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Structure and function of the initially transcribing
RNA polymerase II–TFIIB complex
Sarah Sainsbury1, Jürgen Niesser1 & Patrick Cramer1

The general transcription factor (TF) IIB is required for RNA poly-
merase (Pol) II initiation and extends with its B-reader element into
the Pol II active centre cleft. Low-resolution structures of the Pol II–
TFIIB complex1,2 indicated how TFIIB functions in DNA recruit-
ment, but they lacked nucleic acids and half of the B-reader, leaving
other TFIIB functions3,4 enigmatic. Here we report crystal struc-
tures of the Pol II–TFIIB complex from the yeast Saccharomyces
cerevisiae at 3.4 Å resolution and of an initially transcribing com-
plex that additionally contains the DNA template and a 6-nucleotide
RNA product. The structures reveal the entire B-reader and protein–
nucleic acid interactions, and together with functional data lead
to a more complete understanding of transcription initiation.
TFIIB partially closes the polymerase cleft to position DNA and
assist in its opening. The B-reader does not reach the active site but
binds the DNA template strand upstream to assist in the recog-
nition of the initiator sequence and in positioning the transcription
start site. TFIIB rearranges active-site residues, induces binding of
the catalytic metal ion B, and stimulates initial RNA synthesis
allosterically. TFIIB then prevents the emerging DNA–RNA hybrid
duplex from tilting, which would impair RNA synthesis. When the
RNA grows beyond 6 nucleotides, it is separated from DNA and
is directed to its exit tunnel by the B-reader loop. Once the RNA
grows to 12–13 nucleotides, it clashes with TFIIB, triggering TFIIB
displacement and elongation complex formation. Similar mecha-
nisms may underlie all cellular transcription because all eukaryotic
and archaeal RNA polymerases use TFIIB-like factors5, and the
bacterial initiation factor sigma has TFIIB-like topology1,2 and con-
tains the loop region 3.2 that resembles the B-reader loop in loca-
tion, charge and function6–8. TFIIB and its counterparts may thus
account for the two fundamental properties that distinguish RNA
from DNA polymerases: primer-independent chain initiation and
product separation from the template.

Our previous X-ray analysis of the Pol II–TFIIB complex at 4.3 Å
resolution provided a partial backbone model of TFIIB1. To obtain a
complete and atomic structure, we co-crystallized Pol II with a TFIIB
variant lacking the mobile amino-terminal tail and carboxy-terminal
cyclin fold (Methods, Supplementary Table and Supplementary
Fig. 1). The resulting Pol II–TFIIB structure at 3.4 Å resolution pro-
vides details of the interactions of the four TFIIB domains with Pol II:
the B-ribbon with the dock, the B-core N-terminal cyclin fold with the
wall, the B-reader helix with the RNA exit tunnel, and the B-linker
helix with the coiled-coil of the clamp (Fig. 1).

The structure reveals the entire course of the TFIIB polypeptide
chain through the Pol II cleft, including the previously lacking1

B-reader loop (residues 67–79) and a new ‘B-reader strand’ (residues
80–83). The B-reader loop does not reach the active site, but instead
interacts with the Pol II rudder and fork loop 1 to seal part of the cleft.
The B-reader strand adds to the two-stranded polymerase lid (Fig. 1a, c),
positioning the B-reader and explaining why the lid is essential for
transcription9. There is no evidence for a B-finger2.

TFIIB binding induces changes in Pol II domains (Fig. 2). The
lobe, protrusion and wall rotate slightly, partially closing the cleft.

The previously mobile10 tip of the protrusion forms a b-sheet and an
ordered loop (a11–a12) that is required for initiation complex
stability11 (Fig. 1d). To induce these changes, the B-ribbon may bind
the dock, causing the wall to rotate, which then enables the B-core to
bind the wall and protrusion (Figs 1d and 2a). TFIIF also binds the lobe
and protrusion12,13, and stabilizes TFIIB on Pol II14, in particular bind-
ing of the B-core to the wall15. These changes contribute to TFIIB
function, because mutations in the lobe and protrusion (Sup-
plementary Fig. 2) suppress a TFIIB mutation that causes shifts in
the transcription start site (TSS)16.

The structural changes extend to the polymerase active site, where
difference electron density revealed two metal ions with similar occu-
pancy (Fig. 2b). This was consistent with a two-metal ion catalytic
mechanism17,18, but was unexpected because free Pol II only binds
metal A, whereas metal B was observed previously only when a nuc-
leoside triphosphate (NTP) was present19,20. The two metal ions are
bridged by a rotated aspartate D481 side chain (Fig. 2b), which is also
observed in structures of NTP-containing elongation complexes of
Pol II20 and bacterial polymerase21. The rearrangement abolishes a
contact between metal A and residue D483, and re-orientates the back-
bone carbonyl in the neighbouring Rpb2 residue D837 (Fig. 2b).

This indicates that TFIIB induces active-site rearrangements that
increase the affinity for metal B and stimulate catalysis. Consistent
with this, the B-reader of the archaeal TFIIB homologue stimulates
transcription22; truncation of the B-reader loop in human TFIIB
impairs extension of a RNA dinucleotide23; and the presence of
TFIIB and TBP stimulates transcription initiation from pre-opened
DNA15,24. We find here that TFIIB alone stimulates de novo RNA
synthesis by Pol II at low or near-physiological NTP concentrations
(Fig. 2c and Supplementary Fig. 3). Thus, TFIIB stimulates RNA chain
initiation without contacting the catalytic site, by activating Pol II
allosterically.

We also solved the structure of an initially transcribing Pol II–TFIIB
complex (ITC) by soaking into the crystals a HIS4 promoter-based
scaffold with a downstream DNA duplex and a 6-base-pair (bp) DNA–
RNA hybrid. Electron density was observed for the entire RNA, 7 bp of
downstream DNA, and the DNA template strand until position 28
upstream of the NTP site 11. The structure at 3.6 Å resolution (Fig. 3
and Supplementary Table) shows again two metal ions bridged by a
rotated D481 side chain. Metal A binds the RNA 39 end and could bind
the NTP a-phosphate21 (Fig. 3b and Supplementary Fig. 4). Metal B is
5 Å away from metal A and may move closer for catalysis upon binding
NTP b- and c-phosphates21 (Fig. 3b).

The ITC structure indicates that TFIIB stimulates initial RNA syn-
thesis not only by allosteric active-site rearrangement but also by pre-
venting tilting of short DNA–RNA hybrids. Without TFIIB, short
hybrids are tilted, and this impairs synthesis, because it occludes the
templating DNA base 11 from the active site25. Such tilting is pre-
vented in the ITC because TFIIB binds the upstream template strand.
B-reader residues R64 and D69 contact template strand bases at posi-
tions 27/28 (Fig. 3c). These interactions may also stabilize the initial
DNA bubble during open complex formation.
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The same contacts contribute to the recognition of an initiator (Inr)
DNA sequence that defines the TSS and requires a thymine at template
position 27/28 (refs 1, 26, 27). Interaction of an Inr thymine with the
B-reader residue R64 (Fig. 3c) apparently occurs in the open DNA
complex, because mutation of R64 causes TSS shifts that are sensitive
to changes in Inr sequence27,28. The B-reader function in Inr recog-
nition is supported by mutational analysis of the invariant TFIIB resi-
due R78, which buttresses the B-reader loop, including the DNA-
binding residue D69 (Fig. 1c). Mutations of R78 shift the TSS in yeast16

and human29, and can be lethal (Supplementary Fig. 5). Thus, the
B-reader adopts a defined structure to assist in TSS selection.

The path of the RNA is blocked by the B-reader loop (Fig. 3). When
the RNA grows from 6 to 7 nucleotides, it would clash with three
aspartate residues (D70, D74, and D75; Fig. 3c), of which two are
conserved among eukaryotes (Fig. 1a). This is consistent with a desta-
bilization of TFIIB binding when RNA grows beyond 6 nucleotides,
but TFIIB can be retained beyond this point and is only released when
the RNA length reaches 12–13 nucleotides14. Thus, the B-reader loop
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Figure 1 | Structure of the Pol II–TFIIB complex at 3.4 Å resolution.
a, TFIIB domain organization and ribbon model. The colour code is used
throughout the figures. Invariant residues are highlighted. b, View of Pol II–
TFIIB structure showing the active centre cleft. c, Interactions of B-linker and

B-reader with Pol II rudder, lid and fork loop 1. d, Interactions of B-core
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separates growing RNA from the DNA template and directs it to its
exit tunnel. In the elongation complex, RNA separation is achieved by
rewinding of the upstream DNA duplex. However, in an ITC with a
short RNA that does not yet reach the exit tunnel, such DNA rewinding
probably causes collapse of the open DNA bubble, displacing RNA and
aborting transcription.

Consistent with a role of the B-reader loop in RNA separation,
abortive transcription increases when the loop is destabilized by R78
mutation16 (Fig. 1c). B-reader loop function is required for transcrip-
tion because deletion or mutation of B-reader loop residues 69–75

cause defects in vivo and in vitro (Supplementary Fig. 5), consis-
tent with results for human TFIIB23 and with in vitro data for yeast
TFIIB30. B-reader loop function is conserved because replacing the
loop for its Schizosaccharomyces pombe counterpart preserves func-
tion (Supplementary Fig. 5).

We collected diffraction data on ITCs with a 6-nucleotide RNA
containing an additional 59-phosphate and with a 7-nucleotide
RNA. The data showed that the B-reader loop was unchanged, con-
sistent with its function in RNA separation. Nucleic acids were present,
but partial mobility prevented structure completion. The 6-nucleotide
RNA 59-phosphate was revealed beneath the B-reader loop, and
guided modelling of an extended RNA.

The model indicates that RNA separation may be achieved by
charge repulsion between the RNA 59-triphosphate and a cluster of
acidic residues in the B-reader loop, and by attraction of the tripho-
sphate to a cluster of basic residues in the exit tunnel (Fig. 3d).
Alternatively, the RNA 59-triphosphate may be trapped by B-reader
loop aspartates and a bridging metal ion. Our model accommodates
11–12 nucleotides of RNA. Further RNA extension results in a clash
with the B-reader, B-ribbon and wall, explaining why TFIIB is released
when the RNA length reaches 12–13 nucleotides14. TFIIB release
enables formation of the mature 8-bp DNA–RNA hybrid observed
in the elongation complex.

Bacterial RNA polymerase and its initiation factor sigma apparently
use similar mechanisms for transcription initiation. The sigma factor is
topologically related to TFIIB1,2 and contains the loop region 3.2,
which resembles the B-reader loop in location and negative charge6–8.
Region 3.2 is required for formation of the first RNA phosphodiester
bond, normal abortive transcription and sigma factor release6–8.

METHODS SUMMARY
Saccharomyces cerevisiae 12-subunit Pol II (3.0 mg ml21) was incubated with a
fivefold molar excess of TFIIB for 30 min at 298 K before crystallization by vapour
diffusion using 32–34% (v/v) tacsimate pH 7.0, 100 mM HEPES pH 7.0, and 5 mM
dithiothreitol (DTT) as reservoir solution. Crystals were cryo-protected in mother
solution containing 70% (v/v) tacsimate, supplemented with 670mM HIS4 tailed
template25 for ITC complexes, and incubated at 281 K over night before flash-
cooling in liquid nitrogen. Diffraction data were collected at 100 K at SLS beamline
X06SA. Structures were solved by molecular replacement (Protein Data Bank code
1WCM). TFIIB was expressed from a pET21 plasmid in Escherichia coli strain
Rosetta DE3 (Novagen) and purified by nickel affinity, cation exchange and size-
exclusion chromatography. For in vivo analysis, TFIIB mutants were cloned into
vector pRS315 containing 500 bp upstream and 300 bp downstream of the SUA7
open reading frame (ORF), and selected on 5-FOA medium1. For in vitro tran-
scription, nuclear extracts were prepared from wild-type and strain SHY245
(ref. 4) as described and assays performed as reported1. For the de novo transcrip-
tion assay, 20mM rCTP, rGTP and rUTP, and 2mM rATP supplemented with
5mCi [a-32P] rATP were incubated with 2.5 pmol Pol II, 25 pmol TFIIB and
5 pmol template for 5 min at 301 K.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Preparation of S. cerevisiae Pol II and recombinant TFIIB. Saccharomyces
cerevisiae 12-subunit Pol II was prepared as described31. TFIIB (residues 19–
215) was cloned into pET21b with a C-terminal His6 tag and expressed in E. coli
Rosetta (DE3) (Novagen). The culture was grown in LB medium at 37 uC until
absorbance at 600 nm of 0.6, 0.5 mM IPTG was added and the culture was grown
for a further 18 h at 20 uC. Cells were collected by centrifugation and frozen in
liquid nitrogen. Protein was purified by nickel affinity, cation exchange and size-
exclusion chromatography. Cells were lysed by sonication in buffer A (50 mM Tris
pH 7.5, 300 mM NaCl, 10mM ZnCl2, 2 mM dithiothreitol (DTT) supplemented
with 5 mM imidazole, 0.2% (v/v) Tween 20 and 13 protease inhibitors (1003

stock: 1.42 mg leupeptin, 6.85 mg pepstatin A, 850 mg PMSF, 1,650 mg benzami-
dine in 50 ml ethanol)). After centrifugation at 30,000g for 30 min, the cleared lysate
was applied to a pre-equilibrated (buffer A) Ni-NTA agarose column (Qiagen). The
column was washed with 10 column volumes of buffer A containing 10 mM imi-
dazole before elution of the protein with buffer A containing 200 mM imidazole. The
conductivity of the eluate was adjusted to match that of buffer B (50 mM Tris pH 7.5,
100 mM NaCl, 2 mM DTT) and applied to a MonoS 10/100 GL column (GE
healthcare) equilibrated in buffer B. The protein was eluted with a linear gradient
from 100 mM to 1 M NaCl. To remove any minor contaminants a final size exclu-
sion step using a Superdex 75 10/300 GL column (GE Healthcare) in 5 mM
NaHEPES (pH 7.25 at 20 uC), 40 mM (NH4)2SO4, 10mM ZnCl2, 10 mM DTT
was carried out. The protein was concentrated to 3 mg ml21 in an Amicon Ultra-
4 Centrifugal Filter Unit (Millipore) and flash-frozen in liquid nitrogen. TFIIB reader
variants were cloned with a C-terminal His6-tag into pOPINE32 (provided by OPPF-
UK) using In-Fusion HD cloning kit (Contech) and purified as described above.
Yeast strains and promoter-dependent in vitro transcription assay. Mutations
in TFIIB were introduced by PCR. Both wild-type and mutated TFIIB were cloned
into pRS31533 containing 500 bp upstream and 300 bp downstream of the SUA7
ORF. After transformation into the SUA7 shuffle strain1, selection and growth
characterization of the respective TFIIB variants was carried out on 5-FOA med-
ium as described1. All growth experiments were made as triplicates. Nuclear
extracts were prepared from wild-type and strain SHY245 (ref. 4) as reported
previously34. In vitro transcription was essentially performed as described34, with

minor modifications. As template, 150 ng of a plasmid encoding for a HIS4-SNR14
(pMSe58) fusion promoter was used and the transcription buffer contained
20 mM HEPES pH 7.6, 100 mM potassium acetate, 1 mM EDTA, 5 mM magnes-
ium acetate and 2.5 mM DTT. For activated transcription, 150 ng of the recom-
binant Gal4–VP16 fusion protein and 10 pmol of the respective recombinant
TFIIB variant were used. Primer extension was carried out using 0.125 pmol of
a fluorescently labelled DNA primer (59-Cy5-TTCACCAGTGAGACGGGC
AAC). The transcripts were separated using a 6% polyacrylamide/7 M urea TBE
gel, scanned with a Typhoon 9410 and quantified with the ImageQuant software
(GE healthcare).
Promoter-independent de novo transcription assay with 39-tailed DNA tem-
plates. 10ml reactions of 2.5 pmol Pol II, 25 pmol TFIIB and 5 pmol HIS4 39 tailed-
template in 20 mM HEPES pH 7.6, 60 mM (NH4)2SO4, 2 mM MgSO4, 10% (v/v)
glycerol, 10mM ZnCl2, were incubated at 25 uC for a total of 30 min. Pol II was
added first and there was a short 5-min incubation between the addition of the
template and TFIIB. After addition of 20mM rCTP, rGTP and rUTP, and 2 mM
rATP (Fig. 2c) or 500 mM rCTP, rGTP and rUTP, and 50 mM rATP
(Supplementary Fig. 3) supplemented with 5mCi [a-32P] rATP (Hartmann
Analytic) the reactions were incubated at 28 uC for 5 min. The run-off products
were separated on a 20% denaturing polyacrylamide gel and visualized by phos-
phorimaging by a Storm 860 scanner (Molecular Dynamics). Relative RNA levels
were quantified with ImageQuant TL (GE Healthcare).
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designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics
122, 19–27 (1989).
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