′

3

(µ
′

2)
3/2

. (46)

The skewness for a normal distribution is zero, and any symmetric data should have a

skewness near zero. Negative values of the skewness indicate that data are left skewed and

positive values indicate the right skewed data.
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For illustration of the skewness, concentration profiles considering different velocities u are

displayed in Figure 9 using DL = 0.002 and Deff = 1.0−6 cm2/min. For a small velocity

u = 0.3 cm/min, the value for the skewness is β = 0.6411, while for u = 0.9 cm/min

holds β = 0.5612. With these values of β one can predict that the concentration profile is

more asymmetrical for u = 0.3 cm/min as compared to u = 0.9 cm/min which is clearly

depicted in Figure 9.

The fourth central moment, i.e. kurtosis, measures the profiles peakedness or flatness rel-

ative to a normal distribution. In general, the kurtosis is a descriptor of the shape of a

probability distribution. It is instructive to use an adjusted version of Pearson’s kurtosis,

the excess kurtosis, see DeCarlo (1997). The excess kurtosis compares the shape of a given

distribution to that of the normal distribution. Distributions with negative or positive ex-

cess kurtosis are called platykurtic distributions or leptokurtic distributions, respectively.

The following definition quantifies the excess kurtosis

γ =
µ

′

4

(µ
′

2)
2
− 3 . (47)

A high kurtosis distribution has a sharper peak and a broader tails than the normal dis-

tribution, while a low kurtosis distribution has a more rounded peak and thinner tails.

Distributions with zero excess kurtosis, as the normal distribution, are called mesokur-

tic. The fourth central moment associated with kurtosis is used to study the flatness of

chromatogram elution. Figure 10, displays the effects of different velocities u on kurtosis

using Deff = 6.3835× 10−5 cm2/min. For a relatively small value of velocity, for instance

u = 0.1 cm/min, the excess kurtosis value is γ = 0.1679. This depicts a tendency towards
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the normal distribution. For a larger velocity u = 5 cm/min, the value of the excess kurto-

sis is γ = −1.1279. This predicts that the distribution is more uniform which corresponds

more to the rectangular injection profiles of finite widths.

In this work, also relationships were derived to reveal the connection between kinetic pa-

rameters of the linear GRM and LKM and to match the first four moments for Danckwerts

BCs. These relations, given in appendix C as Eqs. (C-1), (C-2), (C-3) and (C-6), can be

used to match the first four moments of LKM with those of GRM. Moreover, also the

moments of EDM can be obtained by putting kLKM → ∞ or kext → ∞ and Deff → ∞ in

Eqs. (C-2), (C-3) and (C-6).

Figure 11 shows the moments of GRM and LKM after matching them through relations

given by Eqs. (C-2), (C-3) or (C-6). It demonstrates that both models produce same second

moments if KLKM in Eq. (C-2) is used. The third moments are identical when KLKM is

obtained from Eq. (C-3). In addition, the fourth moments of both models are identical

when KLKM is calculated from Eq. (C-6), see Figure 11.

For a∗ = a = 2.0, u = 0.3 m/s, DL = 0.002 cm2/min and Deff = 10−6 cm2/min, one

obtain kLKM = 0.25 min−1, kLKM = 0.217 min−1 and kLKM = 0.235 min−1 from Eqs.

(C-2), (C-3) and (C-6), respectively. Table 3, shows the values of the moments of LKM

and GRM. It can be observed from the table that both models have identical values of µ′

2

when the value of KLKM was obtained from Eq. (C-2), while µ′

3 and µ′

4 are different by

24% and 10%, respectively. Secondly, both models have the same values of µ′

3 when KLKM

was obtained from Eq. (C-3) but µ′

2 and µ′

4 differ by 10% and 14%, respectively. Finally,

when KLKM was measured by using Eq. (C-6), both models have the same µ′

4 but different
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µ′

2 and µ′

3 by approximately 4% and 14%. It can be noticed that the value of KLKM from

Eq. (C-6) has produced less error in µ′

2 as compared to the value of KLKM from Eq. (C-3).

Finally, Figure 12 shows the comparison of concentration profiles from GRM and LKM

for the aforementioned three different values of kLKM . Small difference can be observed in

the concentration profiles of LKM for these values of kLKM . For kLKM = 0.25 min−1, the

variance of concentration profile from LKM is identical to the variance of concentration

profile from GRM. For other values of kLKM , the variances of concentration profiles from

GRM and LKM deviate from each other as observed in Table 3.

6. Conclusion

Analytical solutions and moments of single component linear GRM were presented for two

sets of boundary conditions. The Laplace transformation was used as a basic tool to obtain

solutions in the Laplace domain. Due to the fact that these solutions could not be inverted

back analytically, numerical inversion was used to get concentration profiles in the time

domain. Analytical expression of the first four temporal moments were derived from the

solutions in Laplace domain. The moments were used to analyze the retention times, band

broadenings, front asymmetries and kurtosis of the elution profiles. The analytical results

were validated against the numerical results of second order finite volume scheme. Good

agreements between analytically and numerically determined results verified the correctness

of analytical solutions and the accuracy of suggested numerical scheme. Relationships

were derived among the kinetic parameters of GRM and LKM to match their first four

moments. These relations can be used to estimate parameters of the simple LKM from
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GRM parameters.

Work is in progress to utilize the analytically determined moments for parameters estima-

tion.

Appendix A

Derivation of series solution of Eq. (18)

Here, the series solution of Eq. (18) is presented, the equation can be rewritten as

r
d2c̄p

dr2
+ 2

dc̄p

dr
= r

a∗s

Deff
c̄p . (A-1)

Let

α := α(s) =
a∗s

Deff
. (A-2)

Let c̄p =
∞
∑

n=0

anrn+x, where x is any positive integer, then Eq. (A-1) becomes

∞
∑

n=0

(n + x)(n + x − 1)anrn+x−1 +
∞
∑

n=0

2(n + x)anrn+x−1 −
∞
∑

n=0

αanrn+x+1 = 0 , (A-3)

or

∞
∑

n=0

(n + x)(n + x + 1)anrn+x−1 −
∞
∑

n=0

αanr
n+x+1 = 0 . (A-4)

Take k = n − 1 and k = n + 1

rx

[

a0(x
2 + x)r−1 + a1(x + 1)(x + 2)r +

∞
∑

k=1

(ak+1(k + x + 1)(k + x + 2) − αak−1)r
k

]

= 0.

(A-5)
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Comparing coefficients

x2 + x = 0 ⇒ x(x + 1) = 0 ⇒ x1 = 0, x2 = −1, x1 − x2 = 1 (positive integer) . (A-6)

Now a1 = 0, and

ak+1(k + x + 1)(k + x + 2) − αak−1 = 0 , (A-7)

implies

ak+1 =
αak−1

(k + x + 1)(k + x + 2)
, k = 1, 2, · · · . (A-8)

Now for x = 0,

ak+1 =
αak−1

(k + 1)(k + 2)
, (A-9)

k = 1, gives

a2 =
αa0

2.3
=

αa0

3!
, (A-10)

k = 2, gives

a3 = 0 , (A-11)

k = 3, k = 4, and k = 5 gives

a4 =
α2a0

5!
, a5 = 0 , a6 =

α3a0

7!
. (A-12)

Thus, induction gives

a2n−1 = 0 , a2n =
αna0

(2n + 1)!
. (A-13)
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Hence, c̄ =
∞
∑

n=0

anrn+x for x = 0 gives

c̄p =
∞
∑

n=0

αna0

(2n + 1)!
r2n . (A-14)

Similarly, for x = −1 we can obtain

c̄p =

∞
∑

n=0

αna0

(2n)!
r2n−1 . (A-15)

Thus, the combined solution can be written as

c̄p = d1

∞
∑

n=0

αn

(2n + 1)!
r2n + d2

∞
∑

n=1

αn

(2n)!
r2n , (A-16)

or

c̄p =
1

r

[

d1√
α

sinh(
√

αr) + d2 cosh(
√

αr)

]

, (A-17)

Applying the boundary conditions (11) and (14), we get

d1 =
Bpc̄/sinh(

√
α Rp)

(Bp − 1)/
√

α Rp + coth(
√

α Rp)
, d2 = 0 . (A-18)

Thus, the final solution in Eq. (A-17) using Eq. (A-18) takes the following form

c̄p =
Rp

r





Bp

sinh(
√

α(s)Rp)
sinh(

√

α(s)r)

Bp − 1 +
√

α(s)Rp coth(
√

α(s)Rp)



 c̄ . (A-19)

At r = Rp, Eqs. (19) and (20) gives

c̄p|r=Rp
= c̄f(s) , (A-20)

where

f(s) =
Bp

Bp − 1 +
√

α(s)Rp coth(
√

α(s)Rp)
, Bp =

kextRp

Deff

, α(s) =
a∗s

Deff

.

(A-21)
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Appendix B

Here, the complete derivations of moments are presented for GRM using two types of

boundary conditions.

Boundary conditions of type I: Robin (or Danckwerts) type boundary condi-

tions

Here, the boundary conditions given by Eqs. (12a) and (12b) are considered. The final

solution is given by Eqs. (25), (31), and (32). The moments of this solutions are given

below.

Zeroth moment:

The zeroth moment for rectangular profiles is given as

µ0 = cinjtinj . (B-1)

The zeroth moment for continuous breakthrough curves is provided as

µ0 = cinj . (B-2)

First moment:

The first temporal moment using Eq. (39) is calculated as

µ1 =
tinj

2
+

L

u
(1 + a∗F ) . (B-3)

For continuous breakthrough curves, Eq. (40) can be used to obtain the following expression

of first moment

µ1 =
L

u
(1 + a∗F ) . (B-4)
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Second moment:

The second temporal normalized moment based on Eq. (39) is given as

µ2 =
t2inj

3
+ tinj

L

u
(1 + a∗F ) +

2D2
L(1 + a∗F )2

u4

(

−1 +
Lu

DL
+

L2u2

2D2
L

+ e
−

Lu
DL

)

+
LF

u

(

2Rpa
∗2

3kext
+

2R2
pa

∗2

15Deff

)

. (B-5)

The second central moment for rectangular profiles is expressed as

µ′

2 = µ2 − µ2
1 =

t2inj

12
+

2LDL (1 + a∗F )2

u3

(

1 +
DL

Lu
(e

−
Lu
DL − 1)

)

+
LF

u

(

2Rpa
∗2

3kext
+

2R2
pa

∗2

15Deff

)

.

(B-6)

For continuous breakthrough curves, the second central moment is obtained using Eq. (40)

µ
′

2 =
2LDL (1 + a∗F )2

u3

[

1 +
D

Lu

(

e
−

Lu
DL − 1

)

]

+
LF

u

(

2Rpa
∗2

3kext
+

2R2
pa

∗2

15Deff

)

. (B-7)

Third moment:

The third temporal normalized moment exploiting Eq. (39) is provided as

µ3 =
(1 + a∗F )3

u6

(

L3u3 + 6DLL2u2 + 6D2
LLu − 24D3

L + 18D2
LLue

−
Lu
DL + 24D3

Le
−

Lu
DL

)

+
6LDLF (1 + a∗F )

u3

(

2Rpa
∗2

3kext

+
2R2

pa
∗2

15Deff

)[

DL

Lu
(e

−
Lu
DL − 1) + (1 +

Lu

2DL

)

]

+ tinj
3La∗2F

u

(

Rp

3kext
+

R2
p

15Deff

)

+
La∗3F

u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

+
t3inj

4
+ t2inj

L

u
(1 + a∗F ) + 3tinj(1 + ǫF )2 LDL

u3

[

DL

Lu

(

e
−

Lu
DL − 1

)

+ 1 +
Lu

2DL

]

. (B-8)
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The third central moment formula is given as

µ′

3 =µ3 − 3µ1µ2 + 2µ3
1

=
12LD2

L (1 + a∗F )3

u5

[(

1 +
2DL

Lu

)

e
−

Lu
DL +

(

1 − 2DL

Lu

)]

+
6LDLF (1 + a∗F )

u3

(

2Rpa
∗2

3kext

+
2R2

pa
∗2

15Deff

)[

DL

Lu
(e

−
Lu
DL − 1) + 1

]

+
La∗3F

u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

. (B-9)

The third central moment is same for continuous breakthrough curve.
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Fourth moment:

The fourth moment can be obtained using Eq. (39) as

µ4 =
D4

L(1 + a∗F )4

u8

[

24e
−

2Lu
DL +

(

312 + 108
L2u2

D2
L

+ 360
Lu

DL

)

e
−

Lu
DL +

L4u4

D4
L

+ 12
L3u3

D3
L

+48
L2u2

D2
L

− 336

]

+
12D3

L(1 + a∗F )2F

u6

(

Rpa
∗2

3kext
+

R2
pa

∗2

15Deff

)

·
[

L3u3

D3
L

+ 6
L2u2

D2
L

+ 6
Lu

DL
− 24 +

(

24 + 18
Lu

DL

)

e
−

Lu
DL

]

+
4LDLFa∗3(2 + 3ǫF )

u3

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

[

1 − DL

Lu

(

1 − e
−

Lu
DL

)

+
Lu

DL

]

+
8LFa∗4

u

(

1

525

R6
p

D3
eff

+
3

175

R5
p

D2
effkext

+
1

15

R4
p

Deffk2
ext

+
1

9

R3
p

k3
ext

)

− 4

175

LF 2DLa∗4R4
p

u3D2
eff

(

2 − 2DL

Lu

(

1 − e
−

Lu
DL

)

+
Lu

DL

)

+
t4inj

5
+ t3inj

L

u
(1 + a∗F )

+ 2t2inj

LF

u

(

2Rpa
∗2

3kext
+

2R2
pa

∗2

15Deff

)

+ 2t2inj

LDL

u3
(1 + a∗F )2

[

2 − 2DL

Lu

(

1 − e
−

Lu
DL

)

+
Lu

DL

]

+ tinj
2LD2

L(1 + ǫF )3

u5

(

24
DL

Lu
(e

−
Lu
DL − 1) + 6(1 + 3e

−
Lu
DL ) + 6

Lu

DL
+

L2u2

D2
L

)

+ tinj
12LDLF (1 + ǫF )

u3

[

Rpa
∗2

3kext
+

R2
pa

∗2

15Deff

](

2 − 2DL

Lu

(

1 − e
−

Lu
DL

)

+
Lu

DL

)

+ tinj
2LFa∗3

u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

. (B-10)
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The fourth central moment for rectangular profiles is calculated as:

µ′

4 =µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1

=
12D4

L (1 + a∗F )4

u8

[

2e
−

2Lu
DL +

(

4
L2u2

D2
L

+ 22
Lu

DL

+ 26

)

e
−

Lu
DL +

L2u2

D2
L

+ 8
Lu

DL

− 28

]

+
24D3

L(1 + a∗F )2F

u6

(

Rpa
∗2

3kext

+
R2

pa
∗2

15Deff

)[

L2u2

D2
L

+ 5
Lu

DL

− 12 +

(

7
Lu

DL

+ 12

)

e
−

Lu
DL

]

+
2LDLFa∗3

u3

[

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

]

[

(4 + 6a∗F )

(

1 − DL

Lu
(1 − e

−
Lu
DL )

)

+
a∗FLu

DL

]

+
8LFa∗4

u

(

1

525

R6
p

D3
eff

+
3

175

R5
p

D2
effkext

+
1

15

R4
p

Deffk2
ext

+
1

9

R3
p

k3
ext

)

− 4

175

LF 2DLa∗4R4
p

u3D2
eff

[

2

(

1 − DL

Lu
(1 − e

−
Lu
DL )

)

+
Lu

DL

]

+
t4inj

80

+ t2inj

D2
L(1 + ǫF )2

u4

[

Lu

DL

+ e
−

Lu
DL − 1

]

+ t2inj

LF

u

[

Rpa
∗2

3kext

+
R2

pa
∗2

15Deff

]

. (B-11)

For continuous breakthrough curves, the fourth central moment is obtained using Eq. (40):

µ′

4 =
12D4

L (1 + a∗F )4

u8

[

2e
−

2Lu
DL +

(

4
L2u2

D2
L

+ 22
Lu

DL
+ 26

)

e
−

Lu
DL +

L2u2

D2
L

+ 8
Lu

DL
− 28

]

+
24D3

L(1 + a∗F )2F

u6
h

(

Rpa
∗2

3kext
+

R2
pa

∗2

15Deff

)[

L2u2

D2
L

+ 5
Lu

DL
− 12 +

(

7
Lu

DL
+ 12

)

e
−

Lu
DL

]

+
2LDLFa∗3

u3

[

4R4
p

105D2
eff

+
4R3

p

15kextDeff

+
2R2

p

3k2
ext

]

[

(4 + 6a∗F )

(

1 − DL

Lu
(1 − e

−
Lu
DL )

)

+
a∗FLu

DL

]

+
8LFa∗4

u

(

1

525

R6
p

D3
eff

+
3

175

R5
p

D2
effkext

+
1

15

R4
p

Deffk2
ext

+
1

9

R3
p

k3
ext

)

− 4

175

LF 2DLa∗4R4
p

u3D2
eff

[

2

(

1 − DL

Lu
(1 − e

−
Lu
DL )

)

+
Lu

DL

]

. (B-12)

Boundary conditions of type II: Dirichlet boundary conditions

Here, the boundary conditions given by Eqs. (13a) and (13b) are considered. The final

solution is given by Eqs. (38). The moments of this solutions are given below.
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Zeroth moment:

The zeroth moment for rectangular profiles is given as

µ0 = lim
s→0

(c̄(s, z = L)) = cinjtinj . (B-13)

The zeroth moment for continuous breakthrough curves is provided as

µ0 = cinj . (B-14)

First moment:

The first temporal moment for rectangular profiles is calculated from Eq. (39) as

µ1 =
tinj

2
+

L

u
(1 + a∗F ) . (B-15)

For continuous breakthrough curves, the first moment is obtained by using Eq. (40) as

given below

µ1 =
L

u
(1 + a∗F ) . (B-16)

Second moment:

The second temporal moment is again derived using Eq. (39) as

µ2 =
t2inj

3
+ tinj

L

u
(1 + a∗F ) +

L2

u2
(1 + a∗F )2 +

LF

u

(

2Rpa
∗2

3kext

+
2R2

pa
∗2

15Deff

)

+
2LDL

u3
(1 + a∗F )2 .

(B-17)

Now the second central moments for rectangular profiles is given as:

µ′

2 =
t2inj

12
+

LF

u

(

2Rpa
∗2

3kext
+

2R2
pa

∗2

15Deff

)

+
2LDL

u3
(1 + a∗F )2 . (B-18)
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In order to obtain the second temporal moment for continuous breakthrough curves, Eq.

(40) is taken into account. Then second central moment Eq. (B-18) reduces to

µ′

2 =
LF

u

(

2Rpa
∗2

3kext
+

2R2
pa

∗2

15Deff

)

+
2LDL

u3
(1 + a∗F )2 . (B-19)

Third moment:

The third temporal moment based on Eq. (39), is given as

µ3 =
t3inj

4
+ tinj

L

u
(1 + a∗F )

[

tinj +
3

u
(1 + a∗F )

(

DL

u
+

L

2

)]

+ tinj
3LF

u

(

Rpa
∗2

3kext
+

R2
pa

∗2

15Deff

)

+
L3

u3
(1 + a∗F )3

(

6DL

Lu
+

12D2
L

L2u2
+ 1

)

+
6LDL(1 + a∗F )F

u3

(

2Rpa
∗2

3kext

+
2R2

pa
∗2

15Deff

)

+
LFa∗3

u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff

+
2R2

p

3k2
ext

)

+
2L2(1 + a∗F )F

5u2

(

R2
pa

∗2

Deff

+
5Rpa

∗2

kext

)

.

(B-20)

The third central moment is calculated as:

µ′

3 =
6LDL(1 + a∗F )F

u3

(

2Rpa
∗2

3kext

+
2R2

pa
∗2

15Deff

)

+
LFa∗3

u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

+
12LD2

L

u5
(1 + a∗F )3 . (B-21)

The third central moment µ′

3 is the same for rectangular and continuous breakthrough

curves.

30



Fourth moment:

The fourth temporal moment is obtained as (cf. Eq. (40))

µ4 =
D4

L(1 + a∗F )4

u8

[

24e
−

2Lu
DL +

(

312 + 108
L2u2

D2
L

+ 360
Lu

DL

)

e
−

Lu
DL +

L4u4

D4
L

+ 12
L3u3

D3
L

+48
L2u2

D2
L

− 336

]

+
12D3

L(1 + a∗F )2F

u6
h

(

Rpa
∗2

3kext
+

R2
pa

∗2

15Deff

)

·
[

L3u3

D3
L

+ 6
L2u2

D2
L

+ 6
Lu

DL
− 24 +

(

24 + 18
Lu

DL

)

e
−

Lu
DL

]

+
4LDLFa∗3(2 + 3a∗F )

u3

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

[

1 − DL

Lu

(

1 − e
−

Lu
DL

)

+
1

2

Lu

DL

]

+
8LFa∗4

u

(

1

525

R6
p

D3
eff

+
3

175

R5
p

D2
effkext

+
1

15

R4
p

Deffk2
ext

+
1

9

R3
p

k3
ext

)

− 4

175

LF 2DLa∗4R4
p

u3D2
eff

(

2 +
Lu

DL

)

+
t4inj

5
+ t3inj

L

u
(1 + a∗F )

+ 2t2inj

LF

u

(

2Rpa
∗2

3kext
+

2R2
pa

∗2

15Deff

)

+ 2t2inj

LDL

u3
(1 + a∗F )2

[

2 − 2DL

Lu

(

1 − e
−

Lu
DL

)

+
Lu

DL

]

+ tinj
2LD2

L(1 + a∗F )3

u5

(

24
DL

Lu
(e

−
Lu
DL − 1) + 6(1 + 3e

−
Lu
DL ) + 6

Lu

DL
+

L2u2

D2
L

)

+ tinj
12LDLF (1 + a∗F )

u3

[

Rpa
∗2

3kext
+

R2
pa

∗2

15Deff

](

2 − 2DL

Lu

(

1 − e
−

Lu
DL

)

+
Lu

DL
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p
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p
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. (B-22)
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The fourth central moment for rectangular profiles is calculated as:

µ′

4 =
12D4

L (1 + a∗F )4

u8

[

2e
−

2Lu
DL +

(

4
L2u2

D2
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+ 22
Lu

DL

+ 26
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−
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+ 8
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− 28

]

+
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+
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. (B-23)

In order to calculate the fourth central moment of continuous breakthrough profiles, Eq.

(B-23) reduces as

µ′

4 =
12D4

L (1 + a∗F )4

u8
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2e
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2Lu
DL +
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+ 22
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+ 26
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−
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+
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+
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+
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. (B-24)

Appendix C

Relation between LKM and GRM

The analytical solutions and moment analysis for the LKM and EDM are given in detail in

the earlier article by Javeed et al. (2013). Here, the relationship between GRM and LKM

are derived with respect to moments considering the Danckwerts BCs (c.f. Eq. (12a)).
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The first moments indicating retention times must be identical for LKM and GRM. This

is fulfilled provided the following relation holds

a = a∗ . (C-1)

On matching the second central moments of GRM given by Eq. (B-6) and LKM given in

Javeed et al. (2013), we obtain the following relation between LKM and GRM parameters

kLKM =

[

a∗

1 − ǫ

(

Rp

3kext

+
R2

p

15Deff

)]−1

. (C-2)

For this value of KLKM , the second central moments of GRM and LKM are the same but

all higher moments are different.

On equating the third central moments of LKM (see Javeed et al. (2013)) and GRM (c.f.

Eq. (B-9)), the following relation is obtianed for kLKM :

kLKM =
α +

√

α2 + 4β(αγ + δ)

2(αγ + δ)
, (C-3)

where

α =
12LDLa∗ǫF 2(1 + a∗F )

u3

[

DL

Lu
(e

−
Lu
DL − 1) + 1

]

, β =
La∗ǫ2F 3

u
, (C-4)

γ =
a∗

ǫF

(

Rp

3kext
+

R2
p

15Deff

)

, δ =
La∗3F

u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

. (C-5)

With this value of kLKM both models have identical third central moment and all other

moments are different except µ1.

On matching the fourth central moments of LKM and GRM, we obtain the following

relation for kLKM :

kLKM =
1

3ξ

[

α′ − νζ − ∆0

νζ

]

, for ζ =
3

√

∆1 +
√

∆2
1 − 4∆3

0

2
and ν =

−1 + i
√

3

2
. (C-6)
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Moreover,

∆0 =α′2 + 3ξη , ∆1 = −2α′3 − 9ξα′η − 27ξ2β ′ , (C-7)

α′ =
24D3

La∗ǫF 2(1 + a∗F )2

u6

[

L2u2

D2
L

+ 5
Lu

DL
− 12 +

(

7
Lu

DL
+ 12

)

e
−

Lu
DL

]

, (C-8)

β ′ =
24Lǫ3a∗F 4

u
, η =

β ′DL

2ǫFu2

[

(4 + 6a∗F )

(

1 − DL

Lu
(1 − e
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DL )

]

+
a∗FLu
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]

, (C-9)
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u

(

1

525

R6
p

D3
eff

+
3

175

R5
p

D2
effkext
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, (C-10)

ξ =α′γ +
u

6LF 3ǫ2a∗
ηδ + φ + tinj

LF

u

(

Rp

3kext

+
R2

p

15Deff

)

. (C-11)

With kLKM in Eq. (C-6), both LKM and GRM have the same µ′

4 and all other moments

are different except µ1.
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Nomenclature

a Henry constant [-]

Bi Biot number [-]

c liquid phase concentration, [g/l]

cp concentration in particle pores, [g/l]

d column diameter, [m]

DL apparent dispersion coefficient [cm2/min]

Dp pore diffusivity [cm2/min]

Ds surface diffusivity [cm2/min]

Deff effective diffusion coefficient [cm2/min]

kext external transfer coefficient, [1/min]

kLKM mass transfer coefficient used in LKM, [1/min]

L column length, [cm]

N no of theoretical plates, [−]

Pe Peclet number, [-]

q∗ solid phase concentration, [mol/l]

Rp radius of spherical particles, [cm]

r radial coordinate of spherical particle of radius Rp, [cm]

t time, [s]

u interstitial velocity, [m/s]

z spatial coordinate, [cm]
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Nomenclature (continued)

Greek symbols

ǫ external porosity

ǫp internal porosity

µn n-th initial normalized moment

µ
′

n n-th central moment

Subscripts

inj injection

Abbreviations

BCs boundary conditions

EDM equilibrium dispersive model

FVS finite volume scheme

GRM general rate model

LKM lumped kinetic model
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Table 1: Analytically determined GRM moments, µ0 = cinjtinj, µ1 =
tinj

2
+ L

u
(1 + a∗F ) and µ0 = cinj, µ1 = L

u
(1 + a∗F ) for rectangular

and breakthrough curves, respectively. The fourth central moment µ
′

4 corresponds to rectangular and continuous breakthrough curves using

Danckwerts and Dirichlet BCs are given in Eqs. (B-11), (B-12), (B-23) and (B-24), respectively.

GRM with BCs µ
′

2 µ
′

3

Danckwerts BCs
t2
inj

12
+ 2LDL(1+a∗F )2

u3

(

1 + DL

Lu
(e

−
Lu
DL − 1)

)

12LD2
L
(1+a∗F )3

u5

[

(

1 + 2DL

Lu

)

e
−

Lu
DL +

(

1 − 2DL

Lu

)

]

(Rectangular profiles) +LF
u

(

2Rpa∗2

3kext
+

2R2
pa∗2

15Deff

)

+6LDLF (1+a∗F )
u3

(

2Rpa∗2

3kext
+

2R2
pa∗2

15Deff

) [

DL

Lu
(e

−
Lu
DL − 1) + 1

]

+La∗3F
u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext

)

Danckwerts BCs 2LDL(1+a∗F )2

u3

(

1 + DL

Lu
(e

−
Lu
DL − 1)

)

same as GRM (Rectangular profiles)

(Breakthrough curves) +LF
u

(

2Rpa∗2

3kext
+

2R2
pa∗2

15Deff

)

Dirichlet BCs
t2
inj

12
+ LF

u

(

2Rpa∗2

3kext
+

2R2
pa∗2

15Deff

)

6LDL(1+a∗F )F
u3

(

2Rpa∗2

3kext
+

2R2
pa∗2

15Deff

)

(Rectangular profiles) +2LDL

u3 (1 + a∗F )2 +LFa∗3

u

(

4R4
p

105D2
eff

+
4R3

p

15kextDeff
+

2R2
p

3k2
ext
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+
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u5 (1 + a∗F )3

GRM Dirichlet BCs LF
u

(

2Rpa∗2

3kext
+

2R2
pa∗2

15Deff

)

+ 2LDL

u3 (1 + a∗F )2 same as GRM (Rectangular profiles)

(Breakthrough curves)
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Table 2: Parameters of the problems.

Parameters values

Column length L = 1.7 cm

Pore radius Rp = 0.004 cm

External porosity ǫ = 0.4

Internal porosity ǫp = 0.333

External mass transfer coefficient kext = 0.01 cm/min

Initial concentration c(0, z) = 0 g/l

Initial concentration cp(0, z) = 0 g/l

Concentration at inlet cinj = 1.0 g/l

Injection time tinj = 20 min

Adsorption equilibrium constant a = 2.5

Table 3: A comparison of GRM and LKM moments using a∗ = a = 2.0, u = 0.3 m/s, DL = 0.002 cm2/min,

Deff = 10−6 cm2/min and kext = 0.01 cm/min.

kLKM µ′

n,GRM , n=2,3,4 µ′

2,LKM µ′

3,LKM µ′

4,LKM

[min−1] [minn] [min2] [min3] [min4]

kLKM = 0.250 (Eq. (C-2)) µ′

2,GRM = 118.94 118.94 633.06 4.74 × 104

kLKM = 0.217 (Eq. (C-3)) µ′

3,GRM = 831.95 131.36 831.95 5.98 × 104

kLKM = 0.235 (Eq. (C-6)) µ′

4,GRM = 5.24 × 104 124.16 713.23 5.24 × 104
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Finite volume scheme
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Figure 1: Comparison of solutions obtained by numerical Laplace inversion and FVS for rectangular

inlet Danckwerts boundary conditions. Here, DL = 0.002 cm2/min, Deff = 10−6 cm2/min and other

parameters are given in Table 2.
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Figure 2: Comparison of solutions obtained by numerical Laplace inversion and FVS for continuous break-

through inlet Danckwerts boundary conditions. Here, DL = 0.002 cm2/min, Deff = 10−6 cm2/min and

other parameters are given in Table 2.

43



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [min]

c 
[g

/l]

 

 

For u=0.3, cm/min

Laplace numerical inversion
Finite volume scheme

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
For u=0.6 cm/min

time [min]

c 
[g

/l]

 

 

Numerical Laplace inversion
Finite volume scheme

Figure 3: Comparison of solutions obtained by numerical Laplace inversion and FVS for rectangular inlet

Dirichlet boundary conditions. Here, DL = 0.002 cm2/min, Deff = 10−6 cm2/min and other parameters

are given in Table 2.
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Figure 4: Comparison of solutions obtained by numerical Laplace inversion and FVS for continuous break-

through inlet Dirichlet boundary conditions. Here, DL = 0.002 cm2/min, Deff = 10−6 cm2/min and

other parameters are given in Table 2.
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Figure 5: Effects of Dirichlet and Danckwerts boundary conditions for two Peclet numbers using numerical

Laplace inversion solution. Here, u = 0.3 cm/min, Deff = 10−6 cm2/min and other parameters are given

in Table 2.
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Figure 6: Effects of Peclet number Pe for Biot number Bi = 1 and Bi for Pe = 100. Here, u = 0.3 cm/min

and other parameters are given in Table 2.
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Figure 7: Comparison of analytical and numerical moments for rectangular inlet Danckwerts BCs. Here,

DL = 0.002 cm2/min, Deff = 10−6 cm2/min and other parameters are given in Table 2.
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Figure 8: Comparison of analytical and numerical moments for rectangular inlet Dirichlet BCs. Here,

DL = 0.002 cm2/min, Deff = 10−6 cm2/min and other parameters are given in Table 2.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [min]

c 
[g

/l]

 

 

For u=0.3 cm/min, β=0.6411

For u=0.5 cm/min, β=0.6386

For u=0.9 cm/min, β=0.5612

Figure 9: Skewness associated with third central moments µ
′

3 considering different velocities u with DL =

0.002 cm2/min and Deff = 10−6 cm2/min. All other parameters are given in Table 2.
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Figure 10: The fourth central moments µ
′

4 related to kurtosis for different velocities u with DL =

0.002 cm2/min and Deff = 6.3835× 10−5 cm2/min. All other parameters are given in Table 2.
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Figure 11: Moments agreement of LKM and GRM when parameters were matched through relations in

Eqs. (C-2), (C-3) and (C-6). Here, DL = 0.002 cm2/min, Deff = 10−6 cm2/min, u = 0.3 cm/min and

other parameters are given in Table 2.
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Figure 12: Comparison of solution profiles from GRM and LKM using different values of kLKM ob-

tained from the three expressions given by Eqs. (C-2), (C-3) and (C-6). Here, u = 0.3 cm/min,

DL = 0.002 cm2/min, Deff = 10−6 cm2/min and other parameters are given in Table 2.
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