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Pulsar timing arrays might detect gravitational waves from massive black hole binaries within this
decade. The signal is expected to be an incoherent superposition of several nearly monochromatic waves
of different strengths. The brightest sources might be individually resolved, and the overall deconvolved,
at least partially, in their individual components. In this paper we extend the maximum-likelihood-based
method developed in Babak and Sesana [Phys. Rev. D 85, 044034 (2012)] to search for individual massive
black hole binaries in pulsar timing array data. We model the signal as a collection of circular
monochromatic binaries, each characterized by three free parameters: two angles defining the sky location
and the frequency. We marginalize over all other source parameters, and we apply an efficient multisearch
genetic algorithm to maximize the likelihood function and look for sources in synthetic data sets. On data
sets characterized by white Gaussian noise plus few injected sources with signal-to-noise ratio in the range
10-60, our search algorithm performs well, recovering all the injections with no false positives. Individual
source signal-to-noise ratios are estimated within a few percent of the injected values, sky locations are

recovered within a few degrees, and frequencies are determined with sub-Fourier-bin precision.
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I. INTRODUCTION

Precision timing of millisecond pulsars provides a unique
opportunity to get the very first low-frequency gravitational
wave (GW) detection. This prospect is attracting the atten-
tion of the wider astrophysical community, causing a recent
boost of activity in the field. The European Pulsar Timing
Array (EPTA) [1], the Parkes Pulsar Timing Array [2] and the
North American Nanohertz Observatory for Gravitational
Waves [3], joining together in the International Pulsar
Timing Array [4], are collecting data and improving their
sensitivity in the frequency range of ~10"°-10"° Hz. In the
coming years, the Chinese five-hundred-meter aperture
spherical telescope [5] and the planned Square Kilometer
Array [6] will provide a major leap in sensitivity. Current
surveys are already placing interesting upper limits on the
level of a putative GW background [7,8], skimming the
range predicted by state-of-the-art models of massive black
hole (MBH) evolution [9,10]. Within the next few years, the
combined International Pulsar Timing Array data might
either result in a first detection or start placing interesting
limits on the MBH binary formation efficiency in massive
galaxies.

The detection principle is very simple: GWs affect the
propagation of radio signals from the pulsar to the receiver
on Earth, leaving a characteristic fingerprint in the time
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of arrival of the radio pulses [e.g., Refs. [11,12]].
Such fingerprint depends on the properties of the under-
lying cosmological population of inspiralling binaries and
will consist of a superposition of quasimonochromatic
waves, similar to the white dwarf-white dwarf foreground
[e.g., Ref. [13]] in the mHz window relevant to space-
based interferometry [14]. This signal has generally been
regarded as a stochastic background, and data analysis
techniques have been developed accordingly [7,8,15-18].
The actual expected signal, however, is far from being
isotropically distributed in the sky, with just a few sources
dominating the power at each frequency [9,10,19]. The
possibility of resolving an individual source offers appeal-
ing astrophysical prospects, and pulsar timing array (PTA)
capabilities on this front were also investigated in detail
by many authors [20-25].

What is still missing is a detailed study of what kind of
information a PTA can extract out of a complex super-
position of multiple sources. Is the signal going to be
similar to confusion noise? Can we resolve individual
sources? How many of them? Can we locate them in the
sky, and to what level of accuracy? All these questions are
of great interest for the astrophysical community; precise
sky localization of individual sources will allow the effi-
cient search for electromagnetic counterparts [26,27],
opening the new horizon of multimessenger astronomy.

This is the second in a series of papers devoted to the
exploration of the PTA potential of resolving multiple
GW sources. In Ref. [28] (hereinafter Paper I), we dem-
onstrated PTA efficiency in disentangling monochromatic
sources at the same frequency. The key idea is to estimate
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the likelihood that a certain number of sources with
certain parameters are present in the data. We developed
a formalism that allowed us to maximize analytically the
likelihood over the extrinsic source parameters, restrict-
ing the search to the source sky location only (2 X N
parameters, where N is the number of GW sources in
the template). There, we did not implement any proper
algorithm to search over the parameter space, and we
made a lot of simplifying assumptions, suitable to a first,
exploratory investigation.

Our aim is to implement a proper search algorithm,
progressively relaxing our limiting assumptions to develop
a detection pipeline able to handle the whole complexity of
a realistic data set. We start in this paper with the following
two major steps: (i) we extend our mathematical formalism
to include a frequency scan and (ii) we present an upgraded
version of the genetic algorithm employed by Petiteau
et al. [29] in the LISA mock data challenge [30,31] spe-
cifically developed to search for a global maximum on
the multimodal likelihood surface embedded in the multi-
dimensional parameter space. We have found (similarly to
the mock LISA data challenge) that the genetic algorithm
(GA) is very efficient in finding the correct number of
sources and their parameters.

The paper is organized as follows. In Sec. II we spell
out our main assumptions, and in Sec. III we present
the genetic algorithm and its feature. The data sets used
to test the algorithm are detailed in Sec. IV, and the
algorithm performances and results are presented in
Sec. V. In Sec. VI we draw our conclusion and discuss
improvements we will present in future work.

This research is the result of the common effort to
directly detect gravitational waves using pulsar timing,
known as the European Pulsar Timing Array (EPTA)
[1,32].

II. DETECTION STRATEGY, EXTENSION TO
FREQUENCY SEARCH

The main purpose of this paper is to extend our formal-
ism to include search in frequency and to implement a
proper search algorithm to identify maxima in the like-
lihood. Accordingly, we relax numbers 1, 3, and 8 from
the limitations and assumptions described in Sec. II of
Paper [, i.e.,

(1) We consider only data sets with noise.

(2) We inject sources at different frequencies.

(3) We implement a proper search algorithm to max-

imize the likelihood.

A. Choice of the template

In computing the likelihood function, we consider
monochromatic GW sources assuming that the orbital
frequency does not change appreciably over the observa-
tion period [see, e.g., Ref. [21]] which we took to be
10 years. Each GW signal is therefore characterized by
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seven parameters only: the overall signal amplitude { A},
the source frequency and phase {f, ®,}, and the angles
defining its location in the sky {¢, 8}, inclination {¢}, and
polarization {/}. Contrary to Paper I, we do not fix all
the systems at the same frequency but we consider the
unknown frequencies of the sources as additional search
parameters.

We do not use the full response of the pulsar-earth
detector, which is composed of the “‘earth term” and the
“pulsar term” [see, e.g., Ref. [21]] (from now on we drop
the quotes and use those notions as jargon), but we con-
struct a signal template to match the earth term only. There
are several reasons to drop the pulsar term in the analysis.
In all pulsars, the earth terms add up coherently: they all
have the same frequency and phase, and the amplitude of
the signal in the residuals depends on the relative position
of the pulsar and the GW source on the sky. Conversely, the
pulsar terms are, in general, incoherent: they usually ap-
pear at different frequencies, and the phase and amplitude
of the signal depends not only on the position of the source
relative to the pulsar but also on the distance to the pulsar,
which is usually poorly known (in most of the cases to
~10% precision). Even if we assume we know the pulsar
distance exactly, the pulsar term carries the imprint of the
binary system as it was emitting at a time Az = L(1 + k.A)
in the past as compared to the earth term, where L is the
earth-pulsar distance and k and A are the unit vectors
pointing to the sky location of the source and the pulsar,
respectively. This means that to connect pulsar and earth
terms, we need to know the evolution of the binary system
for At, which is typically 10°~10* years. Adding the pulsar
term in our template could enhance the overall detection
signal-to-noise ratio (SNR) and potentially improve the
estimation of the distance L. However, in order to extract
useful information, we need to model the past evolution of
the binary over a rather long time. This requires specific
assumptions about the binary system: whether it is precess-
ing due to misaligned spins [33] or eccentricity and
whether it is driven completely by gravitational radiation
reaction or there is a measurable influence on the dynamic
from the gasous [19,26] and stellar environment [34]. Any
answer obtained using the pulsar term is therefore strongly
conditional: it depends on the assumed model for the
binary evolution, and it may not be unique. In addition it
will require searching for more parameters, which will
inevitably increase false alarm probability and may reduce
the efficiency of the search. In this work we are trying to
avoid these complexities. However, as mentioned above, if
the detection of the pulsar term is possible (and correctly
associated to a given GW source), then it will bring valu-
able information about the binary. Adding of the pulsar
term in the search template is also necessary if the fre-
quencies of the pulsar and earth terms are the same and
interfere with each other. This happens for very low-
frequency binaries, which we do not consider in this paper.
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B. Likelihood function and detection statistics

The details of the detection statistics were outlined in
Paper 1. We briefly summarize here the main points and
describe the extension of the formalism to sources with
different frequencies. As justified in the previous section,
we use the matched filtering technique, assuming the earth
term as a template. The mathematical description of the
signal template for an individual source as a function of the
parameters A = {4, f, @y, ¢, 6, 1, } is given by equa-
tions (11)—(16) of Paper 1. We denote the measured timing
residuals as x,, which includes the measurement noise and
the influence of the GW signal r,, where the subscript «
identifies the ath pulsar in the array. The log-likelihood
ratio (likelihood that a data set x,(7) contains a GW signal

r.(t; X) over the likelihood that it is pure noise) is

1
10gA:<xa|ra>_§<ra|ra>» (1)
where r, = rE is the expected earth term in the data. We
neglect here all possible stochastic GW signals and look
for individual binaries standing above a putative unre-
solved background only. The inner product appearing in

Eq. (1) is defined as

2Ls S ipr(e) 2
NS(f)izzlxt,rt,, 2)
where N is the number of points in the time series, T, is the
observation time, and S(f) is the one-sided noise power
spectral density, which we assume to be white Gaussian.
Equation (2) is the discrete version of the inner product
used in Paper I; it has the advantage of being applicable to
unevenly sampled data, which will be the case in reality. It
was shown in Paper I that the GW signal imprinted in the
data by each individual source can be written as

(x|ry =

~

= Z aghy 3)

where h(;) denote the time-dependent parts of the GW
signal and includes the parameters for which we want to
search, while a( j) are constants over the observation period.

We can then maximize the likelihood ratio over the a;
constants for each GW source analytically,

dlog(A) _
98 0, —ap =MIX, 4
da;) 0= @

1 _
{lOg (A)}max{a(j)} = j:e = EXijkIXj’ )

where
P P

Xj = Z<x’1|h(c;)>’ = Z (])lh&)>- (6)

a=1 a=
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The statistical properties of F, are investigated in detail
in Ref. [25]. In the presence of Ny GW sources in the
template, the coefficients a ;) are represented by a 4 X N
array, X; is also a 4 X N, array, while the M matrix is a
4N, X 4N, two-dimensional matrix. The matrix can be
decomposed in N, 4 X 4 row- and column-matrices, each
corresponding to the cross terms between the /th and Jth
GW sources,

NI VI UMIY QVIY
M= olry viIiy oIl vUI o
ol RES RN RS PR b
QT VNIN QU vl

where
Ul = (FO)(Fe), QY = (F)(FgY,
VI = (FO)I(Fg), 3

and F¢ represent the decomposition of the antenna pattern
given by Eq. (16) of Paper I. The I terms come from the
inner products of the time-dependent parts of hg.)y which

for each source I are cosine and sine functions of phase
¢; = 2mf;t = w,;t. We can evaluate those inner products
analytically by using the integral representation adopted in
Paper I; for example,

L I ) = (FEYCFE)Y Gsin ()] sin ()
~ (ng(pg)f% [O " sin (¢,) sin (¢,)dr
= (Fo)/(Fe)/ I = UM T, ©)

The explicit form of the I integrals for all possible sine and
cosine combinations are given by

I = 2 (" sin (w’?) sin (w’1)dt
T, Jo
= sinc(A @) — sinc(S ), (10)

TO
Il = —f cos (w't) cos (w’t)dt
() 0

= sinc(A @) + sinc(Z ), (11)

T, .
Il = — f sin (w?) cos (w’t)dt
() 0

= sin (?)sinc(zj)) +s ( f)smc(A;b) (12)
I = T fOTO cos (w'?) sin (w’t)dt
= sin (22¢)s1nc<2¢) sin <A¢)51nc<A¢) (13)
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where Ap = (0! — 0/)T, and 2 ¢ = (0’ + @’)T,. Note
that the M matrices reduce to the expression given in
Eq. (25) of Paper I when w! = w’. The I # J terms give
beatings between two signals at different frequencies,
and they are usually smaller than the terms in the / = J
matrices. We found that one can consider the sources
approximately at the same frequency if |f; — f,| =
(2/3)AF, where AF = 1/T, is the size of the Fourier
frequency bin.

We use F, as a detection statistic that depends on 3N,
search parameters (frequency and sky position of each GW
source). Note that the number of GW sources N, is not
known and has to be determined during the search proce-
dure. We can also estimate the relative contribution of each
source as 7 = 3 X/(M};')’X/. Following [35], the rela-
tion between the expectation of the analytically maximized
likelihood F, and the SNR can be expressed as

E(F,) = %(41\7‘? + SNR?). (14)

To search for an individual source, we use the same mathe-
matical framework assuming N, = 1. We refer to Ref. [25]
for more details on the statistical properties of F, in this
latter case.

III. MULTISEARCH GENETIC ALGORITHM:
DESCRIPTION AND IMPLEMENTATION

We search for the maximum of F, with an improved
version of the genetic algorithm (GA) described in
Ref. [29], performing multiple searches in parallel. There
are other stochastic optimization methods which are cur-
rently used in the GW data analysis: Monte Carlo Markov
Chain [36], particle swarm optimization [37], etc. All these
methods (besides the grid-based method) work well if
(i) the initial guess is near global maximum or (ii) if there
is only one maximum. In all other cases the optimization
methods guarantee finding a maximum (if there is one) but
do not guarantee that it is the global one (for reasonable
computation time). In our case neither (i) nor (ii) are true.
We do not know a priori where the global maximum could
be, and we have a large number of strong local maxima.
What is crucial in this search is not the GA itself, but its
specific implementation (multiple searches genetic algo-
rithm as described below), which deals with the multiple

TABLE 1.
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maxima of the likelihood surface in a multidimensional
parameter space.

A. Genetic algorithm

The GA is a method to perform global searches on
large parameter spaces (optimization method) based on
the natural selection principle. We apply this method to
the search for individual GWs in PTA data using equiv-
alences described in Table I. A template described by a set
of parameters {6, ¢,, f;} is one organism described by a
set of genes; the F, of the template is the quality of the
organism; parameters are converted to the binary form,
and the set of bits represents a gene of the organism.

We start with a group of organisms (templates) chosen
randomly (initial search) or constructed from the results of
previous searches. We evaluate the quality of each organ-
ism (F,). We select set of pairs (parents) based on qual-
ities: organisms with better quality (templates with higher
F.) are chosen more often than weak organisms. We
combine the genotypes of two parents to produce a child
(we combine parameters of two chosen templates to pro-
duce a new one). We impose the number of produced
children to be equal to the number of parents (i.e., we
keep the number of evolving organisms constant at each
generation). Next, we allow with a certain probability a
random mutation in the children’s genes (with some proba-
bility we randomly change the parameters of the new
templates, exploring a larger area of the parameter space).
The parents are discarded, and the resulting children form a
new generation. We repeat the procedure until we reach a
steady state (maximum in the quality) or a maximum
number of generations. We keep only one generation active
(one group of templates).

The selection and the random mutation processes
are controlled by tunable parameters (temperature and
probability mutation rate, respectively) that define the
breadth of the search. Depending on their value, the colony
of organisms can either explore the whole parameter space
or sample only the areas around the local maxima, allow-
ing the alternation of global and local exploration phases.
The definition and implementation of such parameters
and a general discussion of the selection, breeding, and
mutation processes can be found in Secs. III and IV of
Petiteau et al. [29].

Correspondence between GA and GW data analysis notions.

Genetic algorithm

GW search

Organism

Gene (of an organism)

Allele (of a gene)

Quality Q

Colony of organisms

nth generation

(selection + breeding) + mutation

RRRRRE

Template: signal from N; GW sources
Parameter (of a template): 3 X N,

Bits (of the value of the parameter)
Maximized likelihood, i.e., F-statistic F,
Evolving group of templates
The state of colony at nth step of evolution
w parameter space exploration strategy
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We typically use 50 organisms per generation and 1000
generations. The run of one GA takes a few minutes on a
standard laptop (one Intel core at 2 GHz). Since the size of
the parameter space increases with the number of sources
in the template, the convergence speed decreases accord-
ingly. The algorithm usually converges around the true
solution in less than 400 generations for the highest SNR
sources. One of the most interesting features of the GA is
its efficiency in finding maxima in the F, surface first
(during the large exploration phase) and then in exploring
them deeply to extract the global one (during the local
exploration phase). One GA run is usually sufficient to find
most of the sources, but sometimes it gets stuck on some
local maximum. To overcome this problem, we run several
GAs in parallel, as described in the next section.

B. Multiple searches (MultiSearch)

The GA described in the previous section provides the
basis for a more general method called the ‘“multiple
searches” (MS) algorithm. This method consists in run-
ning several GAs in parallel with different properties and
initial parameters.

We take an initial population with parameters chosen
randomly. We start a GA on this population, tuning the
parameters to perform a large exploration. In the resulting
population, we select only the best organisms which are
well separated. This means that the selected organisms
have SNR > 97%SNRg,; and the distance in parameter
space between two organisms is higher than a certain
threshold chosen empirically after a number of tests:
lcos (0,;) —cos (0, )| > A =0.1, | ;= ;|>0,=
20° and |f;; —f,yjl > Ay = 0.5 nHz, where I refers to
the source and i and j to the solutions. The selected
solutions are called “modes,” and this selection process
is called “mode separation.”

The next step is to start one GA on each mode, tuned for
local exploration. The goal is to explore the vicinity of the
mode to find the local highest value of F,. The organisms
of each GA are allowed to explore only their mode neigh-
borhood and are forbidden to go on the area of interest of
other modes. The area of interest of a mode {cos 8;, ¢,, f;}
is defined within [cosf; — Ay, cos6; + Ayl, [d; —
Ay, b+ Ayland [f; — Ay, f; + Af]. In parallel to these
“mode GAs,” we start another GA tuned for large explo-
ration. We forbid the organisms of this GA to go on the
areas of the modes. The aim of this GA is to find new
modes (overlooked in previous searches) if there are any
left (it can also give a null result).

At the end of this step, all the solutions are grouped
together and we apply the “mode separation” to identify
“modes.” Then we iterate the procedure by restarting
several “local” GAs.

In the long run, this method, like other stochastic
methods (e.g., Markov Chain Monte Carlo methods), is
guaranteed to converge to the global maximum. However,
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there is no way to exactly know a priori how fast it will do
so, and one has to decide when to stop it, being somehow
confident that the best solution has been found. We usually
do two to five iterations of the procedure outlined above
before stopping. The number of modes N,,,q4.s found in-
creases with the number of iterations. Since we are running
Niodes T 1 GAs at each iteration, the first one takes just a
few minutes (one initial exploratory GA run), the second
one can take up to an hour (depending on the number of
modes found in the first iteration), and the later ones up to a
few hours. In total, we run between 50 to 300 GAs for a
search. The correct solution is usually found after two
iterations (i.e., about one hour). As a pseudotest for con-
vergence, we run several times (typically ten) our MS-GA
code, with different initial conditions. If all the runs give
almost the same results, we claim convergence.

IV. DESCRIPTION OF THE TEST DATA SETS

The genetic algorithm described in the previous section
was used to analyze four blind data sets, which we describe
here in detail. Each data set consists of a collection of
time series representing the residuals obtained by timing an
ensemble of millisecond pulsars (MSPs). To keep our
investigation as general as possible, in all data sets MSPs
are placed randomly in the celestial sphere, each time
series consists of 523 equally sampled data points over a
total observing time of ten years (one datapoint every
week), and the noise is assumed to be white Gaussian
(we will specialize our searches to PTA pulsars in our
future work). The injected sources were all equal mass,
circular, nonspinning binaries with chirp mass of 10°M,,
placed at the same redshift (distance), but with sky location,
inclination, polarization, and initial phase drawn randomly,
resulting in a range of signal strengths. The number of
injected sources and their parameters were chosen to
generate suitable signals with the desired SNR and do not
reflect the expected distribution of MBH binaries in the
Universe. We will test our algorithm on more realistic data
sets in future work. Based on the statistics of individually
resolvable sources presented in [Ref. [10] see their Fig. 6],
the frequency was drawn from a random distribution in the
range 1078-1077 Hz.

Sources were evolved according to an equation of mo-
tion accurate to 3.5 post-Newtonian order in phase evolu-
tion [38], and gravitational waveforms were generated
following [21] (see also Refs. [39,40]). The final residuals
injected in the data sets were obtained by time integration
of the waveforms (see Egs. (8) and (9) of Paper I). Note that
the injected data are quite different from the adopted
circular, nonevolving monochromatic templates we use in
the search; we are therefore mimicking the (likely) situ-
ation in which the template does not perfectly match the
signal. Especially at high frequency, there might be a non-
negligible evolution of the source frequency over ten years,
possibly introducing a bias in our source recovery. We will
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Sample of simulated time series. In each panel, the red dashed curve is the injected signal, where the blue

jagged line represents the total raw data set, including signal plus white Gaussian noise. Left panel: pulsars extracted from Dataset3;
sources are injected in white Gaussian noise with rms o = 50 ns. Right panel: pulsars extracted from Dataset4; here each pulsar has a

different noise level, as labeled in each panel.

quantify this effect on our results in Sec. V. As in Paper I,
we considered the earth term only (issues related to pulsar
terms will be explored in the next paper). Here we follow
the details of the four data sets:

(1) Datasetl: 30 MSP; rms noise 50 ns in each pulsar; 5
binaries at z = 0.01, with individual SNR in the
range ~30-60;

(i1) Dataset2: 30 MSP; rms noise 50 ns in each pulsar; 4
binaries at z = 0.02, with individual SNR in the
range ~15-55;

(iii) Dataset3: 50 MSP; rms noise 50 ns in each pulsar;
8 binaries at z = 0.03, with individual SNR in the
range ~10-40;

(iv) Dataset4: 50 MSP; rms noise of each pulsar
randomly drawn in the range 30-200 ns; 3 binaries
at z = 0.01, with individual SNR in the range
~30-40.

Data sets are in order of increasing complexity
(more sources, lower SNR). In the last data set we tested
the algorithm performance when combining time series
with different noise levels. Sample time series extracted
from Dataset3 and Dataset4 are visualized in Fig. 1, where
we can appreciate the variety of imprints depending on the
pulsar location in the sky relative to each individual source.

V. RESULTS AND DISCUSSION

The data sets were generated separately by A. Sesana
and were blindly analyzed by A. Petiteau and S. Babak.
The MS-GA was applied to all data sets, adding sources
one by one to the template. By doing this, we could test the
effectiveness of the code in determining both the number of
sources in the data set and their sky location. A summary of
the results is given in Table II.

For each data set we evolved several colonies of organ-
isms assuming N, = 1,2,3, ... in the template, we com-
puted the SNR of the best organism at the end of each
search and tracked its evolution with N,. Results are shown
in the left panel of Fig. 2 for Dataset3. The maximum SNR
steadily increases by adding sources up to N, = 8. Adding
a ninth source to the template does not significantly
improve the match with the data, indicating that the data
set is best described by an eight-source model; in fact, there
were eight sources in Dataset3. The algorithm identified
the correct number of sources in all data sets. We stress
here that all the injected sources had SNR > 10, high
enough to be dug out of the noise. In the presence of
many low SNR sources, we do not expect any search
algorithm to recover the correct number of binaries, only
to identify the brightest ones. We will address this
“confusion problem” in a future paper. A complementary
view of this result is given in the right panel of Fig. 2. We ran
several GAs using nine-source colonies of organisms, we
identified the solution (organism) with highest SNR
(SNR,,.,), and we stored all the organisms having SNRZ, >
99%SNRZ,,. The figure shows the location in the sky of all
sources found in all these "best solutions.” The location of
sources 1 to 8 does not change much for different solutions,
and it is generally consistent with the true (blue crosses)
locations of the injected sources. Conversely, the 9th source
(green circles) is extremely scattered around the sky.
Moreover, the frequency-SNR plot at the extreme right
shows that the individual SNR of those 9th sources are
almost always <5, compatible with noise fluctuations.

Having tested the code effectiveness in finding the
number of sources present in the data, we turn now to the
description of the results obtained on the individual data
sets. Best solutions (those with SNRZ, > 99.5%SNRZ, )
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TABLE II.

Recovered (and injected) parameter values of all the simulated sources in each data

PHYSICAL REVIEW D 87, 064036 (2013)

set. The last column represents the sky offset of the recovered sources with respect to the

injection (see text for details).

f[rad]

Plrad]

A®[deg ]

SNR f[nHz]
Datasetl 60.70 (61.11) 56.6 (56.4)
45.85 (42.48) 38.0 (38.0)
43.71 (40.43) 36.4 (36.4)
35.67 (36.14) 53.7 (53.5)
32.27 (31.33) 48.3 (48.0)
Dataset2 54.64 (54.07) 18.88 (18.9)
48.01 (47.24) 11.25 (11.3)
13.64 (13.05) 77.42 (76.5)
12.23 (12.78) 57.19 (57.0)
Dataset3 4491 (42.99) 19.33 (19.3)
37.39 (37.72) 2542 (25.4)
26.02 (27.09) 13.21 (13.2)
20.19 (20.88) 83.42 (82.4)
19.67 (18.51) 39.79 (39.8)
17.27 (16.59) 33.16 (33.1)
13.07 (13.19) 73.83 (73.0)
10.66 (11.51) 82.75 (81.8)
Dataset4 42.73 (43.92) 98.2 (96.3)
28.62 (29.28) 91.5 (90.1)
27.56 (28.28) 48.2 (48.1)

1.249 (1.237)
1.750 (1.748)
1.555 (1.529)
0.537 (0.534)
1.286 (1.295)
1.774 (1.774)
1.870 (1.858)
0.617 (0.651)
1.613 (1.549)
0.474 (0.468)
0.883 (0.878)
1.769 (1.764)
0.689 (0.668)
0.541 (0.509)
1.381 (1.397)
1.534 (1.536)
0.809 (0.864)
2.028 (2.043)
2.655 (2.661)
1.231 (1.245)

2.604 (2.601)
3.765 (3.764)
1.722 (1.712)
5.522 (5.451)
5.144 (5.123)
3.839 (3.841)
5.720 (5.718)
6.158 (6.115)
6.050 (6.048)
1.450 (1.454)
2.733 (2.749)
5.078 (5.087)
4.133 (4.162)
0.386 (0.429)
3.621 (3.693)
5.054 (5.078)
6.182 (6.085)
0.977 (0.961)
1.174 (1.121)
5.774 (5.769)

0.706
0.127
1.596
2.085
1.266
0.112
0.696
2.434
3.669
0.359
0.763
0.581
1.593
2.211
4.160
1.379
5.192
1.200
1.454
0.827

for Dataset] are shown in the top panel of Fig. 3. All the
five injected sources were found at approximately the right
sky location, with the right frequency and SNR. Our GA is
designed to find the modes corresponding to maxima in the
likelihood function, but not to explore the exact shape of
the likelihood function around those modes. The lack of
parameter space exploration around the maxima prevents
us from attaching fully meaningful errors to our best
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solutions. We plan to include systematic exploration of
the maxima in future work; here we just estimate the sky
location error as the angular offset between the best solu-
tion and the injected signal. This is defined as A® =
arccos (71, - i1,), where 7, and 7, are the unit vectors defin-
ing the true sky location of the sources and the recovered
value, respectively. This is reported in the last column
of Table II. All sources in Dataset]l are offset by less
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Performance of the MS-GA in finding the number of sources. Left panel: signal SNR as a function of the
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(rightmost panel). Blue crosses (X) correspond to injected values and black dots to the position of the MSPs forming the array. Red

marks represent sources 1-8 found by all the organisms with SNR;

z2 > 99%SNR§esl, while green circles represent the 9th source. Note

that this latter one does not have a defined position, and typically has SNR < 5.

064036-7



PETITEAU et al.

65 100.5
60 ¥ 100
55 99.5
2
© 50 99
=
=
2 o
z 45 98.5
E &
40 98
35 £ 97.5
b
30 97
srcl o srcS o 20 40 60 80 100
src2 o psr - ;
ae3 - e X Frequency (nHz)
srccd v
55 g 75.1
50 75
R 74.9
45
74.8
40
9 .
% 74.7
= 35 74.6
S
£ 30 74.5
3
£ 55 74.4
74.3
20
74.2
15 A 74.1
10 74
srcl o psr - 20 40 60 80 100
src2 o true X . .
ae3 - Frequency (nHz)
srccd v
44 60
42 59.8
40 59.6
o 38 59.4
Z
2 36 59.2
<
S
= 34 59
3
=]
= 32 58.8
30 58.6
X
28 584
A .
e 26 58.2
src; o true X 20 40 60 80 100
2;53 Z Frequency (nHz)

psr -

FIG. 3 (color online). Best solutions for Datasetl (top panel),
Dataset2 (central panel) and Dataset4 (bottom panel). In each
panel all solutions with SNRZ, >99.5%SNR?Z  are shown.
Symbols have the same meaning as in the right panel of Fig. 2.
All recovered sources are color-coded according to the rightmost

scale, based to the total SNR of the solution they belong to.

than 2 degrees. Results for Dataset2 are shown in the
central panel of Fig. 3. Again, we see that all sources are
correctly identified, despite two of them having SNR just
above 10. Sky location offsets A® are less than 1 degree
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for the two low-frequency bright sources, but degrade to
~3 degrees for the high-frequency, faint ones. Dataset3
was the richest of all, with eight injected sources. Best
solutions are shown in Fig. 4, for different SNR threshold,
to give a sense of how fast points cluster toward the
maximum of the likelihood. Also in this case, all sources
are well located in the sky, with brighter sources located
best. Looking at Table II, we notice that we tend to over-
estimate the frequencies of sources above 60 nHz. This is
because at such high f, the 10°M,, chirp mass binaries
injected in the data chirp significantly over the ten-year
duration of the observations. This is the bias we mentioned
in Sec. IV. Since we are matching the signal with non-
evolving monochromatic templates, the estimated fre-
quency is higher than the one injected at the beginning of
the observation. The mismatch is larger for higher frequen-
cies due to the faster evolution of the sources. We have
checked that this bias is indeed due to measurable orbital
evolution (over the observation time) by injecting in the
data strictly monochromatic GW sources (the same used
for the templates). On the other hand, we do not observe
any bias in the sky localization caused by the frequency
evolution. Since the bias in the frequency is small, a mean-
ingful strategy would be to perform an initial search as-
suming f = 0 throughout the whole frequency band, and
then use the best solution as an initial guess for a refined
local search including frequency derivative for the GW
sources with f > 60 nHz. We will discuss how likely
such sources are (with measurable f) at the end of this
section. The same effect is seen in Dataset4 (bottom panel
of Fig. 3 and Table II). Also in this case, we find source
offsets within ~1 degree of their true position, but we give
a couple of extra nHz to the high-frequency sources.
Different noise levels in the pulsars do not affect the
performance of our search algorithm.

Overall, our MS-GA performed well on all data sets,
recovering all the injected sources without returning any
false positives. The parameters of the recovered sources
well matched the injections with (i) sky location offsets
less than a few degrees, (ii) individual source SNR estima-
tions within few percent of the true ones, and (iii) sub-
Fourier-bin frequency accuracy (sometimes within 0.1 nHz
for low-frequency sources). Without a complete explora-
tion of the likelihood function around the maxima, it is
difficult to asses proper errors on the parameters. We can,
however, take sky position offsets as a proxy of the sky
localization accuracy. In fact, offsets shown in the last
column of Table II scale (with a large scatter) with the
inverse of the SNR. This has to be expected: an offset
scaling with 1/SNR implies an area of uncertainty scaling
with 1/SNR?, in agreement with theoretical expectations.
If we approximate the error box in the sky as A{Q) =
m[A®T, we get values in the range 10-70 deg? for
sources with SNR in the range 11-13. This is broadly
consistent with Ref. [21], which estimated an average
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FIG. 4 (color online). Best solutions for Dataset3. The top panel
shows all solutions with SNRZ, > 99%SNRZ, ., the central panel
all solutions with SNRg, >99.5%SNR;,, and the bottom
panel all solutions with SNRZ, > 99.8%SNRﬁest. Symbols have
the same meaning as in the right panel of Fig. 2. All recovered
sources are color coded according to the rightmost scale, based

to the total SNR of the solution to which they belong.

sky location accuracy of AQ =~ 50 deg? for a source
observed by an array of 50 pulsars, randomly located
in the sky, with total SNR = 10 (in the earth term). As
mentioned above, another interesting fact is the frequency
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mismatch for sources approaching 10”7 Hz, caused by
their frequency evolution over the observing time
(ten years). This means that, in principle, for such sources,
we can measure the frequency drift £, i.e., the chirp rate.
The measure of f breaks the chirp mass/luminosity distance
degeneracy in the source amplitude, allowing for a direct
measurement of the source luminosity distance. This, ulti-
mately, will narrow down significantly the number of
candidate electromagnetic counterparts in the source sky
error box, facilitating a positive identification. However,
evolution on such short timescales is detectable only for
very massive (M ~ 10°M,, like the systems injected in
the data) binaries, emitting at frequencies higher than
~7 X 10~® Hz. Intrigued by this possibility, we checked
how likely is to find such extreme systems in realistic
populations of MBH binaries in the Universe. We took
the models investigated by Sesana et al. [10] and computed
the average number of expected sources with M > 10°M,,
and f>7 X 1078 Depending on the adopted MBH
mass-bulge relation and on the accretion implementation
[see Ref. [10], for details], we found an average number of
sources, ranging from 1073 to 0.04, i.e., there is less than
a 5% chance of having such a bright high-frequency
source in the sky. If we relax the mass requirement to M >
5 X 108M,, figures grow to 0.01-0.4. To properly quantify
the probability of measuring f, one should estimate its
minimum measurable value for a given array, and then
select in the MBH binary population all the sources occu-
pying the portion of the chirp mass-frequency parameter
space compatible with such value. The crude figures esti-
mated here indicate that f measurements using the earth
term only should be unlikely. The presence of up to two to
three such sources in our data sets reflects the fact that they
were constructed purely as a test bed for our multiple
searches genetic algorithm search and not based on real-
istic MBH binary populations.

VI. CONCLUSIONS

This is the second in a series of papers devoted to the
exploration of the PTA potential of resolving multiple GW
sources. In Paper I we addressed basic issues, such as the
number of sources per frequency bin that can be resolved by
an array of N pulsars, demonstrating our findings with
primitive searches on several (mostly noiseless) synthetic
data sets. Here we pushed our analysis a bit further by
(i) extending the mathematical formulation of the likelihood
function to include the source frequencies as additional free
parameters and by (ii) implementing a multisearch genetic
algorithm to efficiently find the maximum of the likelihood
function.

We constructed synthetic data sets consisting of collec-
tions of time series representing the residuals obtained by
timing an ensemble of MSPs. MSPs were placed randomly
in the sky, each time series consisted of 523 equally sampled
data points over an observing time of ten years (one data
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point every week), and the noise in the data was assumed to
be white Gaussian. In each data set, we injected an unknown
number N of sources with random parameters and individ-
ual SNR > 10, and we apply our multisearch genetic algo-
rithm to search for their sky location and frequency. Note
that we assumed circular monochromatic sources in our
template, but we allowed for full post-Newtonian evolution
of the injected sources. By doing so, we placed ourselves
in the (likely) situation in which the theoretical model of the
signal does not perfectly represent its real nature, and we
explored the consequences of this mismatch.

Our main results can be summarized as follows:

(i) The MS-GA generally converged to the true
maximum of the likelihood function in two to five
iterations (a few hours on one core at 2 GHz).

(i1)) The MS-GA successfully identified all the injected
sources in all data sets. No false positives were found.

(iii) The search on all source parameters was success-
ful: inferred sky locations were offset by less than a
few degrees, individual source SNR estimations
matched the injections within a few percent, and
frequencies were determined with sub-Fourier-bin
precision (most of the times to better than 0.1 nHz).

(iv) The sky location offsets roughly scaled with
1/SNR, implying a sky location accuracy scaling
as 1/SNR?. Even though we did not compute
proper error boxes in the sky, we estimated source
localization capabilities broadly consistent with
theoretical expectations derived in Ref. [21] under
similar assumptions.

(v) We overestimated the frequency of sources ap-
proaching f = 1077 Hz. This is because massive
systems at such high frequency significantly chirp
during the observation time (whereas chirp was not
allowed in our template). This means that we can
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measure f and, therefore, estimate the chirp mass
and, in turn, the luminosity distance of the source.
Although this is a very appealing prospect, we esti-
mated on average less than one source with a mea-
surable f in a realistic realization of the MBH binary
population in the Universe.
(vi) The MS-GA performances do not seem to be af-
fected by unequal noise levels in different MSPs.
Our results are encouraging; however, they were still
obtained under a number of simplifying assumptions that
we wish to relax in our future work. First, data sets were
still evenly sampled, with no gaps, an ideal situation that is
not going to occur in reality. Second, we took noisy data
streams and fit for the GW sources only, implicitly assum-
ing perfectly known MSP parameters; any realistic detec-
tion pipeline must fit for MSP parameters and GW signals
simultaneously. Finally, we still did not include the pulsar
terms in our injections; those are likely to blend together
with lower-frequency earth terms to bias estimated source
parameters and (possibly) to create false positives. Only by
relaxing those assumptions will we be able to demonstrate
the effectiveness of our MS-GA algorithm in tackling a
problem with realistic complexity. We plan to investigate
these issues in the next paper of the series. We will then try
to apply our search algorithm to raw times of arrival,
carrying the imprint of a realistic population of MBH
binaries.
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