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The observation of gravitational waves with a global network of interferometric detectors such as

advanced LIGO, advanced Virgo, and KAGRAwill make it possible to probe into the nature of space-time

structure. Besides Einstein’s general theory of relativity, there are several theories of gravitation that

passed experimental tests so far. The gravitational-wave observation provides a new experimental test of

alternative theories of gravity because a gravitational wave may have at most six independent modes of

polarization whose properties and number of modes are dependent on theories of gravity. This paper

develops a method to reconstruct an arbitrary number of modes of polarization in time-series data of an

advanced detector network. The method does not rely on any specific model, which gives a model-

independent test of alternative theories of gravity.
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I. INTRODUCTION

In recent years, direct detection experiments of a
gravitational wave (GW) have been well developed and the
first generation of a kilometer-scale ground-based laser-
interferometric GW detector has accomplished its design
sensitivity. Although the first detection of the GW has not
been achieved yet, the null detection has yielded scientific
results [1–5]. The next-generation interferometers such as
advanced LIGO [6], advanced VIRGO [7], and KAGRA [8]
will be in operation in the coming five years and will bring
valuable information about astronomical compact objects.

The direct observation of the GWs will also provide a
unique opportunity to test the theory of general relativity
(GR) through the propagation speed, waveforms, and po-
larization modes of GWs. In GR, a GW has two polariza-
tion modes (plus and cross modes), while in a general
metric theory of gravitation, the GW is allowed to have
at most six polarizations [9,10]. In modified gravity theo-
ries such as the scalar-tensor theory [11,12] and fðRÞ
gravity [13,14], additional scalar polarizations appear
(for more rigorous treatment of the polarizations with the
Newman-Penrose formalism, see Refs. [15,16]). On the
other hand, in bimetric gravity theory [17] and massive
gravity theory [18,19], there appear at most six and five
polarization modes, respectively, including scalar and
vector modes [16,20]. If the additional polarizations are
found, it indicates that the theory of gravitation should be
extended beyond GR and excludes some theoretical mod-
els, depending on which polarization modes are detected.
Thus, the observation of the GW polarizations is a power-
ful tool to probe the extended law of gravity.

Currently, there are few observational constraints on the
additional polarization modes of GWs. For the scalar GWs,
the observed orbital-period derivative of PSR B1913þ 16
agrees well with predicted values of GR, conservatively, at a
level of 1% error [21], indicating that the contribution of
scalar GWs to the energy loss is less than 1%. However, it is
important to cross-check the existence of the number of
propagating degree of freedom directly by GW detection
experiments, since these experiments probe in a weaker
regime of gravity than a binary pulsar and at different
distance scale. So far some authors have been using the
method for separating a mixture of the polarization modes
of the GW background and detecting non-Einsteinian
polarization modes with pulsar timing array [22] and with
ground-based laser-interferometric GW detectors [23,24].
To decompose and reconstruct the polarization modes, the
number of the independent signals of detectors should be
more than that of polarization modes. In the above method
with GWdetectors, the number of polarizations are assumed
to be three, since they considered a stochastic background.
Now we expect that more GW detectors will be in

operation in the future, in total five detectors including
two advanced LIGOs, advanced VIRGO, KAGRA, and
IndIGO [25]. Then in principle we can reconstruct five
polarization modes (all modes that GW detectors can
separately detect) of a transient GW such as a chirp and
burst GW. In this paper, we develop a method to separate
and reconstruct an arbitrary number of polarization modes
using observation data of multiple interferometric GW
detectors. The method does not need any theoretical wave-
form of the polarization modes of a GW, and therefore can
be a model-independent probe of testing various alternative
theories of gravity.
The organization of this paper is as follows. In Sec. II we

first describe antenna pattern functions of the tensorial,
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scalar, and vector polarization modes, and then construct
the algorithm to separate and reconstruct the polarization
modes based on the coherent network analysis. In
Sec. IVA, we describe how the algorithm is implemented
and show an example of reconstruction of the polarization
modes. In Sec. IV we made simulations of the reconstruc-
tion of the tensor and scalar polarization modes using
simulated data of LIGO Hanford, LIGO Livingston,
VIRGO, and KAGRA. We devote Sec. V to the summary
of this paper.

II. ANALYTICALMETHODOFRECONSTRUCTION

In this section, we provide the method separately
detecting and reconstructing more than three polarization
modes of a GW, which often appear in alternative theories of
gravity, with a coherent network of ground-based detectors.

A. Polarization modes of a gravitational wave

In general, a metric gravity theory in four dimensions
allows at most six polarization modes of a GW [9,10]. Let
us define a wave orthonormal coordinate that is constructed

by a unit vector k̂ directed to the propagation direction of a

GW and two unit vectors ê� and ê� orthogonal to k̂ and

each other. With these vectors, the polarization modes are
defined as

eþ¼ ê� � ê� � ê� � ê�; e� ¼ ê� � ê� þ ê� � ê�;

e� ¼ ê� � ê� þ ê� � ê�; e‘ ¼ ffiffiffi
2

p
k̂ � k̂;

ex ¼ ê� � k̂þ k̂ � ê�; ey ¼ ê� � k̂þ k̂ � ê�;

where the symbol � denotes a tensor product. Theþ,�, �,
‘, x, and y polarization modes are called plus, cross,
breathing, longitudinal, vector-x, and vector-y modes,
respectively. According to rotation symmetry around the
propagation axis of the GW, the þ and � modes are
identified with tensor-type (spin-2) GWs, the x and ymodes
are vector-type (spin-1) GWs, and the � and ‘ modes are
scalar-type (spin-0) GWs. For a more detailed introduction,

see Ref. [23]. With the sky direction of a GW source �̂ ¼
�k̂, a GW with the six polarizations is expressed as

hijðt; �̂Þ ¼ X
A

hAðtÞeAijð�̂Þ;

where A ¼ þ, �, �, ‘, x, y.

B. Antenna pattern functions of polarization modes

Antenna pattern functions of the scalar and vector modes
have been derived in Refs. [23,26,27]. We briefly summa-
rize the results here.

Suppose m interferometric GW detectors are in opera-
tion. The GW signal of the Ith detector is written as

�Iðt; �̂Þ ¼ X
A

FA
I ð�̂ÞhAðtÞ;

where FA
I ð�̂Þ is the antenna pattern function of the Ith

detector defined as

FA
I ð�̂Þ ¼ eAijð�̂ÞdijI :

dI is a detector tensor defined as

dI :¼ 1

2
½ûI � ûI � v̂I � v̂I�;

where ûI, v̂I are unit vectors along with arms of the Ith
detector. In a spherical coordinate ð�I; �IÞ fixed to the Ith
detector, since the detector coordinate ðû; v̂; ŵÞ and the

wave coordinate ðê�; ê�; �̂Þ are related by

ê� ¼ ûI cos �I cos�I þ v̂I cos �I sin�I � ŵI sin �I;

ê� ¼ �ûI sin�I þ v̂I cos�I;

�̂ ¼ ûI sin �I cos�I þ v̂I sin �I sin�I þ ŵI cos �I;

the angular pattern functions for each polarization are

Fþ
I ð�̂Þ ¼ 1

2
ð1þ cos 2�IÞ cos 2�I;

F�
I ð�̂Þ ¼ � cos�I sin 2�I;

F�
I ð�̂Þ ¼ � 1

2
sin 2�I cos 2�I;

(1)

F‘
I ð�̂Þ ¼ 1ffiffiffi

2
p sin 2�I cos 2�I;

Fx
I ð�̂Þ ¼ � 1

2
sin 2�I cos 2�I;

Fy
I ð�̂Þ ¼ sin �I sin 2�I:

(2)

Note that the wave coordinate has a rotational degree of

freedom c about the �̂ axis. The general formulas keeping
c arbitrary are provided in Ref. [23]. From the expressions,
one can see explicit rotational symmetries about c for the
scalar, vector, and tensor polarization modes. In this paper
we take c ¼ 0without loss of generality. Also we note that
the above expressions are valid when the arm length of the
detector L is much smaller than the wavelength of observed
GWs, �g, i.e., L � �g. This condition is well satisfied for

ground-based detectors we consider in this paper. The
angular pattern functions for L> �g have been derived in

Refs. [28,29] (for pulsar timing, see Refs. [30,31]). Figure 1
shows the scalar, vector, and tensor antenna patterns as a
function of the longitude and the latitude.
The angular pattern functions for scalar modes in

Eqs. (1) and (2) are degenerated in the long wavelength
limit [28,29,32]. These GW signals of the scalar modes
cannot be distinguished in GW observation and what

we actually detect is the signal combination 1
2F

�
I fh�ðtÞ �ffiffiffi

2
p

h‘ðtÞg. From this reason, hereafter we assume, for sim-
plicity, that the longitudinal mode is absent. In addition, we
assume that all polarization modes are massless since

KAZUHIRO HAYAMA AND ATSUSHI NISHIZAWA PHYSICAL REVIEW D 87, 062003 (2013)

062003-2



separate analysis is needed for the mode that propagates
with the speed much different from that of light. Therefore
we consider in total five massless polarization modes
ðþ;�;�; x; yÞ of a GW in the following sections.

C. Coherent network analysis

The coherent network analysis is an algorithm to find a
transient GW signal, including burstlike signal and
in-spiral signal, in the data by combining all available
detector data coherently (Refs. [33–38] and references
therein). The detector output is a combination of GWs in
the polarization modes weighed by the pattern function of
each polarization mode. In the coherent network analysis,
the sky location of the GW and the waveforms in all
polarization modes are reconstructed by inverting the set
of the detector responses.

Data xIðtÞ from the Ith detector are

xIðtÞ ¼ �IðtÞ þ �IðtÞ;
where �IðtÞ and�IðtÞ are the GW signal and noise of the Ith
detector. The noise is assumed to be Gaussian distributed.

The arrival time of a GWat each detector is delayed depend-
ing on the geographical locations of the GW detectors. If the
relative time delay with respect to a reference time t0 taken
at the center of the Earth is defined as �Ið�; �Þ, the arrival
time can be redefined as t ¼ t0 þ �Ið�; �Þ.
All the detectors being taken into account, Eq. (3) is

written as

x ¼ Fhþ �;

where

x ¼ ðx1; . . . ; xmÞT 2 W½m� N�;

F ¼
Fþ

1 F�
1 F�

1 Fx
1 Fy

1

..

. ..
. ..

. ..
. ..

.

Fþ
m F�

m F�
m Fx

m Fy
m

0
BBB@

1
CCCA

:¼ ðFþ;F�;F�;Fx;FyÞ 2 W½m� 5�;
h ¼ ðhþ;h�;h�;hx;hyÞT 2 W½5� N�;
� ¼ ð�1; . . . ;�mÞT 2 W½m� N�;

FIG. 1 (color online). The left top plot is an antenna pattern of the LIGO interferometric detector at Hanford to a scalar GW ðF2�Þ1=2.
The x axis is the longitude and the y axis is the latitude. The right top plot is an antenna pattern function of the detector to the tensorial
modes ðF2þ þ F2�Þ1=2. The bottom plot is an antenna pattern function of the detector to the vector modes ðF2

x þ F2
yÞ1=2.

MODEL-INDEPENDENT TEST OF GRAVITY WITH A . . . PHYSICAL REVIEW D 87, 062003 (2013)

062003-3



and

xI ¼ ðx̂Iðf0Þ; . . . ; x̂IðfN�1ÞÞ 2 W½1� N�;
�I ¼ ð�̂Iðf0Þ; . . . ; �̂IðfN�1ÞÞ 2 W½1� N�;
hA ¼ ð~hAðf0Þ; . . . ; ~hAðfN�1ÞÞ 2 W½1� N�;

where m is the number of detectors, N is the number of
samplings, andW½n1 � n2� represents a type of the matrix
with the column n1 and the row n2. The subscripts run as
I ¼ 1; . . . ; m and A ¼ þ, �, �, ‘, x, y. The components

are defined in Fourier space as x̂IðfjÞ :¼ ~xIðfjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SInðfjÞ

q
,

and �̂IðfjÞ :¼ ~�IðfjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SInðfjÞ

q
, j ¼ 0; . . . ; N � 1. ~xðfjÞ is

defined as the jth component of the Fourier transform
of xðtÞ:

~xðfjÞ :¼
XN�1

k¼0

xðj�tÞ exp ð�2�ik�tfjÞ:

�t is a sampling period, �f :¼ ðN�tÞ�1 is a frequency

resolution, and fj ¼ j�f. x̂IðfjÞ, the whitened ~xðfjÞ,
is obtained by dividing by the power spectrum density
SInðfjÞ of the Ith detector at a frequency fj. There are

several purposes to whiten detector data. The sensitivity
of an interferometric GW detector is limited in a
frequency-dependent way through a diverse noise budget
[39]. Since multiple data streams have different sensitiv-
ities in the Fourier domain, one needs to whiten the data
streams so that the noise is isotropically distributed in the
space of the detectors. The whitening procedure is also
important to make the data uncorrelated between samples
by a whitening filter and to mitigate the effect of instru-
mental artifacts in detector data. For instance, noise
artifacts that appear in multiple detectors with the same
frequency regions can be correlated noise between detec-
tors, which makes the detection efficiency decrease.

We first consider the reconstruction of waveforms in an
ideal case without noise. In general, F is not a squared
matrix with full rank, hence we introduce the Moore-
Penrose pseudoinverse matrix M as

Mh ¼ FTx; where M :¼ FTF:

If the detectors are not all coaligned, M is an invertible
5� 5 matrix. Multiplying the equation by the inverse of
M, we get

h ¼ Fyx; where Fy :¼ M�1FT:

The inverse matrix M�1 can be found from the formula

M�1 ¼ 1

det ðMÞ adjðMÞ;

where adjðMÞ is the adjoint matrix and det ðMÞ is the
determinant of M. If the ði; jÞth cofactor is defined as
CAA0 ¼ ½adjðMÞ�AA0 , we finally obtain

hA ¼ HA � x; (3)

HA ¼ 1

det ðMÞ
X
A0
CAA0 � FA0 : (4)

As discussed in Ref. [24], the factor det ðMÞ of this formula
plays an important role in separating the polarization
modes. If there is degeneracy in the antenna pattern func-
tions of a detector network and det ðMÞ ¼ 0, we cannot
reconstruct the polarization modes at all. Fortunately, this
is not the case for current ground-based detectors.
We use a maximum likelihood method to estimate h

from the data. The maximum likelihood method maximizes

L½h� :¼ �kx� Fhk2; (5)

¼ �kx� FFyxk2; (6)

where k � k is defined by

kxk :¼
�Xm
I¼1

XN�1

j¼0

jx̂Iðj�fÞj2�f

�
1=2

:

IntroducingQ :¼ I� FFy and usingQ in Eq. (6), we obtain

L½h� ¼ �kQxk2: (7)

We note QF ¼ 0, which means that Q projects onto the
null space of FFT . From Eq. (7), one can see L½h� is
equivalent to the null stream energy [40,41]. Suppose the

true source location is �̂s :¼ ð�s; �sÞ,
L½h� ¼ �kQðFð�̂sÞhþ �Þk2

¼ �kQFð�̂sÞhk2 � 2Re

�X
j

ð�yQFð�̂sÞhÞj�f

�

�X
j

ð�yQ�Þj�f: (8)

We used the relation Q2 ¼ Q and denoted frequency com-
ponents as ð�yQ�Þj ¼ ½�yQ��ðfjÞ. As Ref. [36] shows, if
we take the expectation value of the likelihood function in
a stationary noise case, the first term in Eq. (8) is the same

as the current value k QFð�̂sÞh k2 and the second term
vanishes. The third term at the jth frequency bin is

hð�yQ�Þji ¼
Xm
I;J

Qj
IJhð�̂j

IÞ��̂j
Ji ¼�2

j

Xm
I;J

	IJQ
j
IJ ¼�2

j trðQjÞ;

where 	IJ is Kronecker delta, and h�i is the ensemble
average. Since the noise in the detectors is whitened, the
noise can be regarded as the Gaussian white noise with its
variance �2 :¼ P

j�
2
j�f, where �2

j is defined by

hð�̂j
IÞ��̂j

Ji ¼ 	IJ�
2
j . We note �2

j has the same value for

all jth frequency bins since the noise �̂ is whitened.
Transforming Qj to the diagonal form, we find trðQjÞ ¼
m� n and finally obtain
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hL½h�i ¼ �kQFð�̂sÞhk2 � ðm� nÞ�2; (9)

where n is the total number of polarization modes. Since

QFð�̂sÞ ¼ 0 at the true location, L½h� become maximum.
We emphasize that the algorithm does not specify any

alternative theories of gravity and can be applied to
any number of polarization modes if it is less than the
number of detectors. Therefore, this approach is a model-
independent probe alternative theory of gravity. In addi-
tion, we here considered the transient GW signals, but in
principle the method works in case of a continuous GW
signal by considering the signal modulation due to the
Earth rotation and time dependence of the antenna pattern
functions.

III. APPLICATION TO THREE
POLARIZATION MODES

A. Scalar GW in Brans-Dicke theory

There are several simulations on the spherically sym-
metric core collapse in the Brans-Dicke theory [11], which
is a class of scalar-tensor theory. The scalar gravitational
waveform is consistent with each simulation [42–47].
Therefore we use a waveform simulated by Shibata et al.
[42]. In their simulation, they assumed the Brans-Dicke
theory with the scalar field coupling to gravity, !BD ¼ 50
and 500, and calculated scalar gravitational waveforms.
They found the scalar fields are linearly scaled with !BD,
and the scalar gravitational waveforms with different !BD

are almost the same by scaling !BD. We therefore extrapo-
late the waveforms to larger values of !BD. The simulated
scalar GW signal h is

hðtÞ ¼ 1:25� 10�21

�
M

10M	

��
10 kpc

R

��
40000

!BD

�
�ðtÞ;

where M is the mass of a progenitor, and R is the distance
from the Earth. The shape of the waveform �ðtÞ is in
Fig. 2. Since the unit of the time t in Fig. 2 is 4:93�
10�5ðM=10M	Þ, the duration of the signal is linearly de-
pendent of a mass of a progenitor.

B. Sensitivity to the scalar mode

Sensitivity of the designed Japanese interferometric GW
detector KAGRA [48] to a scalar GW simulated by Shibata
et al. [42] is estimated. We should note that a more realistic
estimation of the detectability needs a more realistic simu-
lation. However, we use Shibata’s result for the purpose of
demonstration. The top plot in Fig. 3 shows hrss-fc of GWs
from spherically symmetric core collapse supernovae
located at 10 kpc from the Earth with !BD ¼ 500, 1000,
2000, 4000, 8000, 16000, 40000, 80000, 160000 from the
top. hrss is the root sum square of h defined as

hrss :¼
�Z 1

�1
dt
X
A

h2AðtÞ
�
1=2

;

A ¼ þ, �, �, and fc is the characteristic frequency [49]

fc :¼
0
B@Z 1

0

P
A
~hAðfÞ~h�AðfÞ
SnðfÞ fdf

1
CA

�
0
B@Z 1

0

P
A
~hAðfÞ~h�AðfÞ
SnðfÞ df

1
CA

�1

;

where ~xðfÞ, SnðfÞ, ~hAðfÞ are detector output, the noise
power spectrum density, the plus, cross, and scalar modes

of a GW in Fourier domain. ~h�A expresses its complex
conjugate. Note that here we are considering GWs from
spherically symmetric core collapse supernovae, which do
not radiate tensor modes, namely, hþðtÞ ¼ h�ðtÞ ¼ 0. hrss
of the supernovae with the progenitor mass of 20 M	 at
the distance 10 kpc are shown with blue open circles. The
magenta open circles are the same except the mass of the
progenitor is 5 M	. These plots are on the current design
sensitivity curve of KAGRA. The bottom plot in Fig. 3
shows estimated signal-to-noise ratio (SNR) as a function
of !BD. The SNR is defined as

SNR :¼
0
B@Z 1

�1

P
A ~xðfÞ~h�AðfÞ
SnðfÞ df

1
CA

1=2

:

We note that the SNR defined here is that of the matched
filter method [50], which is the optimal case with respect to
the antenna pattern function of the detector. The SNR is
estimated by

SNR ’ hcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fcSnðfcÞ

p ;

where hc is the characteristic strain amplitude [49]

FIG. 2. A scalar gravitational waveform simulated by Shibata
et al. [42] with the mass of the progenitor 10 M	,!BD ¼ 40000,
the distance from the Earth 10 Mpc. The unit of the time t is
4:93� 10�5ðM=10M	Þ. � is the normalized strain amplitude.
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hc :¼
�
3
Z 1

0

SnðfcÞ
SnðfÞ

X
A

~hAðfÞ~h�AðfÞfdf
�
1=2

:

The red and magenta lines are the ones with the mass of the
progenitor 20 M	 and 5 M	, respectively. The current
upper limit on !BD is >40000 by Cassini’s observation
in the solar system [51]. If a scalar GW with!BD ¼ 40000
is radiated from a spherically symmetric core collapse
supernova at 10 kpc from the Earth, KAGRA can detect
the signal with SNR of 
18 for the mass of 20 M	
progenitor, and 
4 for the mass of 5 M	 progenitor. In
order to set an upper limit on !BD, one has to know the
distance of a source because the distance and !BD influ-
ence the amplitude of the GWat a detector in the sameway.
Therefore the two parameters are degenerated. It is impor-
tant to combine usual astronomical observations such as

electromagnetic observations and neutrino observations
with the GW observation, so called the multimessenger
observation. Suppose it finds that a supernova occurs
within our Galaxy through the multimessenger observa-
tion. The above results indicate one may set a stronger
upper limit on!BD, or if the scalar GW is detected, one can
determine !BD.

C. Reconstruction of three polarization modes

In the case that the tensor and scalar modes exist,
hþ, h�, h� are reconstructed as the linear combination
of the antenna patterns of all three polarizations.
HAðA¼þ;�;�Þ can be explicitly calculated from Eq. (4):

Hþ ¼ 1

det ðMÞ ½ðF� � F�Þ � ðF� � F�ÞFþ

� ðF� � F�Þ � ðFþ � F�ÞF�
þ ðF� � F�Þ � ðFþ � F�ÞF��; (10)

H� ¼ 1

det ðMÞ ½�ðFþ � F�Þ � ðF� � F�ÞFþ

þ ðFþ � F�Þ � ðFþ � F�ÞF�
� ðFþ � F�Þ � ðFþ � F�ÞF��; (11)

H� ¼ 1

det ðMÞ ½ðFþ � F�Þ � ðF� � F�ÞFþ

� ðFþ � F�Þ � ðFþ � F�ÞF�
þ ðFþ � F�Þ � ðFþ � F�ÞF��: (12)

The symbols� and � denote the outer product and the inner
product, respectively. We note if det ðMÞ ¼ 0, which hap-
pens when detectors are coaligned, the reconstruction of
any polarization mode fails. However, this is not the case
for the current ground-based detector network.

IV. SIMULATION OF RECONSTRUCTION
OF POLARIZATION MODES

A. Implementation

The pipeline consists of three parts:
(i) Data conditioning
(ii) Event trigger generation
(iii) Reconstruction of the polarizations

We use the linear prediction error filter for whitening the
data, assuming the data are a stationary stochastic process
and can be expressed by an autoregressive model with
order of P where P is an integer number. We assume the
predicted data stream at the time s�t, x0ðs�tÞ can be
written as

x0ðs�tÞ ¼
XP
p¼1

cðpÞxððs� pÞ�tÞ;

FIG. 3 (color online). The green line is the KAGRA sensitivity
curve. Blue open circles are hrss-fc of spherically symmetric
core collapse supernovae at the distance 10 kpc with the pro-
genitor mass 20 M	 and !BD ¼ 500, 1000, 2000, 4000, 8000,
16000, 40000, 80000, 160000. hrss, fc are defined in the text.
Magenta open circles are for the progenitor mass 5 M	. The
bottom plot is !BD SNR. SNR is defined in the text. The red line
is the one with the mass of the progenitor 20 M	, the magenta
line 5 M	.
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where s is an integer number and �t is a sampling period.
Then we try to find parameters cðpÞ which minimize the
mean squared prediction error E2

e :¼ 1
N

P
N�1
s¼0 xwðs�tÞ2,

where N is the number of samples and

xwðs�tÞ :¼ xðs�tÞ � x0ðs�tÞ

is a whitened data of xðs�tÞ. The coefficients cðpÞ are
obtained in the least squares sense by requiring

@E2
e

cðpÞ ¼ 0; 0 � p � N � 1: (13)

This equation results in the Yule-Walker equations [52].
The whitening filter has a group delay of the phase espe-
cially near narrowband spectral feature, and the timing
error between the whitened data of different detectors is
introduced. To cancel the timing error, the linear predictor
filter is first applied causally and then anticausally [53].
The filter coefficients cðpÞ should be estimated using a
stationary data segment. For this purpose, we use a few
seconds data segment that does not have nonstationary
noise in the implementation. The data segment will not
be used to search for GWs. We then construct the finite
impulse response (FIR) filter and pass the data through the
FIR filter to whiten it.

A set of the whitened data xw of the multiple detectors
with equal length is passed to the part of the event trigger
generation. We use the coherent network analysis pipeline
described in Sec. II C. The value of the likelihood of the
multiple detector data defined in Eq. (6) is calculated by

changing over the possible sky locations �̂ ¼ ð�;�Þ, and
the maximum of the likelihoods is chosen. If the maximum
likelihood value is above a given threshold, the chosen
event candidate is recorded in a detection list. Since the
likelihood values are obtained as a function of � and�, this
two-dimensional output Sð�;�Þ is called the skymap.

Finally reconstructed hþ, h�, and h� are calculated at
the maximum point of the skymap using Eqs. (3), (4), and
(10)–(12). The reconstructed hþ, h�, and h� have dura-
tions less than or equal to the data length. We note that the
implementation is based on Ref. [37].

B. Reconstruction of the polarization modes
without tensor mode signals

We perform Monte Carlo simulations to reconstruct the
scalar polarization of a GW. The network consisted of the
4 km LIGO Hanford (H), LIGO Livingston (L), VIRGO
(V), and KAGRA (K) interferometers [6–8]. For the de-
tector noise amplitude spectral densities, we use the design
sensitivity curves similar to the advanced LIGO detectors
as given in Ref. [54] (see Fig. 4) and keep the locations and
orientations the same as the real detectors. The stationary
noise is generated for 50 seconds by first using four inde-
pendent realizations of Gaussian white noise and then

passing them through FIR filters having transfer functions
that approximatelymatch the design curves. The generated
data are sampled at 16384 Hz and then passed through the
data conditioning pipeline. Besides downsampling the data
to 2048 Hz by applying the same antialiasing filter to all
data streams, the data conditioning pipeline applies time
domain whitening filters that are trained on the first five
seconds of data in which any injected signal is not
included. In this simulation we put cutoff frequencies at
60 Hz and 400 Hz so that lower and higher frequencies are
filtered.
We assume that theGWsource is a spherically symmetric

core collapse supernova. The injected signals correspond to
a single source located at the right ascension (RA) of
15 hours and the declination (DEC) of �60degrees. The
mass of the progenitor is 10 M	, !BD ¼ 40000, the dis-
tance from the Earth is 10 kpc. We here assume that h�ðtÞ
and hþðtÞ are absent and that the simulated gravitational
waveform is h�. In the next subsection, wewill perform the
same simulation in the presence of h�ðtÞ and hþðtÞ.
Figure 5 shows the reconstruction of hþ, h�, h�, which

is one of the segments triggered by the pipeline. In the
reconstructed time series of h�, the injected signal is
clearly reconstructed. The injected h� is different from
Fig. 2. This difference comes from the fact that the low
frequency region below 60 Hz and the high frequency
region above 400 Hz in the data are filtered in this
simulation.
In this paper, although our approach does not need

gravitational waveforms a priori, we use the SNR calcu-
lated in the same way of Eq. (10) in order to evaluate the
accuracy of the reconstruction:

SNR ¼
0
B@Z 1

�1

P
A
~hAðfÞ~h�AðfÞ
SnAðfÞ df

1
CA

1=2

; (14)
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FIG. 4 (color online). The sensitivity curves. The x axis is
frequency and the y axis is amplitude spectrum density.
Detectors considered are H, L, V, K with the same sensitivity
which is similar to the design sensitivity of advanced LIGO.
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where ~hAðfÞ is the reconstructed hA in Fourier domain,
~hAðfÞ is the injected hA in Fourier domain, and SnAðfÞ is
the power spectrum density of the reconstructed hA. It
should be noted that realistic searches for GWs from super-
novae cannot use the waveformmodels because the models
are not well established at present. The realistic search may
use other indicators which do not use waveform models
such as the excess power statistics [55].

The SNR of the reconstructed h� which is band filtered
is 14.3. The SNR of h� in H, L, V, K before the recon-
struction is 4.9, 13.4, 16.4, 0.54. F� is�0:26 for H, 0.42 for
L,�0:45 for V, and�0:01 for K. The main contribution to
the SNR is from V which has the best antenna pattern
among them.

Figure 6 shows the SNR of h� in H (the magenta line),
L (the blue line), V (the light blue line), and K (the green

line), and reconstructed h� (the red line) as a function of
!BD. The reconstruction procedure was repeated 28
times with different data sets, and the SNRs were calcu-
lated at each trial and then they were averaged.
Interestingly, the SNR of the reconstructed h� is higher
than the others. As shown in Eq. (6), the maximum
likelihood method combines all detector data streams
that are weighted by their sensitivities in the whitening
procedure. Multiple sensitive-detector data streams make
contributions to reduce the variance of the reconstructed h�
and the SNR of the reconstructed h� rises up. In regard to
constraining !BD by practical GW observations, further
studies including the difference of each detector’s sensi-
tivity and the dependence of SNR on a sky position are
needed.

C. Reconstruction of the polarization modes
with tensor mode signals

In the previous section we considered the reconstruction
of the GW which contains only the scalar mode. The
algorithm can reconstruct all the modes if they exist. In
this section we demonstrate the reconstruction of a GW
which contains three modes, hþ, h�, h�. An example of
the reconstruction of the polarization modes hþ, h�, and
h� is shown in Fig. 7. The detectors H, L, V, K are assumed
to have the same sensitivity as shown Fig. 4. The set of
detector noise is generated in the same way as in Sec. IV.
Regarding injection signals, in this simulation we will not
use GW waveforms predicted by the Brans-Dicke theory
because spherically symmetric core collapse supernovae
do not produce tensor modes, and there is no realistic
simulation on asymmetric core collapses in the Brans-
Dicke theory. Instead, we will use the sine-Gaussian sig-
nals that are usually used for evaluation of GW burst
searches. The injected signals correspond to a single source
located at the RA of 16.4 hours and the DEC of 0 degrees.
We assume that
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FIG. 5 (color online). Reconstructed polarization modes.
The top plot is hþ, the middle plot is h�, the bottom plot
is h�. The x axis is time in milliseconds since GPS time
873651621.97314453[s]. The black dashed line in each plot is
the injected signal.
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h�ðtÞ ¼ A exp ½�ð2�f0tÞ2=2Q2� sin ð2�f0tÞ;
hþðtÞ ¼ A exp ½�ð2�f0tÞ2=2Q2� sin ð2�f0tþ �=2Þ;
h�ðtÞ ¼ A exp ½�ð2�f0tÞ2=2Q2� sin ½2�f0ðtþ 0:003Þ�;

(15)

whereQ ¼ 9 is theQ value and f0 ¼ 235 Hz is the central
frequency. The signal strength A is scaled so that the

root-sum-square hrss ¼ 1:38� 10�22 Hz�1=2. The dashed
lines in Fig. 7 are the injection signals. We evaluate the
signal strength by SNR. Table I shows the SNR of the

reconstructed hþ, h�, h�, and the SNR before reconstruc-
tion of the three polarization modes in H, L, V, K.
If we define a mean SNR as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNRðhþÞ2 þ SNRðh�Þ2 þ SNRðh�Þ2

3

s
; (16)

where SNR is 20.1 for reconstructed modes, 12.7 for H,
16.7 for L, 18.7 for V, and 15.9 for K. From Table I, one can
see even if several detectors in the detector network do not
have sensitivities to certain polarization modes, sensitive
detectors in the detector network can improve the SNR.
One indication to know the detector-network sensitivity
to the polarization modes is the network antenna pattern

skymap �FT :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPm

I¼1 F
I2þ þ FI2�Þ

q
, �FS :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPm

I¼1 F
I2� Þ

q
,

�FV :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPm

I¼1 F
I2
x þ FI2

y Þ
q

. Figure 8 shows the network

antenna pattern skymap of H-L-V-K. Comparing the
antenna pattern skymaps of the polarization modes for H
(see Fig. 1), for the antenna pattern skymaps of the tensor
modes, the region where the value is above 0.5 is increased
from 72.8% to 100%, for the vector modes, the region
where the value is above 0.5 is increased from 69.1% to
100%, and for the scalar mode, the region where the value

TABLE I. The SNR of the reconstructed hþ, h�, h�, and the
SNR of the three polarization modes in H, L, V, K. The antenna
pattern function ðFþ; F�; F�Þ is ð0:25;�0:46; 0:39Þ for H,
ð0:19; 0:36;�0:41Þ for L, ð�0:65;�0:38;�0:24Þ for V,
ð0:56; 0:25; 0:14Þ for K.

Reconstructed H L V K

hþ 23.3 8.3 9.6 26.7 24.5

h� 20.2 15.4 18.0 15.4 10.8

h� 16.3 13.3 20.4 10.0 6.2

FIG. 8 (color online). The left top plot is the network antenna pattern of H-L-V-K to a scalar gravitational wave. The x axis is the
longitude and the y axis is the latitude. The right top plot is the network antenna pattern function to the tensorial modes. The bottom
plot is the summed antenna pattern function to the vector modes.

MODEL-INDEPENDENT TEST OF GRAVITY WITH A . . . PHYSICAL REVIEW D 87, 062003 (2013)

062003-9



is above 0.25 is increased from 31.4% to 94.2%. These
show the benefit of the use of multiple detectors in terms
of the improvement of the SNR and the sky coverage. The
latter means that angular directions insensitive to a certain
polarization mode are removed and that the detector net-
work can distinguish all polarizations. It should be noted
that the matched filtering method on reconstructed polar-
ization modes is proposed in Ref. [56]. This method bene-
fits from the detector network directly.

V. SUMMARY

This paper develops a method to reconstruct at most five
non-Einsteinian polarization modes, in addition to hþ and
h�, of GWs using a network of ground-based interfero-
metric GW detectors. This method is applicable for testing
alternative theories of gravity by searching for scalar and
vector GWs. Since the method does not rely on any specific
model of the alternative theories and does not need
theoretical models of gravitational waveforms, the method
can be a model-independent test of an alternative theory
of gravity.

We overview the algorithm of the method. The detector
responses are first whitened by the linear predictor
error filter so that the processed data are sample-to-
sample uncorrelated. Since the detector response to a
GW is the linear combination of the polarization modes
weighted with the antenna pattern functions, the recon-
struction of the polarization modes is naturally formulated
as an inverse problem. We solve the inverse problem by

minimizing residuals by subtracting a reconstructed signal
from the detector output data.
We perform simulations of the reconstruction of the

polarization modes as demonstrations. We use the simu-
lated gravitational waveform from a spherically symmetric
core collapse supernova in Brans-Dicke theory, which
predicts only the scalar GW, and shows the scalar GW is
well reconstructed. We also demonstrate that all gravita-
tional waveforms are well reconstructed in the presence of
two tensor modes in addition to a scalar mode, using sine-
Gaussian waveforms. The mean SNR defined in Eq. (16) is
calculated for the reconstructed polarization modes and the
polarization modes in H, L, V, K before reconstruction.
The mean SNR of the reconstructed polarizations is higher
than the others, which means that sensitive detectors play
an important role to reconstruct the waveforms and gain
the SNR. For further study of the detectability, more real-
istic simulations considering the sky position dependence
of a source and other waveforms in a specific model of
gravity theory are encouraged.
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[47] J. Novak and J.M. Ibáñez, Astrophys. J. 533, 392 (2000).
[48] http://gwcenter.icrr.u-tokyo.ac.jp/en/researcher/parameter.
[49] K. Thorne, in Three Hundred Years of Gravitation, edited

by S. Hawking and W. Israel (Cambridge University Press,
Cambridge, England, 1987), pp. 330–458.

[50] L. S. Finn, Phys. Rev. D 46, 5236 (1992).
[51] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,

374 (2003).
[52] J. Makhoul, Proc. IEEE 63, 561 (1975).
[53] S. Chatterji, L. Blackburn, G. Martin, and E.

Katsavounidis, Classical Quantum Gravity 21, S1809
(2004).

[54] B. S. Sathyaprakash and B. F. Schutz, Living Rev.
Relativity 12, 2 (2009).

[55] W.G. Anderson, P. R. Brady, J. D. Creighton, and É. É.
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