
JOURNAL OF GEOPHYSICAL RESEARCH: BIOGEOSCIENCES, VOL. 118, 1414–1426, doi:10.1002/jgrg.20118, 2013

The BETHY/JSBACH Carbon Cycle Data Assimilation System:
experiences and challenges
T. Kaminski,1 W. Knorr,2 G. Schürmann,3 M. Scholze,2 P. J. Rayner,4 S. Zaehle,3
S. Blessing,1 W. Dorigo,5 V. Gayler,6 R. Giering,1 N. Gobron,7 J. P. Grant,2
M. Heimann,3 A. Hooker-Stroud,8 S. Houweling,9 T. Kato,10 J. Kattge,3 D. Kelley,8,14

S. Kemp,8 E. N. Koffi,7 C. Köstler,3 P.-P. Mathieu,11 B. Pinty,7 C. H. Reick,6
C. Rödenbeck,3 R. Schnur,6 K. Scipal,11 C. Sebald,5 T. Stacke,6 A. Terwisscha van
Scheltinga,8 M. Vossbeck,1 H. Widmann,12 and T. Ziehn13

Received 29 June 2013; revised 8 September 2013; accepted 11 September 2013; published 9 October 2013.

[1] We present the concept of the Carbon Cycle Data Assimilation System and describe
its evolution over the last two decades from an assimilation system around a simple
diagnostic model of the terrestrial biosphere to a system for the calibration and
initialization of the land component of a comprehensive Earth system model. We
critically review the capability of this modeling framework to integrate multiple data
streams, to assess their mutual consistency and with the model, to reduce uncertainties in
the simulation of the terrestrial carbon cycle, to provide, in a traceable manner, reanalysis
products with documented uncertainty, and to assist the design of the observational
network. We highlight some of the challenges we met and experience we gained, give
recommendations for operating the system, and suggest directions for
future development.

Citation: Kaminski, T., et al. (2013), The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and
challenges, J. Geophys. Res. Biogeosci., 118, 1414–1426, doi:10.1002/jgrg.20118.

1. Introduction
[2] There is an ever increasing number of observations on

the carbon cycle becoming available that describe particular
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processes or features of the global carbon cycle at various
spatial scales, ranging from detailed measurements on the
leaf level to regional scale information about boundary layer
air masses. It is a highly challenging task to combine this
wealth of observational information into an integrated view
on the carbon cycle and to assure consistency between the
available data streams. Such an integrated view is strongly
needed to understand current trends in the global carbon
cycle [Peters et al., 2012] and to reduce uncertainty in
future projections of the global carbon cycle and its climate
feedbacks [Arora et al., 2013; Jones et al., 2013].

[3] A variety of methods have been developed in recent
years for assimilation of observations into terrestrial bio-
sphere models. Barrett [2002] applied a genetic algorithm
to a conceptual model at continental scale. At site level,
Wang et al. [2001] applied a variational approach, Braswell
et al. [2005] a Monte Carlo algorithm, Williams et al.
[2005] embedded an ensemble Kalman filter around a box
model in a variational scheme, and Medvigy et al. [2009]
the simulated annealing technique. Fox et al. [2011] are
used preparing a sequential scheme for assimilating site
level observations into the Community Land Model (CLM)
[Lawrence et al., 2011]. Trudinger et al. [2007] and Fox
et al. [2009] provide a comparison of assimilation meth-
ods applied to a simplified test model at site scale, and the
review of Montzka et al. [2012] provides a classification of
assimilation approaches.
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Figure 1. Flow graph of the cost function evaluation in the CarbonFlux study. Ovals denote data, rectan-
gles processing. The total cost function is composed of contributions quantifying the misfit to individual
data streams and the deviation from prior information.

[4] The Carbon Cycle Data Assimilation System
(CCDAS) was designed as a modeling framework that uses
observations related to the carbon cycle in a mathemati-
cally rigorous way to constrain simulations of the terrestrial
biosphere. The combination of an advanced variational
assimilation concept with a dynamical model allows us, in
theory, to use an observation of a particular variable taken at
a particular time and a particular location to help constrain
another variable at a different time and location. It also
allows us to assess whether a set of observations, possibly of
different variables taken at different times and locations are
statistically consistent with each other and the dynamics of
the system. As pointed out by Rayner [2010], it was not clear
whether these expectations could be met for a dynamical
system as heterogeneous as the terrestrial biosphere.

[5] The beginnings of CCDAS date back to a study by
Knorr and Heimann [1995] who employed high-precision
flask samples of the atmospheric CO2 concentration pro-
vided by a global network [Conway et al., 1994] to con-
strain the Simple Diagnostic Biosphere Model (SDBM).
Since this early study, significant progress has been made
in various aspects, including complexity of the terrestrial
model, the number of data streams, and the sophistication of
the inversion strategy. After almost two decades of steady
development by an ever-increasing team, the CCDAS has
evolved into a complex system which can be illustrated
by a flowchart (Figure 1), here adopted from the cur-
rent CarbonFlux study (see http://CarbonFlux.CCDAS.org).
This particular application of CCDAS aims at assimilating
three Earth Observation (EO) data streams simultaneously,
namely, soil moisture [Bartalis et al., 2007; Owe et al.,
2008; Naeimi et al., 2009], fraction of absorbed photo-
synthetically active radiation (FAPAR) [Pinty et al., 2011],
and column-integrated atmospheric carbon dioxide (XCO2)
[Reuter et al., 2011]. These data are assimilated into two
terrestrial biosphere models, which were integrated into
CCDAS, namely, the Biosphere Energy-Transfer Hydrol-
ogy (BETHY) model [Knorr, 2000], the Jena Scheme for
Biosphere-Atmosphere Coupling in Hamburg (JSBACH)
[Raddatz et al., 2007], the land surface scheme of the
Max Planck Institute Earth System Model (MPI-ESM; M.
A. Giorgetta et al., Climate change from 1850 to 2100 in

MPI-ESM simulations for the Coupled Model Intercom-
parison Project 5, submitted to Journal of Advances of
Modelling Earth Systems, 2013).

[6] After giving a brief technical description of the cur-
rent CCDAS methodology in section 2, the methodological
progress of CCDAS will be described in section 3. Section 4
highlights some of the experience the team gained and
challenges they had to face during the development and
operation of CCDAS. Finally, section 5 draws various con-
clusions from this experience and should be of interest to
the measurement, remote sensing, and modeling communi-
ties and those interested in exploiting large-scale data with
complex models.

2. CCDAS Method
[7] CCDAS applies a variational data assimilation

approach to estimate posterior process parameter values with
their uncertainties, as well as posterior estimates of quan-
tities we are interested in (target quantities), complete with
uncertainties. The term “posterior” here stands for model
simulations constrained by the observations. Potential tar-
get quantities are those that can be extracted from a model
simulation such as carbon, water, and energy fluxes or
stores, typically aggregated in space and time. If they can be
extracted from a simulation over the observational period,
we refer to them as diagnostic target quantities, and if they
cover a period outside the observational period (either in the
past or in the future), we refer to them as prognostic tar-
get quantities. These target quantities may reflect component
processes not directly observed, but still the observations
may be able to constrain them through the dynamics of the
model. In this context, the inverse problem inherent in vari-
ational data assimilation consists of estimating a vector of
parameters, x, that is linked to a vector of observations, d,
via a function d = M(x). The function M represents the
terrestrial biosphere model including so-called observation
operators that link the model state variables to observed
quantities. For example in Figure 1, these include models of
the radiative transfer within the canopy, dynamic calculation
of the soil water balance, as well as a coupling to models of
atmospheric transport.
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Figure 2. Schematic overview of two-step procedure for inferring diagnostic and prognostic target quan-
tities from CCDAS. Rectangular boxes denote processes, and oval boxes denote data. The diagonally
hatched box includes the inversion or calibration step, the vertically hatched box the diagnostic step, and
the horizontally hatched box the prognostic step. Figure taken from Scholze et al. [2007].

[8] The CCDAS inversion methodology is conveniently
formulated in a probabilistic framework [Enting, 2002;
Tarantola, 2005], which means that each independent data
item and any prior information on the parameters available
(e.g., from literature or laboratory experiments) are repre-
sented by probability density functions (PDFs). Combining
the information in the PDFs with the numerical model yields
a posterior PDF for the parameters, i.e., the solution of
the inverse problem. Typically, we treat all these PDFs (if
necessary after a transformation) as Gaussian. Operating in
this Gaussian framework, the relevant PDFs are given by
a vector representing the mean and a matrix representing
the covariance of its uncertainty: d, Cd for the observations,
and xpr, Cpr and xpo, Cpo for the prior and posterior infor-
mation, respectively. More precisely, the data uncertainty Cd
accounts for uncertainties in the observations Cobs as well
as uncertainties from errors in simulating their counterpart
(model error) Cmod. Provided these errors are both Gaussian
they can be summed [Tarantola, 2005, equation (1.74)]

C2
d = C2

obs + C2
mod (1)

[9] If (in addition to Gaussian prior and data PDFs) the
model is linear, the posterior parameter PDF is Gaussian
as well, with posterior mean (being also the maximum
likelihood estimate)

xpo = xpr + CpoMTC–1
d (d – M(x)) (2)

and
C–1

po = (MTC–1
d M)–1 + C–1

pr (3)

where the linear model is M(x) = Mx and ()T denotes
the transposed. An example is inversion of the atmospheric
transport of CO2 [Enting, 2002], in which case x represents
the CO2 surface fluxes and M the transport model.

[10] The term on the right-hand side of equation (3) equals
the Hessian (matrix of all partial second derivatives) of the
cost function, i.e.,

J(x) = 1
2 ((M(x) – d)T Cd

–1 (M(x) – d)

+
�
x – xpr

�T Cpr
–1 �x – xpr

�
), (4)

which has its minimum at xpo.
[11] If the model is nonlinear, as is the case in CCDAS,

iterative minimization of J is used to determine xpo, and

the posterior parameter uncertainty is approximated by the
inverse of the Hessian of the cost function, evaluated at xpo:

C–1
po �

@2J
@x2 (5)

[12] Once the posterior parameter uncertainty has been
derived, it can be propagated forward to uncertainty in a vec-
tor of target quantities, y = N(x), where N denotes the model
operator for simulation of the target quantity and N its lin-
earization around xpo. Using N, the posterior uncertainty in y
can be approximated by

C2
y = NCpoNT + C2

mod (6)

[13] We note that the above formalism also applies when
the parameter vector x is extended to a more general con-
trol vector that also includes initial or boundary conditions.
For example, in the above mentioned case of atmospheric
transport inversion, the control vector contains the time-
dependent surface fluxes, i.e., a boundary condition.

[14] The CCDAS procedure is illustrated in Figure 2.
First, a calibration step (diagonally hatched) computes the
posterior parameter PDF, i.e., it infers xpo through minimiza-
tion of equation (4) and approximates Cpo via equation (5).
Second, a diagnostic or prognostic step uses equation (6)
to propagate posterior parameter uncertainties to a diag-
nostic (vertically hatched area) or prognostic (horizontally
hatched) target quantity.

[15] Computationally, the minimization of equation (4) is
performed by an efficient algorithm that relies on the gra-
dient of J(x). Furthermore, the second derivative of J(x)
is used to evaluate equation (5) and the first derivative
of N(x) to evaluate Equation (6). All derivative informa-
tion is provided with the same numerical accuracy as the
original model in an efficient form via automatic differen-
tiation of the model code by the automatic differentiation
(AD) [Griewank, 1989] tool Transformation of Algorithms
in Fortran (TAF) [Giering and Kaminski, 1998]. TAF offers
so-called forward and reverse modes of AD, which respec-
tively produce tangent and adjoint codes for evaluation of
first derivatives. Both produce the same results. Tangent
code is generally more efficient in evaluating the derivative
of a function, when the number of its dependent variables
(outputs) exceeds the number of its independent variables
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(inputs). Adjoint code is generally more efficient when the
number of independent variables exceeds the number of
dependent variables, as is usually the case for J(x). Efficient
Hessian code is generated by reapplying TAF in forward
mode to a previously generated adjoint code. Jacobians are
efficiently evaluated in vector mode of AD, which simulta-
neously propagates all components of the derivative vector.
Further computational aspects of CCDAS are discussed by
Kaminski et al. [2003].

3. Evolution of CCDAS
3.1. The First CCDAS

[16] CCDAS started with the development of the pre-
viously mentioned SDBM [Knorr and Heimann, 1995],
a diagnostic model of terrestrial primary productivity. In
contrast to similar models [see, e.g., Ruimy et al., 1994],
SDBM was specifically designed to exploit high-precision
measurements of CO2 concentration from a global net-
work of flask samples. Because atmospheric CO2 con-
centration is only indirectly related to NPP, the study
used SDBM coupled to the atmospheric transport model
TM2 [Heimann, 1995], taking the role of an observation
operator.

[17] It is useful to present SDBM in some detail because
it can illustrate several essential elements of the CCDAS
approach. The model computes the seasonal cycle of net
ecosystem exchange (NEE) on a global grid as the difference
between net primary production (NPP) and heterotrophic
respiration and assumes an annually balanced NEE [Knorr
and Heimann, 1995]. It is driven by remotely sensed veg-
etation greenness, incoming solar radiation, and surface
temperature. The model has only two parameters: a pho-
tosynthetic light use efficiency � and a parameter Q10 that
determines the temperature dependency of heterotrophic res-
piration. Simulated NEE depends on Q10 in a nonlinear way
and on � in a linear way, i.e., Q10 determines the shape of the
seasonal cycle and � its amplitude. This form of dependency
on Q10 and � extends to the seasonal cycles in atmospheric
CO2 simulated by the linear TM2. For some ad hoc prior
value of �, the authors computed the combined SDBM-TM2
atmospheric response for a plausible set of Q10 values. For
each value of Q10, they determined a global scaling fac-
tor that minimizes the difference between the simulated and
observed seasonal cycle at five atmospheric CO2 monitor-
ing stations of the NOAA/CMDL flask sampling network
[Conway et al., 1994]. The optimal Q10 is the value that
achieves the best fit after scaling and the optimal � the
scaled value of the prior �. The procedure also tested varying
ways in which drought stress was incorporated into NPP or
heterotrophic respiration. The SDBM modeling framework
provided a powerful tool not only to estimate global NPP but
also to elucidate how drought differentially impacts the two
contributors to NEE (i.e., NPP and heterotrophic respira-
tion). Despite its simplicity, simulated NPP with SDBM was
very similar to a range of more complex models [Cramer
et al., 1999; Bondeau et al., 1999]. It repeatedly served as
a benchmark in tests of complex models [Heimann et al.,
1998; Kelley et al., 2013].

[18] A limitation of the SDBM framework is that both
parameters (Q10 and �) need to be global, whereas from an
ecophysiological viewpoint, one would expect a difference

in � between major vegetation types with widely differ-
ent adaptation strategies, e.g., grass, broad-leaved trees, and
conifers. However, such further differentiation would have
made the stepwise optimization approach of the SDBM-
TM2 framework infeasible. The first modeling framework
[Kaminski et al., 2002] to overcome this limitation used
SDBM in a version where a set of plant functional types
(PFTs) was each assigned a separate pair of values for � and
Q10. It used an efficient gradient-based algorithm, suitable
for optimization of higher-dimensional parameter vectors,
with one parameter pair per PFT. It also built on parallel
work by Kaminski et al. [1999] who, through the adjoint of
TM2, derived an efficient and accurate matrix representation
of the mapping from CO2 fluxes to concentrations at atmo-
spheric sampling locations. The matrix representation by the
Jacobian of TM2 allowed them to represent the transport by
a simple matrix multiplication. Another feature of this first
CCDAS framework was the computation of posterior uncer-
tainties of both parameters (using equation (3)) and fluxes
(using equation (6)). This first CCDAS can thus be con-
sidered a combination of components and functionality of
the Knorr and Heimann [1995] study and a set of transport
inversion studies based on the Jacobian of TM2 [Kaminski
et al., 1999].

[19] Moving from transport inversions to the first CCDAS
meant a drastic reduction of the dimension of the con-
trol space. While transport inversions optimize the time-
dependent surface fluxes on the full transport model grid,
CCDAS only used 24 parameters, 2 parameters each
for 12 PFTs. As with Knorr and Heimann [1995], CCDAS
took into account the effect of CO2 fluxes from pro-
cesses not represented in SDBM, termed “background”
fluxes. Fluxes from fossil fuel burning, land use change,
and between ocean and atmosphere were represented by
prescribed fields. Observations were provided by 41 flask
sampling sites [GLOBALVIEW-CO2, 2000]. A new feature
in this CCDAS framework was the use of automatic dif-
ferentiation software [Giering and Kaminski, 1998], which
efficiently provided the tangent and adjoint codes of the
combined biosphere/transport simulation, required for the
optimization and uncertainty propagation.

3.2. Prognostic Model
[20] The potential of this first CCDAS framework was

limited by SDBM’s focus on the seasonal cycle and its diag-
nostic nature: Due to the need for remote sensing data to
drive its photosynthesis model, SDBM is not suited for prog-
nostic, i.e., predictive simulations of the terrestrial carbon
cycle. Recognizing this shortcoming, Knorr [1997, 2000]
had developed BETHY, a prognostic model of the terrestrial
carbon cycle. The model is structured into four compart-
ments: (1) energy and water balance, (2) photosynthesis,
(3) phenology, and (4) carbon balance. It is run on the
basis of daily climate data, which is internally converted
into hourly microclimate. BETHY decomposes the global
terrestrial vegetation into 13 PFTs based on the specifica-
tion by Wilson and Henderson-Sellers [1985]. Each grid cell
contains up to three PFTs.

[21] The integration of BETHY into CCDAS was per-
formed stepwise. A first series of studies [Rayner et al.,
2001; Scholze, 2003; Rayner et al., 2005a] focused on
the assimilation of atmospheric CO2. For that purpose, it
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Figure 3. From 1980 to 1999 averages of NEE aggregated
over five regions from Carbon-BETHY (with 1 sigma uncer-
tainty range), fossil fuel emissions, and land use change in
megaton C/yr.

was sufficient to operate CCDAS on Carbon-BETHY, a
reduced version of BETHY that does not include a water
balance nor a phenology scheme. A preceding run of the
full BETHY scheme provided to Carbon-BETHY fields of
leaf area index (LAI) and plant available soil moisture opti-
mized against remotely sensed FAPAR. Carbon-BETHY
could then simulate carbon fluxes as a function of 20 process
parameters controlling photosynthesis and autotrophic and
heterotrophic respiration. The parameter values are constant
in time, and their spatial scope can be selected by the user in
a flexible manner. Parameter values can, for example, be spe-
cific to grid cells, regions, PFTs, or be globally valid. In the
CCDAS default configuration, there are three PFT-specific
parameters, and the remaining 17 parameters are globally
valid. With one extra global parameter for the initial atmo-
spheric CO2 concentration, this amounts to 3� 13 + 17 + 1 =
57 parameters. The model uses two soil carbon pools, repre-
senting fast and slowly decomposing organic matter. One of
the PFT-specific parameters, ˇ, allows to scale heterotrophic
respiration and implicitly determines the initial size of the
slow carbon pool and thus avoids a spin up of the pool. Since
the relative change in pool size is typically small, this change
in pool size over the assimilation period is neglected [Rayner
et al., 2005a].

[22] For this default configuration, atmospheric flask sam-
ples provided by 41 sites [GLOBALVIEW-CO2, 2004] over
the period from 1980 to 1999 were used to calibrate the
model [Rayner et al., 2001; Scholze, 2003; Rayner et al.,
2005a]. As for SDBM, the atmospheric transport of the
simulated fluxes plus a set of background fluxes to the obser-
vational sites was simulated by TM2. The system achieved
a considerably improved fit to the observations. It produced
parameter values including uncertainty ranges as well as
net ecosystem production (NEP) with uncertainty ranges at
the grid-scale level and also aggregated to regions as illus-
trated by Figure 3. The figure clearly shows the value of the
uncertainty ranges in the assessment of regional carbon bud-
gets. In technical terms, this generation of CCDAS is the
first to derive posterior uncertainties from the full Hessian
(equation (5)).

[23] The limitation of the above CCDAS setup through
the use of prescribed background fluxes was tackled by a

further sequence of studies. Hooker-Stroud [2008] replaced
the fossil fuel background flux through a model of the fossil
fuel emissions which was calibrated jointly with Carbon-
BETHY. Scholze et al. [2013] replaced the oceanic back-
ground flux by the MIT general circulation model of the
ocean, including the dissolved inorganic carbon marine car-
bon cycle model [Dutkiewicz et al., 2006]. The ocean com-
ponent adds 13 marine carbon parameters to be estimated
jointly with the standard CCDAS parameters. A further
example for an extension of the process model is provided
by Kelley [2008] who included a diagnostic fire model into
CCDAS and calibrated it jointly with Carbon-BETHY.

[24] Another strand of activities explored the CCDAS
configuration options. Ziehn et al. [2009, 2011] investigated
the sensitivity of CCDAS results with respect to the spatial
resolution of parameters by introducing a differentiation by
PFT and region for the key carbon storage parameter ˇ. The
studies of Koffi et al. [2012a, 2012b] investigated the sen-
sitivity of CCDAS results with respect to the observational
network and the atmospheric transport model. Koffi et al.
[2012b] also quantify how atmospheric CO2 sampling, an
observation type sensitive to NEP, constrains gross primary
productivity (GPP), a quantity further up the modeling chain
of NEP.

[25] The prognostic capability of CCDAS was exploited
by a further sequence of studies that used the network and
assimilation period of Rayner et al. [2005a]. Scholze et al.
[2007] simulated a prognostic period of only 4 years subse-
quent to the assimilation period and kept the approximation
of a constant slow carbon pool. By contrast Rayner et al.
[2005b, 2011] simulated a prognostic period of 50 and 90
years, respectively, and included the dynamics of the slow
pool. Target quantities included prognostic fluxes [Scholze
et al., 2007; Rayner et al., 2005b; Rayner et al., 2011] and
concentrations [Scholze et al., 2007]. The uncertainty reduc-
tion relative to the prior was used to assess the impact of
the observational constraint. All studies found considerable
uncertainty reductions (about 90% for the 90 year prediction
and above 95% for the 4 year prediction).

3.3. Inclusion of Phenology and Water Cycle
[26] The focus of Carbon-BETHY on the terrestrial car-

bon cycle was useful to simplify the setup and operation
of CCDAS. However, this focus also restricted the type of
observations that could be assimilated into the model, as
well as the type of potential target quantities. An essential
development step to reduce this restriction was the extension
of CCDAS to the full BETHY model, i.e., the inclusion of
its hydrology and phenology compartments.

[27] One of the associated challenges was the lack of a
“smooth” (i.e., differentiable) response of the model state
(and thus of the cost function of equation (4)) to changes in
process parameters caused by BETHY’s phenology scheme
[Knorr, 2000]. Not only is a high sensitivity of the cost func-
tion to very small parameter changes questionable from a
biophysiological point of view, but it also hampers the use
of variational assimilation techniques. This is because these
techniques rely on the validity of the derivative information
in a certain neighborhood of any point in parameter space. A
smooth response to parameter changes was achieved [Knorr
et al., 2010] through a newly developed phenology scheme
and a revised soil evaporation model with a new shallow
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surface bucket overlapping a deep-root zone bucket. The
modified BETHY captures temperature- and water-driven
leaf development. Taking spatial variability within a grid cell
into account avoids hard switches between growth, senes-
cent, and dormant vegetation states. The new components
add another 8 parameters to the 20 parameters of Carbon-
BETHY. In the new default setup, some of the parame-
ters are globally valid, while others are shared between
selected PFTs.

[28] Knorr et al. [2010] applied the extended CCDAS for
simultaneous assimilation of 20 months of remotely sensed
FAPAR over seven sites covering seven PFTs. The FAPAR
product [Gobron et al., 2007; Gobron et al., 2008] was
derived from the Medium Resolution Imaging Spectrometer
on board the European Space Agency’s ENVISAT platform.
In that multisite configuration, the model used 38 process
parameters. The smoothness of the extended CCDAS was
demonstrated by efficient minimization of the cost func-
tion (equation (4)) in some 30 iterations, with a gradient
reduction by more than 7 orders of magnitude (a great
improvement on previous versions). The robustness of the
parameter estimate was assured by starting the iterative pro-
cedure from three different points in parameter space each on
two different computers. The optimization improved the data
fit at all seven sites. More importantly, it also reduced the
root-mean-square (RMS) difference at a further site that was
not included for assimilation (validation site) by more than
40%. The study also demonstrated how data assimilation can
extend the temporal scope of the assimilated information by
simulating NPP over a 48 months period and showed a sub-
stantial reduction of posterior uncertainty in mean annual
NPP, which was 48% at the validation site.

[29] The first global-scale application [Kaminski et al.,
2012a] of the extended CCDAS simultaneously assimilated
the FAPAR product and flask samples of atmospheric CO2
at two sites on a coarse grid to estimate 70 terrestrial pro-
cess parameters plus one initial atmospheric concentration.
It demonstrated the same robustness of the minimization
procedure, where four out of five runs from different start-
ing points converged to the same minimum with gradient
reductions by more than 8 orders of magnitude in about
150 iterations. This robustness was a direct consequence
of the smoothness of the revised phenology scheme. The
calibrated model showed an improved fit also at atmo-
spheric flask sampling sites that were not included in
the assimilation.

[30] Kato et al. [2013] used an extended site level setup
for simultaneous assimilation of FAPAR and eddy covari-
ance measurements [Baldocchi et al., 2001] of latent heat
flux at the FLUXNET site in Maun, Botswana [Veenendaal
et al., 2004]. They used a FAPAR product [Gobron et al.,
2006] derived from the Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) of the National Aeronautics and Space
Administration (NASA). In their two-PFT configuration,
they estimated 24 model parameters. Comparison against
eddy covariance measurements of GPP showed that the cal-
ibration reduced the RMS difference by 16%. They also
tested individual assimilation of the two data streams, which
resulted in considerable differences in some of the param-
eter values and a substantial degradation of the fit to the
nonassimilated data stream compared to the prior. It was the
simultaneous assimilation of both data streams that achieved

the compromise between the two suboptimal states reached
after assimilating only one data stream.

3.4. Earth System Model
[31] The studies of Scholze et al. [2007] and Rayner et al.

[2005b, 2011] clearly demonstrated the potential of BETHY-
CCDAS to reduce predictive uncertainty in terrestrial carbon
cycle simulation. Since BETHY-CCDAS was designed as
a model driven by observed or reconstructed meteorologi-
cal forcing, its application to analyze global carbon cycle
trajectories in the Earth system is limited. The next step in
CCDAS development was thus to extend the framework to
a land-surface model that is capable of simulating the land
component of the global carbon cycle coupled to represen-
tations of the marine and atmospheric branches of the global
carbon cycle. The logical choice of land-surface model is
the terrestrial component of the Max Planck Society’s ESM
(MPI-ESM) [Jungclaus et al., 2010], called Jena Scheme for
Biosphere-Atmosphere Coupling in Hamburg (JSBACH)
[Raddatz et al., 2007], because the JSBACH development
was originally based on BETHY. Despite this fact, there are
considerable differences between the two models, both in
terms of process representations and code structure. While
the light absorption and photosynthesis representation fol-
low BETHY, the soil energy and water balance calculations
follow the scheme of the atmospheric model ECHAM5
[Roeckner et al., 2003]. A complementary five-layer soil
hydrology has been developed to improve simulation of the
seasonal hydrological cycle [Hagemann and Stacke, 2013].
JSBACH further simulates the allocation of carbon assim-
ilates to vegetation, litter and soil organic matter pools,
represented by seven pools of different live times, and thus
explicitly represents heterotrophic and autotrophic respira-
tion processes, the latter based on the formulation in BETHY
(a description is given in Goll et al. [2012]). JSBACH
includes modules for land-cover change [Reick et al., 2013],
disturbance regimes and vegetation dynamics [Brovkin et
al., 2009], and nutrient cycles for nitrogen and phosphorus
[Goll et al., 2012]. JSBACH can be run as a component
of the comprehensive Earth System Model (online), as a
coupled atmosphere-land model with prescribed sea-surface
properties, or standalone (off-line), driven with prescribed
atmospheric forcing, with the same, identical code base.

[32] In the CCDAS setup, JSBACH is employed in off-
line mode, driven by reconstructed, observed meteorol-
ogy (meteorological reanalysis products) [Schürmann et al.,
2013]. The default observational operator for atmospheric
concentrations is the TM3 atmospheric transport model
[Heimann and Körner, 2003]. TM3 is available in various
spatial resolutions (e.g., 8ı by 10ı to 2ı by 2.5ı horizon-
tally) and, as TM2, offers precomputed Jacobians for many
observational sites [Rödenbeck et al., 2003]. As a differ-
ence to BETHY-CCDAS-TM2, TM3 is typically driven with
interannually varying winds.

[33] To render the dependency of the cost function on the
parameters as smooth as possible, the model’s default phe-
nology scheme logro-P [Raddatz et al., 2007] was replaced
by the smooth scheme of Knorr et al. [2010]. While both
the bucket and five-layer soil schemes as well as the
carbon cycle of JSBACH are included in CCDAS, the
recently developed nutrient cycles are not yet considered.
Also, dynamic vegetation has been excluded and CCDAS
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Figure 4. Uncertainty reduction in NEP for a network composed of one eddy covariance site (denoted
by a cross) and a flask sampling site (denoted by a circle with a dot).

operates with prescribed static land-cover maps. Currently,
tangent linear JSBACH codes are available in scalar and
vector forms, while development of adjoint and Hessian
codes is ongoing. First successful assimilation experi-
ments have been carried out at site level and global scale
[Schürmann et al., 2013]. The site level setup can assimilate
eddy covariance-based observations of NEE or latent heat
fluxes and the global scale setup atmospheric CO2 observed
at long-term monitoring stations. Control variables are the
model’s process parameters and initial conditions. With
slight revisions in details of the process formulations (see
section 4.3), the sensitivity to process parameters is in a rea-
sonable range and the minimization of equation (4) proceeds
efficiently without being terminated at discontinuities.

3.5. Quantitative Network Design
[34] One of the innovative aspects of the study by

Kaminski et al. [2002] was that it tested the impact of a hypo-
thetical direct flux observation on the posterior uncertainty
within CCDAS-SDBM. Since the observation was hypothet-
ical, one could not compute its impact on the posterior mean
value that minimizes equation (4). It was possible, however,
to use a plausible data uncertainty Cd together with the
Jacobian M that links the parameter vector to the hypo-
thetical observation and then evaluate equation (3). The
hypothetical flux observation was placed in the model’s
broadleaf evergreen PFT, which was not well observed by
the atmospheric network. The extra observation resulted in
a substantial uncertainty reduction for both model param-
eters associated with this PFT, indicating the complemen-
tarity of the two data streams. The study by Kaminski et
al. [2002] was the first application of quantitative network
design (QND) to a terrestrial biosphere model, a tech-
nique that was originally introduced to biogeochemistry
[Rayner et al., 1996] in the context of atmospheric trans-
port inversions. Its principle is the application of the CCDAS
uncertainty propagation step (equation (3) or (5)) without a

preceding minimization. For details on the method, we refer
to Kaminski and Rayner [2008].

[35] For Carbon-BETHY, an interactive QND tool (availa-
ble at http://IMECC.CCDAS.org) was developed [Kaminski
et al., 2012b]. The tool is called Network Designer and
handles three observational data streams, namely, direct
CO2 flux observations, continuous, and flask samples of
atmospheric CO2. The user can compose an observational
network by selecting from a list of locations (for which
Jacobians have been precomputed) and by specifying a cor-
responding data uncertainty. The Network Designer returns
posterior uncertainties for a set of target quantities. These
are regional integrals of long-term NEP and NPP, as well as
NEP on the model grid. As an example, Figure 4 shows the
uncertainty reduction in NEP relative to the prior for a sim-
ple network composed of an atmospheric flask sampling site
at Mauna Loa (155.58ıW, 19.53ıN) and an eddy covariance
site in the tropical rain forest (60ıW, 0ı). Kaminski et al.
[2012b] applied the tool to assess the complementarity and
redundancy of terrestrial and atmospheric networks. They
also explored the sensitivity of network performance to the
degree of vegetation heterogeneity by varying the globally
available number of PFTs between 13 and 325.

[36] The QND study by Koffi et al. [2012a] applies
CCDAS to assess the constraint of several combinations of
terrestrial and atmospheric networks on Carbon-BETHY’s
process parameters and tested the impact of the atmospheric
transport model. Another QND study [Kaminski et al.,
2010] used the CCDAS around Carbon-BETHY to assist the
design of a space mission. It assessed the benefit of sampling
XCO2 with a hypothetical active LIDAR instrument [Ehret
et al., 2008] for alternative mission layouts. For the assess-
ment of hypothetical FAPAR observations from space with
QND methods, Kaminski et al. [2012a] derived a Mis-
sion Benefit Analysis (MBA) tool from CCDAS around
full BETHY. The tool quantifies the effect of data uncer-
tainty and mission length and availability of complementary
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atmospheric CO2 observations on the constraint on carbon
and water fluxes. The MBA tool quantified the separate
and combined constraint of FAPAR and atmospheric CO2
observations on carbon and water fluxes.

4. Challenges, Experiences, and Lessons Learnt
[37] This section provides a set of recommendations

based on our experience with CCDAS development
and operation.

4.1. Carefully Select the Control Vector
[38] The selection of control variables should be gen-

erally guided by the resolution of the large uncertain-
ties in the terrestrial system. Sources of uncertainty
in a simulation of the terrestrial biosphere are the
following: the selection of the relevant processes to incor-
porate in the model, their formulation, the approxima-
tions made in their numerical implementation (structural
uncertainty); the values of the parameters in the imple-
mentation of the processes (e.g., � and Q10 in the case of
SDBM) (parametric uncertainty); the initial state of the sys-
tem; and the atmospheric forcing, in the case of an off-
line simulation.

[39] Sources 2 to 4 can be directly addressed in the
CCDAS by incorporating uncertain process parameters, ini-
tial conditions, and atmospheric forcing in the control vector
of the CCDAS. To explore structural uncertainty (source
1), one can modify (within the CCDAS) process formu-
lations and their implementation and study their perfor-
mance. An example for this type of analysis is the impact
of drought stress in SDBM discussed in section 3.1. To
resolve the large uncertainties for a given model implemen-
tation, one would generally select those control variables
that are deemed uncertain and have high impact on observ-
ables and target quantities. If a variable is excluded from
the control vector, we have to take its effect into account
in the model error contribution to the data uncertainty
(equation (1)). An increased data uncertainty will reduce the
weight of the data in the cost function (equation (4)) rel-
ative to the prior information, i.e., we can learn less from
the data.

[40] In some cases, there are parameters that do not indi-
vidually impact the model’s fit to available observables, but
only in a given combination with another parameter, for
example, as a product. This renders the inversion underdeter-
mined, because there are many pairs of the parameter values
that yield identical values for the observables (a situation
sometimes termed equifinality). If, in addition, the relevant
target quantities are also only sensitive to the same parame-
ter combination, we recommend solving for the combination
of the two parameters. An example is the first implemen-
tation of the Farquhar photosynthesis model [Farquhar et
al., 1980] in Carbon-BETHY [Scholze, 2003], where the
two parameters jmt and jtv exclusively act as a product.
The two parameters describe, respectively, the ratio of Jmax
to temperature and the ratio of Jmax to Vmax, where Jmax is
the maximum electron transport rate and Vmax the maximum
enzyme carboxylation rate. In later CCDAS implementa-
tions [Rayner et al., 2005a], the parameter jmt was absorbed
by jtv, i.e., a parameter Qjtv = jmt� jtv was used to replace the
individual parameters.

[41] The CCDAS formalism described in section 2
assumes Gaussian parameter PDFs. This restriction is weak-
ened by the implementation of a set of parameter transfor-
mations, which map a Gaussian parameter, x, from the space
in which the inversion is formulated onto a parameter, p, in
physical space in which the model operates. These include
functions like p = exp(x) or p = x2 which exclude nega-
tive values of p. Suitable choice of scaling factors assure that
the Gaussian uncertainty range is mapped onto the desired
range in physical space. For example, such transformations
are typically applied to the Q10 parameters of slow and fast
carbon pools [Rayner et al., 2005a], in Ziehn et al. [2011]
also to the ˇ parameters.

[42] Even though such parameter transformations can
achieve a wide range of PDF shapes in physical space, the
inversion procedure can only adapt the mean and variance
in x space, i.e., much of the PDF shape is prescribed a
priori. Markov Chain Monte Carlo methods are a class of
inversion algorithms that avoid any restriction on the poste-
rior PDF shape through frequent sampling of the parameter
space. Such algorithms are thus suitable for examining the
severity of the Gaussian assumption in CCDAS. Due to
the considerable computational requirements, which grow
with the dimension of parameter space and model complex-
ity, for BETHY, the method requires the combination of a
fast model configuration and a low dimensional parameter
space. Knorr and Kattge [2005] applied the Metropolis algo-
rithm [Metropolis et al., 1953] to calibrate a reduced version
of BETHY in two different site level setups (with 14 and
23 parameters, respectively) against eddy covariance mea-
surements of NEE and latent energy with an assimilation
period of a week. One of their main findings was that the
posterior parameter PDFs were close to Gaussian. Ziehn et
al. [2012] compared the Metropolis algorithm and CCDAS
for a reduced global setup of Carbon-BETHY. They cal-
ibrated 19 parameters against the same atmospheric CO2
observations as Rayner et al. [2005a]. The agreement of
posterior parameter values and uncertainties was generally
good. Remaining differences were attributed to convergence
problems of the Metropolis algorithm.

4.2. Take Biases Into Account
[43] The CCDAS formalism described in section 2

assumes that both data and model are unbiased. This means
the mean values of their Gaussian PDFs correspond to
the true value and to each other. An example of a biased
model would be a model that systematically overestimates
soil respiration. In the presence of biases the optimiza-
tion will attempt a compensation through a biased posterior
parameter estimate. In the above example, the optimiza-
tion could adjust the parameters of the photosynthesis
model such that enhanced GPP compensates the bias in
soil respiration resulting in NEE that matches observed
atmospheric CO2. If the biases in model and observations
were known, we could subtract them before computing
the model-data mismatch in equation (4). For example,
some data products are provided in bias-corrected form.
For the model, we generally aim at avoiding biases through
model improvements; the second best choice is to correct
the biases.

[44] Absolute biases are difficult to assess, because the
truth is generally not known. We can, however, use the
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model-data differences to evaluate the difference in their
biases and try to correct for this relative bias or at least
guarantee that the statistical assumptions underlying the
assimilation are respected. This is complicated by the fact
that part of the bias can be caused by suboptimal parameter
values. We only want to correct for the residual fraction of
the bias with optimal parameter values. On the other hand,
for an unbiased optimization, we need to remove the bias
beforehand. An obvious solution is to construct a model of
the bias that can be calibrated along with the process model.

[45] As an example, we use the setup of Kaminski et al.
[2012a] who calibrate BETHY by simultaneous assimila-
tion of atmospheric CO2 and FAPAR data (see section 3.3).
Based on site level analyses [Knorr et al., 2010], we suspect
a low bias due to cloud contamination of the FAPAR data
(Fobs) and construct a model for the corresponding bias, B,
to be added to Fobs. Given that observed FAPAR is low com-
pared to a prior model simulation in some evergreen tropical
rainforest areas with dense vegetation, but agreement is good
in areas of no vegetation, we assume that the bias itself is
proportional to Fobs. One consequence is that if the observed
FAPAR is 0 then the bias-corrected FAPAR will always be
0 as well. We also assume that the bias is increasing with
precipitation P (as a proxy for cloud cover), which results in

B = (a + bP)Fobs, (7)

with two tunable parameters, a and b. A joint calibration
with BETHY yielded parameters of the phenology model set
such that the simulated LAI remained very small, with max-
imum LAI values globally well below 1, which is obviously
unrealistic. The reason was that by reducing simulated LAI
and thus FAPAR and at the same time reducing observed
FAPAR via B < 0, the optimization achieved the biggest
reduction in the cost function. Despite the corresponding
low NPP value, the optimization achieved a good fit to the
atmospheric CO2 observations by slowing down soil res-
piration. After the failure of this integrated bias correction
approach, Kaminski et al. [2012a] stepped back and applied
a bias correction before the assimilation, despite the above
mentioned disadvantages.

[46] Another data stream that typically requires bias cor-
rection is surface soil moisture as provided by several remote
sensing instruments. State of the art schemes for bias correc-
tion attempt a scaling to match mean and variance [Scipal
et al., 2008a; Dorigo et al., 2010] or a more complex trans-
formation that matches the cumulative distribution functions
(CDF matching) [Drusch et al., 2005]. If a third independent
data set is available, the so-called triple colocation analysis
[Scipal et al., 2008b] can be applied to estimate both biases
and uncertainties. Another related topic is quality assurance
of the observations, i.e., rejection of erroneous data before
assimilation [see, e.g., Hollingsworth et al., 1986]. Bias cor-
rection and quality assurance are areas where carbon cycle
data assimilation should learn from the long experience in,
for example, numerical weather prediction where complex
bias correction and quality assurance schemes are the norm.

4.3. Be Prepared To Modify Your Model
[47] When integrating a model into the CCDAS frame-

work, you need to be prepared for modifications. Some of
these modifications address slight structural changes in the

code, e.g., to nominate control variables (see section 4.1) or
to achieve compliance with automatic differentiation soft-
ware (see below). These usually do not affect the model
results. A further class of modifications are those which are
useful to improve the model performance within CCDAS
and beyond. An example is the newly developed phenology
scheme that exhibits a smooth dependency of the vegeta-
tion state on the process parameters. The scheme is now
implemented in BETHY (see section 3.3) and JSBACH (see
section 3.4). Not only does the scheme considerably improve
the model performance in the gradient-based optimization
framework. The underlying assumption of subgrid variabil-
ity made the model more realistic. In fact, one of the major
uses of data assimilation in terrestrial modeling is to separate
model deficiencies due to poor parameter choices from more
fundamental structural problems. Only once the parameters
have been optimized can we be sure they are not the cause.

[48] A further example is ongoing refinement of
BETHY’s soil scheme. This modification was triggered by
a poor match of the statistical distributions of modeled and
remotely sensed surface soil moisture, a new CCDAS data
stream being assimilated within the above mentioned Car-
bonFlux project. Similarity of the statistical distribution of
daily soil moisture values between the BETHY surface layer
and remotely sensed surface soil moisture is a prerequisite
for assimilating these data [Drusch et al., 2005].

[49] Sometimes it is useful to modify low-level details in
the process formulations that produce unrealistic sensitivi-
ties. In the following, we present three examples experienced
in CCDAS development around JSBACH to highlight the
nature of such changes. A first example is the use of the
calculation of the fraction of snow cover [Roesch et al.,
2001, equation (7)], which includes the square root of the
amount of snow. Unfortunately, the amount of snow often
is zero which leads to a division by zero in the derivative
code. A solution here is to define a lower limit to the value
for which the square root is taken. Another example is the
calculation of the specific humidity at saturation, which orig-
inally was a step function read from a look-up table that was
precomputed in the MPI-ESM. A third typical case is the
use of maxima or minima functions which lead to nondif-
ferentiable points in otherwise continuous functions. These
can be smoothed by defining a maximum or minimum func-
tion with an exponential transition from one value to the
other. These three examples illustrate aspects of the model
that only became apparent during CCDAS development.
The corresponding modifications can be regarded as model
improvements.

[50] The use of AD facilitates updates of CCDAS after
modifications. This requires compliance of the model code
with an AD tool. To some extent, the process of achieving
compliance with an AD tool is similar to porting the model
code to a new compiler and includes revision of particular
code constructs not handled by the AD tool, without chang-
ing the model results. From our experience, the main effort
is required to achieve compliance for an initial model ver-
sion. From that point, we recommend development of the
model within CCDAS. Adapting the derivative code to the
day-to-day modification of the model then typically requires
little effort. Of course, inclusion of new process models,
such as the step from Carbon-BETHY to full BETHY
requires a larger effort again. As programming standards
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such as Fortran are continuously evolving, it is desirable that
the AD tool is continuously maintained and evolves with
the standards.

4.4. Attempt Consistent Assimilation
[51] An example of a setup for assimilation of multiple

data streams is shown in Figure 1. A consistent view on the
terrestrial carbon cycle can only be achieved by assimilating
all data simultaneously (consistent assimilation). Stepwise
procedures appear less demanding but consistency can only
be ensured for linear models and requires that all uncertain-
ties from one step be propagated to the next, negating the
apparent advantage. Typically, the fit to a data item assimi-
lated in an early step will be degraded by later assimilation
steps. For non-linear systems (as the terrestrial biosphere)
only joint assimilation can fully exploit the complementarity
of the observational constraints. We also note that step-
wise assimilation procedures based on a split of the entire
assimilation period in subperiods is prohibitive when the
control vector affects the initial state. This is because such
a sequential assimilation procedure would result in the vio-
lation of mass conservation, a crucial requirement in our
context. Section 3 has summarized some early examples of
consistent assimilation. In Knorr et al. [2010] they were
eddy covariance observations at multiple sites, in Kaminski
et al. [2012a] FAPAR and atmospheric CO2, and in Kato
et al. [2013] FAPAR and eddy covariance measurements
of latent heat flux at a site. These cases were all challeng-
ing and should be regarded as a first step toward consistent
assimilation. They all led to improvements of the process
model formulation.

[52] The relative strengths of the constraints through the
individual data streams on the prior depend on the data and
prior uncertainties in equation (4). A too low uncertainty on
a data stream will overemphasize the importance of that data
stream in the integrated CCDAS view.

[53] Assessment of prior and data uncertainties is diffi-
cult. Observational products are constantly improving, and
there is a tendency toward provision of uncertainty ranges
with the products [Pinty et al., 2011; Reuter et al., 2011].
The dependence of uncertainties of eddy covariance fluxes
on the flux magnitude itself and their autocorrelation struc-
ture have been described [Richardson et al., 2006; Lasslop
et al., 2008] and research is still ongoing to further charac-
terize random and systematic uncertainties [e.g., Richardson
et al., 2012; Mauder et al., 2013].

[54] For the model error contribution to data uncertainty,
there is little guidance. We usually assume prior and data
uncertainty to our best knowledge and apply CCDAS to
assess the consequences of these assumptions. A test of these
assumptions is the value of the cost function at the optimum,
which multiplied by 2 and normalized by the dimension of
the data space should be around 1 [Tarantola, 2005]. For
example, Rayner et al. [2005a] calculate a value of 2.76. To
achieve a value of 1, they could have increased the standard
deviations in their diagonal prior and data uncertainties by
a factor of

p
2.76, i.e., by about 66%. Correlations within

the data uncertainty also have a high impact on data weight.
If, for example, the uncertainty for an entire data stream is
fully correlated, it takes the same weight as a single obser-
vation with the same data variance. Some of these problems
can be diagnosed by careful consideration of the statistical

behavior of the model fit [e.g., Michalak et al., 2005; Kuppel
et al., 2012a].

[55] The inclusion of processes is so far only represented
by prescribed background flux fields as those mentioned in
section 3.2 are modifications that make further data streams
accessible to CCDAS. At the same time, this type of mod-
ification can help to resolve uncertainty that before had to
be accounted for in the model error contribution to the data
uncertainty (equation (1)).

4.5. Handling an ESM
[56] Rather than including the entire MPI-ESM into the

CCDAS, we have, as a first step, chosen to include the
JSBACH as a standalone model, driven by observed or
reconstructed meteorology. This allows to identify poten-
tial model structural defaults of the land-surface model in
a better constrained setup, rather than attempting to reduce
model-data mismatches by optimizing atmospheric and ter-
restrial processes simultaneously. The standalone model can
be operated at the site level, driven with observed meteo-
rological forcing, which allows to assimilate observations
representative for a particular PFT as observed at a set
of specific sites representing this PFT (e.g., eddy covari-
ance observations) and potentially identify model structural
failures. The use of interannually varying global carbon
cycle observations in the JSBACH-CCDAS, such as the
global atmospheric CO2 monitoring network, requires that
the meteorological forcing of JSBACH represents not only
the climatological mean correctly but also the correct tim-
ing and magnitude of seasonal and interannual anomalies,
e.g., the occurrence of meteorological teleconnections to the
El Niño–Southern Oscillation phenomenon. For this reason,
forcing data are taken from reanalyses or interpolated obser-
vations [e.g., Weedon et al., 2011] rather than a free run of
the MPI-ESM, in which timing and magnitude may differ
substantially from observed patterns. In addition, a stan-
dalone JSBACH run is computationally much faster than
a full ESM run and the amount of code is considerably
reduced. Even though (Blessing, S. et al., Testing variational
estimation of process parameters and initial conditions of an
Earth System Model, submitted to Tellus A, 2013) recently
applied TAF to generate efficient tangent and adjoint codes
of an entire ESM, the limited code size of JSBACH’s
off-line version clearly facilitates automatic generation of
derivative code.

[57] Nevertheless, since the ultimate purpose of JSBACH
is to correctly represent the land carbon cycle in the Earth
system model, it needs to be thoroughly tested to what
degree the offline calibration and initialization of the
JSBACH affect the global carbon cycle as simulated by
the MPI-ESM. In configurations with compensating errors,
the immediate effect of improving a source of error may
be a degradation in the performance of the entire system.
Dalmonech et al. [2013] show that climate biases of the
MPI-ESM can lead to substantial differences between the
JSBACH’s global carbon cycle projections when driven with
observed or MPI-ESM-generated climatic forcing fields.
Future work will need to establish how model calibration
with observed climate will affect the carbon cycle trajecto-
ries within the fully coupled Earth system. Another aspect
related to assimilation into an ESM is the enhanced nonlin-
earity of the model as demonstrated, e.g., by Lorenz [1963].
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Figure 5. Mutual benefit of CCDAS and observations.

With a control vector composed of dynamical atmospheric
and oceanic state, the length of the feasible assimilation
period is limited to a time span over which the deriva-
tive provides a useful approximation (see, e.g., Blessing, S.
et al., submitted manuscript, 2013). For parameters control-
ling the terrestrial carbon cycle, one might argue that their
influence on atmosphere and ocean dynamics acts on long
enough time scales (decades and longer) [Gregory et al.,
2009] to avoid a highly nonlinear response of our cost func-
tion. However, the interaction path through the hydrological
cycle is faster. The effect of these interactions on the data
assimilation procedure requires further investigation.

5. Conclusions
[58] From our CCDAS experience, we conclude that

integrated use of observations and models in a CCDAS is
beneficial for experimentalists, remote sensing experts, and
modelers. As illustrated by Figure 5, the modelers bene-
fit from the constraints provided by the observational data
on their process formulations. On the other hand, CCDAS
is beneficial for observationalists in several respects. First,
CCDAS provides a consistency check among the data
(types) that are assimilated and between the data and the
process formulation in the model. Consistency means that
the model can simultaneously match all observational data
streams within their uncertainty ranges. This was illustrated
by simultaneous assimilation of FAPAR observations over
multiple sites [Knorr et al., 2010] or simultaneous assim-
ilation of atmospheric CO2 and FAPAR [Kaminski et al.,
2012a]. Second, CCDAS allows us to extend the information
contained in the data in time and space, as well as to build
bridges between the available observations and hitherto
unobserved quantities. This means it can use observational
data to constrain a model-based simulation of quantities
other than those being observed, beyond the observational
period, and beyond the observational domain. For example,
Scholze et al. [2007] inferred CO2 surface fluxes for the
period from 1980 to 2003 from atmospheric CO2 observa-
tions from 1980 to 1999 and Knorr et al. [2010] constrained
NPP over a 48 month period, through assimilation of 20
months of FAPAR observations.

[59] CCDAS can thus be regarded as an instrument that
allows us to enhance the observational information and
to derive higher-level products. These reanalysis products
combine the observational information and the process
understanding in an integrated view on the terrestrial carbon
cycle. The cost is a limited view of phenomena consis-
tent with the (imperfect) model dynamics. This is why we
have stressed the importance of proper validation. The data
flow through the CCDAS processing chain (Figures 1 and
2) is traceable and documented, from the input observations
with their uncertainties to the simulated reanalysis prod-
ucts with their posterior uncertainty. This is supported by
keeping CCDAS model codes under version control. Third,
a CCDAS can help to improve the design of the obser-

vational network, i.e., it can suggest which quantities to
observe when and where in order to extract the maximum of
information on a given aspect of the simulation.

[60] As illustrated by some of the studies reported, oper-
ation of a CCDAS is sometimes challenging. To extract the
maximum benefit from a CCDAS requires the combined
expertise of observationalists and modelers. The success
of the concept is manifested by its application to further
terrestrial models, namely, the Joint UK Land Environ-
ment Simulation [Clark and Harris, 2007] and ORCHIDEE
[Krinner et al., 2005], for which Luke [2011] and Kuppel et
al. [2012b], respectively, present site-scale applications. The
Earth Observation Land Data Assimilation System [Lewis
et al., 2012] is another effort that uses the CCDAS con-
cept with focus on EO data. It applies a weak constraint
variational assimilation approach that allows for deviations
from the dynamics of a simplified, highly flexible land
surface model.
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