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Abstract

We examine the parameter accuracy that can be achieved by advanced ground-
based detectors for binary inspiralling black holes and neutron stars. We use
recently derived ready-to-use 2.5 PN spinning waveforms. Our main result
is that the errors are noticeably different from earlier studies. An important
contribution to this difference comes from self-spin terms at 2 PN order not
previously considered. While the masses can be determined more accurately, the
individual spins are measured less accurately compared to previous work. We
also examine several regions of parameter space relevant to expected sources
and the impact of simple priors. A combination of the spins is measurable
to higher accuracy and we examine what this can tell us about spinning
systems.

PACS numbers: 04.80.Nn, 04.25.Nx, 04.70.Bw

1. Introduction

Upgrades to gravitational wave interferometric detectors are currently being performed [1].
Once completed these advanced detectors are expected to detect tens of astrophysical signals
per year [2]. The inspiral of massive compact bodies in binary systems is one of the most
important expected signals. Detection of the gravitational waves from such events can provide
information about the parameters of the compact bodies involved. Knowing the masses of
the objects involved is central to classifying the observed objects as neutron star or black
hole candidates. In addition, the objects may have intrinsic spin and general relativity predicts
that this will affect the motion of the bodies and the gravitational waveforms produced at a
measurable level.

To detect the signals in the background noise the method of matched filtering is employed
[3, 4]. Theoretical templates based on post-Newtonian (PN) expansions in general relativity
are employed to search the detector output for signals. This is expected to work well for
systems whose total mass is less than some tens of solar masses that contain a large number
of cycles within the detector sensitivity band. The goodness of fit of a particular template to
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the data can be most easily seen by computing a signal-to-noise ratio (SNR). Because the
detector is noisy, the best fitting set of parameters may not be the same as the true parameters
of the source. The error in the estimation of the source parameters depends in part on the
SNR. A theoretical indication of the parameter errors can be computed by simulating signals
and multiple realizations of the noise or by using the covariance matrix of Fisher information
theory. We employ the Fisher information method here.

As the true waveform in general relativity is approximated by a PN expansion, a systematic
error is introduced when truncating the true waveform. From a theoretical viewpoint, it would
be advantageous if this systematic error is smaller than other sources of noise. The order to
which the PN expansion is needed in order to provide a satisfactory model for detection and
parameter extraction is still unknown, although there are some hints of at least a lower bound
[5, 6]. For example, in [6] it was shown that beyond 4 PN terms in the luminosity seem to be
needed for black hole binary systems.

At the moment we do not possess PN expansions beyond the level that seem satisfactory
and so it is prudent to use the highest order PN expansion available. Previous work has
examined the measurement sensitivities of ground based interferometers for 1.5 PN [7] and
2 PN [8, 9] orders. Here we extend those works to the recently available 2.5 PN spinning
waveforms of Arun ef al [10] which also includes self-spin terms at 2 PN not considered in
previous work. As in previous cases we restrict attention to the dominant (2, 2) mode and
focus on phase corrections only. Non-spinning waveforms are available to 3.5 PN order and
their parameter estimation has been examined in [11].

As noted in [ 12] the gravitational wave flux for test particle non-spinning inspirals is badly
behaved at 2.5 PN level. Table I of [11] gives parameter estimations for non-spinning binaries
at increasing steps of 0.5 in the PN expansion up to 3.5 PN order. Although the convergence
of the series looks very slow, the parameter estimation of non-spinning waveforms shows no
large fluctuations through the 2.5 PN order.

We concentrate here on aligned spinning systems. With the assumption of aligned spin
and orbital angular momentum axes, the waveforms depend on six parameters. Two of the
parameters, 7. and ¢, are extrinsic parameters determining the time and phase of the wave
at coalescence. The point of coalescence, which is not well modelled by the PN expansion,
could be replaced by any other chosen point in the inspiral—both parameters are effectively
integration constants. Although the template waveform match does depend on their value, the
parameter error ranges do not.

The other four intrinsic parameters are the masses and spins of the two inspiralling objects.
It is ultimately only the masses and spins of the objects that we are interested in determining,
but these parameters are correlated with ¢, and ¢.. We will examine the effect of redefining the
coalescence phase, ¢., and also the effect of imposing 27 periodic priors on this parameter.

Three important differences exist between the 2.5 PN waveforms investigated here
and earlier work for ground based detectors. Firstly the extension to 2.5 PN order provides
seven expansion coefficients in the waveform, with only six parameters to be measured. These
expansion coefficients are sometimes called ‘chirp times’ in the time domain waveforms.
Previous work at 1.5 PN order for ground based detectors [7] considered five PN expansion
coefficients for five parameters, 7., ¢., the reduced mass, w, chirp mass, M and 8, a parameter
related to the spin. Previous work at 2 PN order [8] considered six expansion coefficients for
six parameters—adding an extra spin related parameter, 0. Adding more parameters typically
reduces the accuracy at which any one parameter can be measured, but adding more expansion
coefficients can counteract this effect. At 2.5 PN order we are adding another coefficient
without increasing the number of parameters, since the extra coefficient can be expressed as a
combination of the others.
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Secondly, the introduction of new terms independent of the frequency in the waveform
phase greatly increases the correlation between the phase at coalescence, ¢. and the other
parameters, in particular the spins. Errors in ¢, can then greatly magnify errors in the spins.
This makes it even more imperative that errors in the ¢, are controlled in order not to over-
contaminate the errors in the mass and spin parameters. The 2.5 PN waveform of [10] also
adds self-spin interaction terms at 2 PN order to the waveform used in [8]. These terms were
first calculated in [13] and [14].

Thirdly, the waveform considered here contains self-spin interaction terms of the type
spin(1)spin(1) and spin(2)spin(2) at 2 PN order, that were not considered in previous analyses.
A major part of the increase in spin uncertainty can be traced to these self-spin interaction
terms. The 2.5 PN waveform used here, only contains spin—orbit terms at 2.5 PN and it remains
to be seen whether further, as yet uncalculated PN terms, affect our results.

The first issue to be addressed in our work is; do the parameter errors differ significantly
from results obtained using lower order PN expansions? The answer to this question will
provide some guide to the question of what order of PN expansion is sufficient to model the
true general relativity signal to an acceptable level. A second question we will examine is; at
this level of PN approximation and with the assumption of aligned spin and orbital angular
moment, does intrinsic spin matter? To what extent can the experiments distinguish a spinning
system from one without spin? A further, slightly different question is; how accurately can the
expected data constrain the individual spins of each of the inspiralling objects?

For spinning black holes whose exterior is exactly described by the Kerr metric a
theoretical upper limit M?> > J exists bounding the amount of spin angular momentum,
J, to be less than the square of the mass, M, in natural geometric units. Beyond this limit the
object can no longer be described as a Kerr black hole but a naked singularity. This relationship
can be expressed in terms of the spin parameter x = J/M? as x < 1. To truly claim that a
massive object is a black hole one must show that the spin of the object satisfies this bound.

Non-compact objects, such as the Earth or Sun, actually do violate this bound, but it is
not expected that such non-compact objects will be able to survive the tidal forces present
during inspiral or will collide before reaching the frequency ranges of interest to us. Black
holes can be born with intrinsic spin or be spun up due to the accretion of matter. Theoretical
studies indicate that the maximum amount of spin that a black hole can accumulate due to
accretion corresponds to x = 0.998 [15]. A number of highly spinning black holes, with spin
parameters x > 0.9 may have been found using x-ray techniques [16].

For a compact object with a typical neutron star mass of around 1.4 solar masses,
this extremal Kerr limit corresponds to a rotational frequency of just over 10*Hz. Ultra-
fast millisecond pulsars have been observed with frequencies up to 700 Hz, substantially
below this frequency upper bound. However, these neutron stars are also somewhat larger than
corresponding black holes with the same mass and hence rotate slower for the same angular
momentum, leading to slightly larger values of x. Neutron stars are however expected to have
maximum spins beyond which they break up due to centrifugal forces [17, 18] and the three
known binary pulsar systems that will coalesce in a Hubble time all have spins corresponding
to x < 0.02[19].

In addition to these questions we also attempt a wider investigation of the 2.5 PN order
parameter space by allowing the inspiralling objects to be spinning and examine the effect
that this has on the parameter estimation. The errors in the parameters depend sensitively
on the region of parameter space that is probed. Covering the full parameter space in detail is
time-consuming and presents a problem of presenting the resulting twelve dimensional space.
We will instead pick a few areas of the full parameter space that seem of particular interest
and present the results mainly in a set of tables for ease of comparison. The Fisher matrix
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formalism, if reliably implemented, is far more efficient at probing large parts of the parameter
space than full Markov chain Monte Carlo simulations.

We also examine the effect of allowing the endpoint of inspiral to change for spinning
objects as has been suggested by Hanna et a/ [20]. Previous studies have conservatively adopted
the Schwarzschild innermost stable circular orbit (ISCO) as the endpoint of the inspiral. The
ISCO frequency of an extremal Kerr black hole is roughly a factor 7 larger than the ISCO
frequency of a Schwarzschild black hole with the same mass. This may allow us to extend the
range of validity of the PN waveform and we investigate what effect this has on the parameter
estimation.

We focus on determining the intrinsic parameters of mass and spin. Parameters of the
source objects such as the distance to the source and the orientation of the binary will affect
primarily the amplitude and we will ignore these affects here, effectively by normalizing the
amplitude to obtain a given SNR and assuming the binary is directly above the interferometer,
without any Doppler shift relative to the detector. Here we normalize the SNR to be 10 for a
single detector. This is slightly above the threshold for detection and compatible with previous
methodology. This choice is merely a normalization of the gravitational wave amplitude and
results for other SNR values can be found by a simple linear scaling. The SNR for which the
Fisher matrix formalism agrees with Monte Carlo simulations may lie above 10 [21], but this is
the conventional scale at which to compare results. Estimates for the performance of multiple
detectors operating together can be indicated by combining the individual SNRs in quadrature
[7]. Multiple detectors have added advantages in dealing with realistic non-Gaussian non-
stationary noise, and carry more information about time delays and polarizations which we do
not treat here.

If the compact objects have spin axes that are not aligned with the orbital angular
momentum the axes will precess leading to a modulation of the amplitude and other effects
[22]. For simplicity we will also ignore this here. 2 PN waveforms (without spinl-spinl
self-spin coupling terms) have been investigated for the LISA space detector for the fully
aligned case in [23], precessing with random spin orientations in [24] and for the partially
aligned case in [25]. Further parameters of the source such as mass and energy accretion rates,
mass multipole distributions and internal equations of state will also affect the gravitational
waveform. The mass multipole correction for spinning neutron stars is second order in the PN
approximation [7], but we leave a further investigation of these effects to future work.

2. Measurement error

We follow the standard Fisher information methodology of [7] and [8]. We focus on the case of
a single detector, with stationary, non-Doppler shifted, overhead source, for simplicity. With
the assumption that the noise in the detector is stationary Gaussian with correlation function
C,(7), for time separation 7, the probability that the data takes some particular, discretely
sampled, pure noise value, s;, given an assumption that no signal is present is

1 52
p(sil0) ~ eXP( 2C(0)> (D

In the continuum limit, using the Wiener—Kinchin theorem to relate the power spectral density
to the correlation functions, this can be written as

s(f)s* (f))
0) ~ , 2
p(s]0) exp( f) df 5.7 2

for a one-sided power spectral density (PSD), S, (f). For this work we use as the PSD a third
order polynomial interpolation of the square of the zero detuning, high power linear spectral

4



Class. Quantum Grav. 30 (2013) 075023 A B Nielsen

density from LIGO document T0900288-v3 [26]. For the purposes of comparing results in the
literature note that this is not the same as the PSD used by Cutler and Flanagan [7] nor the
initial LIGO model fit used by Vallisneri [27].

In practice we will assume that the noise is dominant below some lower frequency bound
/i and we will not follow the inspiral waveform beyond an upper frequency fy. In the following
we will follow standard practice and mainly take f; = 10 Hz and f as twice the frequency of
a test-mass orbiting a Schwarzschild black hole of mass equal to the total mass of our system
at the ISCO, thatis fy = 1/(6%27M). We apply the standard convention that the gravitational
waves have twice the frequency of the orbiting bodies.

Using the PSD we can define an effective inner product such that

~ Y ats
<g,h>=4/ﬁ 4R, 3)

Now we can ask what is the probability of inferring a set of parameters, 6, giving rise to a
signal, #(8), from a measured detector output, s, if there is a true signal A in the data, such
that s = hg + n, with n the noise. To do this we use the relation p(s|h(0)) = p(s —h(0)|0) and
ask what is the probability of obtaining an output s — /(60), if only noise is present. A generic
gravitational waveform strain amplitude, /#(8), can be expanded around a given reference
waveform, /g, by

1 0%h

oh
h(0) = hg + A, AG; A6 . 4
@) o+ 89+2 k8986k+ 4

where A; denotes the difference between the ith parameter and the value it takes in /. Then
the likelihood, p(s|h(0)), is given in stationary Gaussian noise by
p(sl0) ~ e~ (s=h(0).s=h(©))/2

_ e(7(n,n)/ZJrAO‘,»(n,h,)7A0,A6k(h,-,h,(>/2+---) (5)

with the assumption that the data, s, is given by s = hy + n and #; is defined as h; = 9h/d6;.
In the linear signal approximation (LSA) all higher derivatives of 4 can be dropped, and thus
terms in the ellipses can be neglected. The term with (n, n) is just an overall normalization
related to the probability of finding a particular noise realization, n, when no signal is present,
as seen in equations (2) and (3). For noise with zero mean the term (n, h;) vanishes, so applying
the LSA, corresponding to the high SNR [27], the likelihood is just

P(slh(9)) ~ e A0anhhI2, 6)

and the posterior probability density function for the parameters 6; can be found from
p@)p(s|h(0)). The expectation of the (co)variance of the parameters, in an n parameter
model, can be found from the inverse of the Fisher-information matrix

[ A6;A0;p(0)p(s|6)d"6

J p®)p(s|6)d"o
where the angled brackets on the left hand side denote expectation, and the equality in the
last equation only obtains in the limit of trivial priors p(6). The Fisher information matrix is
generated from the given PN waveforms using the above inner product by
oh 0h
v <ael-’ ae,>'
There are several ways of including the effect of priors on the posterior distribution. Most
easily treated are the Gaussian priors used by Cutler and Flanagan [7] and Poisson and Will
[8]. These can be incorporated simply by adding a prior matrix to the Fisher matrix with
terms given by 1/,/0y, with o the desired prior variance on the parameter 6. In this case the

(AG;AG)) = = (b, hj)~ ", (7)

®)
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Gaussian priors are centred around the ‘true’ parameter value, so a Gaussian prior imposing a
variance of (7? = 1 on a spin parameter x, with ‘true’ value x = 0.95 will be a Gaussian prior
around the value 0.95 and will allow a non-zero probability of finding a spin greater than 1.
These are called normal true-parameter centered priors (NTC) in [27].

Slightly harder to treat, and not employed in the earlier works [7] and [8] are flat priors
bounded by some region, that for example could correspond to positive mass conditions or
maximal spin [27]. In this case care must be taken in choosing suitable parameters to impose
flat priors. A flat prior on p, with upper cutoff 1,y is different to a flat prior imposed on In(x)
with upper cutoff In(umax ). Also, flat priors in spin parameters § and o will not necessarily
be the same as flat priors in x; and x,, when the relation between them is nonlinear.

In order to solve (7) we take note of the fact that the integral, /, of a multi-dimensional
Gaussian, with respect to a particular parameter 6, gives error functions

I = /e—rl./AGIAQI/z d@p

— efl",',»AOiAO,'/Z/efFWAGﬁ/Zpr,'AOPAO, d(A6,)

2 4
= F_” &~ Cu=Tnln/ T A080,/2 (Bef[F (AG™™) ] — Exf[F (A0™™)]), (9
pp
where I, J are index labels containing the particular value p and i, j are index labels that do
not. The argument of the error function in this case is given by

_ /Tw Do v
Fla =,/ <x+FppA9,). (10)

When these integration limits, AO;}“" and AOl‘)ni“, are taken to +oo the difference in the
error functions just evaluates to two and the overall effect of the integration is to project out
the direction I'y; in the Fisher metric I';;, up to an overall factor which cancels out in the
posterior [28].

Multiple parameters can be marginalized in this way. Projecting out all parameters except
one leaves just the variance that can be obtained directly by inverting the Fisher matrix. The
effect of a flat prior will effectively be to change the limits of integration from %00 to whatever
maximum and minimum value the prior allows. In this way flat priors can be included, although
multiple bounded flat priors cannot be integrated analytically [27].

3. 2.5 PN Spinning waveform

The induced strain amplitude on the interferometer over time is related to the strain amplitude
of the gravitational wave A (¢). In order to compute Fisher matrix elements we need the Fourier
transform of /(). The Fourier transform is most efficiently performed analytically using the
stationary phase approximation (SPA), which will be valid when the amplitude is changing
slowly relative to the frequency of the wave [29]. The waveform in the SPA is
h=Af0eY, (a1
Schematically the phase can be written as
v, U, Uy Wy
‘II:z?Tfl(,-“r\Ijo‘f‘JT/S-i‘T‘i‘m‘FfTﬁ
where M is the total mass and f; is a constant frequency set to 1 Hz. Since the work of [§]
a new term has been calculated at 2.5 PN order, namely Ws. There have also been additional

+ Wslog(f/fo). 12)
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terms appearing in Wy and also new terms appearing in W4 due to self-spin interaction effects
for the two spinning bodies. These self-spin corrections to the 2 PN phase were first computed
in [13] and completed in [14] and are given in the second line of (20). The form of these
expansion coefficients, as given in Arun et al [10] are;

T s 7 fo M
qlo__¢_z+?(1+1 <W , (13)
W (14)
' 128(r M)A
3715 55032
. . (1)
3225671 | 384m MY
3 5/6 3 1/3 5/6
v, = MPEB - 3a M 7 (16)
32253 302 81132
ISMS3 (3058673 5429 / N2 617 / oS
e OIT iy ) 17
= anihp (1016064+1008 (M) T (M) a) (a7
3 (M\? (386457 657 ; w \3/2
wy = S (MY (388857 _ 65 m N 18
. 128<M> <756 9 /\/l> V) (19
13 RGE 113 19/ p\5P2
,3—24 1_4<M> (x1—x2) + 2——€<m> )(X1+X2), (19)

79 / w52 81 L \5/2 81 L \5/2
=3 (%) mm+50—2hﬁ yﬁ+ﬁhgzldqm)(ﬁ—ﬁy

(20)
732985 24260 ; u \5/2 340 LS
V‘( 4536 162 (M) BET) ﬂ))(x‘“@)
732985 140 5/2
,/1— _ 21
+( 1536 & > (Xl x2), (21)
MM o
VA VA
(M M,)3/3
_ M) 23
M (M + My)1/3 (23)

A quadrupole moment parameter, denoted @ in [13] has been consistently set to 1 in the
equations of [10]. This parameter, which is equation of state dependent, takes the value 1 for
spinning black holes, but not necessarily spinning neutron stars. We follow the conventions of
[10] in this work.

The PN coefficients are components of a Taylor F2 waveform in the classification of [30].
W, contains both the phase at coalescence, the term —7 /4 coming from the SPA and spin terms
coming from 2.5 PN order. Spin terms also occur in the last three terms W3, W4 and Ws. Ws
only contains spin—orbit contributions in the waveform of [10]. With seven terms of different
functional dependences on f one might expect to be able to reasonably determine seven, not

7



Class. Quantum Grav. 30 (2013) 075023 A B Nielsen

Table 1. Comparison of 2 PN and 2.5 PN waveform coefficients for the parameter values
Ml = 15M®,M2 = IOM@ and X1 = 0.95, X2 = 0.9 (fISCO =176 HZ).

v, v, v, Wy Wy Ws no. cycles

2PN —0.785 47500 1610 —384 33.8 0 176.2
25PN 50.7 47500 1610 —384 298 =75 1782

necessarily independent, parameters (including the time at coalescence coming from the linear
f term.) To what extent this expectation is borne out depends on the details of the functional
dependence of the chirp times and on the precise f dependence through the inner product
(3). If the parameters are chosen such that the waveform depends linearly on them then the
resulting Fisher matrix elements will be independent of the true parameter values.

Cutler and Flanagan [7] considered only spin—orbit contributions at 1.5 PN order. Poisson
and Will [8] considered spin—orbit and spinl—spin2 contributions at 2 PN order, only the first
term of (20). In addition, using the waveform of Arun et a/ [10] we consider spinl-spinl,
spin2—spin2 terms at 2 PN and spin—orbit terms at 2.5 PN. In the following, unless stated
otherwise ‘2.5 PN’ refers to the waveform of [10] and ‘2 PN’ refers to the waveform used
in [8].

To get some impression of the relative weight of the different expansion coefficients we
present below their numerical values for a range of different parameters. We use units where
the mass is given in seconds, so that Mg = 4.93 x 10~ seconds and frequencies are measured
in Hertz. The coefficients have been rounded to three significant figures. The number of cycles
refers to the total number of cycles the gravitational wave goes through between f; and f;.
As expected the values of W, W, and W3 are the same for both the 2.5 PN and 2 PN cases.
An example of the relative values of the expansion coefficients is given in table 1. In all cases
the values of W, W, and W3 are the same as the 2 PN versions and W, takes the same value
when spins are zero. In some cases there is a difference in the total number of cycles of the
gravitational wave of up to 10 cycles due to the 2.5 PN term.

In some cases, for fairly large frequencies, f ~ 100 Hz, the Ws log(f) term is larger in
magnitude than lower terms such as W, f /3. The Ws term is therefore more likely to have an
impact on waveforms with significant numbers of cycles above f ~ 100 Hz.

4. Results

We choose to adopt parameters for the waveform of ., ¢., u, M, x; and x,, with the 7,
measured in milliseconds. The choice of these parameters is largely dictated by simplicity and
convention. Other combinations of these parameters, such as the symmetric mass ratio, n, or
the spin functions $ and o, as used in [8], can be solved for using the propagation of errors
formula [24].

Using the same parameters as [8] and a 2 PN waveform we are able to reproduce their
results up to ~3% accuracy. It is not clear what this discrepancy is due to. The numerical
integration has been checked for convergence and reproduces successfully the results of [7]
using the 1.5 PN waveform. The main source of error in our results is the numerical inversion
of the Fisher matrix, although for most of our results this is accurate to one part in 107. We
also reproduce the 2 PN results of [27] to the accuracy reported there using the appropriate
sensitivity curve and a lower frequency cutoff at f; = 40 Hz and the results for the 2.5 PN
non-spinning waveforms of [11] for a lower cutoff at f; = 20 Hz.

8
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Table 2. Comparison of parameter values for parameters M; = 15Mq, My = 10Mp, x; = 0.95
and x> = 0.9 with and without Gaussian priors on both the spins o, = 1 and oy, = 1. The
case ‘2 PN without self-spin’ is the waveform used in [8]. ‘2 PN with self-spin’ is 2 PN with the
spin—orbit and spin—spin terms considered in [8] but also the self-spin terms of [13] and [10] and
Ws = 0. The ‘2.5 PN’ case contains all the PN terms of equations (13) to (18) with the full terms
of equations (19) to (21).

At, Ap. A/ AM/M Ay Axa

2PN
without self-spin 21.7 2185 169 0.12 15.3 44.1
no priors

2PN
with self-spin 21.7 5935 169 0.12 4157  696.4
no priors

2.5PN
all known terms 35.0 141.2 6.51 0.075 205.9 338.7
no priors

2PN
without self-spin 1.60 159 1.97 0.018 0.95 0.99
Gaussian spin priors

2PN
with self-spin 477  58.6 0.81 0.016 0.61 0.88
Gaussian spin priors

2.5PN
all known terms 7.90 14.1 0.57 0.0034 0.73 0.91
Gaussian spin priors

The waveforms do not distinguish the two black holes if their masses and spins are
equal. If we take parameters to be (¢, ¢., In u, In M, x1, x2) then the Fisher matrix inversion
encounters problems when M; = M, and x; = yx» as the two objects cannot be distinguished
and the parameters y; and x, are degenerate, leading to a Fisher matrix with zero determinant,
so we deliberately avoid this limit by taking slightly different mass values.

4.1. Differences between 2 PN and 2.5 PN

We begin by comparing the 2.5 PN waveform of [10] with its seven expansion coefficients
and the 2 PN waveform used in [8] with only six expansion coefficients and slightly different
functional dependences in W, and W,. In the following, the symbol A6 is used to denote the
root mean squared error relative to the mean of a parameter 6—the standard deviation. This is
not the same as the difference to the mean used in equation (4), but is consistent with standard
notation in the literature.

Parameter error values for true parameters M| = 15Mg, My, = 10Mg, x; = 0.95 and
x2 = 0.9, with and without Gaussian priors are given in table 2. This case is illustrative of two
fairly large black holes with large spins. For such a heavy system considerable information
may also be provided by the merger and ringdown phases, since the merger frequency is well
within the sensitive band of the detector, but we omit these considerations here for simplicity.

Without any priors the relative error on u is considerably better for the 2.5 PN waveform
than the 2 PN waveform without self-spin that was studied previously [8]. There is also a good
improvement in M. The worsening in the spin parameters is extreme, although in neither the
2.5 PN nor 2 PN cases are the errors on the spin parameters close to the physically expected
bound |x| < 1. With Gaussian priors on the spins, which effectively controls their variation

9
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Table 3. Comparison of parameter errors for 2 PN and 2.5 PN waveforms with parameter values
My =5Mg,M; =1.4Mg, x; = 0.95 and x, = 0, with and without Gaussian priors on both the
spins oy, = l and 0y, = 1.

Ate A¢e  Ap/un AM/M Ay Axe

2PN
without self-spin 206 399 0.72 0.0032 0.66 7.65
no priors

2PN
with self-spin 206 159 0.72 0.0032 946 472
no priors

25PN
all known terms 268 183 0.48 0.0026 0.87 34
no priors

2 PN
without self-spin 0.60 533 0.16 0.0011 0.14 0.99
Gaussian spin priors

2PN
with self-spin 064 737 094 0.00082  0.20 0.98
Gaussian spin priors

2.5PN
all known terms 230 15.0 0.43 0.0023 0.48 0.95
Gaussian spin priors

to lie in the physical range | x| < 1, there is still reasonable improvement in the relative errors
of both u and M.

The large errors for the spins is not due to any confusion caused between the coalescence
phase ¢, and spin terms, ultimately deriving from 2.5 PN corrections and appearing in Wy of
equation (13) through Ws. This can be seen both from the definition of the Fisher matrix, direct
computation and is consistent with the findings in [11]. Replacing the parameter ¢, with the
parameter W, that includes the spin terms will not affect the errors on the other parameters.

To see what is driving the large error differences obtained between the 2 PN and 2.5 PN
waveforms, we can artificially remove the log(w M f) dependent term of the 2.5 PN waveform
while keeping the self-spin modifications to Wy. This case is also given in table 2 labelled as
‘2 PN with self-spin no priors’. The errors in the x; and x, parameters are much larger, larger
even than at the full 2.5 PN level and there is also a corresponding increase in the error in ¢,.
This suggests that much of the difference between the 2.5 PN waveform of [10] and the 2 PN
waveform of [8] is due to the self-spin interaction terms at 2 PN not included in [8].

In table 3 we give error values for example parameter values of a light, rapidly spinning
black hole and non-spinning neutron star system, with M} = SMqg, My = 1.4 Mg, x1 = 0.95
and x», = 0, again with and without priors. The errors are once again better at 2.5 PN
for the mass parameters but the change in the spin errors is not as dramatic as for heavy
black holes, in fact there is improvement in the error on y,. Once again there is significant
worsening in the spin errors when including just the 2 PN self-spin terms to the waveform used
previously [8].

Although the errors on spin terms are not extreme in this lighter system, Gaussian priors
can still be placed on the spins. Errors for the same true parameters with Gaussian priors on
both the spins o,, = 1 and o,, = 1 are given in table 3. In contrast to the heavier black hole
binary case, for the lighter system there is worsening in the errors on the mass terms between
the 2 PN waveform of [8] and the 2.5 PN waveform.
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Table 4. Comparison of estimation of six parameters versus five and four parameters for true
parameter values M| = 10, M, = 1.4, x; = 0.95 and x, = 0.

At, Ap.  Ap/u AM/M Ay Axa
6 params 6.5 14.6 0.67 0.0058 1.25 9.39
5 params 5.1 14.5 0.39 0.0027 0.29 0.0
x> known (by assumption)
4 params 0.76 1.9 0.0074 0.000 27 0.0 0.0
x1 and x, known (by assumption) (by assumption)

From this we conclude that using 2.5 PN waveforms will give noticeably different results
for statistical error estimation than just using just 2 PN. The effect is most pronounced for
higher mass systems. It seems the 2.5 PN term is able to reduce the errors in general, as would
be expected from adding more PN coefficients, but the 2 PN self-spin terms not included in
the analysis of [8] cause a noticeable difference. This mitigation effect of the 2.5 PN term is
weaker for heavier systems than lighter, possibly because the heavier systems end at lower
frequencies where the 2.5 PN term is less important.

It is worth remembering that these results are based on the assumption that the true
waveform is a 2.5 PN waveform for the 2.5 PN numbers and a 2 PN waveform for the 2 PN
ones, neither of which is likely to be true of the full general relativistic waveform. It is unknown
whether the systematic errors due to the PN approximation are larger than the statistical errors
presented here and we do not include other sources of systematic error.

4.2. Effect of frequency ranges and priors

It is noticeable from the above tables that using gravitational wave data lone to constrain
the spins of black holes to lie within the physical range |x| < 1 is difficult with current
PN expansions for inspirals. Lighter neutron stars are even harder to constrain, even though
we expect their spin parameters to be much less than black holes. But there are a number
of considerations that are ignored in the above analysis, that may provide more information.
Prior information can reduce the uncertainty in parameters by a significant amount. In [7] and
[8] Gaussian priors were imposed to simulate in a simple analytical fashion the effect of exact
physical priors on the spins of compact objects.

In the case that extra external information is able to precisely fix the spins of one of the
objects, perhaps the lighter object, then the gravitational wave parameter estimation problem
becomes essentially five dimensional. This might happen if one of the objects is a pulsar, or
a neutron star with known equation of state that prevents it from having any meaningful spin
angular momentum. In this case the spin of the heavier object can be measured much more
accurately using information external to the gravitational waveform. We are however, unlikely
to be lucky enough to see the binary merger of a known pulsar and we are still some way from
determining precisely the equation of state for neutron stars.

An example black hole-neutron star binary, with M; = 10, M, = 1.4 and true spins
x1 = 0.95 and x, = 0 is compared in table 4 both with and without an exact prior on the
neutron star spin. For completeness we also include the possibility that both spins are know
exactly. In the case of a low mass companion, with the lighter spin known exactly, it may be
possible to determine that the spin of the heavier object lies within the physical range to one
sigma accuracy, without the use of any priors.

It is also noticeable for the binary black holes systems of table 2 that the relative error on
the mass parameter u is also much larger than 100% and also that the error on the coalescence
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phase ¢, is often significantly more than 27 . Priors on these other parameters can also improve
the estimation of the physical spins via their correlations. A simple prior one could impose on
the coalescence phase is that it lies in a 2t range. Values of the coalescence phase that differ
by 27 give rise to the same waveform and therefore the coalescence phase only needs to be
known to within a 27 range. A prior on ¢, was rejected in [27] since the coalescence phase,
@., is able to absorb the phase shifts due to changes in the other parameters. The justification
for this, however, remains somewhat unclear and we include here the possibility of a prior of
this nature merely for illustrative purposes.

Another prior one could impose is a prior on the masses. The maximum possible value
of the symmetric mass ratio n = w/(M; + M>) is 0.25 which occurs for equal masses. This
constraint is simply related to the requirement that the inspiralling objects have real positive
masses. In this case the cutoff at 7 = 0.25 can be imposed directly as a flat prior in  between
0 and 0.25. For high masses M|, = 15Mg, M, = 10 M, and near extremal spins x; = 0.95
and y, = 0.9, Ay, is reduced from 205.9 to 22.8 and A is reduced from 338.7 to 38.8.
These reductions are still not sufficient to place the spins inside the physical bound. A flat
prior also requires a careful choice of parameter to impose it on. There does not seem to be
any strong reason for preferring a flat prior in 7 than to say a flat prior in In u other than the
more direct relation to the cutoff at n = 0.25.

In the above we have focused attention on the inspiral phase and ignored the merger and
ringdown phase. This is a reasonable approximation for systems that pass well beyond the
most sensitive part of the detector band before merger. The final state of the merger of two
compact objects is likely to be a spinning black hole. For progenitors with large, aligned spins,
the final black hole is likely to have a large spin itself [31]. In this case it is questionable to
what extent the ISCO of a non-spinning Schwarzschild black hole is a suitable indication of
where the PN inspiral approximation becomes unreliable. A near-extremal Kerr black hole has
an ISCO at r ~ M, as opposed to r = 6 M for a non-spinning hole. A spinning black hole can
support test particles in quasi-circular obits at much higher frequencies than a non-spinning
black hole of the same mass. The asymptotic time period of a test particle in a circular orbit in
the equatorial plane of a Kerr black hole is T = (27 (a ++/r?/M)) and hence the gravitational
wave frequency at extremality is approximately fr = 1/(2xM).

There is still a lot of uncertainty about where PN approximations break down and the
Schwarzschild ISCO has traditionally been used as a conservative approximation. It is possible
[20] that the PN waveform for a rapidly spinning system is valid to a significantly higher
frequency than this. We can look at the approximate effect of increasing the final frequency
by allowing f; to increase by a factor of 10. The frequency difference between the true
Schwarzschild ISCO and the true extremal Kerr ISCO is closer to a factor of 7, but as there is
still uncertainty in exactly where the true limit should be applied, we adopt here a factor of 10
for simplicity.

To identify the effect of different priors and changing the integration range, in table 5, with
true parameters M| = 15 Mg, My, = 10 Mg, x; = 0.95, xo = 0.9 and the SNR normalized to
10, we implement several different choices of Gaussian spin priors o,,, = 1 and a Gaussian
coalescence phase prior o4 = 7. Because the waveforms are normalized with an SNR of
10, the longer inspiral waveforms will have a lower amplitude than a shorter waveform in the
corresponding overlap region.

An increase in fr by a factor 10 such as might occur in the proposal of [20], can lead to
a substantial gain in accuracy for parameters without priors, although the effect diminishes
when priors are applied. The Gaussian priors o4 = 7 and o,,, = 1 contain nearly all the
information about these parameters for integrating both to the Schwarzschild ISCO and ten
times the Schwarzschild ISCO. The spin priors have a greater effect on both Alnu and
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Table 5. Effect of various combinations of the Gaussian priors oy, ,
increasing the final frequencies for the parameters M| = 15Mq, M,
x2 = 0.9 and SNR normalized to 10.

At Age  Ap/u AM/M  Axi Axe

1 and oy, = 7, and
10Mg, x1 = 0.95,

No priors 350 1412 6.51 0.075 2059 338.7
Spin priors 7.9 14.1 057 0.0034 0.73 0.91

¢, prior 0.014 3.14 150 0.0073 26.5 42.1

Spin and ¢, prior  1.79 3.10 0.17 0.0028 0.56 0.85

No priors 1.28 338  0.72 0.016 359 599
10fisco

Spin priors 0.56 1.36  0.12 0.0025 0.53 0.86
10fisco

Spin and ¢, prior  0.52 1.25  0.12 0.0024 0.53 0.85

10fisco

A In M than the ¢, prior, but the combination of both improves the mass estimation by about a
factor 20.

Although it does not seem possible with the 2.5 PN waveform to assign well measured
spin values to the individual components of the binary, one of the main reasons for this is that
the spin parameters x; and x; are not very well distinguished from one another by the 2.5 PN
aligned spins waveform. However, the error ellipse given by the likelihood function obtained
by marginalizing over all parameters except the spins is often very thin in one direction. This
means that there is a particular linear combination of the spin parameters that is much better
constrained by the waveform than the individual spins.

With a two-dimensional likelihood function, obtained by marginalizing over the other
parameters, the preferred direction can be found by finding the eigenvectors of the associated
Hessian matrix. Numerically with M| = 15Mqg, M, = 10Mg. x; = 0.95and x, = 0.9 we find
x = 0.85x1 4+ 0.52x,. The error on this linear combination is Ay = 0.76 and the maximum
value it can attain, when both spins are at their maximal physical value, x; = x, = 1, is 1.37.
For the same high masses, but y; = x» = 0 we find x = 0.63x; + 0.77 x». The error on this
combination is A y = 20.20 and the maximum value it can attain is 1.41.

For lower masses, such as M| = 5, M, = 3 with near maximal, aligned spins, x; = 0.95
and x» = 0.9, we find x = 0.87x; + 0.49x, as the optimally measured linear combination
of spin parameters. The error on this combination is just Ay = 0.25 and its maximum
possible physical value is 1.36. With no true spin we obtain instead x = 0.84y; + 0.54 x>
as the optimally measured linear combination. This combination has a measurement error of
Ayx = 0.85. The maximum value that x can attain if both spins are at their maximal physical
value is 1.38.

This suggests that in certain parameter ranges, particularly lower masses and high spins,
it may be possible to demonstrate that the system contains a non-zero spin within a physical
bound, even though separate spins cannot easily be assigned to the individual objects.

5. Conclusions

We have obtained a number of results related to parameter estimation using post-Newtonian
(PN) 2.5 order spinning waveforms. The most important result is that measurement errors differ
significantly from previous results obtain by Poisson and Will [8] at 2 PN order, especially for
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larger mass systems. A large part of this difference is attributable to the self-spin interaction
terms at 2 PN order not included in the analysis of [8] or in analyses for space-based missions
[23]. However, it also strongly suggests that 2 PN spinning waveforms are not sufficient for
reliable parameter estimation from spinning systems and possibly 2.5 PN order is not sufficient
either. Source multipole moments needed to obtain the spin contributions for gravitational
waves have recently been computed at 3 PN order [32] and it is hoped that the results reported
here will give extra impetus to putting these contributions into a ‘ready to use’ form necessary
for data analysis and parameter estimation. Higher order spinning waveforms may also be
needed beyond 3 PN.

The errors presented here are purely statistical errors due to noise in the detector.
Systematic errors have not been treated. Implicitly the analysis presented here assumes that
nature corresponds exactly to this restricted 2.5 PN order and ignores other higher harmonics.
The model of an exactly aligned, 2.5 PN order, spinning waveform of this form is a prior
assumption in the analysis. Furthermore the analysis assumes that an individual detector will
have a stationary Gaussian noise spectrum given, for example, by the modelled approximation
[26] and ignores any other systematic errors in the observational and data manipulation
processes.

In light of these facts, and the belief that nature is unlikely to be exactly 2.5 PN, it
is difficult to give precise estimates for the parameter errors that can be obtained from real
advanced second generation interferometers. The values given above should be taken as purely
indicative of how statistical errors might behave in certain parts of parameter space and which
parts of parameter space might be amenable to constraining which parameters. Fisher matrix
calculations have been compared with Monte Carlo methods in [21] and there it was found
that Fisher matrix techniques can in cases underestimate the errors by a factor of 2.

We have shown that while the mass parameters are often well constrained using the
2.5 PN waveform, allowing in cases black hole candidates to be distinguished from neutron
star candidates, the spin information is only weakly constrained. Only in the case where one
of the spins is known exactly from external information can the spin of the other object be
constrained within the physical bound | x| < 1.

The detectors have limited sensitivity to intrinsic spin at 2.5 PN level and information
about the spins is still likely to be dominated by prior information. Certain information that is
necessary in the parameter estimation is difficult to fold into the Fisher matrix formalism. More
accurate prior information can be encoded into the likelihood using a variety of techniques [27].
The method used here employs a semi-analytical technique that greatly reduces computational
complexity, but is limited to one flat prior and the exact choice of parameter is an important
consideration in applying ‘flat’ priors. The prior information that may be so important to
obtaining reliable mass estimates, is still not well implemented in the Fisher matrix formalism.

Assumptions about where the inspiral PN breaks down, using Kerr ISCO instead of
Schwarzschild ISCO, does have some effect, but prior information is still dominant in these
cases. Further information is certainly available from modelling the merger and ringdown
phase but hybrid waveforms do not yet have sufficient information or accuracy to completely
alleviate this problem. Further work is needed to study this interesting area as advanced hybrid
waveforms are developed containing a full waveform from inspiral to ringdown.

Several proposals for measuring deviations from general relativity rely on measuring
simultaneously the parameters needed to describe the binary using the waveform and also
checking for deviations from the predictions of general relativity. With non-spinning systems
the waveforms are largely just a function of the two masses, which can be measured fairly
accurately using only a few chirp times, leaving the remaining chirp times as a consistency
check of the model predictions. For aligned spinning systems, without appreciable neutron
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star spin, there are four intrinsic parameters to be measured to describe the system and as we
have seen the spins are not well determined, even within the physically expected range. It is
possible that waveforms at 3 PN and above will alleviate some of these problems encountered
here and leave this to further work.
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Appendix. Covariance matrices

We give here for completeness examples of the covariance matrices, I’/ which is the matrix
inverse of the Fisher matrices defined in equation (8). The square root of the diagonal
elements corresponds to the measured accuracy of each parameter and the correlation between
parameters at a and b positions can be calculated by the formula

Fab
Cab = . /l"aal"bb ’
For the case of six parameters, with . = ¢, = 0, M| = 15Mg, My = 10Mg, x; = 0.95 and
x2 = 0.9 we have, rounded to three significant figures,

0.00122 —4.54 —-0.224 0.00250 —6.93 11.4

(A.1)

—4.54 19900 893 —10.6 288 —47500
i _ —-0.224 893 42.3 —0.484 1330 —2190 (A2)
67 10.00250 —10.6 —0.484 0.00568 —15.5 25.5 '
—6.93 28800 1330 —15.5 42400 —69800
11.4 —475  =2190 25.5 —69800 115000

The corresponding correlations are, rounded to three significant figures except in the bottom
right corner,

1. —-0.919 -0.985  0.950 —0.961 0.960
—-0.919 1. 0973  —-0.995 0.992 —0.992
o —-0.985 0.973 1. —0.988 0.994 —0.994 (A3)
ab 0.950 —0.995 —0.988 1. —0.9985 0.9987 '
—-0961 0992 0994 —0.9985 1. —0.999991
0.960 —0.992 —0.994 0.9987 —0.999991 1.

The parameters are all highly correlated, especially the spins.
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