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Abstract. Protective egg capsules from whelks (intertidal marine gastropods)
were recently demonstrated to derive their impressive mechanical
behavior—reminiscent of the pseudoelastic behavior in some alloy systems
from a reversible phase transition of component protein building blocks from
a compact α-helical conformation to a more extended softer conformation,
called β∗. This behavior was previously modeled under equilibrium conditions,
demonstrating that the transition from the α- to β∗-phase could account for the
pronounced yield plateau and reversibility; however, a theoretical understanding
of the non-equilibrium behaviors of the egg capsule (e.g. strain rate dependence
and hysteresis) requires a new approach. Here, we modify the previously pro-
posed model in order to address the time-dependent behaviors of the whelk egg
capsule biopolymer. Our results indicate that hysteresis during cyclic loading
originates from a mismatch between the speed of the mechanical driving force
and the rate at which the phase transition occurs. Furthermore, the characteristic
curved shape of the stress–strain plot arises from a nonlinear relationship
between the transformation rate and the amount of applied load. These results
have important implications for our understanding of the mechanics of biological
polymers and may have implications for the design of biomimetic pseudoelastic
polymers.
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1. Introduction

The forces experienced by organisms living on the rocky seashore among crashing waves have
been compared in the literature to being strapped to the nose of a supersonic jet [1]. Therefore,
it is not altogether surprising that species inhabiting the intertidal zone dedicate significant
resources to strategies and materials for protecting soft and vulnerable tissues. Along these
lines, many marine organisms construct hard and tough mineralized parts such as the nacreous
shells of abalone or the carapace of crabs; however, this strategy is not ideal for all applications,
for example, adhesive attachment or encapsulation of embryos. An alternate strategy is to
create softer organic structures capable of dissipating large amounts of mechanical energy via
reversible deformation (e.g. the byssal threads of marine mussels [2] or various marine egg
capsules [3, 4]). The egg capsules of marine whelks are particularly interesting due to their
characteristic pseudoelastic mechanical behavior.

The marine whelk Busycotypus canaliculatus lays its eggs in disc-like egg capsules
arranged in a string, which can be found lining beaches along the east coast of North America
(figure 1) [5]. Mechanical studies on the whelk egg capsule (WEC) material reveal unusual
properties for a biopolymer, including pseudoelastic behavior and high hysteresis, which is
completely reversible [3, 6–8]. Figure 1 shows a stress–strain curve of a cyclically loaded
strip of egg case material. The material is initially stiff; however, at ∼5% engineering strain,
it yields and then proceeds to elongate without a marked increase in stress, after which
it eventually stiffens until it ruptures and fails [3, 8]. If the egg case polymer is, instead,
unloaded prior to failure, a large hysteresis loop is observed as the material returns to its initial
length. Immediately upon unloading, it can be reloaded and will exhibit a practically identical
stress–strain curve as the first cycle, and this can be repeated over numerous loading cycles.

As mentioned, this behavior is reminiscent of the pseudoelastic mechanical behavior of
certain metal alloys, albeit with higher strain values and lower stiffness. Aside from certain
metal alloys, similar mechanical behavior is also observed in some rubber-like materials,
sometimes referred to as the ‘Mullins effect’ [9–12]. This is described within the framework
of network models, assuming two interpenetrating networks of different strength. Additionally,
hysteretic mechanical behaviors have been observed in other biological systems and described
as diffusionless or displacive transformations (often termed ‘martensitic’ if strain energy is
involved in the transformation). A well-characterized example is the length change within the
tail sheath of a T4-bacteriophage, in which the cylindrical protein crystal comprising the capsid
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Figure 1. Protein structural transformations dictate WEC mechanics. Marine
whelks lay long chains of disc-like egg capsules. When strips of the WEC
tissue are cyclically loaded, there is a large hysteresis, as observed in the
above stress–strain curve. The mechanical performance of the material has been
correlated with the reversible transformation of α-helical protein subunits (low-
strain phase, LS) into an unstructured, extended conformation (high-strain phase,
HS).

of the virus is reduced to ∼35% of its initial length during injection of viral DNA into a bacterial
host [13, 14]. The associated change in the helical arrangement of proteins on the cylinder
surface was described as a martensitic phase transformation [13, 14]. The transformation from
the extended, initial configuration to the contracted, final configuration is irreversible and driven
only by the surplus of chemical free energy in the parent phase, which is partially consumed
by the deformation of the cylindrical crystal. The transformation in the WEC material during
cyclic loading, on the other hand, is completely reversible, leading researchers to investigate the
molecular level structure–property relationships in more detail.

It was recently determined that the notable mechanical behavior of the WEC arises from
load-bearing α-helical proteins, which undergo a reversible structural transformation during
cyclic loading [6, 7, 15]. Transitions of α-helical proteins to a β-sheet conformation via
mechanical stretching have also been observed in materials such as hair, intermediate filaments
and in hagfish slime fibers [15–19]; however, in these cases the complete reversibility that
characterizes the pseudoelastic behavior of the WEC is not observed. An equilibrium-state
model of the WEC mechanical behavior was developed based on pseudoelastic theory, in
which the structural changes of the protein building blocks were modeled as a diffusionless
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or displacive transformation between a low-strain and a high-strain phase, with the coexistence
of both phases at intermediate strains [6]. The low-strain phase (α-phase) was determined to
behave elastically, whereas the high-strain phase (extended β∗-phase) was modeled using a
worm-like chain equation [20–22] (figure 1). Consistent with experimental observation, the
transition from α to β∗ structure was predicted to occur at a constant stress, following a
classical phase transition. While this model fits well with much of the observed structural and
mechanical data, it is an equilibrium model and thus it is unable to account for the viscoelastic
properties of the material, including the notable hysteresis. In order to address the hysteresis
of the WEC material, we present here a modified version of the earlier model [6], which
considers specifically non-equilibrium states. This strategy has proven valuable in modeling
the mechanical behaviors of other protein-based fibrous materials such as silk [23] and in shape
memory polymers [24] or even shape memory alloys [25], such as Ni–Ti [26]. Moreover, models
have been developed [27] to describe protein unfolding based on single-molecule experiments
including titin [28], tenascin [29] or ubiquitin [30]. Previously, the nonlinear mechanical
behavior of the WEC was modeled using a continuum model in which a homogeneous
nucleation of the new phase is assumed to occur along the whole chain [31]; however, this
macroscopic approach does not incorporate recent biochemical and biophysical evidence for
the discontinuous behavior of the protein building blocks during cyclic loading. Based on our
new model, our conclusions are two-fold. Firstly, the origin of hysteresis in the WEC appears to
stem from a mismatch between the speed at which the molecular phase transformation occurs
and the rate at which the material is loaded. Secondly, the curved shape of the WEC stress–strain
loading cycle likely originates from a nonlinear relationship between the driving force and the
rate of transformation between the two phases (i.e. transformation is slower at higher stress
levels). The results provide several experimentally testable hypotheses that should be further
pursued.

2. Transformation mechanics

2.1. Deformation and stress state

The transformation takes place within protein fibers, which can be viewed as parallel string-
like arrangements of molecular segments, which—in the low-strain phase—correspond to
α-helices, and in the high-strain phase as an extended polypeptide chain. A bundle of these
parallel molecular filaments (figure 2) constitute a parallel fiber bundle whose cross-section
does not depend on the amount of longitudinal strain. We, therefore, represent the material by
a one-dimensional (1D) continuum. We call p the force applied to a single molecular filament,
which relates to the stress σ applied to the fiber through the relation

σ = ρ p, (1a)

where ρ is the number of molecular filaments per cross-sectional area of the fiber (see figure 2).
The length of a molecular segment in the reference configuration without load is denoted as

s0, its length in the actual (deformed) configuration as s and its maximum length after complete
extension of the protein (contour length) as L. As a simple measure of strain, we introduce the
local strain ε (often denoted as engineering strain or shortly ‘strain’) as

ε =
s − s0

s0
. (1b)
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Figure 2. Sketch of a WEC protein fiber during mechanical deformation. It
consists of a number ρ of parallel molecular filaments per unit area of fiber cross-
section (green dots). Each molecular filament consists of a series of segments
that might be either in the low-strain (L) or in the high-strain (H) conformation
dependent on tissue deformation.

Given that the largest possible length of the protein is L, the maximum possible strain in
this model is given by

ε∗
=

L − s0

s0
. (1c)

Of course, one could work also with the natural strain εn = ln (1 + ε). However, since the
following stress and energy terms are measured and expressed in ε and not in εn, we opt to work
with ε. Two phases are distinguished, the ‘low-strain phase’ (L) and the ‘high-strain phase’ (H),
when the fiber is subjected to a stress σ with σ̃ being the corresponding dimension-free stress,
σ̃ = σ/C , and C being a (constant) reference stress used to make the variable dimensionless.
The stress σ is not influenced by the cross-sectional area, since it depends only on the number
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Figure 3. Parameters defining the two models [33, 34] used to describe the high-
strain phase. The tensile force per molecule is denoted as f. In both models
the force is proportional to kBT , the product of the Boltzmann constant and
the absolute temperature. The Z-model has bending fluctuations according to
a persistence length lp and the M-model has kinking fluctuations with a total
number ν of kinks for an extended (contour) length of L.

of molecules in the fiber cross-section (according to (1a)). Consequently, σ is also denoted as
engineering stress, which we hereafter refer to just as ‘stress’. The string can only transfer a
tensile stress, p > 0 (or σ > 0).

The following stress–(local) strain relations can be observed for constant temperature,
expressed by ε as

L : σ̃ = k̃ε, (2)

H : σ̃ = F (ε) . (3)

The quantity k̃ = k/C is a dimension-free elasticity coefficient; F (ε) refers to the mechanical
behavior of the high-strain phase, which corresponds to an extended conformation of the
molecule [6]. Different models are conceivable to describe the force–extension curve of a
fluctuating filament [32].

Here we consider two very simple analytical models yielding nonlinear elastic behaviors
for F (ε), namely that according to Misof et al [34], denominated as FM and listed below as
FM (ε), and to Zhang et al [33], denominated as FZ and listed below as FZ (ε), as (see figure 3)

F (ε) = FM (ε) =
ε

(ε∗ − ε) ε∗
, (4a)

F (ε) = FZ (ε) =
1 + ε

1 + ε∗
−

1

4
+

1

4

(
1 + ε∗

ε∗ − ε

)2

, (4b)
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where the indices Z and M refer to the worm-like chain model [20] in the formulation by Zhang
et al [33] and the kinked molecule model by Misof et al [34].

Figure 3 shows sketches of the underlying assumptions and gives a definition of the
physical parameters involved. Note that both models have the property that the stress diverges
when the strain ε is approaching its limiting value ε∗. The reason for this divergence is that
we consider the covalent bonds in the polypeptide chain to be inextensible. This implies that
the models cannot be used for strains coming too close to ε∗. The reference stress C is in both
models just the product of the thermal energy kBT (kB being the Boltzmann constant and T the
temperature), the molecular density ρ in the fiber (as defined in figure 2) and an inverse length
scale characterizing the rigidity of the polypeptide chain. This length scale is the persistence
length lp in the worm-like chain model or the contour length divided by the number of kinks
L/ν in the other model. Then we have for Cz and CM

CZ = ρ
kBT

lp
, CM = ρ

νkBT

L
, (4c)

where the labels ‘Z’ and ‘M’ point to the material types, as defined in figure 3. The numerical
value of ρ has not been confidently determined experimentally for the WEC and was set in the
calculations so that the calculated stress values matched the experimentally determined values.

2.2. Energetics

We define a Helmholtz free energy W̃ (ε), a dimension-free function of ε, describing the sum
of chemical and elastic energy of the molecular segments (see figure 2) in both phases:

∂W̃ (ε)

∂ε
= σ̃ . (5)

According to equation (2), we have for the low-strain L-phase

L : W̃L = W̃ (ε) =
k̃

2
ε2. (6)

Note that with respect to chemistry we address a zero reference chemical energy to the (low-
strain) L-phase. Considering equation (5), one finds for W̃ (ε, s̃0) in the (high-strain) H-phase

H : W̃H = W̃ (ε) = W̃0 +
∫ ε

0
F (ε̄) dε̄. (7)

Here W̃0 stands for the sum of the chemical contribution and the contribution due to the pre-
stress. The integration on the right side of (7) can be performed analytically and we obtain,
using (4a) and (4b), respectively,

W̃H = W̃M = W̃0M − [ln (1 − ε/ε∗) + ε/ε∗], (8a)

W̃H = W̃Z = W̃0Z +
1

4

[
3 − ε∗ + 2ε

1 + ε∗
ε +

(1 + ε∗)2

ε∗ − ε

]
. (8b)

The quantities W̃0M, W̃0Z are constants and their values are reported below.
Here it should be mentioned that the formulations of W̃M, W̃Z are in accordance with

continuum mechanics.
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Figure 4. Elastic energy of the low-strain (L) phase and of the high-strain (H)
phase using two material types denoted as M and Z according to equation (8).
The dashed line corresponds to the double tangent with a slope equal to the
Maxwell stress, σstart = 1.68 MPa. The transformation strain indicated by the
double arrow is εT = 0.479 for both material types M and Z.

The equilibrium process was discussed previously by Harrington et al [6] and is only
summarized here. The equilibrium energy for the complete system is the convex envelope of
the energies W̃H and W̃L as a function of the strain ε. At small strains, the total energy is W̃L(ε).
Starting from a lower critical strain ε∗

L and straining up to a higher critical strain ε∗

H, the energy
W̃T(ε) is given as the common tangent to the two energy curves W̃L(ε) and W̃H(ε) (see figure 4)
as

W̃T(ε) =


W̃L(ε), ε < ε∗

L,

W̃L(ε
∗

L) + k̃ε∗

L

(
ε − ε∗

L

)
, ε∗

L < ε < ε∗

H,

W̃H(ε), ε∗

H < ε < ε∗.

(9a)

The critical strains ε∗

L and ε∗

H can be found by solving the set of nonlinear equations

1

2
k̃ε∗2

L + k̃ε∗

L(ε
∗

H − ε∗

L) = W̃H(ε∗

H), k̃ε∗

L =
∂W̃H

∂ε
(ε∗

H). (9b)

Finally, above ε∗

H, the energy is W̃H(ε).

2.3. Transformation condition and kinetics

We now study the kinetics of the transformation from the L to the H phase (on increasing
strain) or from the H to the L phase (on decreasing strain), which was first worked out by
Eshelby [35] and later by several researchers (for references see [36]). Our model considers a
sharp interface between the regions in the H and L phase, with a thermodynamic force acting
on it. The experimental data do not allow us to decide whether there is actually just one or
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several interfaces as one would expect if there were multiple nucleation sites. Hence, we stick
to the simplest hypothesis here. It is also worth mentioning that other theoretical approaches
study the movement of an interfacial zone using either a variational principle [37] or a level-
set concept [38]. In the current treatment, we prefer the simpler sharp-interface model. If we
consider a likely mechanical challenge of the egg capsule such as crashing waves or perhaps
biting of a predator, then a stress-controlled process is more likely than a strain-controlled
process. We thus consider a stress that increases linearly with time t from t = 0 to tm and then
decreases again linearly to zero until time tf:

0 ≤ t 6 tm : σ̃ = σ̃mt/tm, tm 6 t 6 tf : σ̃ = σ̃m
(tf − t)

(tf − tm)
,

where σ̃m is the maximum dimension-free applied stress at t = tm.
From the point of view of thermodynamics, the dimension-free thermodynamic force f̃

(i.e. the force per unit area of interface, normalized by the constant CZ or CM, with labels LH
and HL depending on the direction of the transformation) is acting at the transformation front
or, in other words, at the interface between the L and H phases. The thermodynamic force
f̃ LH refers to a transformation from L to H, f̃ HL from H to L. Eshelby [35] was the first who
introduced the thermodynamic force as the projection of the so-called energy momentum tensor
in the normal direction to the interface. The difference of the thermodynamic forces yields the
resultant (driving) thermodynamic force. A very detailed derivation of the thermodynamic force
on an interface can be found in Simha et al [39]. We follow the derivation by Abeyaratne and
Knowles [36], who previously worked out an expression for f̃ in a small-strain 1D setting
formulated for f̃ LH as

f̃ LH = W̃L − W̃H − σ̃ (εL − εH) , (10)

in which εL and εH are the strain values in the L and H phases, respectively, corresponding to
a given value of the applied stress σ̃ , according to the relations given in equations (2) and (3),
respectively. This makes an inversion of F (ε) necessary, which can be performed analytically
for both FM and FZ, but for the sake of convenience, can also be done numerically. Note that no
physical interface is formed, and therefore it is unnecessary to consider the interface energy.

The advancement of the transformation is characterized by the volume fraction of
transformed phase ξ , 06 ξ 6 1, and its time rate ξ̇ . Note that ξ takes the role of an
internal variable. Then the rate ξ̇ is the conjugate variable to the thermodynamic force f̃
yielding, according to the thermodynamics of continua, the local dissipation f ξ̇ . However,
since thermodynamics does not provide a kinetic (or evolution) equation for the internal
variable (in our case ξ̇ ), we assume, as a simple and standard assumption in non-equilibrium
thermodynamics, a linear kinetic equation such as

ξ̇LH = κLH f̃ LH. (11a)

The quantity κLH is proportional to the speed of the transformation from L to H with the
dimension [κLH] = 1 s−1. Since we assume that no dissipation occurs both in the L phase and in
the H phase, the only dissipative term arises from the interface motion, which corresponds, as
already mentioned, to the product of interface velocity (represented by ξ̇LH) and thermodynamic
force ( f̃ LH). The dissipation term per unit area of interface d̃LH, [d̃LH] = 1 s−1, which is again
normalized by the constants CZ or CM, follows as

d̃LH = κLH f̃ 2
LH > 0. (11b)
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To ensure positive dissipation, the mobility κLH must be positive. Of course, it does not
need to be constant (as considered here for simplicity) but may depend on f̃ LH or its rate ˙̃f LH,
see e.g. the discussion in [36]. The dissipation can be considered as the power necessary to
break bonds during loading or, alternatively, the energy per time unit extracted from the system
to form bonds during unloading.

The total strain εtot of the molecular filament depends on ξLH in the form

εtot
= εL + ξLH (εH − εL) , (12)

which makes it necessary to integrate equation (10) with respect to time. This is easiest
performed by replacing time t with the instantaneous stress σ̃ (dt = dσ̃ / ˙̃σ LH or dt = dσ̃ / ˙̃σ HL

with ˙̃σ LH = σ̃m/tm, ˙̃σ HL = −σ̃m/(tf − tm), respectively, with the definitions at the beginning of
section 2.3), yielding

ξLH =
κLH

˙̃σ LH

∫ σ̃

σ̃start

f̃ LH( ˆ̃σ) d ˆ̃σ . (13)

The process starts with f̃ LH = 0 at σ̃ = σ̃start and continues with f̃ LH > 0. The quantity σ̃start

follows from setting equation (10) to zero and solving the equation with respect to σ̃start

with ε∗

L = εL (σ̃start) and ε∗

H = εH (σ̃start). This amounts to solving equation (9b), where σ̃start =

k̃ε∗

L =
∂W̃H
∂ε

(ε∗

H). The strain at the interface jumps at the stress value σ̃start from the L-
equilibrium configuration ε∗

L to the H-equilibrium configuration ε∗

H. The difference is denoted
as transformation strain εT = ε∗

H − ε∗

L. The corresponding σ̃ − εtot diagram shows a horizontal
line, the so-called Maxwell line according to σ̃start, which is called Maxwell stress. For a further
interpretation, see [6].

The above set of equations (9)–(13) can be also used to describe the transformation path
from the H to the L phase (in our case the ‘unloading’ process). Only the labels L and H have to
be exchanged to H and L. The mobility κHL can be different from κLH. The back-transformation
starts at σ̃ = σ̃start and stops when ξHL has reached the value 1.

We would like to mention that the so-called Jarzynski equation [40] is often used to
describe the pulling of proteins. If we reformulate the thermodynamic force as f̃ LH = g̃L − g̃H

with g̃ = W̃ − σ̃ εL, where g̃ is the (specific) Gibbs (free) energy, then this transformation
proceeds for f̃ LH = 1g̃ = g̃L − g̃H > 0. This formulation is in fact equivalent to the Jarzynski
equation.

3. Modeling and experiments

The model introduced in section 2 is formulated in a dimension-free way. All kinetic quantities,
such as energies, dissipation and thermodynamic forces, as well as stress, are related to a
reference stress C, namely CM or CZ, which means that all these dimension-free quantities must
be multiplied by CM or CZ to get to physical quantities.

We now model the transformation process in WEC protein reported in an earlier
experimental paper [6]. The relevant parameters are taken from this paper: we consider a
molecular segment with the initial length s0 = 100 nm and a final fully stretched length L =

259 nm, yielding ε∗
= 1.59. For the L phase, an experimental value of 180 MPa is selected

for k. The reference stress C for the kinked molecule material type is CM = 6.02 MPa and
the constant W0M = 0.18 MPa. For the worm-like chain material type, we have CZ = 0.98 and
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Figure 5. Hysteresis for the two different models for the high-strain phase (H),
assuming (a) molecules with kinks (material type M) and (b) worm-like chains
(material type Z). Numbers 1, 2, 3 (blue, green, red lines) designate curves
with the kinetic parameters ˙̃σ LH/κLH = 0.2, 1, 5, respectively. For decreasing
stress, the color codes are analogous for ˙̃σ HL/κHL. The arrows indicate the
direction of loading. The dashed black line corresponds to a quasi-equilibrium
curve with extremely slow deformation rates and coincides with the horizontal
‘Maxwell line’ according to the Maxwell stress, which is identical in both
graphs at σstart = 1.68 MPa. (c) Experimental data for the hysteresis adapted from
Harrington et al [6].

W0Z = −0.80 MPa. Figure 4 plots the elastic energy of the L and H phases with both material
types M and Z. Note that both material types M and Z correspond to the same Maxwell stress
σstart = 1.68 MPa and the transformation strain εT = 0.479 (with ε∗

H = 0.489 and ε∗

L = 0.0093),
see the dashed line in figure 4.

As the free parameter, we use the kinetic parameters ˙̃σ LH/κLH and ˙̃σ HL/κHL, respectively.
Figure 5 demonstrates the stress–strain hysteresis for three different ratios ˙̃σ LH/κLH for material
types Z according to Zhang and Evans [33] and M according to Misof et al [34] in comparison
with a stress–strain hysteresis measured by Harrington et al [6], figure 1(b).

One can easily recognize that at least semiquantitative agreement of the hysteresis from the
model with the experimental hysteresis can be obtained. It should be mentioned that the rather
strange behavior of material type Z leading to negative values of ε on the unloading path has
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(14). Numbers 1, 2, 3 designate curves corresponding to the kinetic parameter
˙̃σ LH/((1 + α) κLH) = 5 together with α = 9, 3, 0, respectively. The Maxwell
stress is marked by a dashed line.

its origin in the fact that the H-phase covers a certain pre-stress in the amount of 0.78 MPa at
strain ε = 0. This part of the curve is not depicted in figure 5(b), since this part is of no physical
relevance.

As a further possibility of modeling, we study a so-called enhanced kinetics by applying
instead of f̃ LH on the rhs of equation (11a) the quantity f̃ LH · ξ−α, α > 0, ensuring also the
second law (see the text passage in context with equations (11a) and (11b)) and yielding

ξLH =

[
(1 + α) κLH

˙̃σ LH

∫ σ̃

σ̃start

f̃ LH( ˆ̃σ) d ˆ̃σ

](1/(1+α))

. (14)

Obviously, the significantly increased transformation rate in the start phase influences the
hysteresis remarkably. The results are depicted in figure 6. Curves 1 and 2 are calculated for the
enhanced kinetics (see the figure caption). Note that the unloading path above the Maxwell line
is nearly the same for all three curves. It is very interesting to note that the enhanced kinetics
leads to a hysteresis, whose shape is much closer to the observed one, see figure 5(c).

4. Discussion

From a biological perspective, the properties of materials such as the WEC are shaped via
natural selection to handle cyclic mechanical perturbances by undergoing large extensions
and dissipating mechanical energy, observable at the macroscale in the large hysteresis loop.
Experimental evidence informs us that mechanical hysteresis stems from reversible transitions
in the conformational structure of the protein building blocks, which manifests itself during
material yield as a classical phase transition between an ordered α-helical protein structure
(α) and an unstructured protein structure (β∗) [6, 7]. The current work provides a theoretical
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framework for understanding the kinetics of this process and how this is manifested in time-
dependent viscoelastic mechanical behavior at the macroscopic level.

Based on this work, three important conclusions can be drawn that add to the understanding
of WEC mechanics and of martensitic behaviors in biopolymers, in general. The first is that
modeling the biomolecular subunits as a worm-like chain versus a kinked molecule has only
a small influence on the outcome of the model. Only the relative magnitude of the changes
differed, but the shapes of the resultant stress–strain curves were preserved. The second
observation is that development of hysteresis in the cyclic loading curve, reflecting a dissipative
process, arises when the loading rate in the biomolecules is larger than the rate at which the LS
phase can transform into the HS phase. Only at very low loading rates (i.e. equilibrium) would
one expect no dissipation and, consequently, that the course of the stress–strain curve would
follow along the Maxwell line for both the loading and unloading paths. The third observation
from our study is that while the simple assumption of a linear relation between thermodynamic
driving force and rate of phase transformation (thermodynamic flux) generates hysteresis in
the model, it cannot account for the shape of the WEC deformation curve. By considering
an ‘enhanced’ kinetics, where the proportionality constant in the linear relation is replaced by
a positive function of the internal variable (i.e. the volume fraction of transformed matter),
we can modify the shape of the hysteresis and arrive at some of the experimentally observed
features. In the current case, one learns from the nonlinear kinetics that the transformation
process occurs much more intensively in the starting phase than in the finishing phase, an
observation that is also well known for some shape memory materials [25, 26]. These collective
observations provide testable hypotheses, namely that there should be a temperature and
strain rate dependence in the amount of hysteresis observed in the WEC. In fact, Miserez
et al [7] observed that increasing temperature does result in decreased stiffness, yield stress
and hysteresis; however, other experiments show that the hysteresis does not depend on stress
rate [8]. This second observation is in contrast to our modeling results where the hysteresis
is predicted to increase with stress rate. This disparity may have several causes: one is the
comparatively small-strain amplitude in the experiment [8] or the frequency range of the loading
in comparison to the mobility. Moreover, our model assumes a constant value of the mobility
κLH, which shows the essence of the physical behavior of the fiber. In a real material, κLH may
depend on f̃ LH and, thus, indirectly on the loading speed ˙̃σ LH. This may influence the way in
which hysteresis depends on frequency in cyclic loading.

Experimental measurements on α-helical proteins with single-molecule force spectroscopy
provide a biophysical basis for understanding some of the observations of the models in this
study. Single-molecule load–extension curves of fibrinogen, a coiled-coil α-helical protein,
reveal a characteristic sawtooth pattern indicative of molecular energy dissipation [41, 42],
whereas myosin exhibits elastic loading behavior lacking notable hysteresis [43]. It was
suggested that the relative differences in mechanical behavior between these two α-helical
proteins stem from variation in the refolding rate based on the relative structural complexity of
the two proteins, i.e. fibrinogen has many disruptions in the α-helical motif sequence, whereas
the myosin helix is relatively uninterrupted. Implicit in this result is the fact that the rate of
transformation between the L phase and the H phase is dependent on the protein sequence and
structure, and therefore the mechanical behavior (and therefore hysteresis) of materials based
on α-helical proteins is tunable by molecular augmentation processes such as natural selection
or genetic engineering [44]. Finally, as discussed above, stress-controlled processes are typical
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for natural events. However, strain-controlled processes are usually performed in the laboratory.
For the sake of completeness, a corresponding algorithm is presented in the appendix.

Appendix. Strain-controlled process

We start with the strain-controlled process from the L phase to the H phase with given quantities
εtot and ε̇tot. Considering equation (12) one finds

ξLH =
εtot − εL

εH − εL
, (A.1)

and for the rate ε̇tot using (A.1)

ε̇tot = ε̇L + ξ̇LH (εH − εL) +
εtot − εL

εH − εL
(ε̇H − ε̇L) . (A.2)

Since σ̃ acts in both phases, one can express εL by εH with equation (3) as

εL =
1

k̃
F (εH) , ε̇L =

1

k̃
F ′ (εH) ε̇H. (A.3)

With F ′ (εH) the derivative dF (εH)/dεH is denoted. We can now express f̃ LH, equation (10), as
a function of εH by using the first equation of (A.3) and equation (10) as

f̃ LH (εH) =
k

2

(
1

k̃
F (εH)

)2

− W̃H (εH) − F (εH)

(
1

k̃
F (εH) − εH

)
. (A.4)

Now we can insert equations (10), (11a) together with (A.4), and equations (A.3) into (A.2) and
obtain finally

ε̇H

[
1

k̃
F ′ (εH) +

εtot − 1/k̃ F (εH)

εH − 1/k̃ F (εH)

(
1 −

1

k̃
F ′ (εH)

)]
+ κLH

[
k

2

(
1

k̃
F (εH)

)2

− W̃H (εH) − F (εH)

×

(
1

k̃
F (εH) − εH

)] [
εH −

1

k̃
F (εH)

]
= ε̇tot. (A.5a)

Note that εtot and ε̇tot are known quantities, so equation (A.5a) represents a first-order ordinary
differential equation for εH (t). As the initial condition we have for t = tstart the stress σ̃start, see
the discussion below equation (13), yielding with equation (2)

εH,start = F−1 (σstart) for t = tstart, (A.5b)

which enforces inverting F (ε) to F−1 (ε). Then we have to solve the initial value problem for
εH = εH (t) until ξLH becomes 1, yielding εH = εH,final. Then further straining occurs only in the
H phase.

The backtransformation starts when εH has reached εH (σ̃start). Then the strain-controlled
backtransformation process from the H phase to the L phase can also be described with the
differential equation (A.5a), however, by replacing κLH by −κHL with κHL > 0. Note that ε̇tot

is now a negative quantity. The same start condition as (A.5b) is also valid. The process stops
when ξHL has reached the value 1. Then only the L phase exists again.
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