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A local version of Bando’s theorem on the real-analyticity of
solutions to the Ricci flow

Brett L. Kotschwar

Abstract

It is a theorem of Bando that if g(t) is a solution to the Ricci flow on a compact manifold M , then
(M, g(t)) is real-analytic for each t > 0. In this note, we extend his result to smooth solutions
on open domains U ⊂ M .

1. Introduction

Suppose that U is an open subset of M = Mn. We consider a smooth solution g(t) to the Ricci
flow

∂

∂t
g = −2Rc(g) (1.1)

on U × [0, T ]. The purpose of this note is to establish the following result.

Theorem 1.1. For 0 < t � T , (U, g(t)) is a real-analytic manifold.

More precisely, about each point p ∈ U there is a neighborhood on which the expression of
g(t) in geodesic normal coordinates is real-analytic. This is a result of Bando [1] when M is
compact, and his argument extends, essentially without change, to the case when (M, g(t)) is
complete and of uniformly bounded curvature. Our aim is to eliminate the global assumptions
on the metric, and verify that, as is typical of parabolic equations, instantaneous analyticity
in the spatial variables is a purely local phenomenon.

From Theorem 1.1 and a classical monodromy-type argument (cf. [7, Corollary 6.4]), it is
then automatic to obtain the following qualitative unique-continuation results for complete
solutions (of possibly unbounded curvature).

Corollary 1.2. Suppose that M is connected and simply connected, and g(t), g̃(t) are
complete solutions to the Ricci flow on M × (a, b). Let t0 ∈ (a, b).

(1) If g(·, t0) = g̃(·, t0) on a connected open set U ⊂M, then there exists a diffeomorphism
φ : M →M such that g(t0) = φ∗g̃(t0).

(2) Any local isometry, φ̃ : (U, g|U (t0)) → (V, g|V (t0)), between connected open sets U, V ⊂
M can be uniquely extended to a global isometry φ : M →M .
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Since any local Ricci soliton may be transformed into a local (self-similar) solution to Ricci
flow, Theorem 1.1 also provides a new proof of the real-analyticity of Ricci solitons, a fact that
can be proved, much as for Einstein metrics (cf. [4, 6]), by the use of harmonic coordinates.

Corollary 1.3. Suppose that (M, g,X, λ) is a Ricci soliton, that is,

Rc(g) + LXg + λg = 0

for some smooth vector field X and scalar λ. Then (M, g) is a real-analytic manifold.

Note that since ΔX = −Rc(X) on a Ricci soliton, it follows that the representation of the
vector field X in geodesic normal coordinates will also be analytic.

Theorem 1.1 will be a consequence of the following estimate. Here and below, R denotes
the Riemann curvature tensor, T∗ � max{T, 1}, and Ω(p, r) and Ω(p, r, T ) denote, respectively,
Bg(0)(p, r) and Ω(p, r) × [0, T ].

Theorem 1.4. Suppose that g(x, t) is a smooth solution to the Ricci flow on the open set
U ⊂Mn for t ∈ [0, T ]. Let p ∈ U and ρ > 0 such that Ω(p, 3ρ) is compactly contained in U and
define M0 � supΩ(p,3ρ,T ) |R|g(t). Then there exist positive constants C, N, and τ depending
only on n, ρ, T∗ and M0 such that, for all m ∈ N ∪ {0},

tm/2|∇mR|g(t)(x, t) � CNm/2(m+ 1)! (1.2)

on Ω(p, ρ, τ).

The estimates (1.2) are variants of the well-known local estimates of Shi [10] and Hamilton
[5] (see also [8, 9]), which likewise take the form

tm|∇mR|2 � C(n,m, ρ,M0, T ).

The only new content is an explicit accounting of the dependency of the constants
C(n,m, ρ,M0, T ) on the order m, a dependency that can be safely ignored in many applications
and, that is, consequently, rather obscure in the variants of the estimates of which we are aware.
In fact, it is an interesting question whether, for example, the constants generated inductively
in Shi’s argument are of sufficiently slow growth in m to ensure the real-analyticity. The
application of the heat operator to the quantity |∇mR|2, the subsequent commutation of the
Laplacian with the m-fold covariant derivative, and the m-fold differentiation of the reaction
terms on the right-hand side of (∂/∂t− Δ)R = R ∗R together generate a number of lower-
order terms that grow with m. In order to control these terms, we found it easiest to use a
localized modification of Bando’s original quantity

ϕ =
m∑

k=0

tk

((k + 1)!)2
|∇kR|2,

whose evolution equation can be arranged, as in the global case, to produce a comparison with
the solution of an appropriate ordinary differential equation.

2. Proof of the local estimates

For the remainder of this paper, we will work in the setting of the statement of Theorem 1.4.
We first describe our cut-off function.
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Lemma 2.1. Under the assumptions of Theorem 1.4, there exists a cut-off function η : U →
[0, 1] that is compactly supported in Ω(p, 2ρ), satisfies η ≡ 1 on Ω(p, ρ), and whose derivatives
satisfy

|∇η|2g(t) − ηΔg(t)η � C0η (2.1)

on U × [0, T ] for some constant C0 = C0(n, ρ, T∗,M0).

Proof. For the proof, see, for example, [3, Lemma 14.4]. The key is that the local curvature
bound implies the uniform equivalence of the metrics g(t) on Ω̄(p, 3ρ, T ) and the local first
derivative estimate of either Shi [10] or Hamilton [5] supplies a bound of the form

sup
Ω̄(p,2ρ,T )

t|∇R|2g(t)(x, t) � C(n, ρ, T∗,M0),

and these, together, are sufficient to control the g(t)-gradient and Laplacian of the cut-off
function.

Although η is constructed by composition with a Riemannian distance function, namely, that
of the initial metric g(0), we may, as usual, on account of Calabi’s trick [2], regard the resulting
function as smooth for the purpose of applying the maximum principle. (Alternatively, at the
outset of what follows, we may simply decrease ρ if necessary to ensure that 3ρ < injp(g(0)).)

Now we introduce the principal quantity in our estimate, a simple modification of that
introduced by Bando [1]. We define

Ak �
(
t

N

)k/2 |∇kR|
(k + 1)!

, φk � ηk+1A2
k

for k = 0, 1, 2, . . . and

Bk �
(
t

N

)(k−1)/2 |∇kR|
k!

, ψk � ηkB2
k

for k = 1, 2, 3, . . .. We then compute(
∂

∂t
− Δ

)
φk = ηk+1

(
∂

∂t
− Δ

)
A2

k +A2
k

(
∂

∂t
− Δ

)
ηk+1 − 2〈∇ηk+1,∇A2

k〉. (2.2)

We will split our computations into two cases, depending as k � 1 or k = 0. We consider
first the case k � 1. As in [1], the quantity A2

k can be seen to satisfy(
∂

∂t
− Δ

)
A2

k � −2B2
k+1 +

k

N(k + 1)2
B2

k + C1M0A
2
k +

C1t

N
Sk, (2.3)

where C1 = C1(n) is independent of k and

Sk �
k−1∑
i=0

AiBk−iBk

i+ 2
.

Using (2.3) and 0 � η � 1, the first term of (2.2) thus satisfies

ηk+1

(
∂

∂t
− Δ

)
A2

k � −2ψk+1 +
1
N
ψk + C1M0φk +

C1t

N
θk
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for t � T , where

θk � ηk+1/2Sk =
k−1∑
i=0

φ
1/2
i ψ

1/2
k−iψ

1/2
k

i+ 2
.

Then, since

−Δηk+1 = −k(k + 1)ηk−1|∇η|2 − (k + 1)ηkΔη

� (k + 1)C0η
k,

and (k + 1)Ak =
√
t/NBk, the second term of (2.2) satisfies

A2
k

(
∂

∂t
− Δ

)
ηk+1 � (k + 1)C0η

kA2
k � C0T

N(k + 1)
ψk. (2.4)

Finally, on supp η, the last term of (2.2) may be estimated by

−2〈∇ηk+1,∇A2
k〉 � 4

(k + 1)
((k + 1)!)2

(
t

N

)k

ηk|∇η||∇k+1R||∇kR|

� 4
|∇η|
η1/2

√
t

N

(
tk/2η(k+1)/2 |∇k+1R|

(k + 1)!

)(
t(k−1)/2ηk/2 |∇kR|

k!

)

� ψk+1 +
4C0t

N
ψk.

(2.5)

Taken together, (2.3)–(2.5) imply that, for k � 1,(
∂

∂t
− Δ

)
φk � −ψk+1 +

C2

N
ψk + C1M0φk +

C1t

N
θk, (2.6)

where C2 = C2(n,M0, ρ, T∗). In the case k = 0, we may estimate φ0 = η|R|2 in the same way,
obtaining (

∂

∂t
− Δ

)
φ0 � −ψ1 + C1M0φ0 + C3 (2.7)

for some constant C3 = C3(n,M0, ρ, T∗).
Now we define

Φm �
m∑

k=0

φm, Ψm �
m∑

k=1

ψk, Θm �
m∑

k=1

θk.

Provided we choose N = N(n,M0, ρ, T∗) suitably large (N > 2 × max(C1, C2) is sufficient),
equations (2.6) and (2.7) combine to produce the estimate(

∂

∂t
− Δ

)
Φm � −1

2
(Ψm − tΘm) + C4(Φm + 1) (2.8)

for C4 = C1M0 + C3. Before we apply the maximum principle, it remains only to estimate Θm,
and this may be done just as for the corresponding quantity in [1] (see also [3, Chapter 13.2]);
we reproduce the estimate here for completeness:

Θ2
m =

(
m∑

k=1

k−1∑
i=0

1
i+ 2

φ
1/2
i ψ

1/2
k−iψ

1/2
k

)2

�
m∑

k=1

(
k−1∑
i=0

1
i+ 2

φ
1/2
i ψ

1/2
k−i

)2 m∑
k=1

ψk
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�
m∑

k=1

{(
k−1∑
i=0

1
(i+ 2)2

)(
k−1∑
i=0

φiψk−i

)}
Ψm

� ΦmΨ2
m,

where we have used that
∑∞

i=0 1/(i+ 2)2 < 1. So Θm � Φ1/2
m Ψm, and returning to (2.8), we

have (
∂

∂t
− Δ

)
Φm � −1

2
Ψm(1 − tΦ1/2

m ) + C4(Φm + 1). (2.9)

For the time being, let τm denote

τm = sup{a ∈ [0, T ] | tΦ2
m(x, t) � 1 for all (x, t) ∈ U × [0, a]}.

We will soon show that there exists a constant τ = τ(n,M0, ρ, T∗) > 0 for which τm � τ for all
m, but for now, simply note that, owing to the compact support of each Φm(·, t) in Ω(p, 2ρ),
we at least have τm > 0 for all m.

Let
F (t) = (M2

0 + 1) exp(C4t) − 1,

so that F solves F ′ = C4(F + 1) with F (0) = M2
0 . The function Υm � Φm − F then satisfies

Υm � 0 on the parabolic boundary of Ω(p, 2ρ, T ) and(
∂

∂t
− Δ

)
Υm � 0

on Ω(p, 2ρ, τm). Thus, on Ω(p, 2ρ, τm) we have, by the maximum principle,

Φm(x, t) � F (t) � (M2
0 + 1) exp(C4T ) � C(n, ρ, T∗,M0). (2.10)

But it is clear now that if τ is the lesser of T and C−1/2, then t2Φm(x, t) � 1 for t � τ .
So we have τm � τ for any m. From (2.10), it follows in particular that, for all m � 0 and
(x, t) ∈ Ω(p, ρ, τ), we have

tm|∇mR|2(x, t) = tmηm+1(x)|∇mR|2(x, t) � CNm((m+ 1)!)2,

which is the estimate (1.2). Hence, g(x, t) is real-analytic (in geodesic coordinates) at (p, t) for
any 0 < t � τ . Iterating this argument proves the same for any t ∈ (0, T ], and it follows that
(U, g(t)) is real-analytic for any 0 < t � T .
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