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Abstract We investigate the dynamics of test particles un-
dergoing friction forces in a Friedmann—Robertson—Walker
(FRW) spacetime. The interaction with the background fluid
is modeled by introducing a Poynting—Robertson-like fric-
tion force in the equations of motion, leading to measurable
(at least in principle) deviations of the particle trajectories
from geodesic motion. The effect on the peculiar velocities
of the particles is investigated for various equations of state
of the background fluid and different standard cosmologi-
cal models. The friction force is found to have major effects
on particle motion in closed FRW universes, where it turns
the time-asymptotic value (approaching the recollapse) of
the peculiar particle velocity from ultra-relativistic (close to
light speed) to a co-moving one, i.e., zero peculiar speed.
On the other hand, for open or flat universes the effect of
the friction is not so significant, because the time-asymptotic
peculiar particle speed is largely non-relativistic also in the
geodesic case.

1 Introduction

The search of a correct model describing our universe in the
framework of general relativity is a central issue of modern
cosmology, and a subject of constant investigation and de-
bate (see, e.g., Refs. [1-4] and references therein). Similarly,
the description of the dynamics of cosmological objects, like
galaxies or galaxy clusters, in time-dependent gravitational
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fields strongly depends on either the particular cosmologi-
cal model adopted or on possible acceleration mechanisms
modifying the geodesic motion. For all of these issues, a rich
literature is available (see, e.g., Refs. [5, 6] and references
therein).

In this paper, we investigate the dynamics of massive
test particles, undergoing friction effects in Friedmann—
Robertson—Walker (FRW) spacetimes. This is motivated by
the possibility that non-gravitational interactions, such as
collisions with the background fluid component, may be rel-
evant in the description of the motion. The fluid source of
the FRW spacetime, modeling either an open, flat, or closed
universe, is assumed to be described by a general equation
of state, with pressure proportional to density through a con-
stant parameter, w, representing baryonic matter, radiation,
dark energy, etc., depending on different choices of w. The
model equations governing particle dynamics are given in
full generality. As illustrative examples, for their numerical
integration, we consider the case of pressureless matter, stiff
matter and radiation.

To the best of our knowledge, while applications to non-
geodesic motion in black hole physics date back to the
pioneering works of Poynting and Robertson [7, 8], such
an approach, involving viscous forces causing accelera-
tion/deceleration of particles, has not been adopted yet in
a cosmological context. Applications to the motion of mas-
sive test particles in a Schwarzschild spacetime surrounded
by either a perfect fluid or a thermal photon gas have been
discussed in Refs. [9, 10], respectively. Particle dynamics
in the Tolman metric generated by a photon gas source in
thermodynamical equilibrium has also been investigated in
Ref. [11].

We study the effect of the friction on particle peculiar
velocities, using an expression for the force term which is
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formally the same as the one introduced by Poynting and
Robertson, and recently identified as a general relativistic
extension of the Stokes law for classical viscous fluids [12].
Our analysis shows that deviations from geodesic motion
can be very significant, hence, in principle, also measurable,
at least for the case of closed FRW universes.

2 Basic equations of the model

Let us consider the Friedmann metric! written in Robert-
son—Walker co-moving coordinates [13]

ds? = —di® + a®[dr? + £*(d6® + sin® 6d¢?) ], (1

where a = a(t) is the scale factor and X = [sinr, r, sinhr]
corresponding to closed, flat and open universes, respec-
tively. The matter content of the universe is described by
the perfect fluid stress-energy tensor

Top = (0 + plugug + pgap, uqu® = —1, 2)

where u = 9; and the pressure p = p(¢) and the energy den-
sity p = p(¢) do not depend on the spatial coordinates, but
only on the time, due to the homogeneity and isotropy of
the space. Einstein’s field equations G, = 87T, can be
summarized by the energy conservation equation

p:—3§<p+p>, 3)

and the Friedmann equation
-2 8 2
a*=—k+ gn,oa , “4)

where k = —(2'? - 1)/22=-%"/¥ =[1,0, —1] for the
case of closed, flat and open universes, respectively. A dot
here denotes derivative with respect to time, while a prime
derivative with respect to r.

Hereafter, the source fluid (single fluid for simplicity) is
set to obey an equation of state of the form

p=wp, w =const., )

since this equation is general enough to discuss several in-
teresting physical situations. In fact, the case w = 1 mimics
a stiff matter, w = 1/3 a radiation field, w = 0 a massive
dust, w € [—1, —1/3] a quintessence field, w = —1 a cos-
mological constant term and finally w < —1 a phantom en-
ergy field. Equation (3) then gives

g\ 3+
P = pPo ) (6)

a

"Here Greek indices run from 0 to 3 whereas Latin ones from 1 to 3.
We also use geometrized units with ¢ = G = i = 1. The signature of
the metric is [—, +, +, +].
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where pg and ag are the energy density and the scale factor
today.

It is convenient to introduce an orthonormal frame
adapted to the co-moving observers (i.e., a co-moving
frame), whose world lines are the coordinate time lines

1
ef:ata efz_ar»
¢ @)
_ ! 0 = ! 0
T az? 9T uzsne™
The 4-velocity of a test particle is given by
P 1
U:y(e;+v ea), (8)

V= —F7——,
V1 =12

where v = v‘A‘egZ is the spatial “peculiar velocity” vector of
the particle relative to the family of co-moving observers
with magnitude v = /4, 51)& vb and y is the corresponding
Lorentz factor. Let P = mU be the associated peculiar 4-
momentum, m denoting the particle mass. As is well known,
in the FRW models the frame components of the spatial mo-
mentum behave as a(r) !, expressing the law of decay of
peculiar velocities as the universe expands (see, e.g., Ref.
(3D.

We will examine the case in which U is accelerated (or
decelerated), due to the interaction of the particles with the
background fluid, by the following friction force (treated
as an additional external force of Poynting—Robertson-like
form [7, 8]):

fitrio(U)* =—o P(U)*, TH"U,, 9

where o is the cross section of the process, P(U)*, =
8%, + U%U, projects orthogonally to U and T"" is given
by Eq. (2). Explicitly, we have

fatricy(U) = —ay>(p + p)(vze; + v&e&)
=—o(l+w)y’pvU, (10)

where U = y (vep+ %v&e&) is a unit spacelike vector orthog-
onal to U in the plane of the motion.

Recently, this force has been identified with the relativis-
tic generalization of the Stokes force acting on a body mov-
ing in a viscous fluid [12]. Interestingly, this force switches
its sign when w = —1 (i.e., at the phantom energy bound-
ary value): for w < —1 (even if one may consider this as an
“exotic” case) the friction force reverses its sign, so that the
test particle extracts energy from the cosmic fluid. In other
words, the cosmic fluid becomes an active media [14].

Denoting by a(U) = VyU the 4-acceleration of a test
particle, the equations of motion read as follows:

ma(U)* = figric) (U)*. 1)
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Explicitly, we have

=L etz

I);ZL.Z 7
]/2 —AU (10+p)7

P . 054 N
Vo L[—vgv’E’ _rsa +C0t0(v¢)21|

dt  ax y?2
R (12)
— A (p + p),
dv® yqu5

A Ya ~ A
= —|:vr2/+y—g+coteve]—AU¢(,0+P),

dt ~ ax

which must be completed by the evolution equations

dr dr yvf

ac 7 dt a’ (13)
9 v 6 49 _ v 4

dt  aX ’ dt aXsing

The coupling constant between the particle and the field is
given by

o
A=8r—. (14)
m

The spherical symmetry of the problem allows us to restrict
our analysis to a planar motion also in presence of interac-
tions, so that we set @ = 7r/2 and v? = 0. Moving to a polar
representation of the velocity

V= sino, p? = vcosa, (15)
the equations of motion (12) and the evolution equations
(13) become

dv AL+ w)p + a da yvX cosa
—=—v w — | —=—
dt P ay dt aX
(16)
dr  yvsina d¢ y
= — = ——vcosa.

dt a dt  aX¥

Inspection of these equations shows that the dependence on

the friction parameter A only affects the equation for v.
Expressing the derivatives with respect to the proper time

in terms of those with respect to the coordinate time we fi-

nally obtain

v

la
14 va

. vXY cosa . vsiho . vcosa
o=—Q, r= ; ¢ =
aXt a aXt

8
a=,—k+ gnpaz,

where the energy density is a function of the scale factor, as
from Eq. (6). We can also identify in the first equation above

)

the contributions of the spatial acceleration due to friction
and gravitation, namely

V = d(fric) + d(grav) (18)
with

v vV a
A(fric) = —A(l+ w),O;, A(grav) = _;; (19)

Studying the behavior of their ratio as a function of coordi-
nate time allows to determine the dominance of one term
on the other during the evolution. Moreover, in the same
equation one easily recognizes the two equilibrium solu-
tions v =0 and v = 1, corresponding to the limiting cases of
co-moving matter and ultra-relativistic matter, respectively.
These equilibrium solutions already exist in the geodesic
case and only the way in which they are approached is mod-
ified by the presence of the friction force. For a closed uni-
verse, a changes its sign (passing from positive to negative
values) as soon as the universe starts to recollapse. As a re-
sult, the gravitational acceleration term agray) contributes to
a positive increasing of V. Therefore, the fate of geodesics is
to end necessarily their evolution at v = 1 (see Fig. 1). The
friction acceleration afic), instead, only gives a monotoni-
cally negative contribution to v, which is but the dominant
behavior at times close to the Big Crunch where a — 0, i.e.,
p — oo for ordinary matter (implying v — 0, see the be-
havior of non-geodesic curves in Fig. 1). On the contrary,
for both flat and open universes, a is always positive, lead-
ing to v — 0 asymptotically (see Fig. 2).
System (17) admits the integral of motion

X cosa = Xy cosap, (20)

as readily follows from the equation

d X’

2 cota = Q1)
dr )

Equation (20) must hold for every value of  and «, in partic-
ular for r =0, i.e., ¥ = 0. Therefore, it implies « = £ /2
for all times, so that Egs. (17) also yield

P=t2. @=do. 22)

This is a consequence of the spatial isotropy and homogene-
ity of the FRW universe, which imply that the geodesics
issuing from any point in space taken as spatial origin of
spherical polar coordinates are purely radial. Furthermore,
one can choose the plus sign in Eq. (22), corresponding to
the increasing with time of the radial parameter.

Let us consider first the case of geodesic motion (A = 0).
In the case of co-moving matter we simply have v = 0, be-
cause u = e; = 0; is a geodesic 4-vector, implying that r =
const. The proper distance from the origin to a galaxy at

@ Springer
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Fig. 1 [Closed universe] The
behaviors of the linear velocity
v and the coordinate r as
functions of the time parameter
t = Hot are shown for a closed
FRW universe for selected
values of w =[0, 1/3, 1] and
different values of the friction
parameter

A =10,0.25,0.5, 1, 5]. The set
of Egs. (29)—(30) has been
numerically integrated with
initial conditions

vo = v(®g) =0.3,

ro =r(6g) = 10 and

fo = 1(0y), the latter depending
on the choice of w and ¢q.
Panels (a) and (b) refer to w =0
and go = 1, so that @y = /2

and 7o ~ 0.571. Panels (¢)

and (d) refer to w = 1/3 and
qo ~ 1.373, so that ®y ~ 1.097
and 7y ~ 0.460. Panels (e)

and (f) refer to w = 1 and

qo ~ 2.228, so that ®g ~ 0.651
and 7y &~ 0.323. Different values
of A label the various curves of
panels (¢)—(f) as in panels (a)
and (b). The value of the
deceleration parameter for each
case has been chosen in such a
way that the time parameter at
the Big Crunch have the
common value fgc = 27 fora

better comparison. The vertical
dashed line in every plot

corresponds to the present time
f = 1p. The curves in the region

f < fo are the analytic extension
in the past of the solutions. The
equilibrium solutions at v =0
and v = 1 (marked with a
horizontal dashed line) are
future and past attractors,
respectively

matter-co-moving radial coordinate  at time ¢ is given by
D = ar, so that its “coordinate” velocity away from us is
given by Hubble’s law v = D = ar = HD, where H = d/a
is the Hubble scalar. In the case of non-co-moving matter
(i.e., v # 0), instead, r also depends on time according to

Eq. (22), so that Hubble’s law is modified as v= HD + v.

@ Springer
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Galaxies are thus not expected to follow Hubble’s flow ex-
actly in this case, but only to approach it at late times during
the evolution [3]. In fact, in addition to the expansion of the
universe, galaxy motions are affected by the gravity of spe-
cific, nearby structures. For instance, for galaxies in the Lo-
cal Group, stars inside the Milky Way, and for objects in the
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Solar System their peculiar velocity is larger than their ex-
pansion velocity, implying that the peculiar term dominates
the total coordinate velocity. For distant galaxies, instead,
peculiar velocities have in general very small values, so that
Hubble’s law applies in this case. Peculiar velocities are also
expected to be generated by some inhomogeneities in the
matter distribution. Spatial inhomogeneities can in turn sig-
nificantly modify the structure of cosmic jets as discussed
in Refs. [5, 6], with particles being accelerated to very high
peculiar velocities.

The first of Egs. (17), giving the magnitude of the particle
peculiar velocity, is readily integrated
b= 0 . (23)

U8+ (@fag(1 = )

For a closed universe, a — 0 at the Big Crunch, and there-
fore v — 1. For both flat and open universes, instead, a —
oo asymptotically, implying v — 0. The only nonvanishing
frame component of the spatial peculiar 4-momentum turns
out to be given by

7 4o
P =YV=yov_". (24

which is just the law of variation of peculiar velocities in
standard cosmological models, as stated before. Substitut-
ing then into Eq. (22), a quadrature delivers the following
solution for r:

)(1 - 20+ +25;)

aoHo / \/ ’

where 29 = 8mpo/ (3H02) is the value of the density param-
eter at the current epoch t = 7y and Hy is the Hubble con-
stant. The remaining observational parameters are given by
the present values of the curvature density £2;o and of the
deceleration parameter gg

k
9k0=—2—1_12=1—90,

1
qo = =$20(1 +3w), (25)
ag iy 2

so that 20 > 1, 29 =1 and £2¢ < 1 correspond to closed,
flat and open universes, respectively.

We will investigate in the following how the interaction
of the particles with the background fluid modifies the be-
havior of the peculiar velocity (and thus Hubble’s law) as a
function of time with respect to the case of non-co-moving
geodesic matter. We are not interested in discussing the more
general case of a universe consisting of a mixture of dif-
ferent fluids corresponding to the different epochs, but only
in studying the effect of the friction force in simple situa-
tions; the extension will be straightforward. Therefore, we
will consider the case of a single fluid component in each

kind of FRW universe separately. Note that the choice of ini-
tial conditions, as well as observational parameters adopted
in the numerical integrations below, is suitable to highlight
the deviation from the case of geodesic motion.

2.1 Closed universe

Let us consider first the Friedmann equation (4) with energy
density (6). Through the transformation (see, e.g., Ref. [15])

o) a 143w
1—cos® = — (20— 1)(—) , (26)
£20 ap

with go > (1 +3w)/2, w > —1/3 (the case w < —1/3 can
be treated similarly), it can be cast in the form

HoyJe
- (1 — cos @)l/(1+3w) ’ @7
with
3(14+w)
QO 2 2(1+3w)
Jo=014+3w),/ —|=—200—-1) . (28)
2 | 82

The latter equation can be integrated for selected values of
w, providing the solution for the scale factor as a function
of time in parametric form.

Consider then the equations of motion. Looking for v and
r as functions of ® implies

d V1 =12
@ Wy sin@y/1 — 12
de (14 3w)(1 —cos®)
~( 1+w Jo
A , 29
* <1+3w>(1—cos@)1/(1+3“’):| 29)
dr v
de 143w’

with A = 3AHp/4m dimensionless, which can be numeri-
cally integrated. Note that from Eq. (26) we have a =0, i.e.,
® =0, for t =0, whereas a = aop, i.e., cos®@ = (1 + 3w —
q0)/qo, for t = ty. Finally, the explicit dependence on time
is given by Eq. (27), which can be written in dimensionless
form by introducing the rescaling # = Hyt as follows:

dt 1
5= 7o (1 — cos ®)1/1+H3w) (30)

2.2 Open universe

By using the transformation (see, e.g., Ref. [15])

2 a 143w
coshlI/—lz—(l—.Qo)<—) , 31)
20 ag

@ Springer
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with 0 < g0 < (1 +3w)/2, w > —1/3, the Friedmann equa-
tion can be cast in the form

W — HoJy
~ (cosh¥ — )1I/0+3w)”

(32)

with

20 2 23((11++3?»))
Jy =1 4+3w),/ —| — (1 — £29) . (33)
2 | 2

The latter equation can be integrated for selected values of
w, giving the solution for the scale factor as a function of
time in parametric form.

Consider then the equations of motion. Looking for v and
r as functions of ¥, implies

dv v/ 1 — 12
== inhw/1— v2
d¥ = (1 +3w)(cosh¥ — 1) [Sm Y

~(1+w Jy
A : 34
* (1+3w>(coshl1/—1)1/(1+3w):| (34)
dr _ )
v 143w’

which can be numerically integrated. Note that from Eq.
(31) we have a =0, i.e., ¥ =0, for t =0, whereas a = ag,
i.e., cosh¥ = (1 + 3w — gg)/qo, for t = 9. Finally, the ex-
plicit dependence on time is given by Eq. (32), which can be
rewritten as

dr 1
— (coshw — 1)1/0+3w) (35)

v Jy
2.3 Flat universe

The solution for the scale factor is given by

NG 2 %
1) =ao| — , = ————,
) “O(to) = 30+ w)Ho (36)

whereas the energy density turns out to be

2 3H2
p(r)zpo(?>, po= 20 (37)

8

The equations of motion then become

dv 2v/1—=v2[ A
—=———=| = vV 11— 2 s
i 3 (+w)i |:3t+ ”]
i (38)
dr 2 3Tw)
ai 3wy '

@ Springer

3 Numerical integration for different w

Let us analyze how the different kind of energy content of
the universe affects the friction force and then the motion of
test particles. In particular, the cases of a matter-dominated
(w =0 and w = 1, for instance) and radiation-dominated
universe (w = 1/3) will be considered. The case of a cosmo-
logical constant (A-dominated universe, w = —1) is not rel-
evant for the present analysis, since the friction force identi-
cally vanishes, as from Eq. (10), so that particles move along
geodesics.

3.1 Closed universe

The equations of motion to be numerically integrated are
given by Egs. (29)-(30). The latter provides the relation be-
tween the parameters @ and 7. The value & = 0 corresponds
to 7 = 0, whereas the value @ = 27 to the time of recollaps-
ing of the universe, which is different depending on the se-
lected values of w and gg. For instance, for w = 0, Eq. (30)
gives

)
= 70(90 — 17320 —sin®). (39)
The value of 7 at the Big Crunch is then

fpc =7 R20(820 — )72 (40)

For w = 1/3 we have instead

- 2 (C)

F= Y20 (1 _cos— ), (41)
20 —1 2

with

- 2./ 820

tpc = . 42

BC= 5T (42)

The behaviors of v and r as functions of 7 are shown
in Fig. 1 for selected values of w = [0, 1/3, 1] and differ-
ent values of the friction parameter. The value of the de-
celeration parameter for each case has been chosen in such
a way that the time parameter at the Big Crunch have the
common value 7gc = 27 for a better comparison. It turns
out that the numerical integration of the equations of mo-
tion for w = 1/3 and w = 1 does not show any significant
difference with respect to the case w = 0. The effect of the
friction force dominates at early as well as late times. As a
consequence, from Fig. 1 we see a drastic change between
geodesic and non-geodesic motion especially when the uni-
verse recollapses. In fact, approaching that epoch, geodesics
tend to become ultra-relativistic, whereas particles undergo-
ing friction force tend to a rest state. The onset of this be-
havior occurs earlier as the interaction strength A increases.
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Fig. 2 [Open universe] The
behaviors of the linear velocity
v and the coordinate r as
functions of the time parameter
f = Hyt are shown for an open
FRW universe for selected
values of w =[0, 1/3, 1] and
different values of the friction
parameter A= [0, 1, 5]. The set
of Egs. (34)—(35) has been
numerically integrated with

qo = 0.1 and initial conditions
vo = v(¥) =0.3,

ro = I’(’J/o) =10 and fo = f(‘l/()),
the latter depending on the
choice of w. Panels (a) and (b)
refer to w = 0, so that

Yy ~ 2.887 and 7y ~ 0.846.
Panels (c) and (d) refer to

w = 1/3, so that ¥y ~ 3.637
and 7 ~ 0.760. Panels (e)

and (f) refer to w = 1, so that
¥y ~ 4.357 and £y ~ 0.618.
Different values of A label the
various curves of panels (¢)—(f)
as in panels (a) and (b)

The deviation of the peculiar geodesic and non-geodesic
velocities is less evident integrating backward in time, in

which case both of them approach the ultra-relativistic be-

havior.

10.57
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10.5

9.5+

8.54

Ju—
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3.2 Open universe

The equations of motion to be numerically integrated are
given by Eqs. (34)—(35). The latter provides the relation be-

tween the parameters ¥ and 7. For instance, for w = 0, we

@ Springer
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obtain
)
= 70(1 — 20) 2 (sinhw — @), (43)

whereas for w =1/3

- V82 "4
t= 0 cosh— —1). 44)
1 —£2 2

The behaviors of v and r as functions of 7 are shown
in Fig. 2 for selected values of w = [0, 1/3, 1] and differ-
ent values of the friction parameter. The friction force dom-
inates at early times only, where the behavior of peculiar
velocities is similar for both geodesic and accelerated cases.
Therefore, the friction parameter seems to play a minor role
in this case. The numerical integration for w = 1/3 and
w = 1 does not show any significant difference with respect
to the case w = 0.

3.3 Flat universe

The analysis of this case closely resembles that of the open
universe, so that we will omit further details.

4 Concluding remarks

We have investigated the dynamics of massive test particles
undergoing friction effects in FRW spacetimes, with spe-
cial emphasis on deviation of the particle trajectory from
geodesic motion. The inclusion of a (weak) friction force
term in the particle equations of motion is motivated by
the possibility that non-gravitational interactions (e.g., col-
lisions with the background fluid component) may play a
role in the particle dynamics. The background fluid is as-
sumed to be described by a general equation of state, spec-
ifying its nature, e.g., as baryonic matter, radiation, dark
energy. For illustrative purposes, we have analyzed in de-
tail the cases of pressureless matter, stiff matter and radi-
ation, but our analysis is completely general and allows to
investigate all of the aforementioned fluid sources as well
as mixtures thereof. Numerical integration of the equations
of motion shows major deviations from geodesic motion at
a late stage of the evolution of a closed universe, where
particles undergoing friction force tend to a rest state, in

@ Springer

stark contrast to the geodesic case, characterized by ultra-
relativistic values of the particle speed. Backward time inte-
gration shows instead a common behavior for all cosmolog-
ical models, i.e., both geodesic and accelerated particles ap-
proach the ultra-relativistic regime. Finally, it is interesting
to note that the increased accuracy in recent measurements
of large-scale peculiar velocities of galaxy clusters [16—18]
may allow experimental estimates of the friction parame-
ter. The present work opens up several directions for future
research, such as the study of inhomogeneous cosmologi-
cal models, cosmological fluids with non-ideal equations of
state p(p) = w(p)p, as well as extended theories of gravity,
including extra-scalar fields.
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