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Abstract

The life of microorganisms is characterized by two main tasks, rapid growth under con-

ditions permitting growth and survival under stressful conditions. The environments, in

which microorganisms dwell, vary in space and time. The microorganisms innovate di-

verse strategies to readily adapt to the regularly fluctuating environments. Phenotypic

heterogeneity is one such strategy, where an isogenic population splits into subpopu-

lations that respond differently under identical environments. Bacterial persistence is

a prime example of such phenotypic heterogeneity, whereby a population survives un-

der an antibiotic attack, by keeping a fraction of population in a drug tolerant state,

the persister state. Specifically, persister cells grow more slowly than normal cells un-

der growth conditions, but survive longer under stress conditions such as the antibiotic

administrations.

Bacterial persistence is identified experimentally by examining the population survival

upon an antibiotic treatment and the population resuscitation in a growth medium.

The underlying population dynamics is explained with a two state model for reversible

phenotype switching in a cell within the population. We study this existing model with

a new theoretical approach and present analytical expressions for the time scale observed

in population growth and resuscitation, that can be easily used to extract underlying

model parameters of bacterial persistence. In addition, we recapitulate previously known

results on the evolution of such structured population under periodically fluctuating

environment using our simple approximation method. Using our analysis, we determine

model parameters for Staphylococcus aureus population under several antibiotics and

interpret the outcome of cross-drug treatment.

Next, we consider the expansion of a population exhibiting phenotype switching in a

spatially structured environment consisting of two growth permitting patches separated

by an antibiotic patch. The dynamic interplay of growth, death and migration of cells in

different patches leads to distinct regimes in population propagation speed as a function

of migration rate. We map out the region in parameter space of phenotype switching

and migration rate to observe the condition under which persistence is beneficial.
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Furthermore, we present an extended model that allows mutation from the two pheno-

typic states to a resistant state. We find that the presence of persister cells may enhance

the probability of resistant mutation in a population. Using this model, we explain the

experimental results showing the emergence of antibiotic resistance in a Staphylococcus

aureus population upon tobramycin treatment.

In summary, we identify several roles of bacterial persistence, such as help in spatial

expansion, development of multidrug tolerance and emergence of antibiotic resistance.

Our study provides a theoretical perspective on the dynamics of bacterial persistence

in different environmental conditions. These results can be utilized to design further

experiments, and to develop novel strategies to eradicate persistent infections.



Zusammenfassung

Das Leben von Mikroorganismen kann in zwei charakteristische Phasen unterteilt werde,

schnelles Wachstum unter Wachstumsbedingungen und Überleben unter schwierigen Be-

dingungen. Die Bedingungen, in denen sich die Mikroorganismen aufhalten, verändern

sich in Raum und Zeit. Um sich schnell an die ständig wechselnden Bedingungen anzu-

passen entwickeln die Mikroorganismen diverse Strategien. Phänotypische Heterogenität

ist eine solche Strategie, bei der sich eine isogene Population in Untergruppen aufteilt,

die unter identischen Bedingungen verschieden reagieren. Bakterielle Persistenz ist ein

Paradebeispiel einer solchen phänotypischen Heterogenität. Hierbei überlebt eine Popu-

lation die Behandlung mit einem Antibiotikum, indem sie einen Teil der Bevölkerung in

einem, dem Antibiotikum gegenüber tolerant Zustand lässt, der sogenannte ”persister

Zustand”. Persister-Zellen wachsen unter Wachstumsbedingungen langsamer als nor-

male Zellen, jedoch überleben sie länger in Stress-Bedingungen, wie bei Antibiotikaap-

plikation.

Bakterielle Persistenz wird experimentell erkannt indem man überprüft ob die Popula-

tion eine Behandlung mit Antibiotika überlebt und sich in einem Wachstumsmedium

reaktiviert. Die zugrunde liegende Populationsdynamik kann mit einem Zwei-Zustands-

Modell für reversibles Wechseln des Phänotyps einer Zelle in der Bevölkerung erklärt wer-

den. Wir untersuchen das bestehende Modell mit einem neuen theoretischen Ansatz und

präsentieren analytische Ausdrücke für die Zeitskalen die für das Bevölkerungswachstums

und die Reaktivierung beobachtet werden. Diese können dann einfach benutzt werden

um die Parameter des zugrunde liegenden bakteriellen Persistenz-Modells zu bestim-

men. Darüber hinaus rekapitulieren wir bisher bekannten Ergebnisse über die Entwick-

lung solch strukturierter Bevölkerungen unter periodisch schwankenden Bedingungen

mithilfe unseres einfachen Näherungsverfahrens. Mit unserer Analysemethode bestim-

men wir Modellparameter für eine emphStaphylococcus aureus-Population unter dem

Einfluss mehrerer Antibiotika und interpretieren die Ergebnisse der Behandlung mit zwei

Antibiotika in Folge.
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Als nächstes betrachten wir die Ausbreitung einer Population mit Phänotypen-Wechsel

in einer räumlich strukturierten Umgebung. Diese besteht aus zwei Bereichen, in denen

Wachstum möglich ist und einem Bereich mit Antibiotikum der die beiden trennt. Das

dynamische Zusammenspiel von Wachstum, Tod und Migration von Zellen in den ver-

schiedenen Bereichen führt zu unterschiedlichen Regimen der Populationsausbreitungs-

geschwindigkeit als Funktion der Migrationsrate. Wir bestimmen die Region im Param-

eterraum der Phänotyp Schalt-und Migrationsraten, in der die Bedingungen Persistenz

begünstigen.

Darüber hinaus präsentieren wir ein erweitertes Modell, das Mutation aus den beiden

phänotypischen Zuständen zu einem resistenten Zustand erlaubt. Wir stellen fest, dass

die Anwesenheit persistenter Zellen die Wahrscheinlichkeit von resistenten Mutationen in

einer Population erhöht. Mit diesem Modell, erklären wir die experimentell beobachtete

Entstehung von Antibiotika- Resistenz in einer Staphylococcus aureus Population infolge

einer Tobramycin Behandlung.

Wir finden also verschiedene Funktionen bakterieller Persistenz. Sie unterstützt die

räumliche Ausbreitung der Bakterien, die Entwicklung von Toleranz gegenüber mehreren

Medikamenten und Entwicklung von Resistenz gegenüber Antibiotika. Unsere Beschrei-

bung liefert eine theoretische Betrachtungsweise der Dynamik bakterieller Persistenz bei

verschiedenen Bedingungen. Die Resultate könnten als Grundlage neuer Experimente

und der Entwicklung neuer Strategien zur Ausmerzung persistenter Infekte dienen.
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Chapter 1

Introduction

Organisms find numerous ways to survive, as well as to flourish, in the surrounding

environment. For example, organisms adapt to the daily light cycles by using internal

circadian clocks, echolocating animals, such as bats and dolphins, use sonic response

for navigation and for foraging, chameleon camouflage to blend with the surroundings

to hide from predators as well as to target their prey. Understanding how organisms

adapt, in the presence of various interactions with their environments, is often complex

and challenging. Microbes, the most abundant form of life on earth that have adapted to

survive under diverse environments, provide model systems for qualitative understanding

of the general principles of evolution [66]. Short replication time, small genome size and

the possibility of genetic manipulation of these microorganisms make them convenient

for the quantitative studies of evolution within laboratory experiments. For example,

several ecological interactions such as competition, cooperation, predator prey dynam-

ics, etc., have been realized in microbial populations [5, 36, 44, 85]. Additionally, the

arrival of modern techniques such as single cell genome sequencing and microfluidic de-

vices, allow to integrate and inspect multiple aspects of evolution in cellular dimensions,

for example, controlling microenvironments, measuring single cell dynamics, analyzing

signaling pathways, etc [13, 86, 136]. The study of evolution in microorganisms can

boost the understanding of the development of antibiotic resistance, which is emerging

as a serious problem in medicine [94, 117].

An important feature of microbial life is population heterogeneity that affects the re-

sponse of a population to heterogeneous environments [69, 74, 121]. Population hetero-

geneity, where cells within a population display a wide range of physiological properties,

can occur in the form of monomodal (Fig. 1.1(a)) or bimodal (Fig. 1.1(b)) or even

multimodal distribution in physiological traits [13, 19]. Heterogeneity in cellular traits
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Chapter 1. Introduction 10

within an isogenic population, i.e., phenotypic heterogeneity, has been observed exper-

imentally in several cases, for example, the lactose utilization network in Escherichia

coli , the competence switch for genetic transformation in Bacillus subtilis, and the lysis

or lysogeny decision switch in Bacteriophage lambda [25, 128]. Stochastic phenotype

switching in bacterial persistence is another example of bistability which has been well

studied in recent years due to its relevance in antibiotic treatment failures [19, 53].

In this thesis, we consider the example of bacterial persistence to understand the response

dynamics and evolution of a population under the influence of different environmental

conditions. In this mechanism an individual cell can acquire different phenotypes (physi-

ological states) and switches stochastically between these different phenotypic states, for

example, normal and persister phenotypes in E.coli [4]. The persister phenotype gener-

ated from normal phenotype is less responsive to the growth medium, i.e., persister cells

divide slowly in the presence of nutrients and exhibit a reduced death rate in the presence

of bactericidal substances. A population exhibiting phenotype switching mechanism

shows drug-tolerance in the form of differential antibiotic response, achieved through

phenotypic heterogeneity [55, 75], this property is referred to ”bacterial persistence”[67]

(Figure 1.2). Persistence has been described in parasites, fungi and bacteria (both

pathogenic and non-pathogenic) and, poses a great challenge to the proficiency of drug

treatments. To describe the importance and current state of research on bacterial per-

sistence, we will discuss briefly the historical events which shaped the study of this par-

ticular phenomenon. Then, moving into the mechanistic description of the phenotype

switching in model organism E.coli , we will discuss the results from previous theoretical

studies and, the prospect of further studies in this field. In the following section, we will

start with some basic concepts in population dynamics and evolutionary theory, which

are the important tools for modeling evolution in a population.

1.1 Population dynamics and Evolution

Population dynamics is a central aspect in the field of ecology which focus on the study

of time evolution of the number of individuals, which could be in interaction with other

individuals or the surrounding environment. On the other hand, the evolutionary theory

focus on changes over generations in the frequency or relative proportion of various

traits that affect the dynamics of a population. These two different approaches are used

together to study evolution in biological entities.

The first model for the time evolution of a population was proposed by Malthus, which

describes population growth in the absence of any kind of interaction (Eq. 1.1) as

an exponential function of time [80]. Later, this model was modified by Verhulst to
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Figure 1.1: Heterogeneity in a population : (a) Monomodal Gaussian distribution.
Cellular traits of the cells in a population can vary around an average value. (b)
Multimodal distribution comprising subpopulations of unequal sizes. A subpopulation
of cells can have cellular traits far from the population mean.

describe population growth in resource limited or bounded environments [129]. In the

modified model, the population growth is defined by the equation of logistic growth which

accounts for the density dependent effects on growth imposed by the environmental

constraints (Eq. 1.2). The improved models include the effect of competitions and

environmental factors, such as nutrients, temperature, toxic materials, etc., that can

change the dynamics of populations in an alternative fashion, as an additional input to

these two basic equations (Eq. 1.1, Eq. 1.2).

dn

dt
= µn Unbounded growth (1.1)

dn

dt
= µ

(
1− n

K

)
n Bounded growth (1.2)

The rate (µ) at which an individual duplicates itself is defined as the growth rate of

the individual. In case of bounded growth, the population size (n) is limited by the

maximum capacity (K) of the medium.

In evolution theory, the measure of reproductive success and survival chance of an indi-

vidual in the population is defined by a single quantity, the ’fitness’ f of an individual.

The evolutionary forces act as a selection agent on the variations in fitness of different

type of individuals or species, which are characterized by different traits, in a popula-

tion. The evolution of a trait is well described by the replicator equation [108], which is
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Figure 1.2: Bacterial Persistence. A bacterial population of treated with an antibiotic
displays a biphasic decay or two-time scale decay. Most of the cells are killed in the
fast decay phase, whereas a tiny fraction (10−3 − 10−5) survives even after a couple of
hours of antibiotic administration. These surviving cells are named Persisters. ( Note:
Colony forming unit (CFU) is a count of viable bacterial numbers)

shown below,

d xi
dt

= xi(fi − 〈fi〉). (1.3)

The equation defines the rate of change of a particular trait (i) within a population as a

function of the fitness difference between the fraction (xi) of population exhibiting this

trait (fi) and the total population (〈fi〉). In the simplest case, when individuals in a

population duplicates with variable growth rates, the individuals with higher growth rate

(≡ fitness) will be selected against the others and eventually will spread over the whole

population. The evolutionary selection can act on various levels from genes to individuals

as the fitness of an individual is the sum of all physical traits (phenotype) which is

specified by the genomic information (genotype) in the DNA sequence of the individual

[122]. The growth or duplication rate (µ) is determined by genetic contents [60] and taken

as the measure of fitness of an individual [84]. Therefore, growth dynamics together with

evolutionary selection completes the mathematical description of an evolving population

[83].

1.2 Bacterial persistence

The phenomenon of bacterial persistence against antibiotics was first observed by Joseph

W. Bigger in 1944 while studying the failure of antibiotic penicillin to sterilize a staphy-

lococcal infection [7]. He found that a fraction of cells always survives the killing by

penicillin. He named these cells ”persisters”. He proposed that persisters are in dormant
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or non-dividing phase, and survive because penicillin inhibits cell wall formation only in

growing cells. He found that these cells were pre-existing as persisters in the population,

but could be induced to normal state when in contact with a new environment. The

offspring produced by the surviving persisters consisted only a small fraction of popula-

tion that could once again survive the treatment with penicillin. Hence, the persisters

were very different from traditionally observed resistant cells, those can even grow in

the presence of antibiotics and generate offspring which are permanently immune to the

treated antibiotic. The surviving population fraction during antibiotic treatment, being

very small, did not get much attention by the researchers because the discovery of an-

tibiotics was of prime importance in that era. Thus, the physiological role and molecular

mechanism of bacterial persistence against antibiotics remained undiscovered for about

four decades.

In 1980s, Harris Moyed started to look again into the problem of persistence [88]. He

selected for mutants with high level of persisters, the hip (high persister) mutants, by

repeatedly exposing growing E.coli cultures with ampicillin. He found the fraction of

surviving cells upon antibiotic treatment in hip mutants was about 100-1000 fold larger

than the wild type population. He looked for the mutations in hip mutants, and identified

a new gene hipA, causing the increase in persister frequency. This experiment gave the

first evidence that persistence has a genetic basis.

The next breakthrough came in the form of a single cell microfluidics experiment show-

ing microscopic images of pre-existing persister cells in a growing culture of E. coli

wild type and hip mutants [4]. The experiment showed that bacterial persistence or

persister formation is an outcome of the phenotype switching mechanism of a single

cell. Phenotype switching generates a mixed population containing normal and persis-

ter cells, which upon addition of an antibiotic, decays with different time scales leading

to a biphasic killing curve as observed in several previous studies. Once the antibiotic

is removed, surviving persister cells can switch back to the normal phenotype, which

again generates a new population that is genetically identical and susceptible as the

original culture. They found that the persisters are either in a non-growing state or

slow growing state and generated with very small switching rates from normal cells,

such that they always represent a small fraction in the population. The generation of

persisters in the absence of any stress (i.e. during growth) suggests that the mechanism

of phenotype switching might have evolved as a regulatory mechanism for responding to

inappropriate environmental conditions. Numerous studies have shown that persistence

is not only limited to E. coli and Staphylococcus aureus cells, but most bacteria exhibit

the persister phenotype [58].
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The molecular mechanism and the control of persistence has become a prime target

of experimental studies in the last few years [33, 78]. Several studies were performed

addressing basic questions like, whether the persister formation is solely controlled by

molecular reaction within the cell, can persistence be induced or enhanced by envi-

ronmental factors, etc. Several studies found that persister numbers are regulated or

induced in many conditions that lead to growth reduction, such as amino acid depriva-

tion, biofilm formation, stress induction, and entry into stationary phase [21, 63, 79, 105].

The generation of persister cells is shown to be growth dependent in E. coli and Pseu-

domonas aeruginosa [9, 53, 114]. In the lag phase or early exponential phase, where cells

adapt to their growth medium and are unable to divide, there is no persisters generation.

In the exponential growing phase, where the cells begin to divide and the population

grows exponentially, persisters are generated in constant proportions. The fraction of

persisters reaches maximum in the stationary phase, where all the essential nutrients

are depleted.

Another important aspect of bacterial persistence, the physiological state of persister

cells, has been investigated by several researchers. These studies indicated that persisters

are non-growing cells having reduced rates of DNA replication, translation, cell-wall syn-

thesis and metabolism, and thereby are insensitive to antibiotics relying on these growth

dependent processes. Further, gene sequence analysis also supported the dormant state

hypothesis as several genes involved in intracellular metabolism were downregulated in

persisters [63]. On the contrary, a few recent studies reported that persistence may not

always be associated with the dormant or the slow growing fraction of the population

and, moreover, the cells growing normally prior to the antibiotic treatment could behave

as persisters upon antibiotic treatment [95, 131].

1.2.1 Persistence: a cause of antibiotic failures

Persistence has been characterized in several pathogenic microbes such as Mycobacterium

tuberculosis, Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa and E.

coli [19]. These pathogens are the known cause of various chronic infections, such as

tuberculosis and cystic fibrosis, which often recur in spite of proper antibiotic treatments.

However, these pathogens do not show any sign of genetic resistance when observed

under controlled laboratory experiments. This indicates that the drug tolerant persister

cells are the main culprit behind such recalcitrance to antibiotic treatments [115]. For

instance, patients suffering from Cystic fibrosis (CF), a genetic disorder characterized by

an imbalance in chloride and sodium levels in epithelial tissues in the lungs and intestines,

are highly susceptible to emphPseudomonas aeruginosa infections, which is the leading

cause of many deaths. The cause of the inadequacy in curing a P. aeruginosa infection
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Figure 1.3: Examples of bistable gene circuits: Genes (indicated by thick arrows)
produces proteins (indicated by ellipse) which regulate negatively (thin blunt arrow) or
positively ( thin point arrow) the activity of either its own promoter (thick rectangles)
or promoter of other genes. (a) Bistable switch with single positive feedback loop. (b)
Bistable switch with double-positive feedback loop. (c) Bistable switch with double-
negative feedback loop. (d) Toxin Antitoxin network in E. coli.

is again the presence of drug-tolerant persister cells [28, 75]. A direct correspondence

between persister cells and recurrence of chronic infection has been observed in clinical

isolates from CF patients [91]. In this study, the fraction of drug tolerant persister

cells in a clinical isolate from the lungs of a patient in the late stage of infection (96

months) is found to be 100-fold more than the clinical isolates at the onset of chronic

infection. This observation suggests that the high persister mutant has been selected by

the periodic administration of antibiotics. The association of persisters with antibiotic

treatment failure has also been recognized in several other studies [19, 75].

1.2.2 Molecular mechanism of persistence

The first experiment showing that persistence has a genetic basis was performed by

Moyed et al. [88]. In this experiment, they isolated a mutant of E. coli K-12 strain

that displays 100 fold increase in persistence against several antibiotics (phosphomycin,

cycloserine, and ampicillin). The genetic analysis of high persister (hip) mutant revealed

a mutation in a new gene, named ’hip A’ gene. Further studies found that hipA locus

belong to a class of loci in the genome, the toxin-antitoxin (TA) locus. Several studies

have shown the direct connection between TA loci and persistence formation [79, 105].

The TA locus codes for two proteins, a toxin and antitoxin protein, where a toxin is

a stable protein that inhibits cell growth and an antitoxin is an unstable protein [135].
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The antitoxin regulates the toxin by forming a tight complex with it [107], which repress

the gene expression (Figure 1.3 (d)). The overproduction of toxin inhibits important

cellular processes which are potential targets for many antibiotics, thereby may produce

antibiotic tolerant persister [63]. Therefore, the variation of toxin antitoxin ratio in a

cell defines the phenotypic state [105]. In the absence of any stress, such variation could

be induced by the intrinsic stochasticity in biomolecular reactions at transcription and

translation level [25]. Furthermore, during stress conditions or in the presence of bacteri-

cidal substances, the uneven balance of toxin and antitoxin may also induce persistence.

Recent experiments [21, 22] have shown active generation of persisters (i.e. increase

in persister fractions) in E. coli cells when treated with antibiotics that trigger SOS

response (a global response to DNA damage) such as ciprofloxacin. The SOS response

induced persistence was shown to be dependent on the production of tisB toxin. The

mutants lacking the SOS response or tisB deleted strains displayed significantly reduced

level of persisters when treated with DNA-damaging antibiotics. Thus, clearly the pro-

duction of toxins could drive a cell from a normal growing state into a persister state.

In E. coli , there are about 36 TA loci and, in the pathogenic bacterium Mycobacterium

tuberculosis about 100 TA locus [76, 135]. The deletion of several TA loci reduced the

level of persisters in a biofilm [76] and the induced persistence during SOS response [22].

The toxin-Antitoxins (TA) loci are divided into three classes. In Type I TA loci, the an-

titoxins are anti-sense RNAs that repress the translation of the toxin encoding mRNA,

whereas in type II TA loci, an antitoxin protein neutralizes the activity of encoding

gene as well as the toxin proteins. Type III TA loci code for small RNA antitoxins that

neutralizes the toxin proteins by establishing a direct protein-RNA contact. A recent

study showed that the deletion of Type II TA loci (in E. coli K-12 strain consisting

10 TA loci ) progressively reduced the levels of persisters, while the growth rate and

minimum inhibitory concentrations (MICs) of the antibiotics (ciprofloxacin and ampi-

cillin) were unaffected [79]. This result confirms the direct proportionality between TA

loci and persister fractions. However, the deletion of all 10 TA loci did not lead to zero

persistence, suggesting that TA loci is not the sole key to persistence, there could be

other unknown genes which have not been characterized yet.

1.2.3 Persistence against multiple drugs

Persister generation does not follow a universal single scheme. There are multiple

pathways through which persister formation can be achieved and modulated. Some

of these pathways are inherently present in the genome and some are regulated or in-

duced through various environmental interactions. Several pathways were identified in

genetic screening of persister cells in E. coli [76]. However, the complete knockout of
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these identified candidate genes never achieved zero persistence, although reduced sig-

nificantly the level of persisters. Similarly, in another independent experiment, deletion

of multiple toxin-antitoxin loci could not lead to zero persistence [79]. This suggests that

there are several redundant pathways, some of them still to be identified, through which

persistence can be achieved. Antibiotics of differing action mechanism target different

processes and pathways in the cell, which might lead to variable levels of persistence in

a population. The variability in persistence against different antibiotic is termed as mul-

tidrug tolerance. Multidrug tolerance has been observed in E. coli and S. aureus cells

against several antibiotics [45, 71, 72, 133]. This is another important area of research

where several labs have worked on recently.

1.2.4 Other examples of phenotypic heterogeneity

Phenotypic heterogeneity, specifically bistability, in populations has been observed in

numerous bacterial species and eukaryotes under diverse conditions. Phenotype diversity

is found to be a direct consequence of multistability of the gene expression in a cell,

which arises due to feedback and nonlinear responses within a gene regulatory network

of the cell. In a regulatory network, the smallest unit, i.e., the gene expresses specific

proteins which either regulate itself or other genes, and are continuously degraded. As

the protein level passes a certain threshold value the gene expression is driven towards

one of the stable states, this property is called multistability of the regulated gene.

Such regulatory networks or motifs has been identified in several species, furthermore

their underlying properties have been realized using synthetic networks [30, 40, 57]. For

example, a simple genetic circuit composed of a positively autoregulated gene or two

mutually auto activating genes (double positive feedback) or two mutually repressing

genes (double negative feedback) [60] can demonstrate a bistable output (Figure 1.3). A

population exhibiting bistability bifurcates into subpopulation of cells having one of the

two stable states of gene expression, which is typically observed as a bimodal distribution

in the population gene expression ( as shown in figure 1.1(b)). For example, sporulation

and competence in B. subtilis cells, lac operon network in E. coli and lysis-lysogeny

switch in phage λ [25, 128], etc., are well studied cases of such bistability. The fate

of a single cell ending in one of the two stable phenotypic states has also been linked

with the stochastic fluctuations or noises in cellular components in several stages during

a cell cycle [124]. Noise can be generated by the inherent stochasticity in biochemical

reactions maintaining gene expression (intrinsic noise) or due to the fluctuations in other

regulating factors that influence gene expression (extrinsic noise). It has been shown,

in E. coli , that both intrinsic and extrinsic noise contribute to phenotype variability

[27, 118].
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1.3 Overview of theoretical work

The population dynamics of bacterial persistence or the reversible phenotype switching

mechanism is proposed and well studied in the last decade by several independent re-

search groups [4, 67–69, 121]. These studies focus on the measurement of the phenotypic

switching and its evolution in different environments. The inheritablilty of phenotype

switching, i.e., transmission to newer generations raise questions about the evolutionary

adaptation or selection of this trait.

The basic idea is that phenotype switching allow cells to generate different phenotypes,

which are maladapted to the present conditions, but when the condition changes, one of

the maladapted phenotype becomes best suited to the new condition and hence, provides

a benefit to the population. This phenomenon is termed as a bet-hedging strategy in

the field of ecology, where the population allocates some individual in a protective state

as its insurance policy to survive under adverse environmental conditions [67]. In a

fluctuating environment, the interplay between insurance cost and benefit determine

the circumstances under which phenotype switching is advantageous. Lachmann et al.

[69] found that inheritance of a phenotype switching is advantageous in a periodically

fluctuating environment with cycle length much longer than the replication time of

the organism. The best strategy or the optimal phenotype transition rate under such

cyclic environment is inversely proportional to the length of the environmental cycle.

Therefore, it was suggested that the environmental conditions may act as selective agent

that can select the organisms having an optimal transition rate or allow a directional

process by which a population can achieve the optimal transition rate.

Balaban et al. showed that the biexponential decay of a bacterial population observed

during the antibiotic killing is a signature of phenotype switching [4]. The normally grow-

ing cells generate persister cells through phenotype switching, which leads to a mixed

population during growth. This mixed population decays, upon antibiotic treatment,

with two time scales as the persister subpopulation is not killed as fast as the normal

subpopulation. The surviving persister subpopulation on reinoculation grows as fast as

the normal cells after an initial lag period (associated with slow growth of persisters),

which leads to a biexponential population growth. They proposed a two-state model to

describe the biexponential kinetics of the population and, evaluated phenotype switching

rates by fitting the model with experimental data [4]. The two state model was further

used to study the temporal evolution of a population in a fluctuating environment [67].

This analysis showed that in slow varying periodic environments, there exist an optimal

phenotype switching rate between the two phenotypes which maximizes the long-term

growth rate of the population. The optimal switching rate is given by the frequency of

environmental variation, specifically, the duration of growth and stress determines the
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optimal switching from normal to persister and persister to normal state, respectively

[67]. Using experimentally measured phenotype switching rates for two different strains,

they showed that in a periodically fluctuating environment with characteristic growth

and stress duration, one bacterial strain can overtake the other strain if its phenotype

switching is tuned close to the optimal phenotype switching rates.

A more general description was put forward by E. Kussell et al.[68] describing phenotype

switching as a macroscopic information processing mechanism in fluctuating environ-

ments. The underlying idea is that a population can carry information about an envi-

ronment through its internal state (using subpopulation allocation) that is determined

by the current environmental conditions and phenotype switching rates. This subpopu-

lation allocation can then be optimized for maximum growth in repetitive environmental

conditions by regulating phenotype switching rates in accordance to environmental fluc-

tuations. They found that in slowly fluctuating environments, the optimal switching

rate from a given phenotype (X) to another phenotype (Y) is directly proportional to

the probability that the environment changes from the state favoring phenotype (X) to

the state favoring phenotype (Y) and, inversely proportional to the average duration

of environmental state favoring phenotype (X). In simple words, this means that the

switching to a phenotype will be favored if the environmental state favoring this pheno-

type occurs more frequently and the switching back from this phenotype will be favored

if the mean residence time of environmental state favoring this phenotype is smaller than

in the other states.

1.4 Motivation

The experimental study of bacterial persistence focus on two main objectives, namely,

the description of molecular mechanism of phenotype switching in single cells and the

understanding of antibiotic tolerance in populations. On the other hand, theoretical

studies develop a mechanistic understanding of the molecular mechanism as well as the

population dynamics and evolution of bacterial persistence. These approaches help in

understanding the properties of drug tolerant persisters and in developing new thera-

peutics designs to prevent antibiotic failures. The present work focus on the population

dynamics and evolution of bacterial persistence in spatially and temporally varying en-

vironments. The main objective of this thesis is to integrate results and obtain model

parameters from experimental observations and, to develop theoretical framework to

analyze the dynamics in realistic scenarios under which population evolves.
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1.4.1 Temporal dynamics of bacterial persistence

Previous theoretical studies on the evolutionary dynamics of bacterial persistence or

phenotype switching are based on numerical simulation and rigorous theoretical analysis

within certain limits. A common assumption in previous theories is that the environ-

mental duration is large or that the environment fluctuates very slowly. This assumption

has been used to predict the evolutionary dynamics of phenotype switching in fluctuat-

ing environments [29, 67–69]. If an environment occurs rarely or has a short duration,

this approach cannot predict the evolutionary behavior or the long term growth rate.

Although it is expected that in a short environmental period phenotype switching, being

harmful to the population, might not evolve. However, a simple analytical approach that

can explain the evolutionary dynamics in both short and long environmental duration,

even in the simple case of two state population model, is missing. The relation between

experimental observations and the model parameters of persistence mechanism has been

overlooked because most studies focus on the long term evolutionary dynamics rather

than short term transient dynamics. Therefore, a simple theoretical approach is neces-

sary which can connect experimental observables with the model parameters and explain

the transient as well as the evolutionary dynamics in both short and long environmental

duration.

1.4.2 Spatial dynamics of bacterial persistence

Most theoretical and experimental studies exploit temporally changing environments

to understand the role of bacterial persistence. Spatially structured environments are

also used to study evolution in bacterial populations [41, 56, 70, 102–104, 137], but

have not been considered in the study of persistence. In the human body antibiotic

distribution is usually uneven due to complex flow patterns inside the body, such as

different diffusion rates into tissues, local binding, inactivation of antibiotics, etc. The

spatial heterogeneity in drug concentration is shown to have direct consequences in

the emergence of antibiotic resistance [35, 42, 43, 137]. On the other hand, in the

human body, bacterial population form biofilms, a protected region or compartment

where antibiotics cannot penetrate and bacteria can remain viable. These cells have to

migrate through a region of high antibiotic concentrations or other stressful environments

to find a region of low antibiotic concentration to form another biofilm or to infect other

organs in the body [51, 65] or to infect an untreated individual [20, 77]. Therefore, the

antibiotic tolerant persister cells might help a population to propagate between growth

permitting regions by minimizing the chance of extinction while crossing a region of

high antibiotic concentration. Therefore, the dynamics of bacterial persistence under
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such spatial environments might help in understanding its role in antibiotic resistance

and designing experiments to study spatial evolution.

1.4.3 Population dynamics of multidrug tolerance

Bacterial persistence was first reported in S. aureus populations [7]. Since then it has

been an important model organism other than E. coli to understand the relevance of

persister cells in antibiotic treatment failures. E. coli cells have shown partial drug

tolerance or persistence to several drugs such as ciprofloxacin, amplicin and streptomycin

[8, 45, 53]. Likewise, S. aureus cells, over a long time, have developed resistance against

several antibiotics with differing killing mechanism. Several studies found that failure in

antibiotic treatment against staphylococcal infection is associated with the persistence

mechanism [31, 49]. Hence, a systematic study of characterizing persistence of S. aureus

against different antibiotics is necessary for the development of new drugs and multidrug

therapies to eliminate persisters [71]. An important question with respect to multidrug

therapy is whether persisters selected by different antibiotics are identical or different

in their physiology and numbers. The efficacy of cross drug treatment relies on whether

or not the surviving population from one antibiotic treatment can be killed by the

addition of another antibiotic with dissimilar mechanism. These intriguing questions

must be answered at least for the very first organisms that displayed persistence. Such

study will also provide model parameter such as switching rates and growth rates for S.

aureus that can be compared with other model organisms like E. coli , P. aeruginosa,

etc.

1.4.4 Role of persisters in the emergence of antibiotic resistance

Another important feature of bacterial evolution is antibiotic resistance, whereby bac-

teria become resistant and continue to multiply in the presence of antibiotics designed

to kill them [61, 94, 117]. Childhood diseases such as pneumonia and dysentery are

no longer curable by earlier discovered drugs because the responsible pathogens have

developed resistance against them. A large percentage of deaths in hospital are caused

by infections from highly resistant bacteria such as methicillin-resistant Staphylococcus

aureus (MRSA) and vancomycin-resistant Enterococci . Antibiotic resistance is a serious

issue that is undermining the health care industry and threatens to become worse in the

absence of serious concerns. Therefore, the understanding of the role of persister cells

in the emergence of antibiotic resistance is crucial to cultivate therapeutic strategies

to prevent treatment failures. Several studies speculated that persister cells surviving

longer upon antibiotic treatment might provide a pool from which antibiotic resistant



Chapter 1. Introduction 22

cells can emerge [23, 61, 116, 117]. However, common antibiotics those targets growth

maintaining processes, allow survival of non-dividing cells [10], which can undergo mu-

tations in limited ways. However, a recent study shows that persistence may not always

be incompatible with cellular growth [95, 131]. They found that the Mycobacterium

segmentis persisters prior to antibiotic (isoniazid) treatment were dividing as fast as the

normal cells. The heterogeneous response came through the variation in drug activation

process between persisters and normal cells, specifically persister cells expressed low-

level of KatG, a catalase peroxidase required for activation of antibiotics. The surviving

subpopulation of persister cells remained stationary due to the balance of growth with

antibiotic death [131]. The ongoing division in the presence of antibiotics may lead to

the emergence of resistant mutants in such cases. The stress response programs such as

SOS, stringent, oxidative stress response, etc. which regulates persistence are also shown

to increase rates of genome-wide mutagenesis and horizontal gene transfer in E. coli , S.

aureus, and P. aeruginosa [16, 37, 72, 81, 100]. Therefore, a systematic study consider-

ing the stochastic effects of mutation and extinction processes must be performed. Such

a theoretical analysis might help in designing and understanding future experimental

studies identifying the role of persisters in antibiotic resistance.

In this thesis, we will address the above discussed interesting problems and intriguing

questions to provide a better understanding of bacterial persistence mechanism.

Thesis organization

The thesis is organized as a ”cumulative thesis” and consists of six chapters. Chap-

ter 2-4 consist of three manuscripts, out of which two manuscripts (chapter 2 and 4)

have been published, one is submitted (chapter 3). Chapter 5 contains additional un-

published results. A list of published and submitted manuscripts are provided below.

Chapter 2 focuses on the temporal dynamics of bacterial persistence mechanism in sev-

eral typical experimental scenarios. Chapter 3 studies the expansion of a phenotypically

heterogeneous population in spatially heterogeneous environments. Chapter 4 presents

an application of the theoretical results obtained in chapter 2 by analyzing experimental

results on multidrug tolerance, whereas Chapter 5 explain the role of bacterial persis-

tence in the emergence of antibiotic resistance. The thesis in total (chapter 2-5) explores

the role of bacterial persistence in spatially and temporally fluctuating environments.
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Abstract

Persistence is a prime example of phenotypic heterogeneity, where a microbial population

splits into two distinct subpopulations with different growth and survival properties as

a result of reversible phenotype switching. Specifically, persister cells grow more slowly

than normal cells under unstressed growth conditions, but survive longer under stress

conditions such as the treatment with bactericidal antibiotics. We analyze the popula-

tion dynamics of such a population for several typical experimental scenarios, namely

a constant environment, shifts between growth and stress conditions, and periodically

switching environments. We use an approximation scheme that allows us to map the

dynamics to a logistic equation for the subpopulation ratio and derive explicit analytical

expressions for observable quantities that can be used to extract underlying dynamic pa-

rameters from experimental data. Our results provide a theoretical underpinning for the

study of phenotypic switching, in particular for organisms where detailed mechanistic

knowledge is scarce.
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2.1 Introduction

The life of microorganisms is characterized by two main tasks, rapid growth and prolif-

eration under conditions permitting growth and survival under stressful conditions [93].

One strategy to cope with such varying environmental conditions is phenotypic hetero-

geneity, the splitting of a genetically homogeneous population into subpopulations that

execute different strategies for survival [19, 25, 113]. Phenotypic tolerance to antibiotics

(persistence) is a prime example of such phenotypic heterogeneity: When a bacterial

culture is treated with an antibiotic, typically a small fraction of the population, the

persisters, survives and allows the culture to grow back once the antibiotic has been

removed (Fig. 2.1), thus making it difficult to eradicate the population [7, 73, 75]. The

re-grown culture remains susceptible to the antibiotic with the exception of yet again

a small fraction of persisters, indicating that, in contrast to resistance, persistence is a

phenotypic effect. Indeed observations at a single cell level have shown that cell switch in

a stochastic fashion between the persister state and the normal state [4]. Moreover these

experiments have shown that persistence is not an adaptive response to the antibiotics,

but rather that persisters are present in the population before the antibiotic treatment

[4] (there is however evidence that adaptive responses also play a role in some situations

[21, 22]). The persister cells present in the population before treatment were shown

to grow much more slowly than normal cells [4, 110], indicating that persistence while

providing a fitness benefit (survival advantage) under stress conditions also invokes a

fitness cost under unstressed conditions. Persistence is thus based on the coexistence

of subpopulations growing with different growth rates. Mechanistically, the formation

of persisters has been linked to the expression of chromosomal toxin-antitoxin systems

[62, 79, 88, 89], which are believed to give rise to a genetic circuit that exhibits bistable

behavior resulting in subpopulations with different phenotypes characterized by differ-

ent growth rates [15, 60, 78, 105]. Indeed, experimental and theoretical studies of the

coupling of gene expression and cell growth indicate that such growth bistability should

be considered a rather generic phenomenon that can arise when gene circuits modulate

cell growth [60, 119].

The molecular mechanisms for the generation of persisters are currently a topic of very

active research. Persistence has been observed in a wide range of bacterial species

[73, 75, 115], but on the mechanistic level, so far relatively little is known for bacteria

other than the model organism E. coli. In the absence of detailed mechanistic knowl-

edge, the main window into persistence is the study of the population dynamics upon

antibiotic treatment, in particular, the survival upon administration of the drug and

the re-growth of the population upon removal of the drug. Here we study a theoretical

model for this dynamics that was originally proposed by Balaban et al. [4]. We make
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use of an excellent approximation (based on the assumption that the rates of phenotype

switching are small, which is typically the case) to derive explicit analytical expression

for a number of observable quantities for several typical experimental scenarios: con-

stant environment, shift from growth to stress conditions or vice versa and periodically

switching environments. Our analysis is similar to previous theoretical studies on pheno-

type switching [67, 68]. A small but important difference to the systematic perturbative

approach used in Ref. [68] is that our theory is based on the approximation of small

phenotype switching rates (as compared to the growth and death rates), while the ap-

proximation of Ref. [68] is based on long durations of environmental durations, such

that populations structures reach their steady state before the environment changes.

The latter is not required in our approximation and our approach thus allows us to

study both short and long environmental durations (while long durations are expected

to be typical for the natural environment, and thus appropriate for an evolutionary

comparison of different modes of phenotype switching, such as stochastic and adaptive

[68], short durations may be of importance for some experimental situations, such as

resuscitation experiments after short periods of antibiotic treatment). We also note that

while the mathematics of ours and the previous study are closely related, the scope

of the studies is different. Rather than aiming at a general theoretical framework for

phenotype switching phenomena, our goal here is to obtain simple explicit expression

for measurable quantities. These expressions can be used to analyze experimental data

for population growth and decay to provide insights into the mechanism of persistence

based on simple population-scale experiments.

2.2 Phenotype switching

Figure 2.1: (A) Dynamics of heterogeneous population consisting of nor-
mal (white) and persister (black) cells: The persisters survive the addition of an
antibiotic, and allow the population to grow back after the removal of the antibiotic.
(B) Phenotype switching: Cells stochastically switch between the normal and persister
state with rates a and b
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We consider a bacterial population where an individual cell can have two distinct pheno-

typic states (Fig. 2.1) which are characterized by different sensitivities to given environ-

mental conditions. The environmental sensitivity is reflected in growth and decay rates

of the subpopulation in the given environment. For instance, in the case of persister cell

on which we focus, normal cells are more sensitive to various stresses, i.e. they decay

faster under various stress conditions such as antibiotic treatment [4] and phage attack

[99], but also grow faster in unstressed conditions.

A cell in the normal state can switch to the persister state with rate a and a cell in

the persister state can switch back to the normal state with rate b. The instantaneous

switching between phenotypic states leads to distinct subpopulation of normal and per-

sister cells which compose the total population. We denote the growth rate of normal

cells (n) and persister cells (p) by µmn and µmp respectively, where m indicates the growth

medium or, more generally the growth conditions. Below we will use indices ’g’ and ’s’

to denote unstressed growth and stress conditions, respectively (e.g., growth medium

not containing or containing an antibiotic). The resulting population dynamics can be

described by the following system of equations [4],

dn

dt
= µmn n− an+ bp

dp

dt
= µmp p+ an− bp. (2.1)

In order to determine the steady state of these dynamical equations, we consider the

time evolution of the subpopulation ratio f = n/p, which is given by

df

dt
= b− af2 + ∆mf = −a(f − f ′)(f − f∗), (2.2)

where

f∗ =
∆m +

√
(∆m)2 + 4ab

2a
,

f
′

=
∆m −

√
(∆m)2 + 4ab

2a
(2.3)

and ∆m = (µmn − a)− (µmp − b).

f∗ and f ′ are fixed points of Eq. (2.2): f ′ is an unstable fixed point (which moreover

can be negative) and f∗ is a stable fixed point and always positive. Thus, the steady

state population ratio is given by f∗.

In conditions of unstressed growth, ∆m is positive. When the switching rates are small

compared to the growth rates, as it is typically the case (Table 2.1), the steady state
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ratio can be approximated by f∗ ≈ ∆m/a or

n∗

p∗
≈

(µmn − µmp )

a
. (2.4)

The last equation has a simple, but instructive interpretation: the steady state popula-

tion structure with a certain ratio of normal and persister cells in conditions of unstressed

growth is determined by a balance of two processes: The fast-growing normal cells out-

grow the slow-growing persisters (with ∆m ≈ µmn − µmp ), but they also replenish the

persister population via switching to the persistent state (with rate a). We linearize

Eq. (2.2) around the fixed point f∗ to determine the time scale in which the steady state

is approached,

df

dt
≈ −

√
∆2
m + 4ab (f − f∗). (2.5)

This equation shows that the subpopulation ratio f approaches the steady state f∗

with rate ([(µmn − a)− (µmp − b)]2 + 4ab)1/2, which, for small switching rates a and b, is

approximately equal to the growth rate difference between the two subpopulations.

Likewise, the same approximation applied to stress condition (with ∆m < 0), leads to

the steady state f∗ ≈ −b/∆m or

p∗

n∗
≈

(µmp − µmn )

b
. (2.6)

In this case, the steady state population structure is determined by the balance of

persisters outlasting the normal population (with −∆m ≈ µmp − µmn ) and reproducing it

through phenotype switching (with rate b).

The existence of a finite steady state in the subpopulation ratio indicates a stable co-

existence of the two cells types that grow (or decay) with different rates. It is worth

noting that such coexistence is an effect of phenotype switching, as normally a faster

growing subpopulation will outgrow a slow-growing one, so that the subpopulation ratio

will approach either zero or infinity. Here however, switching of cells between the two

phenotypes that correspond to the two subpopulations can replenish the slower-growing

(or faster-decaying) subpopulation and balance the outgrowth effect.

So far we have only considered the subpopulation ratio or the fractions of total popula-

tion that belong to the two phenotypes. Within the model of Eqs. (2.1), these fractions

approach a steady state, while the overall population always grows or decays exponen-

tially on long time scales. Thus, both subpopulations grow or decay with the same

average rate in the steady state, which corresponds to the effective growth rate (or de-

cay rate) of the total population. The steady state growth rate of the total population
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(µst) is obtained from Eqs. (2.1) by substituting Eq. (2.3) and is given by

µst =
(µmn − a) + (µmp − b) +

√
∆2
m + 4ab

2
. (2.7)

We use again an approximation of small switching rates and neglect terms of quadratic

order in the switching rates (terms proportional to ab). With this approximation the

steady state growth rate is simplified to

µst ' µgn − a (2.8)

in unstressed growth (µgn > µgp > 0) and to

µst ' µsn − b (2.9)

under stress conditions (µsn < µsp < 0).

The comparison of these two approximate expressions shows that the presence of per-

sister cells causes a small reduction in the steady state growth rate under unstressed

conditions (of order a), but leads to a significant reduction in the steady state death

rate of the total population under stress conditions as compared to a population with-

out any persister cells. Therefore one can expect the presence of persister cells to be

beneficial provided that stress conditions do regularly occur.

Table 2.1: Rates for switching between the normal and persister phenotype.

organism switching rate a switching rate b reference
(n→ p) (p→ n)
[hr−1] [hr−1]

E. coli 10−6 − 10−3 10−6 − 10−1 [4]
S. aureus 10−5 − 10−3 10−2 − 10−1 [72]

The balance between phenotype switching and outgrowing of one subpopulation by the

other that we have discussed above is intricately linked to the exponential growth or

decay of the total population. While exponential growth phase is the main focus of

our study, we want to briefly address the case where the population reaches a stationary

phase due to a finite carrying capacity (K) of the growth environment, a typical situation

in both natural habitats and in the test tube. To this end, we modify the growth

terms in Eq. (2.1) by multiplying them with [1− (n+ p)/K]. In a growth environment

(with positive growth rates), the total population will then reach a steady-state value

of n + p = K for long times. The ratio between persisters and normal cells is then

determined not by a balance of one-way phenotype switching and growth, but by a

balance between switching in both directions, given by an− bp = 0. As a consequence,

the ratio f is given by f = n/p ≈ b/a and is thus several orders of magnitude smaller
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than the corresponding value obtained for exponential growth, Eq. (2.4), because of the

small switching rates. This result is consistent with the observation that typically the

fraction of persisters in the population is larger in stationary phase than in exponential

growth phase (e.g., a 100-fold effect in E. coli) [75].

2.3 Dynamics in constant environment

In the following we will discuss the time evolution of the two subpopulation in more

detail. We start by considering a constant environment. To solve the time-dependence

of the coupled equations in Eqs. (2.1), we make once more use of the approximation for

small switching rates (∆2
m � ab).

If the constant environment is one of unstressed growth (with ∆m > 0), the fixed

points can be approximated by f
′ ≈ 0 and f∗ ≈ ∆g

a . The differential equation for the

subpopulation ratio (f) is thereby reduced to a logistic equation,

df

dt
= ∆gf

(
1− af

∆g

)
, (2.10)

where ∆g = (µgn − a)− (µgp − b). Its solution has the following form:

f(t) =
∆g

a+ (∆g/f0 − a)e−∆g t
, (2.11)

where f0 is the initial ratio of normal to persister cells.

For ∆m < 0, i.e. in stress conditions, a similar differential equation like Eq. (2.2)

is obtained for the time evolution of ratio of the persister subpopulation to the normal

subpopulation, φ = p/n. The differential equation of φ has two fixed points φ∗ ≈ −∆m/b

and φ
′ ≈ a/∆m, of which φ∗ = 1/f∗ is stable. In this case, using the approximation

φ
′ ≈ 0, we obtain

dφ

dt
= ∆sφ

(
1− bφ

∆s

)
(2.12)

with ∆s = (µsp − b)− (µsn − a). With an initial ratio φ0, the solution has the form

φ(t) =
∆s

b+ (∆s/φ0 − b)e−∆s t
. (2.13)

For large times, these expression approach the steady state results derived previously

and given in Eq. (2.4) and Eq. (2.6), respectively. As a consequence, under unstressed

growth conditions, the effective growth rate of the persister subpopulation approaches

the growth rate of the normal subpopulation in a logistic fashion and vice versa.
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The functional form of f(t) and φ(t) derived here will be used as the basis for our further

analysis. Because of the symmetry between the two cases, we will calculate quantities in

only one condition (growth or stress). The results for the other condition are obtained by

simultaneously exchanging symbols and indices according to the rules g ↔ s, f0 ↔ φ0,

a↔ b, and p↔ n.

2.4 Response to environment shift

2.4.1 Characteristic time scales of the population dynamics
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Figure 2.2: Biphasic killing kinetics: Numerical integration of Eqs. (2.1) over a
growth period of 15 hours (with µg

n = 2 hr−1,µg
p = 0.2 hr−1) followed by a stress

period (with µs
n = −2 hr−1,µs

p = −0.2 hr−1) of another 15 hours. The switching rates
were chosen to be a = 0.001 hr−1 and b = 0.001 hr−1. The killing curve of total
population show two distinct phases, a fast-decaying phase and a slow-decaying phase.
The dynamics is characterized by two time scales Ts and T ′s (see text).

Next we turn to the dynamics after an environmental shift. Experimentally, one typi-

cally considers two situations [4, 19, 72]: (i) a population that has been growing under

unstressed conditions for a sufficiently long time is exposed to an antibiotic or (ii) a pop-

ulation that has been exposed to an antibiotic for some time is shifted back to a medium

without the antibiotic. In both cases, one typically observes a biphasic dynamics. For

instance, a population exposed to an antibiotic typically shows biphasic decay.

Such kinetics is obtained as a consequence of the coexistence of the two phenotypes and

the time at which the global decay rate changes provides an easily observable signature

of phenotype switching that allows to infer its microscopic parameters.
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Figure 2.3: Biphasic growth kinetics: Numerical integration of Eqs. (2.1) over
a stress period of 15 hours followed by a regrowth period of another 15 hours. The
regrowth curve of the total population shows two distinct phases, a slow-growing phase
followed by a fast-growing phase. The parameters are the same as in Fig. 2.2.

Fig. 2.2 shows a numerical example of such dynamics: Here Eqs. (2.1) have been inte-

grated to reach a steady population ratio under growth conditions with a small persister

fraction. At time t = 15 hours, the parameters were changed to those for stress con-

dition. After the shift to stress conditions (by the addition of an antibiotic), the total

population displays the biphasic decay behavior. In the fast-decaying phase, the decay

of the total population is dominated by the death of normal cells, while in the second,

slower-decaying phase, the total population consists predominantly of persister cells and

the decay rate is governed by the death rate of the persisters. The transition between the

two different phases occurs when both subpopulation becomes equal in size, i.e. at a time

Ts for which φ(Ts) = 1. Therefore, the transition time (Ts) from the fast-decay phase

to the slow-decay phase after the shift to stress conditions or to antibiotic-containing

medium is given by

Ts =
1

∆s
ln

∆s/φ0 − b
∆s − b

, (2.14)

where 1/φ0 is the initial ratio of normal cells to persister cells at the time antibiotic

treatment. During the growth phase, the normal cells make up the majority of the

population and persister cells account for only a small fraction of the total population,

which means 1/φ0 � b. In the limit ∆s � b, i.e. if the growth rate difference is larger
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compared to switching rate, the exit time can approximated by

Ts ≈
1

∆s
ln
n0

p0
. (2.15)

The expression for Ts shows that the population will exit sooner from the fast-decaying

phase if it has a large ratio of persister cells initially. It shows that the longer survival or

persistence of the bacterial populations in antibiotic treatment depends on the fraction

of persister cells that the population has formed beforehand as its survival strategy

against unpredictable bad conditions.

It is worth mentioning that the time Ts, which characterizes the transition between the

two phases of the decay of the total population, is not the characteristic time for reaching

the new steady-state population ratio. The latter occurs later and is characterized by a

time T ′s that can be determined as the inflection point of the time-dependent decay rate

of the normal subpopulation (calculated below), which leads to

T ′s =
1

∆s
ln

(
∆s

bφ0
+ 1

)
≈ 1

∆s
ln

(
∆s

b

n0

p0

)
= Ts +

1

∆s
ln

(
∆s

b

)
. (2.16)

The last expression here shows directly that equilibration of the population structure

occurs later than the transition in the growth rate. The delay between the two time

scales is determined by a balance between the two effects that dominate the population

structure under stress conditions [as in Eq. (2.6)], persisters taking over the population

by outlasting the normal cells and switching of persisters to the normal state.

The re-growth of a population after the removal of the antibiotic is also biphasic with an

initial slow-growth phase followed by a phase of rapid growth (Fig. 2.3). The transition

between the two phases can be analyzed in the same way. The transition time from the

slow-growing phase to fast growing phase is given by

Tg ≈
1

∆g
ln

p0

n0
(2.17)

and depends on the initial persister subpopulation. Therefore, a larger persister fraction

under stress conditions (e.g. due to longer exposure to the antibiotic) results in a delay

in resuming the maximum growth rate after the shift to conditions of unstressed growth.

As above, the steady state population ratio is reached at the later time T ′g, given by

T ′g ≈
1

∆g
ln

(
∆g

a

p0

n0

)
= Tg +

1

∆g
ln

(
∆g

a

)
. (2.18)

In both types of experiments, both times scales can be determined experimentally, but
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Ts and Tg are much more easily accessible than T ′s and T ′g, as they only require mea-

surements of the total population size, e.g. by colony counting, while measuring T ′s

or T ′g requires to determine the time-dependent persister fraction. We note that the

transition time Tg or Ts are closely related to the ”delay times” defined in Ref. [68]. In

fact these delay times are obtained from Tg or Ts by further approximating ∆g ≈ µn

and ∆s ≈ µp. The underlying picture of Ref. [68] is that after an environmental shift,

the population growth (or decays) exponentially with a new growth rate after a delay

during which the population structure adjusts to the new environment. In contrast, our

analysis indicates that the new steady state of the population structure is reached later

than the macroscopically observable delay or transition time.

If the subpopulation ratio has reached the steady state before the shift from one envi-

ronmental condition to the other, the expressions for the time scales Ts and Tg can be

further simplified using Eqs. (2.15) and (2.17). As a result the transition times of total

population growth or decay can be expressed in terms of the switching rates as

Ts ≈
1

∆s
ln

∆g

a
and Tg ≈

1

∆g
ln

∆s

b
. (2.19)

With the exception of the switching rates a and b, all quantities entering these equations

are directly accessible though the time-dependence of the total population size (as shown

in Figs. 2.2 and 2.3) and discussed below in more detail). Thus, the phenotype switching

rates can be determined from time courses of the total population size in a set of two

shift experiments: (i) a sufficiently long period of of unstressed growth long followed

by stress (addition of the antibiotic) and (ii) a sufficiently long stress period followed

by a growth period (via shift to medium without the antibiotic). Then, the switching

rates a and b can be calculated from the parameters of the growth (or decay) curves by

inverting the two equations above,

b ≈ ∆s e
−∆g Tg and a ≈ ∆g e

−∆s Ts . (2.20)

2.4.2 Time-dependent growth rates

The numerical integration of the population dynamics as plotted in Figs. 2.2 and 2.3

show that the growth of normal subpopulation under unstressed growth conditions is

exponential with growth rate approximately given by (µgn − a), as obtained from our

approximation for small switching rates above. By contrast, the growth of the persis-

ter subpopulation is biphasic and can be characterized by a time-dependent effective

growth rate ṗ(t)/p(t). Note that this effective growth rate describes the overall growth
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of the persister subpopulation and includes the effects of persister proliferation and of

phenotype switching.

Alternatively, it can be characterized by the average of that effective growth rate up to

time t,

〈µgp〉 =
1

t

∫ t0+t

t0

ṗ(τ)

p(τ)
dτ. (2.21)

The latter quantity has the disadvantage to depend on a somewhat arbitrary initial time

t0, but can easily be determined experimentally from the overall increase of the persister

subpopulation. The growth rate can be calculated from Eqs. (2.1) by substituting n(t) =

p(t)f(t), where f(t) is the time-dependent subpopulation ratio that we have already

calculated in Eq. (2.11). Therefore, the average growth rate of the normal (n) and

persister (p) subpopulation over a growth period tg is

〈µgn〉 = (µgn − a)

〈µsp〉 = (µgn − a) +
1

tg
ln
af0 + (∆g − af0)e−∆g tg

∆g
. (2.22)

Likewise, the average growth rate for the normal (n) and persister (p) subpopulation

over a stress period ts is given by

〈µsp〉 = (µsp − b)

〈µsn〉 = (µsp − b) +
1

ts
ln
bφ0 + (∆s − bφ0)e−∆s ts

∆s
. (2.23)

Note that in both cases the effective growth rates growth rate of both subpopulation

approach the same value for large times ts or tg.

2.4.3 Growth of the total population

Explicit expression for the effective growth rate and the time evolution of the total

population can also be computed using the the results of analytical approach. The time

evolution equation of total population P (t) = n+ p under unstressed growth conditions

can be expressed in terms of subpopulation ratio f(t) as

d

dt
P =

(
µn + (µp − µn)

1

1 + f(t)

)
P. (2.24)
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The time dependent average growth rate of the total population in a growth period tg

is given by

〈µgP 〉 = µgn + (µgp − µgn)
1

tg

∫ t0+tg

t0

1

1 + f(τ)
dτ

= µgp +
(µgn − µgp)
(∆g + a)tg

ln
(∆g + a)e∆gtg + (∆g/f0 − a)

∆g(1/f0 + 1)
, (2.25)

where the last expression has been obtained by substituting the explicit functional form

of f(t).

Similarly, the average growth rate of the total population during stress conditions is

given by

〈µsP 〉 = µsn +
(µsp − µsn)

(∆s + b)ts
ln

(∆s + b)e∆sts + (∆s/φ0 − b)
∆s(1/φ0 + 1)

. (2.26)

The above expression can be further simplified using again an approximation for small

switching rates (compared to ∆g and ∆s). As a consequence f0 � 1 , φ0 � 1. Within

this approximation, the total population follows a double exponential dynamics both

during unstressed growth,

P (t) ≈ p(t = 0)[eµ
g
pt + f0 e

µgnt] (2.27)

and under stress,

P (t) ≈ n(t = 0)[eµ
s
nt + φ0 e

µspt]. (2.28)

The dynamics of the total population is accessible to direct experimental observations.

These expressions can therefore be used for the quantitative analysis of experimental

killing curves or regrowth experiments. By fitting such data with these expressions, the

growth (or death) rates and the initial fractions of the subpopulation can be obtained

[72].

2.5 Dynamics in periodically switching environment

Finally, we consider an environment that switches periodically between growth and stress

conditions. The duration of the conditions are denoted by tg and ts. To address the

evolutionary consequence of phenotype switching in varying environmental conditions,

we calculate the average growth of the population over one environmental cycle. The

average growth rate of the subpopulation over one environmental cycle of duration tg+ts
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are given by

〈µn〉 =
〈µgn〉tg + 〈µsn〉ts

(tg + ts)
(2.29)

〈µp〉 =
〈µgp〉tg + 〈µsp〉ts

(tg + ts)
. (2.30)
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In general, these expressions depend on the initial subpopulation ratio during growth

and stress. Here we are most interested in the long-time behaviour, where the initial

subpopulation ratio of a cycle is given by those subpopulation ratio at the end of a cycle.

In that case, the effective growth rates of both subpopulations are equal. Expressions

for the growth rates for several cases are given in the 2.7.1.

Here we focus on the case, where both phases of the environmental cycle are sufficiently

long such that a steady state of the population structure is reached in each condition.

In that case, the average growth rate is given by

〈µ〉 =
(µgn − a)tg
tg + ts

+
(µsp − b)ts
tg + ts

+
ln( ab

∆s∆g
)

tg + ts
. (2.31)

Evolution will adapt the control of persistence to such cycling conditions in order to max-

imize the average growth rate under such repeated conditions. The growth and killing

rates of the normal and persister cells are environment-dependent but the switching rates

can be tuned to maximize the average growth rate for a given environmental periodicity

(which in reality will be the typical duration of a cycle defined by a stochastically varying

environment) [67, 69]. The optimal values for a and b can be calculated by maximizing

above expression, which leads to

1

aopt
= tg +

1

∆s
− 1

∆g

1

bopt
= ts −

1

∆s
+

1

∆g
. (2.32)

The dominant term in the expression for the optimal switching rates (2.32) are the

environmental durations tg and ts.The correction terms are in principle dependent on

the switching rates. As these expressions are valid for long environmental durations, and

thus small switching rates, this dependence can be neglected. So the correction terms

in this expression should therefore be taken at zero switching rates. Alternatively, Eqs.

(2.32) can be interpreted as implicit equations and solved for the switching rates. These

expressions in Eq. (2.32) are similar to the expression given by Kussel et al. [67], which

indicates the consistency between different theoretical approaches. Similar results on

the existence of such optimal switching have also been obtained in a number of other

previous studies [68, 69, 121].

It is worth noting that a maximum of the growth rate and thus optimal switching rates

are found only when the environment changes very slowly, as shown in Fig. 2.5. This is

different from the behaviour described in previous studies [67, 68], which focused on the

limit of long environmental durations. Approximations for this limit cannot predict the
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growth rates for cases, where one of the environmental durations is short (e.g., for very

brief exposures to antibiotics). Within our approximation this case can be addressed.

We find that if one of the environmental duration is short, the growth rate decreases

with the increasing phenotype switching rate, which suggests that phenotype switching

is unprofitable under such conditions (see the expressions for cases 2 and 3 given in the

2.7.1).

In our analysis, we have focused on exponentially growing cells, but as mentioned al-

ready, in natural environments, growth is usually limited by the carrying capacity of the

environment, so we want to briefly mention how the dynamics is affected by such carry-

ing capacity. We have shown above that, under constant conditions promoting growth,

the total population will eventually reach the carrying capacity and that in this steady

state the subpopulation ratio is determined by the phenotype switching rates, p/n = b/a.

In stress conditions, the dynamics is unaffected by the environmental carrying capacity.

The dynamics in periodically switching environments depends on whether the average

growth rate (in the absence of a carrying capacity) is positive or negative. In the case

of net decay, our analysis remains valid, as the carrying capacity is irrelevant. But if

there is net growth per environmental cycle, the population will eventually grow to the

carrying capacity during a growth period. From then on, the population will oscillate

between decaying away from the maximal population size during the stress period and

growing back to it in the growth period. The long term growth rate is zero in this case.

2.6 Concluding remarks

One way bacterial population cope with environmental stresses is by setting aside a small

fraction of the total population, the persister cells, in a slow-growing, but stress-tolerant

phenotypic state. These persisters provide a pool of cells from which the population

can recover via a phenotypic switch to the normal growth state after the environmental

conditions have improved. Here we have analyzed a simple mathematical model to un-

derstand the dynamics of phenotype switching. Typically, the fitness cost associated with

the switching of few normal cells to the persister phenotype under growth-permissible

conditions is small compared to the fitness benefit of the presence of persister cells un-

der stress conditions. We have used an approximation valid for small switching rates

that allows us to obtain explicit analytical expression for many quantities that are di-

rectly accessible to experiments. Within this approximation, the population dynamics

is mapped to a logistic equation for the ratio of the population fractions corresponding

to the two phenotypes. For constant environmental conditions, stable coexistence of

the two subpopulations that grow with different growth rates is achieved by a balance
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between fast-growing cells outgrowing the slow-growing ones and phenotype switching,

by which the slow-growing subpopulation is replenished.

We have then considered shifts between environmental conditions as well as periodically

switching environments. Specifically, we have identified several characteristic time scales

for changes in the overall population growth or decay and for the approach to a constant

ratio between the two subpopulations. Simple analytical expressions for these time scales

provide a window into the phenotype switching process and more specifically allow

to determine the switching rates from population-scale shift experiments [72], which

are typically governed by double-exponential population growth or decay. Finally, we

determined the average growth rates for a periodically switching environment. If growth

and stress periods have long durations, the phenotype switching rates can be tuned for

optimal growth of the total population.

The results derived are based on the assumption that phenotype switching is a stochas-

tic process, independent of the environment. This assumption may not always be valid,

as in some cases, persistence may also involve an adaptive response to the stress condi-

tions. One case, where this has been demonstrated is persistence of E. coli cells upon

treatment with the antibiotic Ciprofloxacin, where persistence is actively induced via the

SOS response [21, 22]. Analysis of such cases with our model would lead to condition-

dependent apparent switching rates. In such cases, the model may be used as a ’null

model’ to identify deviations from the simple dynamics discussed here.

Finally, we want to emphasize that the analysis we have developed here, can also be ap-

plied to other cases of ’growth bistability’, i.e. cases of phenotypic heterogeneity, where

genetically identical subpopulations grow with different growth rates. One interesting

case is bacterial competence, a program for genetic transformation (quasi-sexual ex-

change of genetic material), which is typically activated in only a subpoulation [25]. In

this case, it has been proposed that phenotypic heterogeneity provides a evolutionary

advantage in a homogeneous environment [134]. Recent studies of growth effects on var-

ious genetic circuits suggest that growth bistability may be a rather generic consequence

of the coupling of gene expression and cell growth [59, 60, 109, 119].

2.7 Supporting information

2.7.1 Average growth rate in periodic environmental conditions

In this appendix, we give expression for the average growth rate of the total population

for several different cases beyond the case of slow environmental variation discussed in
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the main text.

Case 1: tg > T ′g and ts > T ′s. For slow variation of the environment, i.e. for long

durations of the growth and stress periods, the average growth rate is given by

〈µ〉 =
(µgn − a)tg
tg + ts

+
(µsp − b)ts
tg + ts

+
ln( ab

∆s∆g
)

tg + ts
(2.33)

Case 2: tg > T ′g and ts is very small. For short duration of the stress period and long

duration of the growth period, the average growth rate is given by

〈µ〉 =
(µgn − a)tg
tg + ts

+
(µsp − b)ts
tg + ts

+
ln(

ab+(∆s∆g−ab)e−∆sts

∆s∆g
)

tg + ts
. (2.34)

The average growth rate decreases as the switching rate increases as shown in Fig. 2.5.

The maximal growth rate for infinitesimally small switching rates (a→ 0 and b→ 0) is

given by

〈µ〉max =
(µgn − a)tg
tg + ts

+
(µsn − a)ts
tg + ts

. (2.35)

Case 3: ts > T ′s and tg is very small. Likewise, for short duration of the growth period

and long duration of the stress period, the average growth rate is given by

〈µ〉 =
(µsp − b)ts
tg + ts

+
(µgn − a)tg
tg + ts

+
ln(

ab+(∆s∆g−ab)e−∆gtg

∆s∆g
)

tg + ts
. (2.36)

Again, the average growth rate decreases as the switching rate increases as shown in

Fig. 2.5. The maximum growth rate for small switching rates (a→ 0 and b→ 0) is given

by

〈µ〉max =
(µgp − b)tg
tg + ts

+
(µsp − b)ts
tg + ts

. (2.37)

2.7.2 Steady state ratio of sub populations

In this paper, we make extensive use of approximations based on the observation that

the switching rates a and b are typically very small (Table 2.1). As a numerical test of

this approximation, we consider the subpopulation ratio, which becomes constant over

long times of constant growth or decay conditions. In periodically varying environment

the ratio of the subpopulations at end of an environmental duration is determined by

the environmental periodicity (the durations of the two phases, tg and ts). The exact

steady state ratio of the subpopulations can be determined numerically by integrating the

dynamical equations Eqs. (2.1) over a long time under a given environmental condition.
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population at the end of an environmental cycle (T = tg = ts). The parameters are the
same as in Fig. 2.2

Here, we compare the value of the subpopulation ratio φ(tg, ts) at the end of a stress

phase as obtained from our analytical approximation with the corresponding numerical

result. The analytical result is obtained by iterating the following recursion

f(tg, ts) =
∆g

a+ [∆sφ(tg, ts)− a] e−∆gtg

φ(tg, ts) =
∆s

b+ [∆gf(tg, ts)− b] e−∆sts
. (2.38)

The comparison between the numerical and analytical results are plotted in Fig. 2.6,

which shows good agreement between the two methods.
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Abstract

The spatial expansion of a population in a non-uniform environment may benefit from

phenotypic heterogeneity with interconverting subpopulations using different survival

strategies. We analyze the crossing of an antibiotic-containing environment by a bacte-

rial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-

tolerant persister cells. The dynamics of crossing is characterized by mean first arrival

times and is found to be surprisingly complex. It displays three distinct regimes with

different scaling behavior that can be understood based on an analytical approximation.

Our results suggest that a phenotypically heterogeneous population has a fitness ad-

vantage in non-uniform environments and can spread more rapidly than a homogeneous

population.
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3.1 Introduction

The development of populations of cells or organisms depends not only on these organ-

isms themselves, but also on their interactions with competing populations and with their

environment. Specifically, the spatial structure of the environment can play an impor-

tant role, for example by separating populations or providing barriers to the spreading

of a species [14, 123]. Recently, experimental techniques such as microfluidic habitats

[56, 137] and range expansion of microbial populations on plates [38, 41, 64] and com-

plex interactions between multiple species [104] have been used to study the influence of

spatial structures in a quantitative fashion using microbes (bacteria or yeast) as model

organisms. For example, it has been shown that spatial heterogeneity (different drug

concentrations in different organs or concentration gradients for locally administered

drugs [6, 12, 92]) can both speed up and slow down the emergence of antibiotic resis-

tance in bacteria [35, 42, 43, 52].

Another aspect of microbial survival under stressful conditions is phenotypic hetero-

geneity [19, 113], i.e. different behaviors (e.g. normal growth, sporulation, competence,

persistence) exhibited by genetically identical cells under identical conditions, a feature

usually attributed to multistability in the underlying genetic circuitry. A prime example

of phenotypic heterogeneity is bacterial persistence, phenotypic tolerance to antibiotics

[4, 19, 71, 72, 75]. A subpopulation of cells is tolerant against antibiotics or other stresses

and allows prolonged survival of the population under such conditions. The cells switch

stochastically between the normal and the persistent phenotype, thus after the stress

is removed, the population can grow back from the surviving persisters (in contrast to

resistant mutants, the re-grown population remains susceptible to the antibiotic). Per-

sistence has thus been characterized as a bet-hedging strategy, optimal for survival in

fluctuating environments [67–69].

In this letter, we address a related problem, namely the role of persisters in the spatial

expansion of a bacterial population. The basic idea is that just as persisters allow

a population to live through times of stress, they also allow the population to cross

regions in space in which the conditions are stressful. Specifically, we consider the

case of a population of bacteria expanding from a growth-sustaining environment into

another one that is separated from the first by an environment with a high antibiotic

concentration (Figure 3.1). We calculate the average time it takes for the cells to reach

the third environment and determine the conditions under which the presence of persister

cells is beneficial by speeding up the arrival. This dynamics is surprisingly complex

with several distinct regimes, which we identify by a combination of simulations and

an analytical theory. We conclude the paper with some remarks concerning possible

experiments and an analogy to the crossing of valleys in fitness landscapes.
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Figure 3.1: Model for phenotype switching and migration in three connected micro
environments (patches): Bacteria switch between two phenotypic states, normal cells
(ni) and persisters (pi) with rates a and b and migrate to a neighbouring patch with
rate γ. While the first and third patch sustain growth of the population, the second
patch contains antibiotics and does not allow for growth. Growth and death rates are
phenotype dependent: persisters grow more slowly but survive longer in patch 2. The
red and blue arrows shows the two paths via which a cell can arrive in the third patch.
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Figure 3.2: Population dynamics in the third patch with (red) and without (blue)
phenotype switching: (a) Time dependent population size and (b) number of cells that
have arrived in the third patch. The rates are µn = 2 hr−1, µp = 0.2 hr−1, δn = 4
hr−1, δp = 0.4 hr−1 as measured for E. coli cells [4] and γ = 3.2×10−5 hr−1 , K = 105.
The thin lines are individual simulations and the thick lines are averages of several
trajectories.

3.2 Model

We consider a population with two phenotypes (normal and persisters) in an environment

consisting of three connected patches (Figure 3.1). The numbers of normal cells and

persisters in patch i = 1, 2, 3 are denoted ni and pi. The first and third patch sustain

growth, described as logistic growth with rates µn and µp, respectively, and carrying

capacity K. The middle patch contains antibiotics, therefore cells migrating into this

patch are killed, with death rates, δn and δp, and δp < δn. Cells migrate between
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the patches with rate γ, which we take to be independent of phenotype. Switching

between the phenotypes is described by rates a and b (normal to persister and vice

versa, respectively). These rates are taken to be independent of the environment.

Simulation results. We simulated this model and determined the time after which the

first cell crosses the antibiotic-containing environment and arrives in the third patch.

In a competitive situation [64], a population that arrives faster will obviously have a

fitness advantage compared to other populations. One may expect that the slowly dying

persister cells can cross a region of high antibiotic concentration more easily and hence

might speed up the population expansion in such a heterogeneous environment. Figure

3.2 shows results of simulations with realistic growth, death and switching rates that

start with a single normal cell in the first patch. Indeed, a population with persisters

(red) arrives faster in the third patch than a population without persisters (blue). One

also sees that on the time scale on which cells cross the antibiotic barrier, growth in the

third patch is very rapid, so it is fully populated by the offspring of the first arriving

cell.

For a systematic study, we next vary the migration rate γ. For simplicity, we assume for

the moment that only persisters arrive in the third patch (δp � δn). Surprisingly, the

dependence of the mean first arrival time (MFAT) on γ is quite complex (Figure 3a).

For small γ, the MFAT decreases as 1/γ2, as one might guess, because two migration

steps are required to reach the third patch; but for intermediate and large γ, it scales

as 1/γ and 1/γ1/2, respectively. In the following, we use an analytical approximation to

obtain a better understanding of these observations.

3.3 Growth dynamics in the first patch.

Typically growth in the first patch will be rapid compared to phenotype switching [4]

and migration [43]. Therefore, the population in the first patch can be described by the

steady state of the deterministic equations,

ṅ1 = µn

(
1− n1 + p1

K

)
n1 − an1 + bp1 − γ(n1 − n2)

ṗ1 = µp

(
1− n1 + p1

K

)
p1 + an1 − bp1 − γ(p1 − p2). (3.1)

The steady state can be solved exactly [98], but here two limiting cases are sufficient. If

migration is slow compared to phenotype switching (γ � a, b), the total population in

the first patch is given by the carrying capacityK and the subpopulations are determined
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by a balance of phenotype switching,

n1 ≈ K
b

a+ b
, p1 ≈ K

a

a+ b
. (3.2)

For fast migration (γ � a, b), expansion of the exact result leads to

n1 ≈ K, p1 ≈ K
aµn

(µn − µp)γ
. (3.3)

In this case, the balance of processes increasing and decreasing the population is different.

Cells of both phenotypes are lost by emigration. Because normal cells grow more rapidly,

the emigrants are quickly replaced by normal cells, while the persister population is

replenished by ”one-way” phenotype switching (with rate a) from the normal cells. This

situation is reminiscent of the population balance in an exponentially growing population

[97].

3.4 Migration through the second patch

Next, we consider the dynamics of the number m (= n2 or p2) of cells in the second patch.

This number is typically small, so a stochastic description is necessary. To this end, we

neglect phenotype switching in the second patch, so we can consider the migration of

normal cells and persisters separately (we therefore drop the indices p and n in that

calculation). The MFAT of a cell in the third patch can be calculated by adapting

a method that was used recently for the related problem of mutation and migration

[42, 43]. We define Pm as the probability that at time t no cell has yet migrated to the

third patch and there are m cells in the second. The master equation for this probability

is given by

dPm
dt

= −(λ+ δ′m+ γm)Pm + λPm−1 + δ′(m+ 1)Pm+1 (3.4)

with initial condition P0(t = 0) = 1. Here λ = Nγ is the rate of immigration from

the first patch (with population size N , assumed to be constant and specified below),

δ′ = δ + γ is an effective death rate, into which we have absorbed backward migration.

The master equation can be solved [98] via the moment generating function G(s, t) =∑∞
0 smPm(t), which is obtained as

G(s, t) = exp

[
λ

δ′ + γ

(
s− δ′

δ′ + γ

)(
1− e−(δ′+γ)t

)]
× exp

(
− λγ

δ′ + γ
t

)
. (3.5)
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Figure 3.3: Mean first arrival time (MFAT) in the third patch: (a) The MFAT of
persisters as a function of the migration rate γ displays three different scaling regimes.
(b) MFAT for normal cells (blue) and persisters (red) as obtained from simulations
(symbols, starting with a fully populated first patch) and our analytical approximations
for the three regimes (lines). (c) Comparison of simulations starting with a single cell
(filled symbols) and with a fully populated first patch (open symbols). (d) Regions of
first arrival of persisters and normal cells in the space of migration and switching rates.
The parameters are the same as in Figure 3.2, and a = b = 10−4 hr−1.

The net probability that no cell has migrated yet to the third patch at time t is given

by
∑
Pm(t) = G(1, t) and the MFAT by T =

∫∞
0 G(1, t)dt. There are again two distinct

limits, depending on whether migration is fast or slow compared to cell death in the

second patch (indicated by indexes ’f’ and ’s’, respectively).

For λγ = Nγ2 � (δ′ + γ)2, i.e. slow migration, we obtain

Ts ≈
∫ ∞

0
exp

[
− Nγ2t

(δ′ + γ)

]
dt ≈ δ′ + γ

Nγ2
≈ δ

Nγ2
(3.6)

and for fast migration, Nγ2 � (δ′ + γ)2, the MFAT can be approximated by

Tf ≈
∫ ∞

0
exp

[
−Nγ

2

2
t2
]
dt =

1

γ

√
π

2N
. (3.7)

In this limit, the MFAT Tf is independent of the death rate because the cells move

quickly through the second patch.
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MFAT of Persister cells. The MFAT for persisters and normal cells can now be obtained

by combining, Eqs. (3.7) and (3.6) with the population sizes in the first patch given by

Eqs. (3.2) and (3.3). We first consider again the case that only persisters can reach the

third patch (δn very large). The three regimes seen in Figure 3.3(a) can now be under-

stood as reflecting the three different time scales for phenotype switching, migration,

and cell death: In the first regime (T1), migration is the slowest process, slower than

phenotype switching and cell death, γ � a, b � δp, so the population size is given by

N = p1 with p1 from Eq. (3.2) and the MFAT by Eq. (3.6). A second regime (T2) is

obtained when migration is rapid compared to phenotype switching, but slow compared

to cell death, a, b � γ � δp. In this case, Ts from Eq. (3.6) is combined with the

persister population size from Eq. (3.3). In the third regime (T3), migration is rapid

compared to both switching and cell death 1. We thus obtain

Tp,1 ≈
(a+ b)δp
aKγ2

, Tp,2 ≈
(µn − µp)δp
aµnKγ

and

Tp,3 ≈

√
π(µn − µp)
2Kaµnγ

(3.8)

corresponding to the three scaling regimes discussed above.

MFAT of normal cells and of the total population. In general, the death rate δn of

normal cells is finite, and therefore normal cells also have a chance to reach the third

patch. We thus repeat the analysis using the population size expressions for normal cells.

Here, the first and second regime both display the same 1/γ2 scaling, but with different

prefactors, Tn,1 ≈ (a + b)δn/(bKγ
2) and Tn,2 ≈ δn/(Kγ

2). In the third regime, our

approximation leads to Tn,3 ≈ γ−1
√
π/2K. Our analytical expressions for both normal

cells and persisters are in quantitative agreement with the simulation results if we start

our simulations with a fully populated first patch (Figure 3b). If we start simulations

with a single cell in patch 1 as above and if γ is large, the first arrival to the third patch

can happen before the steady state in the first patch is reached. Thus the MFAT in

the third regime is longer than in simulations starting with a fully populated first patch

(Figure 3c, open and filled symbols, respectively). In this case, the MFAT is limited by

the exponential growth and the γ−1 scaling in regime 3 is not seen 2.

The MFAT for the population as a whole is given by the MFAT of the subpopulation that

arrives first. In the rapid migration regime, the MFAT is independent of the death rate,

so the normal cells arrive faster due to their larger number. In this regime, there is no

benefit due to the presence of persisters. For slow migration, however, persisters arrive

first, and the MFAT for the whole population is given by Tp,1. Clearly, if persister cells

1In principle, a fourth regime with δp � a, b � γ is possible, but measured parameter values [4, 71]
indicate a, b < δp.

2The MFAT for persisters displays the same scaling with γ, but with a larger prefactor [98].
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arrive faster than normal cells, the phenotypic splitting of the population is a beneficial

strategy. In this regime, the ratio of the arrival times of persisters and normal cells is

Tp,1/Tn,1 = (δp/δn)×b/a. Compared to a population without persisters, the arrival time

is reduced f -fold with

f ≡ Tn,1(a = 0)

Tp,1
≈ δn
δp
× a

a+ b
. (3.9)

Thus the fold-reduction in the arrival time of the population by the presence of persisters

is given by the ratio of the death rates of the two subpopulations times the persister

fraction in a stationary-phase population. We note that while persister fractions are

typically very small in exponentially growing populations, they can reach up to 10–50%

in stationary phase [71].

Things are more complex in the middle regime, where the crossover between persister-

dominated migration and normal-cell dominated migration to the third patch is expected

to occur. Because of the different death rates, the two cell types enter this regime at

different values of γ, so several different crossover scenarios are possible. In Figure

3.3(d), we plot the regions in the parameter space (a, γ) in which persisters or normal

cells arrive first in the third patch, respectively. The boundary separating distinct region

is found to be given by a ∝ γ2 with the assumption that the two switching rates are

equal (a = b, filled symbols). Persisters are faster and thus beneficial to the population

for migration rate smaller than this limiting value. If we take b as constant and vary a

(open symbols), there is another limiting condition: For persisters to arrive more rapidly,

a/b must not be smaller than the ratio of the death rates δp/δn.

3.4.1 Dynamics with multiple antibiotic patches.

The competitive advantage of populations with persisters is further enhanced if there

are multiple antibiotic patches in between two growth sustaining patches (Figure 4). In

the case of M antibiotic-containing patches, the MFAT to patch (1 + M + 1), which

supports growth, can be estimated as

TN (M) ≈ δ′

γ2

M∑
1

1

Nj
≈ δ′

N1γ2

(δ′/γ)M − 1

(δ′/γ)− 1
, (3.10)

where Nj (= pj , nj) is the average population (= N(j−1)γ/δ
′, for slow migration) in the

jth patch and δ′ is the effective death rate in the antibiotic patches.
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Figure 3.4: Multiple antibiotic patches: MFAT of the population with and without
phenotype switching for different numbers (M) of antibiotic patches (γ = 0.01, µn =
2, µp = 0.2, δn = 1, δp = 0.2 (all in hr−1), K= 103). The lines are from Eq. (3.10).

3.5 Concluding remarks

In this letter, we have studied the effect of phenotypic heterogeneity in a population

expanding in a spatially heterogeneous environment with regions in which normal cells

die rapidly due to the presence of antibiotics. We have calculated mean first arrival

time and found that the presence of drug-tolerant persister cells is beneficial for slow

migration, as it allows the population to cross regions of high antibiotic concentration.

To some extent, this effect can be interpreted as mapping the better-studied scenario

where the environment fluctuates in time and the persisters allow the population to

survive times of stress to a spatial structure. However, the dynamics is unexpectedly

complex with several different regimes.

Our simple model suggests a novel role of phenotypic heterogeneity, the help in spatial

expansion of a population in a heterogeneous environment. Such heterogeneous envi-

ronments with high and low drug concentration are likely present in the body during

treatment [6, 12, 92]. In addition, such environments can be realized experimentally

using microfluidic devices [56, 137] or growth on plates, which have recently been used

to study range expansion of populations [41]. The benefit of persisters could be studied

by comparing the expansion of normal strains, with mutants having higher [88] or lower

[79] persister fractions.

Finally, we want to mention, that the present problem is closely related to mutational

pathways containing so-called ’fitness valleys’ [92, 106, 132]. To apply our analysis to that

case, migration through real space has to be replaced by migration through genotype
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space, and γ is interpreted as the mutation rate. The case studied here corresponds

to one in which a single mutation leads to lower fitness, but two mutations increase

fitness. In such scenario, a population with persister cells can thus more easily cross a

fitness valley, which otherwise would, for example, slow down the emergence of antibiotic

resistance [35].
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Abstract

Population dynamics parameters of Staphylococcus aureus strain SA113 were quantified

based on growth and killing experiments with batch culture cells in rich medium. Eradi-

cation kinetics and the concomitant isolation of a subpopulation of drug-tolerant SA113

persisters upon treatment with super-minimal inhibitory concentrations of antibiotics

such as ciprofloxacin, daptomycin, and tobramycin served as a basis for mathematical

analyses. According to a two-state model for stochastic phenotype switching, levels of

persister cells and their eradication rates were influenced by the antibiotics used for

isolation, clearly indicating a heterogeneous pool of S. aureus persisters. Judging from

time-dependent experiments, the persisters’ degree of drug tolerance correlated with

the duration of antibiotic challenge. Moreover, cross-tolerance experiments with cells

consecutively treated with two different antibiotics revealed that multi-drug tolerance

is not a necessary trait of S. aureus persisters isolated by antibiotic challenge. In some

cases, the results depended on the order of the two antibiotic treatments, suggesting

that antibiotic tolerance may be achieved by a combination of preexisting persisters and

an adaptive response to drug exposure. Counts of live cells which had endured drug

treatment increased only after lag phases of at least 3 h after the shift to non-selective

conditions. Thus, this study provides quantitative insights into population dynamics of

S. aureus persisters with regard to antibiotic challenge.
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4.1 Introduction

Bacterial persister cells are dormant variants of regular cells that neither grow nor die

in the presence of bactericidal compounds. Since persisters make up a small fraction

within a culture dominated by isogenic sibling cells, the persister state is a paradigm of

bacterial phenotypic heterogeneity [19, 124]. Wiuff et al. [133] noted that a decrease in

the overall bacterial mortality of a culture upon antibiotic challenge could be attributed

to drug-tolerant persisters. Our present understanding of the heterogeneous response to

antibiotics within a genetically uniform population is predicated on studies addressing

persistence on two different levels of description. One type of studies asks for the regu-

latory network motifs that enable the coexistence of persistent and non-persistent cells.

Positive feedback loop-mediated bistability and threshold amplification of intracellular

regulatory noise were identified as critical for bacterial persistence [2]. Genes associated

with altered persister levels clearly point towards toxin- antitoxin systems as a prime

instance [15, 55, 79, 88, 110, 127]. On a population scale, a mathematical analysis de-

fined the important parameters that control the dynamics of the normal and persistent

subpopulations to calculate switching rates between the two phenotypes [33]. Two types

of persisters can be discriminated dependent on whether or not a triggering signal to

enter the dormant state is required [2, 4, 19, 33]. Whereas the level of type I persisters

increases at the onset of stationary growth phase, type II persisters appear to be formed

continuously, irrespective of environmental stimuli [4, 19, 32, 33, 67]. It seems that not

one single mechanism is responsible for persister formation, but instead, the activation of

different stress modules results in growth arrest, and various different genetic pathways

may converge towards persistence [1, 19]. The change between the dormant and the

growing state is a hallmark of persister cells [11, 33, 48]. In variable environments, phe-

notype switching provides a bet-hedging strategy that has been proposed to be superior

to sensing as an adaptive mechanism to ensure the population’s survival [67, 68]. The

exit of bacteria from dormancy may be triggered by extracellular compounds [26, 90] or

in a stochastic manner [11] and may be accompanied by specific lag-phases during the

resuscitation process [33, 48]. Although the persister state was described for staphy-

lococci more than 65 years ago [7], only few studies addressed persisters in this genus

so far [55, 87, 111, 112]. Keren et al.[55] conjectured that a stationary culture might

exclusively consist of persisters, whereas we found that the pool of stationary phase

Staphylococcus aureus cells represents a mixture of persisters and drug-susceptible cells

[71]. Upon aminoglycoside treatment, selection of persister and small colony variant

(SCV) cells, representing another and possibly related dormant form of bacteria, was

observed [133]. S. aureus SCVs frequently have genetically manifested defects in their

electron transport chain or auxotrophies for hemine, menadione, or thymine (reviewed

by [101]). Most SCVs are inherently tolerant to aminoglycosides [130], and are capable
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of switching between the normal and the small colony phenotype, even during the course

of an infection [82, 125]. Based on our previous work on the identification of conditions

for S. aureus persister isolation [71], the present study aims at providing parameters

of population dynamics for S. aureus cells grown in liquid culture and challenged by

antibiotics. We analyzed persisters that were isolated by treatment with various antibi-

otics for cross-tolerance and resuscitation dynamics. Growth, death and switching rates

of normal and persister cells were calculated, and subpopulation fractions of these cell

types were defined. Our results demonstrate that the choice of antimicrobial compounds

applied for isolating drug-tolerant S. aureus persisters is critical for the behavior of the

population. The observed dependence on the choice of antibiotics suggests that there

may be multiple types of persisters with complex patterns of cross-tolerance and that

the response of the population to antibiotic challenge may be due to a combination of

selection for preexisting persisters and an adaptive response.

4.2 Results and Discussion

To provide a basis for modeling of staphylococcal persister dynamics, we first revisited

key results described in our previous study on S. aureus persisters [71]. Therein, a

number of S. aureus strains and mutants had been challenged with various antibiotics

applied at different magnitudes of the minimal inhibitory concentration (MIC; 1-fold,

10-fold and 100-fold) at exponential or stationary growth phase, and bacterial killing

had been monitored over time.

4.2.1 Mathematical Analysis of Killing Curves Indicates the Existence

of Multiple S. aureus Persister Types

Antibiotic treatment experiments indicated a variety of dynamic behaviors of S. aureus

cells of an isogenic inoculum in a common batch culture reflected by different killing

kinetics. Eradication of exponential phase cells had frequently been biphasic, as ex-

pected in the presence of two different subpopulations, normal cells and persisters [71].

We here analyzed mathematically the killing dynamics observed with the antimicro-

bials tobramycin, which inhibits translation, ciprofloxacin, which corrupts the function

of topoisomerase, or daptomycin, which targets the cell envelope. A model for pheno-

type switching (defined by Eq. 4.1 in ‘Methods’) was applied that describes isolation of

preexisting persisters by these antibiotics. To that end, killing curves of different exper-

iments using strain SA113 were fitted with a double-exponential expression (Eq. 4.2) to

obtain killing rates of the two subpopulations and the initial fraction of persister cells (
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Figure 4.1: Fitting of killing curves. (a) Example of a measured killing curve (data
points, for strain SA113 taken from exponential growth phase and treated with 100-fold
MIC of tobramycin) and a double-exponential fit to it (solid line). Fits like this one
were performed for individual experiments and the resulting parameters averaged over
repeat experiments to obtain the parameters given in Table 4.1. (b) Initial persister
fractions (i.e. fraction of persisters present in the population at the time of addition of
the drug) obtained from the fits based on values obtained with ciprofloxacin (100-fold
MIC), tobramycin (100-fold MIC) and daptomycin [10-fold MIC; mean plus standard
deviation of log(p0/n0), see Table 4.1]. Differences were found to be significant between
ciprofloxacin and daptomycin ( ∗∗ p = 0.01) and ciprofloxacin and tobramycin( ∗p =
0.045).

Table 4.1: Parameters obtained from the fitting of killing curves.

Antibiotic Conc. No. Death rate of Death rate of Fraction of Switching
in of normal cells persister cells persisters rate:n→p

MIC exp. µ
(AB)
n (h−1) µ

(AB)
p (h−1) log10f0 a(h−1)

Ciprofloxacin 10 3 −6.96± 0.20 −0.55± 0.12 −3.22± 0.21 7.4× 10−4

100 6 −4.37± 1.62 −0.56± 0.20 −2.71± 0.71 2.4× 10−4

Rifampicin 10 3 −7.05± 2.47 −0.81± 0.36 −2.62± 1.13 2.9× 10−3

Tobramycin 10 3 −9.87± 1.66 −0.14± 0.08 −3.83± 0.26 1.9× 10−4

100 6 −13.65± 4.82 −0.32± 0.22 −3.65± 0.58 2.8× 10−4

Daptomycin 10 6 −9.31± 0.81 −0.55± 0.55 −4.44± 0.98 4.6× 10−5

Dapto/Ca2+ 1 3 −3.13± 2.18 +0.22± 0.68 −2.31± 0.31 6.0× 10−3

All values are for strain SA113, mean ± standard deviation from three(1) or six(2)
experiments as indicated. Calculations are based upon results of Lechner et al. [71].

Table 4.1 ; Fig. 4.1 ). The switching rate from the normal phenotype to the persister

phenotype was estimated from the persister fraction. Not surprisingly, the death rates of

the two subpopulations depended on the type and concentration of the antibiotic used,

as also shown in other bacteria [54, 55, 79]. In addition, considerable variation between

the initial persister fractions (and thus the switching rates) was obtained from these

fits, which argues against a single preexisting persister subpopulation isolated by the

antibiotics, also in agreement with previous reports [1, 133]. In many cases however, the

difference between persister levels observed in experiments with two different antibiotics

was similar to the variation in persister fraction between repeats of experiments with

the same antibiotic. Hence, we tested for the statistical significance of these differences
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Figure 4.2: Recurrent reexposure experiments. Exponential phase SA113 cells were
treated with 100-fold MIC of ciprofloxacin (a), 10-fold MIC of daptomycin (b), or 100-
fold MIC of tobramycin (c), or stationary phase cells were challenged with 100-fold
MIC of daptomycin/Ca2+ (d). Cells from samples taken after 30 min, 1.5 h, and 3 h
were then treated again with the same antibiotic at the same concentration. The values
at the y-axis display the log10 ratios between CFU counts of surviving cells after 3 h
of reexposure and CFU counts of cells prior to reexposure. The values are averages of
three replicates, and the error bars indicate standard deviations.

using only experiments that were repeated six times ( Fig. 4.1 b). The most striking

difference was found between the persister fractions for SA113 cultures that had been

treated with ciprofloxacin (100-fold MIC) and daptomycin (10-fold MIC) (p = 0.01; Fig.

4.1 b), but the difference between treatment with ciprofloxacin and tobramycin (100-

fold MIC) was also found to be significant (p=0.045). A dependence of the persister

fraction on the drug used to isolate the persisters is not expected for a homogeneous

subpopulation of preexisting persisters as assumed in the model of Eq. 4.1. It may

however be obtained if the persister subpopulation is heterogeneous with different types

of persisters exhibiting tolerance to different antibiotics or if the observed tolerance to

the drug involves an adaptive reaction to the drug exposure. The absolute values of

the switching rates are in the range of 10−5 to 10−3 per hour. Previous estimates for

the switching rate of E. coli upon treatment with ampicillin were in the same range [4],

with values for wild-type E. coli being slightly lower and values for a high-persistence

mutant (hipA7) being slightly higher than in the present study.
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4.2.2 Degree of Drug Tolerance of Isolated S. aureus Persisters Is

Dependent on the Kind and Duration of Antibiotic Treatment

Deduced from our data and from studies in other bacteria [1, 32, 71, 75], an S. aureus

culture in the logarithmic phase was expected to mainly consist of susceptible cells and a

tiny subpopulation of bacteria (that may collectively be classified as type II persisters)

which exhibit different degrees of drug tolerance. The addition of an antibiotic should

then isolate cells gradually more tolerant over time to yield a population dominated by

highly robust persisters. To further corroborate this picture, we performed a test for

phenotypic tolerance to antibiotics proposed earlier [133], in which tolerant cells isolated

with an antibiotic are reexposed to fresh medium with the same antibiotic. To this end,

SA113 cells were treated at exponential growth phase with 100-fold MIC of ciprofloxacin,

10-fold MIC of daptomycin, or 100-fold MIC of tobramycin for 30 min, 1.5 h, and 3 h

(primary culture), and the washed pellets were transferred to fresh media supplemented

with the identical antibiotics at the same concentration (secondary culture). Cells grown

under nonselective conditions in the first culture, but exposed to the respective drugs

in the second culture served as controls. The same experiment was also conducted with

stationary-phase cells treated with 100-fold MIC of daptomycin/Ca2+. Generally, cells

taken from selective primary cultures were more tolerant to the respective antibiotics

than näıve cells first grown under antibiotic-free conditions. Killing rates of secondary

culture cells exposed to ciprofloxacin or daptomycin were reciprocally correlated with

the length of drug exposure in the primary culture ( Fig. 4.2 a, b, d), whereas this

was not the case for bacteria sampled from tobramycin-containing medium. There, the

slower colony-forming unit (CFU) decrease was independent of whether cells in the first

culture had been treated with the drug for 30 min or longer ( Fig. 4.2 c). Comparable

findings were described by Wiuff et al.[133] for E. coli . In line with data of our first

study [71], killing kinetics of secondary culture cells corroborate the assumption that a

highly tobramycin-tolerant pool of persisters was rapidly isolated by 100-fold MIC of the

drug. In contrast, sorting of robust persister cells appears to occur rather slowly (within

3 h) after addition of 100-fold MIC of ciprofloxacin or 10-fold MIC of daptomycin. Cells

with a lower degree of drug tolerance thus seem to be reprieved from killing at earlier

time points. A comparison with the model using the parameters obtained from Table

4.1 indicates that the reexposure experiments led to population sizes that were very

similar to what was obtained with continued exposure to that antibiotic (correlation

coefficients R ≥ 0.9). This observation provides further quantitative support for the

phenotypic tolerance model used to describe the killing assay above. Within the model,

the difference between the antibiotics in the kinetics of persister isolation were mostly due

to the death rate of the susceptible cells, which was significantly higher for tobramycin

at 100-fold MIC than for the other two conditions ( Table 4.1 ).
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Figure 4.3: Cross-tolerance experiments. Exponential phase SA113 cells pretreated
with one antibiotic for different periods of time (30 min, 1.5 h, and 3 h, as indicated
at abscissa) were reexposed to a different kind of drug: 100-fold MIC of ciprofloxacin
(a), 10-fold MIC of daptomycin (b), and 100-fold MIC of tobramycin (c). The values
at the ordinate display the log 10 ratios between CFU counts of surviving cells after 3
h of reexposure and CFU counts of cells prior to reexposure. Values given for identical
antibiotic treatments at first and second exposures resemble those in Fig. 4.2. Note
that no colonies were observed when cells were treated consecutively with tobramycin
and daptomycin in either order. The values are averages of three to four replicates, and
the error bars indicate standard deviations.

4.2.3 Mono- and Multi-Drug Tolerance Is Not Necessarily Correlated

in S. aureus Persisters

The analysis of the eradication experiments suggested that there may not be one single

persister phenotype, but several types of dormant cells in different physiological states

and with different patterns of drug tolerance, consistent with the model of Allison et

al. [1]. To shed further light on possible differences in drug tolerance among a pool of

persisters, cultures were again exposed to one antibiotic for 0.5-3 h, but now cells were

subsequently challenged by a different drug for an additional 3 h. Cross-tolerance was

assumed when a similar or greater number of bacteria recovered after treatment with the

second antibiotic compared to recurrent reexposure to the same drug. Results shown in

figure 3 demonstrate that cross-tolerance was usually not observed, with the exception

of cells treated first with tobramycin and second with ciprofloxacin ( Fig. 4.3 a). For

a quantitative analysis, the two-phenotype model of persisters was extended towards

including multiple persister phenotypes, falling into three categories: (1) tolerant to the

first antibiotic but not to the second; (2) tolerant to the second but not to the first,

and (3) tolerant to both antibiotics. To account for the biphasic nature of the observed

killing curves for single antibiotics (as compared to more complex dynamical behavior

that would be possible in models with several types of persisters), all cells susceptible

to an antibiotic were assumed to be killed with the same rate as the normal cells. This

assumption fixed all parameters of the model except the relative frequencies of the dif-

ferent types of persisters in the population. Figure 4 shows killing curves predicted from

the extended model for the combination of three antibiotics and several scenarios. In

case of full cross-tolerance (solid lines), as expected for a single type of persisters, the

killing rate is abruptly switched upon exchange of the antibiotic to that of persisters
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under the influence of the second antibiotic. In the complete absence of cross-tolerance,

which is obtained if there are two mutually disjunct persister populations for the two

antibiotics, rapid eradication with a rate similar to killing of susceptible cells is expected

after the exchange of antibiotics (dotted lines). Finally, partial cross-tolerance with a

fraction of persisters tolerant to both antibiotics results in biphasic killing upon antibi-

otic exchange (dashed lines). The data for daptomycin and tobramycin ( Fig. 4.4 e, f)

clearly showed no cross-tolerance, as expected for two disjunct subpopulations consti-

tuted by persisters tolerant to either tobramycin or daptomycin. This in agreement with

our previous observations, when stationary-phase bacteria had been killed completely

upon simultaneous addition of both daptomycin and tobramycin at super-MICs [71]. In

the cross-tolerance experiments of either antibiotic with ciprofloxacin ( Fig. 4.4 a-d),

however, the order in which the antibiotics are applied was found to be crucial. This

observation suggests that the behavior of the isolated persisters was influenced by the

challenge with the first antibiotic and is inconsistent with models that assume preexist-

ing tolerant subpopulations, neglecting any response to the antibiotic challenge. It also

indicates that care must be taken to separate cellular responses due to the antibiotic

treatment from those characteristic for persisters, which underscores that methods for

persister isolation should be as gentle as possible to obtain unstressed (ideally näıve)

persisters for further characterization [50, 53, 110].

4.2.4 Delay in Resuscitation and Subsequent CFU Doubling Times

Are Dependent on the Kind and Duration of Antibiotic Treat-

ment

How long do S. aureus persisters, which have endured antibiotic treatment, require to

reassume growth, and what are the CFU doubling times within the first hours after re-

suscitation? To answer these questions, SA113 cells were challenged by single drugs for

0.5-3 h, and were then transferred to fresh non-selective media. Cells treated with 100-

fold MIC of ciprofloxacin exhibited a consistent increase in live counts approximately 4 h

after the shift to fresh media ( Fig. 4.5 a). Resulting cultures exhibited relatively similar

CFU doubling times (calculated on the basis of t = 10 h and t = 5 h values) ranging

between 43 and 67 min, irrespective of the duration of the ciprofloxacin pretreatment.

CFU values of cells challenged with 10-fold daptomycin also increased rather uniformly

(23 - 33 min doubling times) starting approximately 3 h after the shift ( Fig. 4.5 b).

By contrast, live counts of cultures treated for 30 min or 1.5 h with 100-fold tobramycin

rose after about 3 h, whereas those of cultures challenged with the drug for 3 h remained

constant for at least 9 h ( Fig. 4.5 c). This is reflected by doubling times of 37 min,

67 min or more than 6 h, respectively. Similar behavior as for the 3-hour exposure to
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Figure 4.4: Model for multiple persister types and cross-tolerance. a-f Time course of
killing by exposure to one antibiotic for 3 h and to a second antibiotic for the following
3 h. The three lines in each panel indicate model predictions for a case with a single
persister phenotype tolerant to both antibiotics (solid line), a case with two types of
persisters that are tolerant to one antibiotic each, without any cross-tolerance (dotted
line), and a case with partial cross-tolerance or three persister phenotypes (dashed line).
In all models, the antibiotics are assumed to select for cells with a preexisting phenotype
from a heterogeneous population. The data points indicate measured population sizes
(from the experiments of Fig. 4.3).

tobramycin was also observed for stationary-phase cultures treated with 100-fold MIC

of daptomycin/Ca2+. As shown in figure 5 d, CFU counts for this case leveled off within

10 h after the cells had been inoculated into fresh medium, but values increased by two

to four orders of magnitude after 24 h. Growth resumption in our experiments thus

occurred not before 3 h ( Fig. 4.5 a-c), in relation to a period of about 1.5 h as de-

ternmined for E. coli [33], which, however, depends on the growth medium used [48].

For a quantitative analysis, the results of these experiments were fitted with a double

exponential outgrowth model (Eq. 4.3), from which switching rates from the persistent

to the regular growing phenotype were obtained ( Table 4.2 ). Consistent with the
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Figure 4.5: Resuscitation experiments. Exponential phase SA113 cells were treated
with 100-fold MIC of ciprofloxacin (a), 10-fold MIC of daptomycin (b), or 100-fold
MIC of tobramycin (c), or stationary phase cells were challenged with 100-fold MIC
of daptomycin/Ca2+ (d). Cells from samples taken after 30 min, 1.5 h, and 3 h were
then cultured in fresh medium without antibiotic for 24 h to determine resuscitation
times. The values are averages of two replicates, and the error bars indicate standard
deviations. The limit of detection was 100 CFU/ml.

observations described above, the parameters obtained for different exposure times to

either ciprofloxacin or daptomycin were very similar, while for tobramycin only the two

shorter exposure times could be described well with the model. The latter observation

suggests that prolonged exposure to tobramycin affects the cells beyond simple random

phenotype switching. Instead, it possibly induces a phenotype of ‘deep dormancy’ (with

an as of yet unknown molecular basis) that results in delayed wake-up kinetics. Param-

eters obtained for the longest exposure time for each antibiotic that is well described

by the model are summarized in Table 4.2. For all three antibiotics, the switching rates

from the persistent to the regular growing phenotype are in the same range as previ-

ously found for E. coli persisters [4]. For tobramycin, the switching rate is similar to the

killing rate of persisters during antibiotic treatment, consistent with the idea that the

observed killing of persisters is due to so-called ‘scout’ cells, persisters resuming growth

stochastically [11]. On the other hand, the switching rates observed using ciprofloxacin

and daptomycin are smaller than the killing rates of persisters exposed to these drugs,

indicating that these two drugs kill persisters independently of growth resumption. In-

triguingly, CFU doubling times of daptomycin-treated cells fell below usual generation

times of naive SA113 bacteria (which we determined as approximately 37 min under

comparable antibiotic-free conditions) after being shifted to non-selective media ( Fig.
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4.5 5 b). We attribute this effect to the presence of a fraction of cells that start to

proliferate at very late time points on the agar plates (whereas most cells initiate multi-

plication already in liquid medium). If such cells are missed at early time CFU counts,

the population is given an apparent growth boost. It should be noted that the observed

results in these resuscitation experiments show striking parallels to the ‘post-antibiotic

effect’ phenomenon. Well established in pharmacodynamics, it describes delayed growth

of bacteria after antibiotic treatment [24]. The post-antibiotic effect of S. aureus cultures

treated with different antibiotics has extensively been studied before. For ciprofloxacin,

a delay of 1.5-2.5 h was determined [17]. Cells after tobramycin treatment resumed

growth after 6.6-12 h [47]. For daptomycin-treated S. aureus cells, Hanberger et al. [39]

observed a PAE of 1-6.3 h. Obviously, differences among the studies with regard to

different antibiotic concentrations, growth phase, media, strains backgrounds and other

variables impede direct comparisons, but we note that time delays in our resuscitation

experiments fit well into the window of previously described PAE values for the three

drugs. Future studies may more precisely define the possible role of persisters in the

PAE.

Table 4.2: Parameters obtained from the fitting of resuscitation curves.

Antibiotic Conc.(MIC) Growth rate Growth rate Fraction Switching
& exposure of normal of persister of normal rate2:p→n

time1 cells,µn(h−1) cells,µp(h
−1) cells,log10f1 b(h−1)

Ciprofloxacin 100, 3h 0.88± 0.16 −0.15± 0.11 −2.02± 0.04 2.1× 10−2

Daptomycin 10, 3h 1.84± 0.17 −0.57± 0.51 −2.7± 0.52 1.6× 10−2

Tobramycin 10, 1.5h 0.74± 0.01 −0.06± 0.11 −1.63± 0.16 4.0× 10−1

All data are for strain SA113, mean ± standard deviation from three repeats.
Calculations are based on results graphically shown in Fig. 4.5 a-c.
1Very similar results were obtained for shorter exposure times; 3-hour exposure to
tobramycin resulted in different dynamics (Fig. 4.5 c).
2 Estimated via f1 = b/[µ

(AB)
p − µ(AB)

n ] using the killing rates measured with the same
culture.

4.3 Conclusion

Exploiting rich nutrient media conditions in vitro, we here define switching rates of

S. aureus cells between growth and the dormant persister state. Upon isolation of

persisters by super-MICs of antibiotics, it was observed that the choice of the drug in-

fluenced population dynamics of staphylococcal cultures with regard to cross-tolerance

to another antibiotic and the behavior of growth resumption. The complex patterns

of cross-tolerance indicate the existence of multiple types of persisters and suggest (via

the observed dependence on the order of treatment) that adaptive responses to drugs
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as well as preformation of dormant subpopulations are involved in persister formation.

The quantitative data gathered here provide a basis for more comprehensive studies

in the future and for a more refined, molecular-level modeling of S. aureus population

dynamics in relation to antibiotic challenge. A quantitative understanding of S. aureus

susceptibility to antibiotics incorporating information about physiologic downshift phe-

nomena such as SCV and persister cells as well as strain background and mutations will

help develop tailored antibiotic therapies to treat staphylococcal infections.

4.4 Experimental Procedures

4.4.1 Bacterial Strains, Media, and Culture Conditions

Throughout this study, S. aureus SA113 was used [46]. Bacteria were grown at 37◦C

with aeration in baffle flasks containing tryptic soy broth (Sigma) at a 1:6 culture-to-

flask ratio or on tryptic soy agar. Liquid cultures were shaken at 150 rpm. To prepare

exponential phase cultures, cells grown overnight were transferred to 16 ml of fresh

media to an initial OD578 of 0.07 and were shaken for about 1.5 h until an OD578 of

approximately 0.5 was reached. Overnight cultures were used to work with stationary

phase cells. Numbers of viable cells were determined in retrospect by CFU analysis.

Therefore, cells from respective cultures were collected, washed and suspended in 1%

saline and spotted as 10 µl aliquots of serial dilutions on tryptic soy agar as described

[71].

4.4.2 Antibiotics

Daptomycin analytic grade powder (designated ‘Cubicin’) was purchased from Novar-

tis Pharma. Facultatively, Ca2+ cations (50 µg/ml final concentration), provided as

CaCl2, were added to daptomycin-treated cultures, to increase antibiotic activity, where

indicated. Ciprofloxacin was obtained from Fluka and tobramycin was from Sigma.

Solutions of antimicrobials were prepared freshly prior to each application and were

sterilized using a filter of 0.2 µm pore size (Whatman).

4.4.3 Reexposure and Resuscitation Experiments

Cells were grown to exponential or stationary phase in baffle flasks under different antibi-

otic selective conditions (as indicated in the main text and in figure legends) to provide

primary cultures. After 30 min, 1.5 h, and 3 h, 2.24 ml samples were withdrawn, cells
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were pelleted, washed in 1% saline and transferred to 14-ml tubes which contained 2.24

ml of fresh tryptic soy broth media. The medium of this secondary culture was supple-

mented with either the same antibiotic at the same concentration as used in the primary

culture (in recurrent reexposure experiments), with a different drug to check for cross-

tolerance, or antibiotics were omitted to monitor resuscitation. The CFU content was

determined 30 min, 1.5 h, and 3 h after addition of the first and second antibiotic, or on

an hourly basis for up to 10 h and after 24 h in case of the resuscitation tests. Exper-

iments were conducted at least twice, using two to four biological replicates. Samples

from cultures not exposed to antibiotics in the primary culture but subsequently treated

in an identical manner in the secondary culture served as controls.

4.4.4 Theoretical Analysis

Killing and resuscitation data were analyzed quantitatively with a model for stochastic

phenotype switching by Balaban et al.[4]. It describes a population of cells as consist-

ing of two subpopulations representing persisters (p) and normal cells (n) that exhibit

different exponential growth or death rates ( µn and µp ). According to this model,

cells switch between these two phenotypes with rates a and b, respectively. These rates

are assumed to be independent of environmental triggers (type II persisters). The full

dynamics of the model is given by

d

dt
n = µnn− an+ bp

d

dt
p = µpp+ an− bp (4.1)

A shift from a growth medium (with µn > µp ≥ 0) to a medium containing an antibiotic

(for which µn < µp ≤ 0) is described by a change in the growth/death rate starting from

a steady state of Eq. 4.1. It is based on the growth rates from the first medium and

results in double-exponential decay of the population:

N(t) = n0 [exp(−µ1t) + f0 exp(−µ2t)] (4.2)

where the three parameters µ1, µ2 and f0 can be identified with the absolute values of

the death rates of normal cells and persisters and to the initial fraction of persisters

(the fraction of persisters extrapolated to the time of addition of the drug), respectively

[µ1 = µ
(AB)
n , µ2 = µ

(AB)
p , f0 = p0/n0 ≈ p0/(n0 + p0)]. The latter identification is an

approximation for small switching rates between the phenotypes, a condition that is

generally valid in our experiments. The three parameters were determined by fitting

killing curves with Eq. 4.2. The switching rate from the normal to the persistent

phenotype was estimated via f0 ≈ a/µ (where µ is the growth rate of the population
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before the addition of the antibiotic). Each killing experiment was fitted separately, and

the resulting parameter values were averaged over three or six repeats ( Table 4.1 ). Fit

results for individual experiments were used for the statistical analysis of the difference

between experiments with different antibiotics, applying the t test to the logarithm of

the persister fraction log10f0.

For the analysis of cross-tolerance experiments, the model given by Eq. 4.1 was ex-

tended to incorporate three types of persisters that are tolerant to only the first, only

the second, or both antibiotics, assuming that all non-tolerant cells exhibit the same

behavior. Resuscitation curves were also fitted by the same procedure using again a

double exponential expression:

N(t) = p0

[
f1 exp(µ

′
1t) + exp(µ

′
2t)
]

(4.3)

The parameters µ
′
1, µ

′
2 and f1 = n0/p0 ≈ n0/(n0 + p0) correspond to the growth rates of

normal and persister cells after the removal of the antibiotic and to the initial fraction

of normal cells. The switching rate b from the persistent to the normal phenotype is

estimated via f1 ≈ b/(µABp −µABn ). Each resuscitation experiment was fitted separately,

and the resulting parameter values were averaged over three repeats ( Table 4.2 ).
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Abstract

Bacterial finds numerous ways to survive under adverse environmental conditions which

could lead to extinction. Bacterial persistence is one such mechanism where a popula-

tion generates a fraction of drug-tolerant ”persister” cells that survive under antibiotic

attacks, and upon removal of antibiotic can switch back to normal cells. Sometimes

bacteria also develops antibiotic resistance whereby some cells continue to multiply in

the presence of an antibiotic. Emergence of antibiotic resistance from drug tolerant per-

sister cells has not been observed yet. However, several observations point towards this

possibility. We observe a biphasic decay behavior, indicating a fast killing and a slow

killing phase, in Staphylococcus aureus population followed by a growth phase under two

antibiotics, rifampicin and tobramycin. To analyze the observations, we extend the two

state model for bacterial persistence to a three state model that allows mutations to

a resistant state. We find that the probability of mutation is enhanced in presence of

persister subpopulation. The time to such mutation first increases then decreases with

the increase in persister fraction. In the case when mutants are generated from persister

cells, moderate dose of antibiotic will lead to survival and growth, whereas higher dose

of will lead to extinction. We observe such dependencies, when the concentration of

antibiotic is varied, in a population of Staphylococcus aureus cells upon treatment of to-

bramycin. Our result suggests that persister cell plays a role in the emergence antibiotic

resistance, at least, in the case of tobramycin treatment.
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5.1 Introduction

Bacterial cells often display diversity in their physiological properties due to variability

in cellular processes [19, 25, 69, 74, 121]. Phenotype switching is one such cellular mech-

anism that generates subpopulations of cells displaying different physiological properties

in a constant environment [4, 53]. For example, in E. coli population, cells are shown to

switch between two phenotypic states, i.e. fast growing ’normal’ and slow growing ’per-

sister’ state [4]. The slow growing persister cells cause a small fitness cost to a growing

population, but ensure longer survival due to their increased tolerance to antibiotics or

other environmental stress. During antibiotic treatments, cells often undergo mutations

that generate antibiotic resistants and allow growth in the presence of antibiotics [18].

The chance of such mutation is extremely low in a fast dying population as the rate

of mutation is usually small. As persister cells survive longer during antibiotic killing,

their presence may enhance the probability of resistant mutation.

A requirement for such a scenario is that persisters undergo mutations. In E. coli persis-

ters are usually considered as non-replicating cells (or very slowly growing) [75] and thus

can undergo mutation in limited ways. However, a recent study on M. segmentis, a non

pathogenic strain of mycobacteria, showed that the persister cells were dividing as fast

as the normal cells before antibiotic treatment and during treatment ( but had reduced

death rates). The surviving subpopulation during the antibiotic killing was found to be

in a dynamic balance between persister subpopulation growth and antibiotic death [131].

The ongoing cell division and DNA replication in the presence of antibiotics may lead to

emergence of resistant genetic variants as rate of spontaneous mutation is proportional

to the division rate [95]. These results suggest that the persister subpopulation selected

by antibiotics which do not affect growth related process in persisters might play a role

in the development antibiotic resistance [23, 61, 73, 117]. However, conclusive evidence

for this mechanism is still absent.

5.2 Experimental results and motivation

In the systematic experimental characterisation of Staphylococcus aureus persister cells,

the emergence of antibiotic resistance was observed upon treatment with two different

antibiotics (rifampicin and tobramycin [71]). In these cases, the dynamics of the popu-

lation was triphasic rather than biphasic. In the first two phases, the population decays

corresponding to the death of normal cells and persisters, but the population resumes

growth in the third phase. The observed triphasic behavior is shown in Figure (5.2,5.1)).
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Figure 5.1: Antibiotic killing experiment showing three distinct phase: fast decay,
slow decay and growth of the pre-existing resistant population.

The data points in the figure are averages of three experimental repeats and the bars

gives the standard error in these repeats

In case of rifampicin, the population starts to grow within 3-4 hours of antibiotic treat-

ment and, the growth appears to be independent of concentration of the antibiotic

(although higher concentration slightly increases the death rate of the persisters) (Fig-

ure 5.1). This suggests that the resistant cell might be existing in the population prior

to the antibiotic addition [120, 126]. In case of tobramycin, the population regrowth
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Figure 5.2: Antibiotic killing experiment showing three distinct phase: fast decay,
slow decay and growth of the resistant population. The solid lines are two stochastic
realization of the population dynamics for different values of death rate of persisters.
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after few hours of killing in presence of the antibiotics depends on the concentration.

At a moderate concentration (10 fold of minimum inhibitory concentration (MIC)) of

antibiotic, the population grows after 8 hours, whereas at high concentration (100 fold

MIC) the population goes extinct before 8 hours (Figure 5.2). The death rate of the

normal cells is equal in both concentrations, whereas the death rate of persister cell in-

creases with increase in antibiotic concentration. The population survival and growth is

dependent on the death rate of persister cells, which suggests that the resistant cells are

generated after antibiotic treatment due to longer survival. Therefore, we will focus only

on the second case, antibiotic resistance against tobramycin, for our further analysis and

comparisons. In this study, we investigate, using experimentally observed parameters,

the role of surviving persister cells in the emergence of antibiotic resistance during an

antibiotic treatment.

To understand the above results, we propose a three state population model consisting of

two phenotypic states and one resistant state. We study the deterministic and stochastic

dynamics of the population during antibiotic treatment using computer simulations and

analytic calculations. The deterministic description is useful in extracting death rates,

initial persister fraction and mutation rates from experimental data. The stochastic

description is necessary to evaluate the probability of survival and its dependence on

various parameters such as death rates, mutation rates and persister fraction. The time

to first mutation or extinction can be properly defined only in a stochastic description

due to small population numbers.

5.3 Model : Deterministic dynamics

Figure 5.3: Model : Two phenotypic (n & p) and a resistant state (r).

We consider a mixed population of normal (n) and persister (p) cells dying with rates

µn and µp, respectively in the presence of an antibiotic. Cells in the normal and the

persister state can mutate with rate γn and γp respectively to the resistant state (r), in

which cells can duplicate with rate µr (Figure 5.3). The population dynamics can be
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represented by the following equations,

ṅ(t) = −µnn(t)− an(t) + bp(t)− γnn(t)

ṗ(t) = −µpn(t) + an(t)− bp(t)− γpn(t)

ṙ(t) = µrr(t) + γnn(t) + γpp(t). (5.1)

If p0 and n0 are the initial subpopulation sizes, then

p(t) ≈ p0e
−(µp+γp+b)t

n(t) ≈ bp0

∆
e−(µp+γp+b)t +

n0∆− bp0

∆
e−(µn+γn+a)t (5.2)

where ∆ = (µn + γn + a)− (µp + γp + b).

If the resistant cells are generated after the treatment, we have r0 = 0. Therefore,

r(t) =
γpp0(eµrt − e−(µp+γp+b)t)

µr + µp + γp + b
+
γnbp0(eµrt − e−(µp+γp+b)t)

∆s(µr + µp + γp + b)
(5.3)

+
(γnn0∆s − γnbp0)(eµrt − e−(µn+γn+a)t)

∆s(µr + µn + γn + a)
.

In the long time limit, transient term decays and the exponential growth is given by

r∞(t) =

(
γpp0

µr + µp + γp + b
+

γnbp0

∆s(µr + µp + γp + b)
+

γnn0∆s − γnbp0

∆s(µr + µn + γn + a)

)
eµrt(5.4)

after neglecting small terms like γnb, we get

r∞(t) =

(
γpp0

µr + µp + γp + b
+

γnn0

µr + µn + γn + a)

)
eµrt. (5.5)

The growth of the resistant population depends weakly on the phenotype switching rate.

In the deterministic description, resistant population is generated with γpp0 or γnn0 at

time t = 0 and grows exponentially with growth rate µr. When γpp0 ∼ 1 or γnn0 ∼ 1,

i.e. for small mutation rates, the population might go extinct if a resistant cell is not

generated during its lifetime. Therefore, a stochastic description of the population decay

is necessary to quantify the chance of survival or extinction.

5.4 Stochastic simulation

The stochastic dynamics of the model is implemented using the Gillespie algorithm [34],

where we consider the following events.

(1) Death of a normal or persister cell.
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µnn or µpp⇒ n→ n− 1 or p→ p− 1

(2) Switching between the phenotypes.

an or b p⇒ n→ n− 1 ; p→ p+ 1 or p→ p− 1 ; n→ n+ 1

(3) Mutation from the phenotypes.

γnn or γpp⇒ n→ n− 1 ; r → r + 1 or p→ p− 1 ; r → r + 1
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Figure 5.4: Probability of extinction and first mutation of the total population.

We start with a mixed population of normal and persister cells, and allow the population

to perform the above listed processes. The population, over a long duration, might go

extinct because of antibiotic death or survive by undergoing a mutation. We denote the

extinction probability of the total population by P (E) and the mutation (or survival)

probability by P (M). Fig. 5.4 show that the extinction probability P (E) decreases

with the increase in mutation rate and as consequence the mutation probability P (M)

increases. The probabilities P (M) and P (E) for different values of the switching rate

(a=b) are is shown in Fig. 5.5. The figure shows that these probabilities are nearly

independent of the phenotype switching rates. However, the initial persister fraction

that is determined by phenotype switching rates, affects the probability of extinction

and mutation.

5.5 Model : Stochastic dynamics

To analytically calculate expressions for probabilities and first passage times for ex-

tinction and mutation processes, we assume the subpopulation dynamics during the

antibiotic killing to be independent of each other (i.e. assuming the switching rates to

be approximately zero). Therefore, we will first calculate the probability distribution
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Figure 5.5: Extinction and survival probability as a function of the mutation rates
for different values of phenotype switching rate (with a = b).

function for a single population and afterwards, we will use it to evaluate the joint

distribution function the extinction and mutation process with two subpopulations.

5.5.1 Single population

We consider a population of size N where individuals die with rate µ and mutate with

rate γ. The probability Pk that the population size is k at given time ′t′ before any

mutation has occurred is given by

dPk
dt

= −(µk + γk)Pk + µ(k + 1)Pk+1 (5.6)

dPN
dt

= −(µN + γN)PN (5.7)

with PN (0) = 1 as initial condition.

Figure 5.6: Network representation: State space for a population of N individual
which is decreasing either due to death with rate µ or due to mutation with rate γ.
The population extinction state is represented by (0) and, the first mutation state by
(0∗).
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The probability Pk can be calculated iteratively starting with PN = e−(µ+γ)Nt. The

probability of having a population size k before any mutation is

Pk(t) =

(
µ

µ+ γ

)N−k N !

k!(N − k)!

(
1− e−(µ+γ)t

)N−k
e−(µ+γ)k t. (5.8)

The extinction probability of the population is

P0(t→∞) = P (E) =

(
µ

µ+ γ

)N
(5.9)

and consequently, the survival probability of the population is

P (M) = 1−
(

µ

µ+ γ

)N
. (5.10)

The distribution function of the first passage time to extinction is defined as follows,

FE(t) = µP1(t) = µN

(
µ

µ+ γ

)N−1 (
1− e−(µ+γ)t

)N−1
e−(µ+γ)t. (5.11)

Hence, the mean time to extinction is given by

TE =
1

ΠE

∫ ∞
0

tFE(t)dt (5.12)

where ΠE =
∫∞

0 FE(t)dt =
(

µ
µ+γ

)N
is the total probability for extinction. Solving, we

get

TE =
1

µ+ γ

N∑
i=1

1

i
≈ 1

µ+ γ
logN. (5.13)

For γ = 0, TE reduces to the average extinction time for a population of size N .

Likewise, the first passage distribution function for mutation is defined as

FM (t) =

N∑
k=1

γkPk(t) = γN

(
µ

µ+ γ

)N−1(
1 +

γ

µ
e−(µ+γ)t

)N−1

e−(µ+γ)t. (5.14)

The mean time of mutation is given by

TM =
1

ΠM

∫ ∞
0

tFM (t)dt (5.15)
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where ΠM = 1−
(

µ
µ+γ

)N
is total probability of first mutation. Solving, we get

TM =
1

µ+ γ

N∑
i=1

1

i

(1 + γ/µ)i − 1

(1 + γ/µ)N − 1
. (5.16)

5.5.2 Subpopulation of normal cells and persisters

Now, we consider two independent subpopulations, the normal and persister subpopu-

lation of sizes n and p respectively. The probability at given time t that any normal cell

from a population of size (n) has not yet arrived at the first mutation state (0∗) is

Sn(t) =
n∑
0

Pk(µn, γn, t) =

(
µn

µn + γn

)n [
1 +

γn
µn
e−(µn+γn)t

]n
. (5.17)

The probability that any persister cell has not arrived at the first mutation state is

Sp(t) =

p∑
0

Pk(µp, γp, t) =

(
µp

µp + γp

)p [
1 +

γp
µp
e−(µp+γp)t

]p
. (5.18)

The total probability that no cell from a mixed population of size (N = n + p) has

undergone mutation is Sn × Sp.

Therefore, the joint first passage distribution function for mutation process is given by

Fn+p =
d(1− SpSn)

dt
= FnSp + FpSn (5.19)

where Fn = −dSn
dt and Fp = −dSp

dt are the respective first passage distribution function

for the normal and persister subpopulation.

To simplify further, we consider the case (µn >> µp), when normal cells are killed at

much higher rate than persister cells. In this limit

Sn ≈
(

µn
µn + γn

)n
(5.20)

Fn ≈ 0. (5.21)
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The joint first passage distribution reduces to Fn+p ≈ FpSn and, the mean first passage

time to mutation is given by

TM =

∫∞
0 tFn+p dt∫∞
0 Fn+p dt

=
Sn
∫∞

0 tFp dt

[Sp Sn]∞0
(5.22)

TM =

(
µn

µn+γn

)n
1−

(
µn

µn+γn

)n ( µp
µp+γp

)p ∫ ∞
0

tFp dt. (5.23)

Solving, we get

TM =

[(
1 +

γn
µ

)n(
1 +

γp
µp

)p
− 1

]−1(
1

µp + γp

) p∑
i

1

i

[(
1 +

γp
µp

)i
− 1

]
. (5.24)

Similary, the first passage time to extinction

TE =
1

µp + γp

p∑
i=1

1

i
. (5.25)

The expression is same as before because of the assumption µn >> µp.

5.6 Simulation Results & Comparisons

In this section, we will compare the results from stochastic simulations of the complete

system with results of the theoretical approximation.

Figure 5.7: Comparison of simulation results with theoretical approximations.
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The total extinction probability of a mixed population of normal (n) and persister (p)

cells is given by

PK(E) =

(
µn

µn + γn

)n( µp
µp + γp

)p
(5.26)

where K = n + p is the initial population size. Then, the total probability of first

mutation is PK(M) = 1 − PK(E). The analytical expression for both the probabilities

agree with simulation results as shown in Figure 5.7.

The extinction probability can be written as

PK(E) =

(
µn

µn + γn

)(K−p)( µp
µp + γp

)p
= P 0

K(E)

(
1 + γn

µn

)p(
1 +

γp
µp

)p (5.27)

where P 0
K(E) =

(
µn

µn+γn

)K
is the extinction probability with no persisters. Thus, the

presence of persisters reduces the probability for extinction. Figure 5.8 shows that the

extinction probability from simulations with different initial total population size (K)

normalized to the probability with no persisters follows the analytical expression of

Eq.(5.27). The fold change PK(E)/P 0
K(E) extinction probability is half at persister

subpopulation size of

p1/2 =
log(2)

log
(
µn(µp+γp)
µp(µn+γn)

) . (5.28)
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The extinction probabilty of the total population will be reduced only if

γn
γp

<
µn
µp
. (5.29)

If mutation rate rate of persisters is decreased below the above limits, the probability

of extinction increases as shown in Figure 5.9. This increase in extinction probability is

due to lower rate of mutation from persister cells in the total population. In this case

the presence of persisters might increase the lifetime of the population but does not help

in developing resistance.

Now, we could understand the dependence of the emergence antibiotic resistance on

the antibiotic concentration. Figure 5.1 shows that the increase in the concentration

of tobramycin increase the death rate of persisters while death rate of normal cells

remain unaffected. This increase in death rate of persisters increases the probability of

extinction of the population (Eq. 5.27), which leads to population extinction.

5.6.1 First passage time

The first passage events to mutational state (0∗) and extinction state (0) defines the

time of first mutation (CMTM) before the normal and persister subpopulation goes

extinct and, the time of extinction (CMTE) of normal and persister subpopulation

before mutation.
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Figure 5.10: Conditional mean time to first mutation of the total population. The
points are from stochastic simulation and the solid curves are the analytic expression
(Eq. 5.30).

The conditional first passage time to mutation is

TM =

[(
1 +

γn
µ

)n(
1 +

γp
µp

)p
− 1

]−1
1

µp + γp

p∑
i

1

i

[(
1 +

γp
µp

)i
− 1

]
. (5.30)

Figure 5.10 shows, for high mutation rates, the CMTM is very low and as the muta-

tion rate decreases, the CMTM increases until a saturation value. The probability of

mutation is reduced with the decrease in mutation rates, which is evident from the lack

of data points for very low mutation rate or in the saturation regime.

The CMTM curve for different initial persister subpopulation (p) sizes cross each other

at certain mutation rate (let say γc). For example, the CMTM is longer for p = 104

(blue) than p = 103 (green) for mutation rate γ < γc(≈ 10−4.7), whereas it is shorter for

mutation rate γ > γc. This behavior can be understood by looking at the dependence

of CMTM on the persister subpopulation while keeping the mutation rate fixed. For

a fixed value of γ, CMTM show a maximum (Figure 5.11) when the initial persister

subpopulation is changed, which keeping the initial total population size fixed.

To the left of the maximum, the probability of mutation by persister subpopulation

Pp(M) increases compared to the probability of mutation by normal subpopulation

Pn(M), but the mean time to mutation by normal cells is much shorter than persisters

because of the large population size. Hence, an increase in ′p′ increases the probability

of mutation by persisters which therefore increases the CMTM as persister cells take a

longer time to first mutation. To the right of the maximum, the probability of muta-

tion by persister subpopulation is larger than normal subpopulation and mean time to
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Figure 5.11: Conditional mean time to first mutation of total population shows a
maxima as persister subpopulation is varied.
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Figure 5.12: Conditional mean time to first mutation of total population for different
initial population size.

mutation decreases as the population size increases. The maximum arises due to the

interplay of subpopulation size and individual mutation probabilities. The total proba-

bility of mutation always increases with the increase in persister subpopulation size as

shown right inset of Figure 5.11.

Figure 5.12 shows the effect of the total population size on the maximum. As we decrease

the initial total population size, the probability of mutation by persister subpopulation

becomes higher than normal subpopulation at lower values of persister subpopulation

size, hence the maximum shifts leftwards. Since the subpopulation sizes are reduced,

the CMTM becomes even higher.
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Figure 5.14: Conditional mean time to extinction for different fractions of persisters
in a fixed total population.

Figure 5.13 shows the effect of mutation rate on the maxima, as the mutation rate is

reduced the probability of mutation of by persister subpopulation requires higher ′p′ to

become large than normal subpopulation, hence the maximum shifts rightwards. And,

the reduction in mutation rate also increases the CMTM.

Similarly, the conditional first passage time to extinction follows the following analytical

expression

TE =
1

µp + γp

p∑
i=1

1

i
. (5.31)
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5.7 Conclusion

Bacterial persistence is well known survival strategy exhibited by bacterial population

to survive under antibiotic treatment [67]. It is a cause of treatment failure and recal-

citrance of several infectious disease, which is turning into a serious threat to medical

treatments [19, 28, 75, 91, 115]. In this phenomenon a fraction of population survives

upon antibiotic treatment which allows the population to regrow once the antibiotic

treatment is removed. The surviving population during the antibiotic treatment might

also provide a long lived pool of bacteria which can undergo resistance mutations. Ob-

servations displaying persistence together with antibiotic resistance are very rare in the

literature. However, several experiments point towards this possibility. The role of per-

sistence in antibiotic resistance is an emerging field of study which will gain importance

in the future.

This study shows one such example where the longer survival of population leads to

antibiotic resistance and this longer survival is mediated through persister cells. We

extend the current two state model of bacterial persistence into a three state model

including the resistant population which can be generated during the course of antibi-

otic treatment. We explain two different possibilities through which one could observe

a resistant population. Using stochastic modeling we show that when Staphylococcus

aureus population is treated with tobramycin antibiotic, the generation of resistant is

not a simple selection of preexisting resistant population. Rather, it is a consequence

of longer survival of persister subpopulation at moderate antibiotic concentrations. We

further study the physical properties of the three state model and analytically calculate

different probabilities and time to mutation or extinction. We find that the presence

of persister subpopulation always increase the probability of mutation, but the time to

acquire such mutation is longer due to small number of persister cells. This study will

provide a tool to understand role of persistence in antibiotic resistance and to design

suitable experiments considering all the possibilities arising from simple model.
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Discussion & Summary

In the preceding chapters, we have presented some theoretical and experimental results

that identify several aspects of bacterial persistence in different environmental condi-

tions [72, 96, 97]. The first notion about the presence of drug tolerant persisters, the

culprit behind persistence against antibiotics, in a population was made 60 years ago

[7], nonetheless the present understanding about the physiology of persisters and, the

mechanism of their emergence is limited [3]. The main window into persistence is the

study of survival of populations over time upon antibiotic treatment [4, 53, 55, 71]. The

results from such studies are explained and interpreted using a model for stochastic

phenotype switching between two cellular states, namely the normal state and the per-

sister state. However, the existing analysis of this model does not provide an explicit

relation among experimental observations and model parameters. We analyzed an ex-

isting model using a simple approximation method to answer this issue, and calculated

analytic expressions for measuring model parameters for persistence in time-shift exper-

iments [97]. To illustrate our analysis, we computed model parameters for S. aureus

populations under multiple drugs at different concentrations. Further, we extended our

analysis to understand qualitatively the outcome of cross-drug treatment on a bacterial

population.

The previous theoretical studies have identified bacterial persistence as a survival mech-

anism that population has developed to deal with temporally fluctuating environments

[29, 66–68]. We showed that bacterial persistence also plays a significant role in several

other realistic situations, such as help in spatial expansion, emergence of antibiotic re-

sistance and development of multidrug tolerance in bacterial populations [72, 96, 97].

Thus, our results extend the current knowledge of bacterial persistence and, furthermore,

provide a toolbox for designing and analyzing experiments.

91
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In the following sections, we will summarize the main results of the manuscripts included

in this thesis and give an outlook.

6.1 Overview of the main results

Bacterial persistence in temporally varying environments. Bacterial popula-

tions tackle sudden environmental stresses by keeping a small fraction of the total pop-

ulation, the persister cells, in a slow-growing but stress-tolerant phenotype state [67].

The persister cells cause a small fitness cost to the total population under growth sup-

porting conditions, but provide a large benefit by withstanding antibiotic attacks. Once

the growth conditions are restored, the population can recover from surviving persis-

ter cells via a phenotypic switch to normal growing state. The underlying population

dynamics is well described by a two state model, which considers exponential growth

of the subpopulations coupled with phenotype switching between the subpopulations

[4]. We analyzed this mathematical model using a simple approximation valid for small

phenotype switching rates that allows to map the dynamics of subpopulation ratio to

a logistic equation [97]. This indicates that under constant conditions, the effective

growth rate of the persister (slow-growing) subpopulation approaches the growth rate

of the normal (fast-growing) subpopulation in a logistic fashion. The steady state in

the subpopulation ratio is achieved by a balance between fast-growing cells outgrowing

the slow-growing ones and phenotype switching, by which the slow-growing cells are re-

plenished from the fast growing cells. Therefore, a primary determinant of the persister

fraction in a population is the switching rate from the normal to the persister state. A

recent study, characterizing persistence in three strains (SC552, SC649, MG1655) of E.

coli against three antibiotics (ampicilin, ciprofloxacin and nalidixic acid), observed this

dependence. The study showed that the fractions of persisters in a population and the

rate of switching from the normal to the persister state are strongly correlated across

both strains and antibiotics [45].

We then investigated the population dynamics during environment shifts from growth to

stress and vice-versa. We calculated analytical expression of the characteristic time scale

for changes in the total population growth or decay and for approaching a constant ratio

in subpopulations. These analytical expressions can be used to extract switching rates

by following the population dynamics in environment shift experiments. Moreover, using

our simple theoretical approach, we could also show that under periodically fluctuating

environment, when the growth and stress periods have long duration, the phenotype

switching rates can be tuned for optimal growth of the total population, confirming

results from previous studies [67–69]. Additionally, we showed that, in case when one of
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the environmental duration (growth or stress) is brief, the phenotype switching cannot

be optimally tuned and the increase in phenotype switching progressively reduces the

growth rate of the total population [97]. In summary, using the basic model we could look

at various aspects of bacterial persistence mechanism which have not been considered

before.

Dynamics of phenotype switching in non-uniform spatial environments. Spa-

tially structured environments are often used to study evolution in bacterial populations,

they play, e.g., an important role in the emergence of drug resistance [41, 56, 70, 102,

103, 137]. In the highly compartmentalized human body, different organs and tissues

usually have different pharmacokinetic parameters that often lead to non-uniform dis-

tribution of antibiotics [6, 12, 92]. Persister cells being less sensitive to antibiotics, could

assist a population to cross a region of high antibiotic concentrations or other stress-

ful environments that otherwise might act as a bottleneck to population expansion in

non-uniform spatial environments. Therefore, to investigate the role of persister cells in

population expansion, we studied the expansion of a phenotypically heterogeneous pop-

ulation in a spatial environment consisting of two growth sustaining patches separated

by an antibiotic patch [96].

We have calculated the mean first arrival time (MFAT) of a cell to the third patch (i.e.

the growth supporting patch) in a population with and without persisters. We found that

the time to cross an antibiotic patch is reduced in the presence of drug tolerant persisters

in a population. Specifically, we observed that the MFAT of the subpopulations depends

on the phenotype switching and migration rates, and show three distinct scaling regimes

as the migration rate is varied. We explained these different regimes by means of an

analytical approximation. Furthermore, we identified regions in the parameter space

(of phenotype switching and migration rate), where phenotype switching is beneficial

to the population expansion. This basic model can be applied to several situations

where a population encounters adverse environmental conditions while expanding into

other growth permitting regions. For example, hospital acquired infections occur in

a similar fashion, where bacterial infection is transmitted from an infected individual

to an uninfected individual through several routes such as physical contacts, airborne

transmission, common equipment usage [20, 77], etc.

Multidrug-tolerance in Staphylococcus aureus. In Chapter 4 of the thesis, we

analyzed results from an experiment using the theoretical expressions obtained in Chap-

ter 2. We used the data from antibiotic killing and resuscitation experiments performed

on Staphylococcus aureus population under different antibiotics, to obtain important

parameters such as persister fraction, switching rates, death rates, etc. We found that

different antibiotics select different fraction of persisters. To test the importance of the
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results, we performed a statistical hypothesis test (t-test) that quantifies how signifi-

cant is the difference between the survival persister fraction against different antibiotics

compared to the measurement error within the repeats of an experiment.

The survival of different fractions of populations indicates that the persisters selected

might have a different physiology. A test to determine the physiology was performed by

our collaborators through a cross-drug treatment experiment, where survivors from one

antibiotic treatment were exposed to another antibiotic. We extended our analysis to

predict the outcome of this cross-drug tolerance experiment. Specifically, we proposed

three possible outcomes, i.e., zero cross tolerance, full cross tolerance and partial cross

tolerance. We found that the persister cells selected by one antibiotic either show full tol-

erance or zero tolerance to the second antibiotic. Surprisingly, the fate of the population

was found out to be dependent on the order of antibiotic treatment, under one order the

population could survive and in another the population went extinct. This suggests that

persisters selected with some antibiotics may develop full tolerance to other antibiotics.

We also reported model parameters for several strains of S. aureus (menD, hemB, HG’s)

under different antibiotics (appendix A.2).

Role of persisters in the emergence of antibiotic resistance. Bacteria have

developed, over the years, mechanisms to survive attack from antibiotics designed to

eliminate them, one such mechanism is antibiotic resistance [61, 94, 117]. Most of the

earlier developed drugs against infectious diseases have lost potency because the targeted

pathogens became resistant against them [18]. Several studies have suggested that the

longer survival of a population due to the persister cells may help in the emergence of

antibiotic resistance [73, 117, 131]. Our collaborators observed the emergence of antibi-

otic resistant cells in Staphylococcus aureus populations upon treatment with antibiotics

rifampicin and tobramycin. In case of rifampicin treatment, the population started to

grow within 3-4 hours of treatment and the dynamics was unperturbed with the increase

in antibiotic concentration. This implies that the resistant cells might be pre-existing

in the population and, were selected upon antibiotic treatment [120, 126]. In case of

tobramycin, the population started to grow after 8 hours of antibiotic treatment and the

emergence of resistance was found to be dependent on the concentration of antibiotic.

This suggests that the resistant cells might have emerged from the population during

antibiotic treatment. To explain the experimental results, we extended the two state

model to a three state model consisting two phenotypic states and one resistant state.

We found that stochastic trajectories predicted by the model agree with the experimen-

tal results. We further performed a theoretical analysis of this model, and found that

the probability of mutation to the resistant state is enhanced in the presence of persister

subpopulation. We also observed that the time to mutation first increases, with the

increase in persister subpopulation, to a maximum and then decrease afterwards. Our
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theoretical analysis presents a tool to develop further experiments to understand the

role of persister cells in emergence of antibiotic resistance.

6.2 Outlook

The present study on bacterial persistence can be extended in several directions. For

instance, the spatial structure that we have used to study spatial expansion of a het-

erogeneous population can be easily realized in experiments [70]. The benefit of having

persisters can be quantified, first by separately using different strains displaying either

lower [79] or higher [88] persister fraction to measure the arrival time and then compet-

ing them against each other [56]. Similarly, the theoretical analysis presented in chapter

5 can be used for further systematic studies to understand the role of persisters in the

emergence of antibiotic resistance. For example, one could study the effect of the change

in concentration of antibiotics, in a killing experiments, on the emergence time of the

resistant population and compare with the theoretical expressions.

The processes or conditions responsible for the evolution of persistence are unclear.

Most theoretical studies suggest that phenotype switching rates might evolve towards

an optimal value in periodically fluctuating conditions [29, 66–68]. Also, the fraction of

persisters is found to increase under repeated exposure of antibiotics [88, 91]. However,

a proper realization of this evolutionary process has not been achieved. Such a study

would provide the rate at which persister frequency evolves in a population, which could

help to control the dosage and duration of the antibiotics for efficient treatments.

The existing theoretical models for bacterial persistence considers phenotype switching

rates to be independent of environmental conditions. However, certain antibiotics are

known to induce the persister phenotype [21, 22], and growth limiting conditions, such

as nutrient depletion or entry to stationary phase, are also shown to increase persister

fraction [53]. These environmental effects must be considered while studying population

dynamics or understanding experimental results. The environmental effects such as

induced persistence and stress responses, in addition to selection pressure might influence

the evolutionary dynamics of a population. Therefore, a systematic study including all

these environmental interactions must be performed to understand the emergence of

persistence.
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6.3 Summary

In this thesis, we studied a survival mechanism termed ’bacterial persistence’ exhibited

by most bacterial populations. This mechanism finds implication in antibiotic therapy

failures and emergence of drug resistance in several pathogenic bacteria such as Mycobac-

terium tuberculosis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli

etc. We studied a known two state phenotype switching model for bacterial persistence

with a new theoretical approach valid only for small switching rate, which is usually the

case. Using our approximation method, we expressed the parameters of the model in

terms of experimentally observed time scales and recapitulated known results that show

the existence of an optimal switching which maximizes the population growth rate in

periodic fluctuating environments. Additionally, using this approach, we showed that if

one of the environmental duration is short in a periodic fluctuating environment, the in-

crease in phenotype switching decreases the overall growth rate and serves as a harmful

strategy for the population. Using our theoretical analysis we characterize the dynamics

of multidrug tolerance in S. aureus populations. We found that the population dynamics

in a cross antibiotic treatment is complex and, indicates that drug tolerance in S. aureus

populations is a combination of population selection and adaptive response to antibi-

otics. Next, we considered the expansion of a population exhibiting phenotype switching

in an environment with non-uniform antibiotic distribution and found that the presence

of persister cells can accelerate the population expansion rate by helping the population

to a cross region of high concentration faster. Further, we considered another important

aspect of bacterial persistence, i.e. the emergence of antibiotic resistance from persister

cells. We explained the experimental observations showing antibiotic resistance in S.

aureus against anitbiotic tobramycin, using stochastic analysis of an extended model

of bacterial persistence that allows mutation of cells to resistant state. In summary, in

this thesis we have analyzed several aspects of bacterial persistence mechanism under

changing environments, such as multidrug tolerance, population expansion and antibi-

otic resistance.
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Appendix

A.1 Phenotypically heterogeneous population in spatially

heterogeneous environments

Figure A.1: Model for phenotype switching and migration in three connected micro
environments (patches): Bacteria switch between two phenotypic states, normal cells
(ni) and persisters (pi) with rates a and b and migrate to a neighbouring patch with
rate γ. While the first and third patch sustain growth of the population, the second
patch contains antibiotics and does not allow for growth.

Deterministic dynamics in the first patch. In Chapter 3, we have presented only

the main results for the case of population expansion in a heterogeneous environment.

In this section, we provide detailed the calculation for some results that were used in the

Chapter 3. In the model, we considered expansion of a heterogeneous population from

a growth sustaining patch into another, which is separated an antibiotic patch (Figure

A.1). The subpopulation sizes in the first patch follows the following equations,

ṅ1 = µn

(
1− n1 + p1

K

)
n1 − an1 + bp1 − γn1

ṗ1 = µp

(
1− n1 + p1

K

)
p1 + an1 − bp1 − γp1, (A.1)
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where backward migration from the second patch has been neglected. The above non-

linear coupled differential equations have three fixed points (F0, F1, F2). The find the

feasible solution (i.e. the stable fixed points), we inspect the population total (n1 + p1)

and the subpopulation ratio (n1/p1) for the two fixed points other than F0 ≡ (n1 =

0, p1 = 0), as below

F1 : (n1 + p1, n1/p1) =

(
µn(2µp − b− γ)− µp(a+ γ) +

√
B2 + C

2µnµp
K,

B +
√
B2 + C

2aµn

)
;

F2 : (n1 + p1, n1/p1) =

(
µn(2µp − b− γ)− µp(a+ γ)−

√
B2 + C

2µnµp
K,

B −
√
B2 + C

2aµn

)
,

where B = µn(b+ γ)− µp(a+ γ) and C = 4abµnµp.

10-5 10- 4 0.001 0.01 0.1
- 500

-400

-300

-200

-100

0

Γ

p n

Figure A.2: Sub population ratio (p/n) for the unstable fixed point in first patch for
K=100,a=0.001,b=0.001,µn = 2, µp = 0.2.

It is evident from the above expressions that in growth conditions (C > 0), F2 is not a

feasible solution because the ratio of (n1/p1) is negative for this fixed point (as shown

in Figure A.2). Therefore, F1 is a stable solution; and the subpopulation sizes are

n1 =
µn(2µp − b− γ)− µp(a+ γ) +

√
B2 + C

2aµn +B +
√
B2 + C

× K(B +
√
B2 + C)

2µnµp
(A.2)

p1 =
µn(2µp − b− γ)− µp(a+ γ) +

√
B2 + C

2aµn +B +
√
B2 + C

× 2aµnK

2µnµp
. (A.3)

Next, we evaluate the subpopulation sizes in two important limits, namely fast and slow

migration rate, which have been reported in Chapter 3. For fast migration (γ >> a, b),

we assumed B2 >> C and B +
√
B2 + C ≈ 2B. Hence, the stable solution is given by

n1/p1 ≈
B

aµn
=

(µn − µp)γ
aµn

n1 + p1 ≈ K
(

1− γ

µn

)
; (A.4)
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and the subpopulation sizes are

n1 ≈ K
(

1− γ

µn

)
, p1 ≈

aµn
(µn − µp)γ

K

(
1− γ

µn

)
. (A.5)

Here, the normal subpopulation quickly reaches the carrying capacity, i.e. (n1 ≈ K),

and the persister subpopulation is given by a balance between the population increment

due to generation of cells from the normal subpopulation and the population decrement

due to migration into antibiotic patch.

Similary, for slow migration (γ << a, b), we assumed B ≈ µnb− µpa. Hence, the stable

solution is given by p1/n1 = b/a and n1 + p1 = K; and the subpopulation sizes are

n1 ≈
b

a+ b
K, p1 ≈

a

a+ b
K. (A.6)

In this case, the steady state is result of balance in phenotype switching of subpopula-

tions.

A.1.1 Stochastic dynamics in the second patch

Now, we consider the stochastic dynamics of subpopulation sizes in the second patch,

i.e. the antibiotic patch. The population dynamics in second patch is mapped to an

emigration, death and migration problem. The emigration (or migration into second

patch) of cells from the first patch happens with a rate λ = Nγ. The migration rate of

cells to third patch is γn and death rate in the second patch due to antibiotics is δ′n

(δ′ ≈ δ + γ includes backward migrations) .

We assume N is the average population (i.e. the steady state population) in first patch

at any given time. Then, the probability that the population in second patch is m at

any given time t, and no cell has yet migrated to the third patch, is given by

dPm
dt

= −(λ+ δ′m+ γm)Pm + λPm−1 + δ′(m+ 1)Pm+1

dP0

dt
= −λP0 + δ′P1, (A.7)

with P0(0) = 1 as the initial condition.

We defineG(s, t) =
∑∞

0 smPm(t), the moment generating function for the above stochas-

tic differential equation. Then, the boundary conditions translates to G(s, 0) = 1. The

above differential equation can be written in terms of generating function as

∂G

∂t
− (δ′ − δ′s− γs)∂G

∂s
= λ(s− 1)G.



Chapter 6. Discussion & Summary 100

The auxiliary equation to above differential equation is

dt

1
=

ds

s(δ′ + γ)− δ′
=

dG

λ(s− 1)f
.

Integrating the above equation, we find the moment generating function G(s, t) as

G(s, t) = exp

[
λ

δ′ + γ

(
s− 1− γ

δ′ + γ
ln

(
s− 1 +

γ

δ′ + γ

))]
Φ
(

(sδ′ + sγ − δ′)e−(δ′+γ)t
)
,

where Φ is an arbitrary function of variables (δ′, γ, s, t) to be determined by initial

condition G(s, 0) = 1. By substituting the the initial condition we find Φ and hence,

G(s, t) as given below

G(s, t) = exp

[
λ

δ′ + γ

(
s− δ′

δ′ + γ

)(
1− e−(δ′+γ)t

)]
× exp

(
− λγ

δ′ + γ
t

)
.

A.1.2 Mean first arrival time (MFAT)

The time at which a cell from second patch migrates to third patch for the first time is

represented by the mean first passage time for the above emigration,death and migration

process. The MFAT is defined as

T =

∫ ∞
0

( ∞∑
0

Pm(t)

)
dt =

∫ ∞
0

G(1, t)dt. (A.8)

Substituting the functional of G(1, t), we get

T =

∫ ∞
0

exp

[
Nγ2

(δ′ + γ)2

(
1− e−(δ′+γ)t

)]
exp

[
− Nγ2t

(δ′ + γ)

]
dt.

The complete solution to the above integral is

T = exp

[
N(

γ

δ′ + γ
)2

]
× 1

δ′ + γ

∞∑
0

(−1)k

k!

[
N( γ

δ′+γ )2
]k[

k +N( γ
δ′+γ )2

]
Moreover, we consider two important limits of the above integral, first Nγ2 << (δ′+γ)2

i.e. slow migration, where

Ts ≈
∫ ∞

0
exp

[
− Nγ2t

(δ′ + γ)

]
dt ≈ δ′ + γ

Nγ2
(A.9)

and second Nγ2 >> (δ′ + γ)2 i.e rapid migration.
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For Λ ≡ Nγ2/(δ′+γ)2 � 1, the MFAT can be written in the form T =
∫∞

0 exp[Λf(t)]dt,

where f(t) = (1 − e(δ′+γ)t − (δ′ + γ)t is a decreasing function of t and has a maximum

at t = 0. Hence, the integral can be calculated approximately using Laplace’s method,

which leads to

Tf ≈
∫ ∞

0
exp

[
−Nγ

2

2
t2
]
dt =

1

γ

√
π

2N
. (A.10)

Further simplification with the assumption that antibiotic death is much larger than

migration rate δ >> γ, we get

Ts ≈
δ

Nγ2
and Tf ≈

1

γ

√
π

2N
(A.11)

The MFAT Tf is independent of the antibiotic death due to the fast drift of cells through

the second patch when migration is very fast. We use the average subpopulation size

n1 or p1) from eq.(A.6) and eq.(A.5) to evaluate the mean first passage time for normal

and persister cells.

A.2 Measuring persistence

In chapter 4, we reported physiological parameters such as death rate and persister

fraction only for SA113 strain of Staphylococcus aureus, measured in the presence of

different antibiotics. Here, we report these parameters for several strains of S. aureus

( menD, hemB and HG’s) measured against four different antibiotics (ciprofloxacin,

rifampicin, tobramycin and daptomycin).

The antibiotic killing curves for each experiment were fitted with the total population

decay curve as given below

N(t) = n0 [exp(−µ1t) + f0 exp(−µ2t)] . (A.12)

Th the parameters µ1, µ2 and f0 corresponds the absolute values of the death rates of

normal cells and persisters and to the initial fraction of persisters, respectively (µ1 =

µ
(AB)
n , µ2 = µ

(AB)
p , f0 ≈ a/µ).
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notype switching: an effective bacterial strategy to escape host immune response

and establish a chronic infection. EMBO Mol Med, 3(3):129–41, March 2011.

[126] Audrey Tupin, Maxime Gualtieri, Françoise Roquet-Banères, Zakia Morichaud,

Konstantin Brodolin, and Jean-Paul Leonetti. Resistance to rifampicin: at the

crossroads between ecological, genomic and medical concerns. Int. J. Antimicrob.

Agents, 35(6):519–23, June 2010.

[127] Nora Vázquez-Laslop, Hyunwoo Lee, and Alexander A Neyfakh. Increased persis-

tence in Escherichia coli caused by controlled expression of toxins or other unre-

lated proteins. J. Bacteriol., 188(10):3494–7, May 2006.

[128] Jan-Willem Veening, Wiep Klaas Smits, and Oscar P Kuipers. Bistability, epige-

netics, and bet-hedging in bacteria. Annu. Rev. Microbiol., 62:193–210, 2008.

[129] Pierre-François Verhulst. Notice sur la loi que la population suit dans son ac-
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