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A LOCAL VERSION OF BANDO’S THEOREM ON THE

REAL-ANALYTICITY OF SOLUTIONS TO THE RICCI FLOW

BRETT KOTSCHWAR

Abstract. It is a theorem of S. Bando that if g(t) is a solution to the Ricci
flow on a compact manifold M , then (M, g(t)) is real-analytic for each t > 0.

In this note, we extend his result to smooth solutions on open domains U ⊂ M .

1. Introduction

Suppose U is an open subset of M = Mn. We consider a smooth solution g(t)
to the Ricci flow

(1.1)
∂

∂t
g = −2Rc(g)

on U × [0, T ]. The purpose of this note is to establish the following result.

Theorem 1.1. For 0 < t ≤ T , (U, g(t)) is a real-analytic manifold.

More precisely, about each point p ∈ U there is a neighborhood on which the
expression of g(t) in geodesic normal coordinates is real-analytic. This is a result
of S. Bando [B] when M is compact, and his argument extends, essentially without
change, to the case when (M, g(t)) is complete and of uniformly bounded curvature.
Our aim is to eliminate the global assumptions on the metric, and verify that, as
is typical of parabolic equations, instantaneous analyticity in the spatial variables
is a purely local phenomenon.

From Theorem 1.1 and a classical monodromy-type argument (cf. Corollary 6.4
in [KN]), it is then automatic to obtain the following qualitative unique-continuation
results for complete solutions (of possibly unbounded curvature).

Corollary 1.2. Suppose that M is connected and simply-connected, and g(t), g̃(t)
are complete solutions to the Ricci flow on M × (a, b). Let t0 ∈ (a, b).

(1) If g(·, t0) = g̃(·, t0) on an connected open set U ⊂ M , then there exists a

diffeomorphism φ :M →M such that g(t0) = φ∗g̃(t0),

(2) Any local isometry, φ̃ : (U, g|U (t0)) → (V, g|V (t0)), between connected open

sets U , V ⊂M can be uniquely extended to a global isometry φ :M → M .

Since any local Ricci soliton may be transformed into a local (self-similar) solu-
tion to Ricci flow, Theorem 1.1 also provides a new proof of the real-analyticity of
Ricci solitons, a fact which can be proven, much as for Einstein metrics (cf. [DK],
[I]), by the use of harmonic coordinates.
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Corollary 1.3. Suppose (M, g,X, λ) is a Ricci soliton, i.e.,

Rc(g) + LXg + λg = 0,

for some smooth vector field X and scalar λ. Then (M, g) is a real-analytic mani-

fold.

Note that since ∆X = −Rc(X) on a Ricci soliton, it follows that the represen-
tation of the vector field X in geodesic normal coordinates will also be analytic.

Theorem 1.1 will be a consequence of the following estimate. Here and below, R
denotes the Riemann curvature tensor, and Ω(p, r) and Ω(p, r, T ) denote, respec-
tively, Bg(0)(p, r) and Ω(p, r)× [0, T ].

Theorem 1.4. Suppose g(x, t) is a smooth solution to the Ricci flow on the open

set U ⊂ Mn for t ∈ [0, T ]. Let p ∈ U and ρ > 0 such that Ω(p, 3ρ) is compactly

contained in U and define M0 + supΩ(p,3ρ,T ) |R|g(t). Then, there exist positive

constants C, N , and τ depending only on n, ρ, T and M0 such that for all m ∈
N ∪ {0},

(1.2) tm/2|∇mR|g(t)(x, t) ≤ CNm/2(m+ 1)!

on Ω(p, ρ, τ).

The estimates (1.2) are variants of the well-known local estimates of Shi [S] and
Hamilton [H] (see also [LT], [SW]), which likewise take the form

tm|∇mR|2 ≤ C(n,m, ρ,M0, T ).

The only new content is an explicit accounting of the dependency of the constants
C(n,m, ρ,M0, T ) on the order m – a dependency that is often unimportant in
applications and consequently rather obscure in the variants of the estimates of
which we are aware. In fact, it is an interesting question whether, for example, the
constants generated inductively in Shi’s argument are of sufficiently slow growth
in m to ensure the real-analyticity. The application of the heat operator to the
quantity |∇mR|2, the subsequent commutation of the Laplacian with the m-fold
covariant derivative, and the m-fold differentiation of the reaction terms on the
right-hand side of ( ∂

∂t −∆)R = R ∗ R together generate a number of lower order
terms which grow with m. To control these terms, we found it easiest to use a
localized modification of Bando’s original quantity

ϕ =
m
∑

k=0

tk

((k + 1)!)2
|∇kR|2,

whose evolution equation can be arranged, as in the global case, produce a com-
parison with the solution of an appropriate ODE.

2. Proof of the local estimates

For the remainder of this paper, we will work in the setting of the statement of
Theorem 1.4. We first describe our cut-off function.

Lemma 2.1. Under the assumptions of Theorem 1.4, there exists a cut-off function

η : U → [0, 1] that is compactly supported in Ω(p, 2ρ), satisfies η ≡ 1 on Ω(p, ρ),
and whose derivatives satisfy

|∇η|2g(t) − η∆g(t)η ≤ C0η(2.1)

on U × [0, T ] for some constant C0 = C0(n, ρ, T,M0).
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Proof. See, e.g, Lemma 14.4 of [CRF]. The key is that the local curvature bound
implies the uniform equivalence of the metrics g(t) on Ω(p, 3ρ, T ) and the local first
derivative estimate of either Shi [S] or Hamilton [H] supplies a bound of the form

sup
Ω(p,2ρ,T )

t|∇R|2g(t)(x, t) ≤ C(n, ρ, T,M0),

and these, together, are sufficient to control the g(t)-gradient and Laplacian of the
cut-off function. �

Although η is constructed by composition with a Riemannian distance function
– namely, that of the initial metric g(0) – we may, as usual, on account of Calabi’s
trick [C], regard the resulting function as smooth for the purpose of applying the
maximum principle. (Alternatively, at the outset of what follows, we may simply
decrease ρ if necessary to ensure that 3ρ < injp(g(0)).)

Now we introduce the principal quantity in our estimate, a simple modification
of that introduced by Bando [B]. We define

Ak +

(

t

N

)k/2
|∇kR|

(k + 1)!
, φk + ηk+1A2

k,

for k = 0, 1, 2, . . . and

Bk +

(

t

N

)(k−1)/2
|∇kR|

k!
, ψk + ηkB2

k,

for k = 1, 2, 3, . . .. We then compute

(2.2)

(

∂

∂t
−∆

)

φk = ηk+1

(

∂

∂t
−∆

)

A2
k+A

2
k

(

∂

∂t
−∆

)

ηk+1−2〈∇ηk+1,∇A2
k〉.

We will split our computations into two cases, depending as k ≥ 1 or k = 0. We
consider first the case k ≥ 1. As in [B], the quantity A2

k can be seen to satisfy

(2.3)

(

∂

∂t
−∆

)

A2
k ≤ −2B2

k+1 +
k

N(k + 1)2
B2

k + C1M0A
2
k +

C1t

N
Sk

where C1 = C1(n) is independent of k and

Sk +

k−1
∑

i=0

AiBk−iBk

i+ 2
.

Using (2.3) and 0 ≤ η ≤ 1, the first term of (2.2) thus satisfies

ηk+1

(

∂

∂t
−∆

)

A2
k ≤ −2ψk+1 +

1

N
ψk + C1M0φk +

C1t

N
θk

for t ≤ T , where

θk + ηk+1/2Sk =

k−1
∑

i=0

φ
1/2
i ψ

1/2
k−iψ

1/2
k

i+ 2
.

Then, since

−∆ηk+1 = −k(k + 1)ηk−1|∇η|2 − (k + 1)ηk∆η

≤ (k + 1)C0η
k,
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and (k + 1)Ak =
√

t/NBk, the second term of (2.2) satisfies

A2
k

(

∂

∂t
−∆

)

ηk+1 ≤ (k + 1)C0η
kA2

k ≤
C0T

N(k + 1)
ψk.(2.4)

Finally, on supp η, the last term of (2.2) may be estimated by

− 2〈∇ηk+1,∇A2
k〉 ≤ 4

(k + 1)

((k + 1)!)2

(

t

N

)k

ηk|∇η||∇k+1R||∇kR|

≤ 4
|∇η|

η1/2

√

t

N

(

tk/2η(k+1)/2 |∇
k+1R|

(k + 1)!

)(

t(k−1)/2ηk/2
|∇kR|

k!

)

≤ ψk+1 +
4C0t

N
ψk.

(2.5)

Taken together, (2.3), (2.4), and (2.5) imply that, for k ≥ 1,

(2.6)

(

∂

∂t
−∆

)

φk ≤ −ψk+1 +
C2

N
ψk + C1M0φk +

C1t

N
θk

where C2 = C2(n,M0, ρ, T ). In the case k = 0, we may estimate φ0 = η|R|2 in the
same way, obtaining

(2.7)

(

∂

∂t
−∆

)

φ0 ≤ −ψ1 + C1M0φ0 + C3

for some constant C3 = C3(n,M0, ρ, T ).
Now we define

Φm +

m
∑

k=0

φm, Ψm +

m
∑

k=1

ψk, Θm +

m
∑

k=1

θk.

Provided we choose N = N(n,M0, ρ, T ) suitably large (N > 2 × max (C1, C2) is
sufficient), equations (2.6) and (2.7) combine to produce the estimate

(2.8)

(

∂

∂t
−∆

)

Φm ≤ −
1

2
(Ψm − tΘm) + C4(Φm + 1)

for C4 = C1M0 + C3 Before we apply the maximum principle, it remains only to
estimate Θm, and this may be done just as for the corresponding quantity in [B]
(see also Chapter 13.2 in [CRF]); we reproduce the estimate here for completeness:

Θ2
m =

(

m
∑

k=1

k−1
∑

i=0

1

i+ 2
φ
1/2
i ψ

1/2
k−iψ

1/2
k

)2

≤

m
∑

k=1

(

k−1
∑

i=0

1

i+ 2
φ
1/2
i ψ

1/2
k−i

)2 m
∑

k=1

ψk

≤

m
∑

k=1

{(

k−1
∑

i=0

1

(i+ 2)2

)(

k−1
∑

i=0

φiψk−i

)}

Ψm

≤ ΦmΨ2
m,

where we have used that
∑

∞

i=0 1/(i+ 2)2 < 1. So Θm ≤ Φ
1/2
m Ψm, and returning to

(2.8), we have

(2.9)

(

∂

∂t
−∆

)

Φm ≤ −
1

2
Ψm(1 − tΦ1/2

m ) + C4(Φm + 1).
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For the time being, let τm denote

τm = sup{a ∈ [0, T ] | tΦ2
m(x, t) ≤ 1 for all (x, t) ∈ U × [0, a]}.

We will soon show that there exists a constant τ = τ(n,M0, ρ, T ) > 0 for which
τm ≥ τ for all m, but for now, simply note that, owing to the compact support of
each Φm(·, t) in Ω(p, 2ρ), we at least have τm > 0 for all m.

Let
F (t) = (M2

0 + 1) exp(C4t)− 1,

so that F solves F ′ = C4(F + 1) with F (0) = M2
0 . The function Υm + Φm − F

then satisfies Υm ≤ 0 on the parabolic boundary of Ω(p, 2ρ, T ) and
(

∂

∂t
−∆

)

Υm ≤ 0

on Ω(p, 2ρ, τm). Thus, on Ω(p, 2ρ, τm) we have, by the maximum principle,

(2.10) Φm(x, t) ≤ F (t) ≤ (M2
0 + 1) exp(C4T ) + C(n, ρ, T,M0)

But it is clear now that if τ is the lesser of T and C−1/2, then t2Φm(x, t) ≤ 1 for
t ≤ τ . So we have τm ≥ τ for any m. From (2.10), it follows in particular that, for
all m ≥ 0 and (x, t) ∈ Ω(p, ρ, τ), we have

tm|∇mR|2(x, t) = tmηm+1(x)|∇mR|2(x, t) ≤ CNm((m+ 1)!)2,

which is the estimate (1.2). Hence g(x, t) is real-analytic (in geodesic coordinates)
at (p, t) for any 0 < t ≤ τ . Iterating this argument proves the same for any
t ∈ (0, T ], and it follows that (U, g(t)) is real-analytic for any 0 < t ≤ T .
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