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Abstract
Understanding the impacts of climate extremes on the carbon cycle is important for quantifying
the carbon-cycle climate feedback and highly relevant to climate change assessments. Climate
extremes and fires can have severe regional effects, but a spatially explicit global impact
assessment is still lacking. Here, we directly quantify spatiotemporal contiguous extreme
anomalies in four global data sets of gross primary production (GPP) over the last 30 years. We
find that positive and negative GPP extremes occurring on 7% of the spatiotemporal domain
explain 78% of the global interannual variation in GPP and a significant fraction of variation in
the net carbon flux. The largest thousand negative GPP extremes during 1982–2011 (4.3% of the
data) account for a decrease in photosynthetic carbon uptake of about 3.5 Pg C yr−1, with most
events being attributable to water scarcity. The results imply that it is essential to understand the
nature and causes of extremes to understand current and future GPP variability.

Keywords: spatiotemporal extreme events, GPP, power law

1. Introduction

Climate extremes such as droughts, heat waves or intense
precipitation events are increasingly perceived as key players
in the Earth system and are expected to increase in the wake of
climate change (IPCC 2012, Barriopedro et al 2011, Sillmann
et al 2013). The associated impacts on terrestrial ecosystems
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are diverse and difficult to determine (Smith 2011, Ma et al
2012, Reichstein et al 2013). Some of these aspects are directly
observable, for instance via crop damage (Piao et al 2010),
and thus related to food scarcity (Rosenzweig et al 2001),
or forest destruction by windthrow or fire (Chen et al 2011).
Several studies have shown, however, that climate extremes
can influence the terrestrial biosphere in less easily detectable
ways, for instance by altering the carbon budget via a reduction
of primary productivity (Piao et al 2010, Barriopedro et al
2011, Lewis et al 2011, Ma et al 2012). This aspect is crucial
for an assessment and attribution of extreme anomalies in the
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carbon cycle. Hence, in this study, we aim to provide a global
quantification of extreme anomalies in the photosynthetic
carbon uptake, understand its implications for the carbon
balance and attribute large-scale negative extremes to climatic
drivers or fires.

In contrast to earlier studies which analyzed climate
extremes and their effects on the carbon cycle (Potter et al
2003, Ciais et al 2005, Reichstein et al 2007, Zhao and
Running 2010, Barriopedro et al 2011, Lewis et al 2011, Ma
et al 2012), our work is based on two major innovations. First,
we adopt an ‘impact perspective’ (Smith 2011, Reichstein
et al 2013) by directly evaluating extreme changes within
the biosphere. In particular, we analyze four different data
products of gross primary production (GPP) covering the
last 30 years, two data-driven GPP estimates and two global
carbon-cycle models. On the data-driven side we use the
upscaled eddy-covariance-based GPP estimates (MTE, Jung
et al 2011) and the light-use efficiency based MOD17+ (Run-
ning et al 2004). The models we use include a process-
based global ecosystem model (Lund–Potsdam–Jena Dynamic
Global Vegetation Model for Managed Land, LPJmL, Sitch
et al 2003), and a land-surface model (OCN, Zaehle and Friend
2010). Second, we perform a complete three-dimensional
(spatiotemporal) assessment of extremes based on a recently
developed methodology (Lloyd-Hughes 2012, Zscheischler
et al 2013). Aiming for irregularities of global relevance we
identify extreme events that are contiguous in both space and
time (three-dimensional events in the data cube, figure A.1).
Adapted from Zscheischler et al (2013), we compute extremes
using a range of percentiles (upper and lower 1 to 10% of the
anomalies, figure A.2, Seneviratne et al 2012). Our analysis
then focuses on the largest extreme events where the impact of
an event is determined by the GPP anomalies integrated over
the spatiotemporal extent of the event. To estimate the impact
of GPP extremes on the terrestrial net carbon balance we rely
on net ecosystem exchange (NEE) estimates from Carbon-
Tracker (Peters et al 2007) and estimates for the residual land
sink (RLS, defined as the atmospheric increase in CO2 minus
emissions from fossil fuels minus net emissions from changes
in land use minus oceanic uptake (Le Quéré et al 2013)).

2. Materials and methods

The core ingredients of this paper are two recently developed
tools to first identify large-scale extreme events in variables
characterizing the state of the biosphere and second attribute
them to climatic drivers (Lloyd-Hughes 2012, Zscheischler
et al 2013). The new element in the identification step is
to combine individual extremes to three-dimensional extreme
events to provide a robust assessment of large-scale extremes
even when data sets contain uncertainties. In the attribution
step we essentially test whether environmental conditions
during a particular extreme event in GPP were extremely
different compared to all other times in the available time
period. After introducing the different data sets, in this section
we explain in detail how we use these two approaches on our
data sets.

2.1. Data

To identify extreme events that are relevant to the terrestrial
biosphere, we rely on four different data sets describing
gross primary production (GPP; all used datasets with their
abbreviations are listed in table A.1).

MTE (Jung et al 2011) involves training a model tree
ensemble at site level using FLUXNET (a global network
of eddy-covariance observations in tandem with site level
meteorology, Baldocchi et al 2001) to extrapolate to large
spatiotemporal domains. We use a fully data-driven upscaling
product that relies mainly on a composite of different remote
sensing fAPAR products but also uses climate data from ERA
interim. (fAPAR is the fraction of absorbed photosynthetically
active radiation, a satellite remote sensing proxy for photosyn-
thetic activity.)

MOD17+ (Running et al 2004) is derived using the same
model structure as the MODIS GPP data stream (Running
et al 2000) linking shortwave incoming radiation, minimum
temperature and vapor pressure deficit. The parameterization
of the MOD17+ model follows Beer et al (2010); i.e., it is
based on Bayesian inversion against GPP time series from
FLUXNET. The model parameters are calibrated against
GPP time series from the FLUXNET measurement network
through a Bayesian data model synthesis. The terms in the
MODIS-MOD17 biome-specific look-up table are used as
priors. For regionalizing the model parameters we stratify
the results of the in situ calibration per vegetation type and
bioclimatic class. As climatic drivers we use the ERA-interim
dataset and the same composite of fAPAR products as in MTE
(Jung et al 2011).

LPJmL (Sitch et al 2003) is a dynamic global vegetation
model (DGVM) with a fully coupled carbon and water cycle.
Vegetation productivity, i.e. GPP, is derived by a process-based
photosynthesis scheme that adjusts carboxylation capacity and
leaf nitrogen seasonally and within the canopy profile. For
the present study, LPJmL is run in its natural vegetation
mode driven by ERA-interim temperature, radiation and
precipitation.

OCN (Zaehle and Friend 2010) is a land-surface model
derived from the ORCHIDEE DGVM (Krinner et al 2005),
which prognostically simulates foliar area and N content
and employs a two-stream radiation scheme coupled to the
process-based calculation of photosynthesis in light-limited
and light-saturated chloroplasts within each canopy layer.

To attribute negative extreme events in GPP to (extreme)
climatic drivers and fire events we use temperature (T )
and precipitation (P) from ERA-Interim (Dee et al 2011),
burned area (BA) and CO2 emissions from fires (FE, Giglio
et al 2010), and the water availability index (WAI). WAI
is a surrogate for soil moisture and was computed using
daily precipitation and potential evapotranspiration data from
bias-corrected ERA interim and a map of plant available
water holding capacity from the Global Harmonized World
Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC 2012). Using
WAI or variants of it as a proxy for soil moisture has a
long tradition in ecosystem modeling (Federer 1982, Aber
and Federer 1992, Prentice et al 1993, Kleidon and Heimann
1998). The parameter used in the calculation of the WAI was
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Figure 1. Extremes in MTE GPP in relation to global GPP anomaly and the global land carbon sink. (A) Global GPP anomaly (gray); 10,
200, and 1000 largest positive and negative tenth-percentile extremes in GPP (blue, red, and green lines, respectively), monthly time scale.
All pixels which are extreme at a certain time step are summed together to obtain one value for each time step. (B) Residual land sink (Le
Quéré et al 2013) (green) and 200 largest GPP extremes using the tenth-percentile definition (blue).

taken as the median value of 15 sites from the synthesis study of
in situ data by Teuling et al (2006). We use low values of water
availability as an index for drought.

The spatial resolution for all the above data sets is 0.5◦.
T , P , WAI and all GPP data sets are available monthly from
1982 to 2011, BA and FE from 1997 to 2010. Table A.1 gives
a summary of all used data sets of this gridded format.

To relate extremes in GPP to net ecosystem exchange
(NEE) we downloaded monthly data from CarbonTracker for
the years 2000–2011 (CT2011 oi, http://carbontracker.noaa.g
ov, Peters et al 2007) and aggregated them to global anomalies.
To obtain the residual land sink (RLS) we rely on the Global
Carbon Project (GCP, www.globalcarbonproject.org) and use
yearly data from 1982–2011 (Le Quéré et al 2013).

2.2. Preprocessing

We follow the suggestions from Zscheischler et al (2013). In
particular, for T , WAI and all GPP data sets we first subtract
the linear trend and mean annual cycle per grid cell. We divide
the less smooth variables P , BA and FE at each pixel by the
sum of the respective time series at that grid cell. We call the
resulting values after preprocessing anomalies. The goal of the
preprocessing is to obtain time series which depict deviations
from the mean behavior.

2.3. Extreme event identification

In accordance with the IPCC climate extreme classifications
(Seneviratne et al 2012), we define extremes as the occurrence
of certain values in the tails of the probability distribution

of the anomalies. We adapt the methodology described in
Zscheischler et al (2013) and define extremes to be outside
a certain threshold q , which is defined by a percentile on the
absolute values of the anomalies (figure A.2). We choose the
thresholds for each of the four data sets such that extremes
(positive and negative together) comprise 1%, . . . , 10% of the
anomalies, respectively. We then define an extreme event by
spatiotemporally contiguous points whose values are larger
than q (positive extremes) and smaller than −q (negative
extremes), respectively. The size of an extreme event is defined
by the integral of the corresponding anomalies of GPP over
time and space, i.e. its unit is grams of carbon. Hence, ‘large’
events are determined by their integrated impact of GPP
anomalies over their spatiotemporal domain.

To compute correlations with monthly time series of other
data sets or map hot spots of extreme events we aggregate
extreme events of each GPP dataset individually either in space
or in time. For an aggregation in space, at each time step all
anomalies which happen to be part of some extreme event
(according to the definition under consideration) are summed
together (see, e.g., figure 1), yielding one time series of the
overall impact of the respective extreme events. This time
series of GPP extreme events can then be correlated with e.g.
the global GPP or NEE anomaly in order to obtain the fraction
of explained variance. Similarly, for an aggregation in time,
at a specific location (pixel), all anomalies which happen to
be part of some extreme event are summed together (see, e.g.,
figure 3), yielding a global map of the cumulative impact of
the extreme events under consideration.
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Figure 2. Asymmetry between positive and negative GPP extremes and global decrease in gross land carbon uptake due to GPP extremes.
Shown are the four data sets MTE (blue circles), MOD17+ (green crosses), LPJmL (red squares), and OCN (cyan diamonds) and their mean
(black dashed stars). (A) Quotient of accumulated changes in gross land carbon uptake due to the 1000 largest negative events over the 1000
largest positive events for different percentiles (1%–10%). (B) Global accumulated decrease in GPP due to the 1000 largest negative GPP
extremes as a function of the percentile definition. Shown are the accumulated decreases in petagrams of carbon per year (1015 g C yr−1).

We further define the asymmetry between negative and
positive GPP extremes as the quotient of the size of n negative
events over n positive events. Throughout the text, we usually
report the fraction exceeding unity in percent.

2.4. Attributing drivers to GPP extremes

We intend to identify drivers that possibly caused negative
extreme events in GPP. To this end, for a certain negative GPP
extreme event we compute the median of a driver variable
over the spatiotemporal domain of the event. By shifting the
event in time and computing such medians for each possible
time step, we obtain a test statistic for each driver variable
and each GPP extreme (see also Zscheischler et al 2013). We
then compute p-values for the 100 largest GPP extreme events
using the first-percentile definition by considering the drivers
T , P , WAI, BA, and FE. For T and P we take both right- and
left-sided p-values into account (heat waves and cold spells,
excessive and exceptionally low precipitation). For WAI we
consider only the left-sided p-value (water scarcity), for BA
and FE only the right-sided p-value (fire events). We count a
driver as a cause if its p-value is smaller than 0.1 (see table A.5
for a summary of significant drivers). Other thresholds are
possible but do not affect the conclusions of this study. If a
driver’s p-value is below 0.1 one or several months before
the GPP extreme event, we assume that the GPP extreme is a
lagged response to the extreme driver. In this study we take
time lags of a maximum of three months into account.

3. Results

3.1. A few extremes explain most of the global interannual
variability

The size distribution of extreme events can often be well
approximated by a power law relationship f (x)∼ x−α , where
x is the size of an extreme event and α is the so-called scaling

exponent (Ghil et al 2011). It has been recently shown that
extremes in fAPAR can be likewise approximated well by a
power law (Zscheischler et al 2013, Reichstein et al 2013).
We also find power laws for the size distribution of extremes
in GPP (here, the size of an extreme is its impact on GPP,
figure A.3). The scaling exponent α is below 2 for most data
sets and percentiles, indicating that a few exceptionally large
extremes dominate the whole distribution of extremes (Fisher
et al 2008).

Assuming that local extreme events in GPP can be of
global relevance, the discovered power law behavior suggests
that only a few events cause globally relevant impacts. To
investigate this hypothesis, we correlate time series of inte-
grated GPP extremes with the global GPP anomaly. We find
that 78% (±5) of the global GPP anomaly can be explained by
the largest 200 tenth-percentile GPP extreme events (positive
and negative, figure 1(A) for the case of MTE; figure A.4(A)
for all data sets). These extreme events occur on only 7%
(±0.6) of the spatiotemporal domain (figure A.4(B)), revealing
the strong spatial heterogeneity inherited from the power law
distribution. By choosing a subset of the largest events we at
the same time focus on the more robust features of the data sets.

The question is, however, how the identified extremes in
GPP translate into anomalies of the land carbon balance. We
find that same extreme events (the 200 largest tenth-percentile
extreme events in GPP) explain 8.4% (±0.03, p < 0.001)
of the variability in monthly anomalies of global NEE over
the years 2000–2011. In addition, in the case of MTE, the
same extreme events explain 22% of the annual variability
in RLS for the entire time period (p < 0.01, figure 1(B)).
MTE is the data set closest to actual observations (it uses
site level CO2 flux observations compiled in FLUXNET in
tandem with satellite derived data of fAPAR), which might
explain its prominent role in yielding significant correlations
with RLS. Very strong correlations between extremes in GPP
and variability in NEE, or even the atmospheric CO2 growth
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Figure 3. Global distribution of GPP extremes. Extremes were computed using the tenth percentile and then averaged over the four GPP
data sets (MTE, MOD17+, LPJmL, and OCN) and the time period 1982–2011. Shown are the numbers for an averaged year in grams of
carbon per square meter per year (g C m−2 yr−1). (A) Decrease in terrestrial gross land carbon uptake during the 1000 largest negative GPP
extremes. (B) Change in gross land carbon uptake due to the 1000 largest positive and negative GPP extremes.

rate, cannot be generally expected because of the strong,
but complex and regionally varying, coupling of GPP and
ecosystem respiration (Richardson et al 2007, Mahecha et al
2010). Lagged and legacy effects of climate extremes which
can significantly alter various components of the terrestrial
carbon cycle additionally mask the immediate translation of
GPP extremes on NEE (Reichstein et al 2013).

3.2. Negative extremes are larger than positive extremes

The decrease of GPP associated with negative extremes is
globally only partly compensated by positive GPP extremes.
Negative GPP extreme events are on average up to 25%
larger compared to positive extreme events if we consider
the 1000 largest events on both tails of the distribution (fig-
ure 2(A)). While the data spread is large (ranging from 0%
in LPJmL to 80% in MOD17+ for the first-percentile def-
inition, figure 2(A), tables A.2 and A.3), all models show
an asymmetry towards more decrease in gross land carbon
uptake (negative extremes) for nearly all used percentiles.
Moreover, this asymmetry is stronger if one considers fewer
of the largest events and more extreme percentiles (figures
2(A) and A.5). According to the ‘slow in, rapid out’ principle
for net ecosystem exchange (Körner 2003), the observed
asymmetry might originate in e.g. a few large disturbance
events such as droughts, fires or insect outbreaks that lead

to often an instantaneous decrease in carbon uptake (negative
GPP extremes). Excess productivity (positive GPP extremes,
e.g. due to regrowth), in contrast takes place on much longer
timescales (Bengtsson et al 2003, Dore et al 2008). The ob-
served asymmetry could also be originated in asymmetric driv-
ing mechanisms (e.g. climate extremes). Skewed distributions
in drivers due to amplifying feedbacks such as those between
droughts and heat waves (Mueller and Seneviratne 2012) might
cause disproportionally large decreases in carbon uptake.

We will focus on negative GPP extremes for most of
the remainder. The cumulative effect of negative extremes
depends strongly on the percentile used. Averaged over the
four GPP data sets, the 1000 largest negative extremes based
on the first-percentile definition yield a decrease in gross
land carbon uptake of about 0.7 Pg C yr−1, in contrast
to 2.2 Pg C yr−1 on the fifth- and 3.5 Pg C yr−1 on
the tenth-percentile definition (figure 2(B); for comparison,
yearly photosynthetic carbon uptake ranges between 110 and
160 Pg in our data sets). Both the estimates for the two
data-driven approaches as well as the estimates from the
terrestrial biosphere models agree well among each other.
However, the estimates of the models exceed the data-based
estimates by a factor of more than two (figure 2(B), table A.2).
The difference in the size of the extremes between these two
sets is mainly due to different magnitudes in the anomalies
(table A.4) but the timing of extremes is highly correlated
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Figure 4. Attribution of negative extremes in GPP to climate drivers
and fire. Shown are percentages of 1%-extreme events in GPP out of
the largest 100 that could be associated with extreme drivers
(methodology adapted from Zscheischler et al 2013). For fire not all
100 fall into the range where fire data are available (table A.5). We
chose p-values below 0.1 as being extremes for the drivers and
considered a maximal time lag of 3 months. Thus, the horizontal
line at 10% depicts the percentage of associations expected if the
data sets were random. How labels at the y-axis are defined can be
found in table A.5.

(figure A.6). It has been shown before that some models tend
to overestimate interannual variability (Keenan et al 2012),
while data-driven approaches rather underestimate interannual
variability (Jung et al 2011). We hence assume that data-driven
and process-driven estimates of GPP describe a reasonable
envelope for the real size of the extremes.

The geographical hotspots of negative GPP extremes are
found in Northeastern Brazil (matching with earlier observa-
tions, Potter et al 2003), Central South America, Southeastern
Australia, South Africa, Kenya, Tanzania and South Central
United States (up to more than 180 g C m−2 yr−1 decrease in
GPP, figure 3(A)). In regions of Eurasia and North America
the absolute decrease in GPP during extreme events is smaller
(up to 100 g C m−2 yr−1) because the average GPP is lower.
The individual patterns for the four data sets broadly agree
with each other, although there are significant differences at
a regional scale (figure A.7). MOD17+ is the only data set
showing extremes in the Amazon. MTE shows a hot spot
in Eastern China, which is not seen by the other data sets
(figure A.7). Overall, the hot spots agree well with negative
extreme events on remotely sensed variables describing the
state of the biosphere such as fAPAR (figure 6 in Zscheischler
et al 2013) and the enhanced vegetation index (EVI, figure A.8,
obtained with the same methodology). To address the relative
changes in gross land carbon uptake due to negative GPP
extremes, we divide the globe into the 26 IPCC regions (IPCC
2012) (figure A.9). Northern Australia (region 25) on average
experiences the largest relative decrease in gross land carbon
uptake (nearly 7%) followed by the Central United States
(region 8) with around 5.5% decrease (figure A.10). While
we find most positive and negative GPP extremes in similar
areas, particularly in Europe and in tropical areas negative GPP
extremes are dominating (figure 3(B)).

3.3. Most negative extremes are driven by water scarcity

Various environmental drivers can lead to extreme reductions
in GPP (Reichstein et al 2013). We investigate extreme tem-
peratures, extreme precipitation, droughts or fires as possible
drivers using recently developed tools (Zscheischler et al
2013) and find that negative GPP extremes are most often
associated with anomalous low values of water availability
(between 58 (MTE) and 93 (MOD17+) events out of the
100 largest, figure 4). Associations with extreme temperature
and precipitation are not found that often. GPP in MOD17+
is most susceptible to fire: 18 out of the 63 negative GPP
extremes that fall in the range where fire data is available (29%)
can be associated with fire (figure 4, table A.5). Differences
in the number of events associated with a certain driver
reflect varying climate sensitivity between the four data sets.
Overall, we associate in each data set more than 70 of the
100 largest negative GPP extremes to extreme temperatures
or precipitation, low water availability, or fires (table A.5,
last column). In line with regional studies (Zhao and Running
2010, Ciais et al 2005, Ma et al 2012), we conclude that on a
global scale, water deficit is the main driver for negative GPP
extremes (figure 4). High temperature extremes and heavy
precipitation events play a subordinate role at the global scale
although they may be of regional relevance. The data products
and models used, however, may also underestimate the effects
of e.g. extreme high temperatures on vegetation activity and
legacy effects. Other causes for extreme anomalies in GPP
might be large disturbances such as pest outbreaks, extreme
winds, and human deforestation.

4. Conclusions

Understanding the behavior and characteristics of extreme
events in climate and carbon fluxes are important for the pro-
jections of the current land carbon sink (Reichstein et al 2013)
and future vulnerability assessments (IPCC 2012). Directly
studying extreme responses in the biosphere opens innovative
possibilities for research within the disturbance and carbon-
cycle science communities. Our study reveals that a few
extreme events in GPP events explain most of its interannual
variability and contribute a small but significant amount to
the variability in the net carbon balance, although they occur
on only a small fraction of the land surface. These results
imply that to understand current and future GPP variability it is
essential to understand the nature and causes of extremes. Our
results also highlight the importance of hydrometeorological
extremes for carbon-cycle variability at the global scale. Thus,
expected alterations of the water cycle in future (Sillmann
et al 2013, Huntington 2006) will likely have a large effect on
carbon-cycle extremes and global interannual variability.
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Appendix

Table A.1. Datasets of drivers (left) and responses (right) with reference.

Driver variables used for attribution Response/impact variables

T (Dee et al 2011) Temperature (ERA interim) MTE (Jung et al 2011) GPP, model tree ensemble
P (Dee et al 2011) Precipitation (ERA interim) MOD17+ (Beer et al 2010,

Running et al 2004)
GPP, light-use efficiency model

WAI (Prentice et al 1993) Water availability index LPJmL (Sitch et al 2003) GPP, global ecosystem model
BA (Giglio et al 2010) Burned area OCN (Zaehle et al 2010,

Zaehle and Friend 2010)
GPP, land-surface model

FE (Giglio et al 2010) CO2 fire emissions EVI (Huete et al 2002) Enhanced vegetation index

Table A.2. Overall sums of the integrals of the largest 1000 extremes in GPP for the four data sets MTE, MOD17+, LPJmL, and OCN from
January 1982 to December 2011 in petagrams of carbon per year (1015 g C yr−1). Shown are both negative and positive extremes using the
first-, fifth- and tenth-percentile definitions. For comparison, the last column displays the averaged uptake of the terrestrial biosphere per
year.

1% 5% 10% 90% 95% 99% Total

MTE 0.39 1.14 1.80 1.79 1.05 0.29 121
MOD17+ 0.56 1.40 2.19 2.05 1.17 0.32 104
LPJmL 0.96 3.35 5.42 5.33 3.22 0.96 161
OCN 1.07 3.13 6.68 6.74 3.01 0.80 136

Table A.3. Difference between positive and negative extremes in units of petagrams of carbon per year (Pg C yr−1). Shown is the difference
between overall sums of integrals of the largest 1000 extremes in GPP for the four data sets MTE, MOD17+, LPJmL, and OCN from
January 1982 to December 2011 for extremes using the first-, fifth- and tenth-percentile definitions.

1%: pos-neg 5%: pos-neg 10%: pos-neg

MTE −0.09 −0.08 −0.01
MOD17+ −0.25 −0.27 −0.14
LPJmL 0 −0.13 −0.09
OCN −0.27 −0.12 0.07

Table A.4. Five characteristic variables determining the size of GPP extremes. Shown are the values for the largest negative first- and
tenth-percentile extreme events for each of the data sets MTE, MOD17+, LPJmL, and OCN, respectively.

Size (Pg C)
Spatial extent
(106 km2)

Mean duration
(months)

Mean anomaly
(g C m−2 month−1)

Max anomaly
(g C m−2 month−1)

1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

MTE −0.3 −1.6 3.1 6.8 1 7 −66 −32 −150 −167
MOD17+ −0.4 −7.4 2.6 14.6 2 14 −79 −37 −180 −225
LPJmL −0.7 −9.2 2.3 10.5 2 10 −165 −85 −273 −232
OCN −1.3 −22.5 3.5 9.2 3 33 −133 −75 −215 −260

Table A.5. Number of 1%-extreme events in GPP out of the largest 100 that could be associated with extreme drivers (methodology adapted
from Zscheischler et al (2013)). Numbers are counts of events with extreme p-values (smaller than 0.1) for the four data sets MTE,
MOD17+, LPJmL, and OCN with a maximal time lag of 3 months. The numbers in brackets in the second last column indicate the number
of events that fall in the time period where fire data were available. The last column sums up all events which have not appeared in one of the
former columns.

pT
r < 0.1

heat wave
PT

l < 0.1
cold spell

pP
r < 0.1

heavy prec
P P

l < 0.1
low prec

PW AI
l < 0.1

drought
pB A/F E

r < 0.1
fire

Rest

MTE 10 10 14 10 58 10(41) 29
MOD17+ 17 9 15 16 84 18(63) 9
LPJmL 10 12 12 15 93 12(49) 6
OCN 10 9 10 17 79 10(55) 14
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Figure A.1. Visualization of four elements in a three-dimensional
data cube. In our definition of connectivity these four elements are
connected and could form an extreme event. Elements are connected
if they have at least one common corner. In other words, in a
3× 3× 3 data cube the element in the center is connected to all
other elements in the cube (26).

Figure A.2. Sketch of how extremes are defined on GPP anomalies.
A symmetric threshold q is set such that (e.g.) 90% of the data
anomalies fall in between −q and q . Those values which exceed the
threshold are defined to be extreme. In this example the extremes are
defined using the tenth-percentile definition (not to scale).

Figure A.3. Fitted power law distributions to size of negative GPP extremes for the data sets MTE, MOD17+, LPJmL, and OCN. The power
law distribution is given by p(x)∼ x−α , where x is the size of an extreme event (in Tg C). Shown is the size distribution for the 1000 largest
extreme using the fifth-percentile definition. Every circle is one event, the dashed lines show the exact power law with the respective values
of α. The picture looks similar for positive GPP extremes and other percentiles. Power laws were fitted using the code of Clauset et al (2009).
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Figure A.4. GPP extremes in relation to global interannual variability of GPP. (A) Fraction of explained variance of global anomalies by
aggregated positive and negative GPP extremes (tenth-percentile definition). For each time step anomalies and extremes were summed over
the whole globe. (B) Percentage of volume of the total spatiotemporal domain (excluding oceans, the Sahara, and Antarctica and Greenland)
affected by positive and negative tenth-percentile extremes in GPP.

Figure A.5. Asymmetry between positive and negative extremes dependent on the number of extremes used for computing the total impact.
Shown is the quotient of accumulated carbon of the n largest negative events over the n largest positive events for different percentiles
(1%, . . . , 10%, n = 10 (squares), 100 (diamonds), and 1000 (stars)) averaged over the four data sets MTE, MOD17+, LPJmL, and OCN.

Figure A.6. Time series of the 1000 largest tenth-percentile GPP extreme events of the four data sets MTE (blue), LUE (green), LPJ (red),
and OCN (cyan). 3D GPP extreme events are transformed into time series as described in section 2.3.
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Figure A.7. Global distribution of decrease in GPP due to extremes for the four GPP data sets MTE (A), MOD17+ (B), LPJmL (C), and
OCN (D). Each pixel depicts the yearly averaged GPP anomalies for the 1000 largest extremes in GPP using the tenth-percentile definition
over the whole time period from January 1982 to December 2011. Units are g C m−2 year−1.
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Figure A.8. Extremes in the Enhanced Vegetation Index (EVI). Shown are the 1000 largest negative tenth-percentile extremes in EVI. Since
EVI is an index between 0 and 1, the units do not have a direct interpretation in gross land carbon uptake. Extremes were computed using
the same approach as for GPP.

Figure A.9. The 26 IPCC regions used in (IPCC).

Figure A.10. Impact of GPP extremes in the 26 IPCC regions (figure A.9). Decrease in percent of total averaged GPP in each region due to
the 1000 largest negative extremes in GPP using the tenth-percentile definition.
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