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Abstract: The interplay of adhesion and phase separation is studied theoretically
for two-component membranes that can phase separate into two fluid phases such as
liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two
different environments for these membranes and then partition the membranes into two
segments that differ in their composition. Examples are provided by adhering vesicles, by
hole- or pore-spanning membranes, and by membranes supported by chemically patterned
surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we
show that the phase behavior of the adhering membranes depends, apart from composition
and temperature, on two additional parameters, the area fraction of one membrane segment
and the affinity contrast between the two segments. For the generic case of non-vanishing
affinity contrast, the adhering membranes undergo two distinct phase transitions and the
phase diagrams in the composition/temperature plane have a generic topology that consists
of two two-phase coexistence regions separated by an intermediate one-phase region. As
a consequence, phase separation and domain formation is predicted to occur separately in
each of the two membrane segments but not in both segments simultaneously. Furthermore,
adhesion is also predicted to suppress the phase separation process for certain regions of
the phase diagrams. These generic features of the adhesion-induced phase behavior are
accessible to experiment.
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1. Introduction

Multi-component membranes consisting of a small number of lipids provide simple model systems
for biological membranes, which contain a huge number of different lipid and protein components. Since
membranes are essentially 2-dimensional systems, they can attain different thermodynamic phases and
undergo phase transitions between these phases. From a biological perspective, the most interesting
phase transitions are provided by transitions between two distinct liquid phases, in which the membrane
molecules can undergo fast lateral diffusion within all membrane domains [1]. The corresponding
two-phase coexistence regions lead to critical points that belong to the universality class of the
2-dimensional Ising model [2].

The simplest examples for fluid-fluid coexistence in membranes are presumably found in binary
mixtures of cholesterol and a single phospholipid. Indeed, a variety of spectroscopic methods such
as deuterium nuclear magnetic resonance [3–5] were applied to such binary mixtures and provided
evidence for the formation of intramembrane domains. The underlying mechanism for this domain
formation has been a matter of some debate as reviewed in [6]. In this theoretical study, we will
not address this controversy but take the fluid-fluid coexistence of cholesterol/phospholipid mixtures
proposed in [4,5,7] and recently reviewed in [8] as a motivation to study a generic model for this kind of
two-phase coexistence.

For ternary mixtures consisting of an unsaturated phospholipid, sphingomyelin, and cholesterol, as
originally studied in the context of sphingolipid-cholesterol rafts [9], the formation of liquid-ordered and
liquid-disordered domains can be directly observed by fluorescence microscopy. In this way, phase
separation in ternary mixtures has been studied for a variety of membrane systems including giant
vesicles [10–15], solid-supported membranes [16–18], hole-spanning (or black lipid) membranes [19], as
well as pore-spanning membranes [20]. The phase diagrams of such three-component membranes have
been determined using spectroscopic methods [5] as well as by fluorescence microscopy of giant vesicles
and X-ray diffraction of membrane stacks [21–24]. Furthermore, fluid-fluid coexistence has also been
found in giant plasma membrane vesicles that contain a wide assortment of lipids and proteins [25,26].

In this paper, we consider the effect of adhesion onto the phase behavior of multi-component
membranes. We first emphasize that many adhesion geometries lead to a segmentation of the membranes.
Examples are provided by the adhesion of vesicles, by hole- or pore-spanning membranes, and by
membranes supported by chemically patterned surfaces. In all of these cases, the adhesion leads to
two distinct membrane segments that experience different environments. These environments attract
the different molecular components of the membrane with different affinities, i.e., each environment
acts to recruit certain components and to expel others. As a consequence, the compositions of the two
membrane segments are different as well.
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We will focus on the simplest example for fluid-fluid coexistence as provided by two-component
membranes and study the adhesion effects by generalizing a generic lattice model for binary mixtures.
This lattice model corresponds to a semi-grand canonical description and depends on the relative
chemical potential for the two molecular species. Using this model, it is relatively easy to see that the
adhesion-induced segmentation of the membranes leads, in general, to two distinct phase transitions in
the two membrane segments. In order to obtain theoretical predictions that are accessible to experiments,
we then consider the mole fractions in the two membrane segments and show how one can obtain the
phase behavior in terms of these mole fractions. One important parameter turns out to be the affinity
contrast, which describes the different molecular interactions between the two membrane segments and
their environments.

We show that the fluid-fluid coexistence region as found for the two-component membrane in a
uniform environment is replaced, for any nonvanishing affinity contrast, by two distinct coexistence
regions, which are separated by an intermediate one-phase region. The relative sizes and positions of
these different regions are shown to depend only on a relatively small number of parameters, namely
temperature, mole fraction of one molecular species, area fraction of one of the membrane segments,
and affinity contrast. For the generic case of a nonzero affinity contrast, our theory predicts that phase
separation can only occur separately in each of the two membrane segments but not in both segments
simultaneously. Furthermore, adhesion is also found to suppress the phase separation process within
certain regions of the phase diagrams.

Our paper is organized as follows. First, Section 2 contains a brief review of fluid-fluid coexistence
in two-component membranes and Section 3 describes the lattice binary mixture as a generic model for
phase separation in two dimensions. In Section 4, we discuss several adhesion geometries such as vesicle
adhesion and pore-spanning membranes, and describe how these geometries lead to a segmentation of the
membranes into two different membrane segments. These segments experience distinct environments,
which can be characterized by relative affinities. In Section 5, we introduce the lattice model for the
adhering membranes and show that the relative affinities of the two membrane segments lead to shifts of
the relative chemical potential. It is then relatively easy to conclude that the adhering membranes undergo
two phase transitions. In order to obtain theoretical predictions that are accessible to experiments, we
then replace in Section 6 the relative chemical potential by the mole fraction Xa of the a-molecules and
explain how one can obtain the phase diagrams as a function of Xa and temperature. The results for
these phase diagrams are then described in Section 7. At the end, we give a brief summary and outlook.

2. Liquid-Liquid Coexistence in Two-Component Membranes

At constant pressure, the phase diagrams of multi-component membranes depend on the ambient
temperature T and on the composition of the membranes. For membranes consisting of two molecular
species, say a and b, and containing Na a-molecules and Nb b-molecules, the composition is described
by the mole fractions

Xa ≡ Na/(Na +Nb) and Xb ≡ Nb/(Na +Nb) = 1−Xa , (1)

one of which can be varied independently.
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Thus, phase diagrams of two-component membranes are conveniently described in the (Xa, T )-plane.
For binary mixtures of phospholipid and cholesterol, the phase diagrams deduced from deuterium nuclear
magnetic resonance spectroscopy exhibit a coexistence region for the liquid-ordered phase, say α, which
is rich in cholesterol, and the liquid-disordered phase, say β, which is poor in cholesterol [3–5,7,8], see
Figure 1.

The membrane undergoes phase separation into the α and β phases within the temperature range
Tt < T < Tc, i.e., above the triple point temperature T = Tt and below the critical temperature T = Tc.
The αβ coexistence region can then be described by

Xa,β(T ) < Xa < Xa,α(T ) (2)

with the two binodal lines

Xa = Xa,β(T ) and Xa = Xa,β(T ) for Tt < T < Tc . (3)

Figure 1. Generic phase diagram for mixed membranes consisting of cholesterol and a
single phospholipid. The variable Xa represents the mole fraction of cholesterol; the phase
boundaries have been deduced from experiments on the phospholipid DPPC [8]. The fluid-
fluid coexistence region between the liquid-ordered phase α on the right and the liquid-
disordered phase β on the left is bounded by the two binodal lines Xa = Xa,β(T ) and
Xa = Xa,α(T ), which meet at the critical point with T = Tc. The horizontal broken lines
represent tie lines within the two-phase coexistence region. The triple point temperature is
denoted by Tt.

T
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3. Lattice Model for Two-Component Membranes

A relatively simple but instructive model for two-component membranes is provided by lattice binary
mixtures, in which the configurations of the two molecular components are described by occupation
numbers [27–31]. The two-dimensional lattice binary mixture is equivalent to the two-dimensional Ising
model. Therefore, both exact results from the Ising model as well as approximation schemes such as the
mean field approximation can be used to determine the phase diagrams of this lattice model.



Int. J. Mol. Sci. 2013, 14 2207

3.1. Lattice Description of Large Membrane Segments

To proceed, let us first consider a large membrane segment with total area A, which is disretized into
a square lattice Ω with lattice sites i and lattice constant

√
A. The total number of lattice sites will be

denoted by
|Ω| ≡ A/A . (4)

Since the discretization lattice is characterized by a single lattice constant
√
A, both the a- and the

b-molecules are described here by the same molecular area A.
Within the framework of the lattice binary mixture, the molecular configurations of the

two-component membrane are now described in terms of occupation numbers

ni ≡ 1 for an a-molecule on site i
≡ 0 for a b-molecule on site i .

(5)

The mole fractionXa of the a-molecules is now given by the expectation value of the occupation number
ni, i.e.,

Xa = 〈ni〉 . (6)

The total number Na of a-molecules is given by Na =
∑

i ni and the total number Nb of b-molecules by

Nb = |Ω| −Na = |Ω| −
∑
i

ni . (7)

Thus, for the lattice binary mixture, the total number of a- and b-molecules is fixed and given by Na +

Nb = |Ω|. This constraint on the two molecular numbers implies that the lattice binary mixture describes
a semi-grand canonical ensemble, see further below.

3.2. Configurational Energy of Binary Mixture

If two neighboring sites i and j of the lattice are both occupied by a molecules, these molecules have
the interaction energy Uaa. Likewise, two neighboring bmolecules interact via the interaction energy Ubb
and two neighboring sites occupied by one a- and one b-molecule contribute the interaction energy Uab.
For the unbound membrane segment, the configuration-dependent interaction energy is then given by

Eint{n} ≡
∑
〈ij〉

[Uaa ninj + Uab ni(1− nj) + Uab (1− ni)nj + Ubb (1− ni)(1− nj)] (8)

and the total configurational energy E{n} has the form

E{n} = Eint{n} − µa
∑
i

ni − µb
∑
i

(1− ni) = Eint{n} − µaNa − µbNb (9)

where we have introduced two chemical potentials µa and µb for the a- and b-molecules. Since the
molecular numbers Na and Nb satisfy the constraint (7), this configurational energy is equivalent to

E{n} = Eint{n} −∆µ
∑
i

ni + µb|Ω| (10)
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with the relative chemical potential
∆µ ≡ µa − µb . (11)

The term µb|Ω| on the right hand side of (10) can be omitted because it does not depend on the occupation
numbers {n} and, thus, cancels out from all expectation values calculated with the statistical weight
exp(−E{n}/kBT ).

The form (10) of the configurational energy shows explicitly that the lattice binary mixture represents
a semi-grand canonical ensemble [32,33], which depends on the total number |Ω|A of membrane
molecules and on the relative chemical potential ∆µ. This ensemble is appropriate here because
membranes have a fixed surface area and we use the simplifying assumption that both molecular species
have the same molecular area. Therefore, when the system exchanges a- and b-molecules with the
corresponding chemical reservoirs, we have to remove b-molecules when we want to insert a-molecules
and vice versa.

3.3. Phase Behavior of Binary Mixture

The lattice binary mixture just described is equivalent to the two-dimensional Ising model if one
expresses the molecular configurations {n} in terms of the spin variables σi ≡ 2ni − 1. This equivalent
Ising model depends only on two parameters, the dimensionless temperature

T̄ ≡ kBT

J
=

4kBT

2Uab − Uaa − Ubb
(12)

and the dimensionless ordering field

H̄ ≡ H

kBT
=

1
2

∆µ− (Uaa − Ubb)
kBT

. (13)

The Ising system undergoes phase separation for H̄ = 0 and 0 ≤ T̄ < T̄c, where T̄c denotes the critical
temperature. The exact value of the critical temperature is given by [34]

T̄c =
2

ln(1 +
√

2)
' 2.27 (14)

for the Ising model on a square lattice. As we approach the line H̄ = 0 from positive and negative values
of H̄ , the order paramter 〈σi〉 attains the values 〈σi〉 = +Υ(T̄ ) and 〈σi〉 = −Υ(T̄ ), respectively, with
the spontaneous order parameter [34]

Υ(T̄ ) =
[
1− sinh(2/T̄ )−4

]1/8
for T̄ ≤ T̄c

= 0 for T̄ ≥ T̄c .
(15)

The corresponding phase transition in the lattice binary mixture occurs at the relative chemical
potential

∆µ = 2(Uaa − Ubb) ≡ µαβ for 0 ≤ T̄ < T̄c . (16)

As we approach the transition value ∆µ = µαβ of the relative chemical potential from below or from
above, the mole fraction Xa = 〈ni〉 approaches the values

Xa,β(T̄ ) = 1
2
− 1

2
Υ(T̄ ) and Xa,β(T̄ ) = 1

2
+ 1

2
Υ(T̄ ) , (17)
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respectively, with the function Υ(T̄ ) as given by (15). These two mole fractions define the binodal
lines Xa = Xa,β(T̄ ) and Xa = Xa,α in the (Xa, T̄ ) phase diagram of the lattice binary mixture. This
phase diagram is symmetric with respect to the transformation Xa → X ′a = 1

2
−Xa, which reflects the

particle-hole symmetry of the lattice binary mixture.

3.4. Relative Chemical Potential as a Function of Mole Fraction

The semi-grand canonical ensemble of the lattice binary mixture is not particularly convenient from an
experimental point of view since the relative chemical potential ∆µ does not represent an experimental
control parameter. Instead of ∆µ, one typically controls the mole fraction Xa. If we consider Xa as an
independent thermodynamic variable, the relative chemical potential becomes a dependent variable that
will be described by the functional relationship

∆µ = G(Xa) . (18)

The change from ∆µ to Xa corresponds to a Legendre transformation from the semi-grand canonical
ensemble to the canonical ensemble. Even though the form of the function G is not known explicitly
(because we have no exact solution for the 2-dimensional Ising model in a finite ordering field, H̄ 6= 0),
thermodynamics implies some useful properties of G(Xa).

First, it follows from thermodynamic stability that the chemical potential µa of the a-molecules must
be a non-decreasing function ofXa, see, e.g., [35]. Likewise, the chemical potential µb of the b-molecules
must be a non-decreasing function of Xb = 1 − Xa, which implies that it must be a non-increasing
function of Xa. It then follows that the relative chemical potential ∆µ = µa − µb as a function of Xa

must satisfy
∆µ = G(Xa) with ∂G/∂Xa ≥ 0 . (19)

More precisely, the function ∆µ = G(Xa) has a strictly positive derivative,

∂G/∂Xa > 0 within a one-phase region (20)

and stays constant with

G(Xa) = µαβ and ∂G/∂Xa = 0 within a two-phase coexistence region. (21)

It then follows that G(X) is a monotonically increasing function of X for 0 < X < Xa,β(T̄ ), stays
constant for Xa,β(T̄ ) ≤ X ≤ Xa,β(T̄ ), and continues to increase monotonically for Xa,β(T̄ ) < X < 1,
where the two binodals are explicitly given by (17).

4. Membrane Adhesion and Segmentation

The adhesion of membranes and vesicles often leads to different membrane segments, in which the
molecules experience distinct environments. Such a segmentation is found both for adhering vesicles and
for solid-supported membranes. As explained in the following subsections, these adhering membranes
often consist of two segments that are exposed to two different environments.
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4.1. Adhesion of Vesicles

The adhesion of vesicles has been studied for a long time, see, e.g., [36,37] for one-component
membranes and [1,38] for multi-component membranes. Here, we will focus on the strong adhesion
regime, in which the vesicle attains the shape of a spherical cap. The same shape has also been observed
for the strong adhesion of red blood cells [39,40].

4.1.1. Strong Adhesion Regime

In general, a vesicle that sticks to a planar substrate surface exhibits two membrane segments: an
unbound segment S [1] that is not in contact with the substrate surface and a bound segment S [2] that
forms the vesicle’s contact area. The surface areas of the unbound and bound membrane segments will
be denoted by A[1] and A[2], respectively. The overall area A of the membrane is then given by

A = A[1] +A[2] . (22)

The two membrane segments meet at the contact line of the vesicle. Along this line, the unbound
membrane segment has the contact curvature radius [36]

Rco = (κ/2|W |)1/2 , (23)

which depends on the membrane’s bending rigidity κ and the adhesion free energy W per unit area. We
use the convention that the free energy density W is negative for an attractive substrate surface.

The strong adhesion regime considered here corresponds to the situation, in which

Rco � Rve ≡ (A/4π)1/2 , (24)

i.e., in which the contact curvature radius Rco is much smaller than the vesicle size Rve. This inequality
is equivalent to

|W |1/2 � (2πκ/A)1/2 (25)

where the quantity κ/A may be regarded as the membrane tension arising from the closure of the
vesicle membrane.

Let us now focus on giant vesicles that are conveniently studied by optical microscopy. The size Rve

of such vesicles usually exceeds 20µm. Therefore, these vesicles are in the strong adhesion regime as
soon as the contact curvature radius is below optical resolution, i.e., Rco < L∗ ' 0.5µm or

|W | > |W |∗ ≡
κ

2L2
∗
' κ

0.5µm2
. (26)

For a lipid bilayer, the bending rigidity κ is of the order of 10−19 J or 24 kBTo at room temperature
To = 25 ◦C, which implies |W |∗ ' 2 × 10−4 mJ/m2 or |W |∗ ' 0.5 kBT/(100 nm)2. Thus, the
strong adhesion regime should typically apply as long as the adhesion is mediated by a large number
of molecular interactions. In this regime, the vesicle spreads onto the surface as much as possible. For
fixed vesicle volume V and fixed membrane area A, the shape with the largest contact area is provided
by a spherical cap, which can be characterized by an effective contact angle θeff as shown in Figure 2.
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Figure 2. (a) Side view of a vesicle that strongly adheres to a planar substrate surface. The
vesicle membrane (blue) consists of two segments: the unbound segment S [1] that forms a
spherical cap with surface area A[1] and the bound segment S [2] with surface area A[2]. The
two segments meet along the contact line with effective contact angle θ = θeff ; and (b) When
viewed with increased resolution, the unbound membrane segment close to the contact line
is smoothly curved [36].

segment [2] 
bound

segment [1] 
unbound

θ θ

4.1.2. Area Fractions

The total surface area A plays the role of the basic area scale. The spherical cap shape is then
determined byA and one other geometric parameter such as the effective contact angle θeff , see Figure 2,
or the reduced volume

v ≡ 3V/4π
(A/4π)3/2

, (27)

which can be controlled by osmotic deflation and inflation. Because we focus here on the
adhesion-induced segmentation of the membrane, it will be convenient to choose the area fraction

q[1] ≡ A
[1]

A
=

A[1]

A[1] +A[2]
(28)

of the unbound membrane segment S [1] as the second geometric parameter. The area fraction q[2] of the
bound segment S [2] is then given by q[2] = 1 − q[1]. The relations between q[1] and the other geometric
parameters such as the reduced volume v are discussed in Appendix A at the end of this paper.

The area fraction q[1] turns out to be an important parameter in order to describe the phase diagram of
multi-component membranes. This parameter can vary within the range

1
2
≤ q[1] < 1 (adhering vesicle) . (29)

The limiting cases correspond to a flat pancake with q[1] = 1
2

and to a sphere touching the surface
in a single point, which implies q[1] = 1. For a hemi-sphere, the area fraction q[1] = 2/3. Because
the area fraction q[1] is uniquely determined by the reduced volume v, see Appendix A, it can be varied
experimentally by changing the osmotic conditions leading to osmotic deflation or inflation of the vesicle.



Int. J. Mol. Sci. 2013, 14 2212

Figure 3. (a) Top view of a partially supported membrane spanning a single circular hole or pore
within the rigid support. The membrane consists of a pore-spanning or unbound segment S [1] with
area A[1] and a bound segment S [2] with area A[2]; and (b) Membrane supported by a chemically
patterned surface with a single, circular surface domain that attracts the membrane less strongly than
the surrounding substrate. The membrane is then divided up into a weakly bound segment S [1] with
area A[1] and a strongly bound segment S [2] with area A[2]. If the circular surface domain does not
attract or repel the membrane, the adhesion geometry in (b) is thermodynamically equivalent to the
one in (a).

(a)                                                               (b)

bound segment [2]

     pore-
 spanning
segment [1] 

strongly bound segment [2]

   weakly
   bound 
segment [1] 

4.2. Supported Membranes

A variety of methods has been developed in order to immobilize membranes on solid or rigid substrate
surfaces. Here, we will discuss several support geometries that lead to two membrane segments and,
thus, can again be characterized by the area fraction q[1] of the segments S [1]. Membranes supported by
uniform substrate surfaces then correspond to the limiting cases q[1] = 0 and q[1] = 1.

4.2.1. Partially Supported Membranes

Two examples for partially supported membranes are provided by hole-spanning membranes, also
known as black lipid membranes, see, e.g., [19], as well as by pore-spanning membranes as in [20].
Here, a “hole” corresponds to a channel through a relatively thin rigid plate whereas a “pore” refers to a
groove in a relatively thick substrate. If the hole and the pore have the same cross-section, both systems
lead to essentially the same adhesion geometry as shown in Figure 3a for a circular cross-section.

For these adhesion geometries, the membrane is again divided up into an unbound segment S [1]

spanning the hole or pore and a bound segment S [2] in close contact with the supporting surface. In
general, the area fraction q[1] of the hole- or pore-spanning segment can now vary in the range

0 ≤ q[1] < 1 (pore-spanning segments) (30)

where the limiting case q[1] = 0 corresponds to a membrane supported by an adhesive surface without
a hole or pore. For the present geometry, the area fraction q[1] must always be smaller than one in order
to firmly attach the membrane to the substrate surface. If the membrane spans several holes or pores,
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it contains several unbound segments, and the area A[1] is now equal to the total area of all of these
unbound membrane segments.

4.2.2. Membranes Supported by Chemically Patterned Surfaces

Another adhesion geometry of interest are membranes adhering to a chemically patterned surface
as depicted in Figure 3b. A variety of patterning techniques have been used to produce such
systems [41,42]. Here, we consider substrate surfaces that contain two types of surface domains: a
substrate surface “matrix” that attracts the membrane relatively strongly and embedded surface domains
that attract the membrane only weakly. If the latter attraction vanishes or the domain/membrane
interactions becomes repulsive, the adhesion geometry shown in Figure 3b becomes thermodynamically
equivalent to the one in Figure 3a. The example for a patterned surface as shown in Figure 3b displays
a surface with a single, circular domain. In general, the surface may contain several domains and these
domains may have noncircular shapes.

The area fraction q[1] of the segments S [1], which represent here the more weakly bound segments,
now satisfies

0 ≤ q[1] ≤ 1 (weakly bound segments) . (31)

The two limiting cases q[1] = 0 and q[1] = 1 correspond to uniform substrate surfaces with strong and
weak adhesion, respectively.

4.3. Membrane Segments Characterized by Relative Affinities

The different adhesion geometries depicted in Figures 2 and 3 all lead to a partitioning of the
membranes into two segments S [m] with m = 1, 2. Because these segments are exposed to different
environments, the two molecular components a and b experience different interactions potentials, U [m]

a

and U [m]
b . We use the sign convention that

U [m]
a < 0 and U

[m]
b < 0 for attractive interaction potentials (32)

acting on the a- and b-molecules, respectively, within the segment S [m].
We will now characterize each membrane segment by its relative affinity

∆U [m] ≡ U [m]
a − U [m]

b . (33)

If membrane segment S [m] represents an unbound segment not in contact with any adhesive surface, see
segment S [1] in Figure 2 and Figure 3a, we put U [m]

a = U
[m]
b ≡ 0 which implies ∆U [m] = 0 as well.

Because of the sign convention (32), the sign of the relative affinity ∆U [m] depends on the relative
size of the interactions between a- and b-molecules in segment S [m] and the environment of this segment.
Thus, we have

∆U [m] < 0 for more sticky a-molecules
> 0 for more sticky b-molecules ,

(34)

i.e., if the a- or the b-molecules within segment S [m] are more strongly attracted by its environment.
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5. Lattice Model for Adhering Membranes

We will now extend the lattice binary mixture as described in Section 3 to adhering membranes with
two membrane segments as in Figures 2 and 3. We are then led to consider two sublattices that experience
different interactions as described by the relative affinities of the two membrane segments.

5.1. Two Sublattices for Two Membrane Segments

Consider an adhering membrane partitioned into two segments, S [1] and S [2]. The discretization of
such a membrane leads to two sublattices, Ω[1] and Ω[2]. Sublattice Ω[1] for segment S [1] consists of

|Ω[1]| = A[1]/A (35)

lattice sites whereas sublattice Ω[2] for segment S [2] has

|Ω[2]| = A[2]/A (36)

such sites. As before, the symbol A denotes the area per lattice site and corresponds to the molecular
area of the a- and b-molecules. The area fraction q[1] of segment S [1] is now equal to

q[1] =
|Ω[1]|

|Ω[1]|+ |Ω[2]|
. (37)

5.2. Configurational Energy of Adhering Membranes

The configurations of a- and b-molecules within an adhering membrane are again described in terms
of the occupation numbers {ni}, where ni = 1 represents an a-molecule as before. The configurational
energy of this membrane now contains additional terms arising from the interaction potentials U [m]

a

and U [m]
b for the a- and b-molecules with the corresponding environments. More precisely, membrane

segment S [m] contributes the additional energy term

E [m]
U {n} =

∑
i∈Ω[m]

[
U [m]
a ni + U

[m]
b (1− ni)

]
=
∑
i∈Ω[m]

∆U [m] ni + Ub |Ω[m]| (38)

with the relative affinity ∆U [m] as in (33) where the last n-independent term on the right hand side
can again be omitted because it does not affect the statistical properties of the system. Adding the
U -dependent energy term E [m]

U in (38) to the standard form (10) for the configurational energy of the
lattice binary mixture, the configurational energy of segment S [m] becomes

E [m]{n} = E [m]
int {n}+

[
∆U [m] −∆µ

] ∑
i∈Ω[m]

ni (39)

where the interaction energy E [m]
int describes the molecular interactions between the a- and b-molecules

within segment S [m]. This interaction energy now has the form

E [m]
int {n} =

∑
〈ij〉∈Ω[m]

[Uaa ninj + Uab ni(1− nj) + Uab (1− ni)nj + Ubb (1− ni)(1− nj)] (40)



Int. J. Mol. Sci. 2013, 14 2215

which is identical with the expression (8) apart from the summation that now includes only nearest
neighbors 〈ij〉 within the sublattice Ω[m] corresponding to segment S [m].

The configurational energy of an adhering membrane consisting of two membrane segments is then
given by

E{n} = E [1]{n}+ E [2]{n}+ Edb{n} (41)

where the additional energy term Edb{n} arises from the domain boundaries between the two membrane
segments. The latter term can be ignored compared to the first two terms in (41) when we consider the
limit of large membrane segments. Indeed, in this limit, the free energies obtained from the first two
terms E [1]{n} and E [2]{n} increase as the segment areas A[1] ∼ |Ω[1]| and A[2] ∼ |Ω[2]| whereas the
free energy arising from the domain boundary term Edb{n} increases only as the length of the domain
boundary, which is of the order of

√
min(|Ω[1]|, |Ω[2]|).

Therefore, in this large membrane limit, we are left with two membrane segments, S [1] and S [2], each
of which is governed by a configurational energy of the form (39). In the semi-grand canonical ensemble
of the lattice binary mixture, these large segments are only coupled via the relative chemical potential
∆µ, i.e., via the particle reservoirs for a- and b-molecules.

5.3. Phase Transitions in Membrane Segments

The configurational energy (10) for the standard lattice binary mixture leads to a phase transition
at the relative chemical potential ∆µ = µαβ = 2(Uaa − Ubb) for 0 ≤ T̄ < T̄c as described by (16).
Comparison of the configurational energy (39) for the membrane segment S [m] with the configurational
energy (10) for the standard model then shows that this segment undergoes a phase transition at the
relative chemical potential

∆µ = µαβ + ∆U [m] ≡ µ
[m]
αβ for 0 ≤ T̄ < T̄c . (42)

As long as the relative affinities ∆U [m] of the two membrane segments are different, i.e., as long as
∆U [2] 6= ∆U [1], the two critical values µ[2]

αβ and µ[1]
αβ are different as well and the two segments undergo

two distinct phase transitions. Therefore, the adhesion-induced partitioning into two membrane segments
leads to two distinct phase transitions for ∆U [2] 6= ∆U [1].

6. Phase Behavior in Terms of Mole Fractions

In order to make theoretical predictions that are accessible to experiment, we will now describe the
phase behavior of the two membrane segments in terms of their mole fractions. Since the two membrane
segments experience different environments and, thus, different relative affinities, they will, in general,
differ in their compositions. Therefore, we have to distinguish the mole fraction X [1]

a in segment S [1]

from the mole fraction X [2]
a in segment S [2]. To determine the two mole fractions X [1]

a and X [2]
a , we need

two independent relations between these two variables. As shown in the following section, one relation
is obtained from the partitioning of the total number of a- and b-molecules between the two membrane
segments, the other from the chemical equilibrium between these segments.
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6.1. Partitioning of Membrane Molecules

One relation between the two mole fractions X [1]
a and X

[2]
a is provided by the partitioning of the

molecules between the two membrane segments. Because the total number |Ω| = |Ω[1]| + |Ω[2]| of
molecules is fixed within the adhering membrane, the mole fractions X [1]

a and X [2]
a satisfy the relation

|Ω[1]|
|Ω[1]|+ |Ω[2]|

X [1]
a +

|Ω[2]|
|Ω[1]|+ |Ω[2]|

X [2]
a = Xa (43)

where Xa is the overall mole fraction of the a-molecules as before. Using the expression (37) for the
area fraction q[1] and q[2] = 1− q[1], the relation (43) becomes

q[1] X [1]
a +

(
1− q[1]

)
X [2]
a = Xa . (44)

Note that this partitioning relation depends only on two parameters, the area fraction q[1] of segment S [1]

and the overall mole fraction Xa.

6.2. Relative Chemical Potentials of Membrane Segments

Comparison of the configurational energy (39) of membrane segment S [m] with the configurational
energy (10) of the standard lattice binary mixture shows that the relative chemical potential ∆µ of the
standard model is replaced by ∆µ−∆U [m] for segment S [m]. It then follows from (19) that ∆µ−∆U [m] =

G(X
[m]
a ), i.e., membrane segment S [m] is governed by the relative chemical potential

∆µ = G(X [m]
a ) + ∆U [m] ≡ ∆µ[m](X [m]

a ) . (45)

As explained in Section 3.4, thermodynamic stability implies that the function G(X
[m]
a ) is

monotonically increasing for 0 < X
[m]
a < Xa,β(T̄ ), attains the constant value

G(X [m]
a ) = µαβ for Xa,β(T̄ ) ≤ X [m]

a ≤ Xa,β(T̄ ) (46)

and continues to increase monotonically for Xa,α(T̄ ) < X
[m]
a < 1, where the two binodals Xa,β(T̄ ) and

Xa,α(T̄ ) are explicitly given by (17).

6.3. Chemical Equilibrium Between Membrane Segments and Affinity Contrast

Since the two membrane segments can exchange a- and b-molecules by lateral diffusion, they will
reach a state of chemical equilibrium with

∆µ[1](X [1]
a ) = G(X [1]

a ) + ∆U [1] = ∆µ[2](X [2]
a ) = G(X [2]

a ) + ∆U [2] (47)

or
G(X [1]

a ) = G(X [2]
a ) + ∆U2,1 (48)

where we introduced the affinity contrast

∆U2,1 ≡ ∆U [2] −∆U [1] = U [2]
a − U

[2]
b −

(
U [1]
a − U

[1]
b

)
(49)
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between the two membrane segments with ∆U1,2 = −∆U2,1. Thus, chemical equilibrium as described
by (48) provides a second relation between the two mole fractions X [1]

a and X [2]
a . This relation becomes

particularly useful if one of the two segments undergoes phase separation because we can then replace
one of the G-terms by the constant value µαβ . Furthermore, it is convenient to define the shifted function

∆G(x) ≡ G(x)− µαβ , (50)

which attains the value
∆G(X) = 0 for Xβ(T̄ ) ≤ X ≤ Xα(T̄ ) (51)

and increases monotonically with X outside of this interval. In terms of the shifted function ∆G, the
chemical equilibrium relation (48) becomes

∆G(X [1]
a ) = ∆G(X [2]

a ) + ∆U2,1 . (52)

It is not difficult to see that any two mole fractions X [1]
a and X [2]

a that satify this equation and, thus,
represent a solution of it do not depend on the shift µαβ but only on the affinity contrast ∆U2,1. Indeed,
we can add any constant to the functions ∆G(X) or G(X) without changing the solution to (52) or (48).

6.4. Phase Separation in Segment S [1]

If segment S [1] undergoes phase separation, the mole fraction X [1]
a must have a value within the range

Xa,β(T̄ ) ≤ X [1]
a ≤ Xa,α(T̄ ) (53)

and ∆G(X
[1]
a ) = 0 as in (51). The chemical equilibrium relation (52) then simplifies and becomes

∆G(X [2]
a ) = −∆U2,1 . (54)

We now have to distinguish two cases corresponding to zero and nonzero affinity contrast ∆U2,1. If
∆U2,1 = 0, the molecules experience the same relative affinities in both membrane segments and
thus have no preference for either segment. We then conclude that the whole membrane undergoes
phase separation and that X [2]

a = X
[1]
a = Xa, where the second equality follows from the partitioning

relation (44).
On the other hand, if ∆U2,1 6= 0, the chemical equilibrium relation (54) implies that ∆G(X

[2]
a ) 6= 0,

i.e., that segment S [2] does not undergo phase separation but represents a spectator phase with uniform
composition. The corresponding mole fraction X [2]

a = X
[2]
a,∗ satisfies the implicit equation

∆G(X [2]
a,∗) = −∆U2,1 = ∆U1,2 (55)

and stays constant as long as the mole fraction X [1]
a lies within the coexistence region (53) of segment

S [1]. Note the subscript ∗ that is used, here and below, to indicate the mole fractions of a spectator phase.
Because ∆G(x) increases monotonically with x both for 0 < x < Xβ and for Xα < x < 1, the

implicit equation (55) implies that the mole fraction X [2]
a,∗ of the uniform spectator phase in segment S [2]

decreases monotonically with increasing affinity contrast ∆U2,1 and satisfies

0 < X [2]
a,∗ < Xa,β(T̄ ) for ∆U2,1 > 0 (56)
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as well as
Xa,α(T̄ ) < X [2]

a,∗ < 1 for ∆U2,1 < 0 . (57)

Furthermore, this mole fraction exhibits the limiting behavior

X
[2]
a,∗ ≈ 1 for large negative ∆U2,1

≈ Xa,α(T̄ ) for small negative ∆U2,1
(58)

as well as
X

[2]
a,∗ ≈ Xa,β(T̄ ) for small positive ∆U2,1

≈ 0 for large positive ∆U2,1 .
(59)

Therefore, as one increases the affinity contrast ∆U2,1 from large negative to small negative values,
the mole fraction X [2]

a,∗ of the spectator phase in segment S [2] decreases monotonically as a function of
∆U2,1, from X

[2]
a,∗ = 1 to Xa,α(T̄ ) corresponding to the upper binodal. At ∆U2,1 = 0, this mole fraction

jumps from the value Xa,α(T̄ ) for the upper binodal to the value Xa,β(T̄ ) for the lower binodal. Finally,
as one increases the affinity contrast ∆U2,1 from small positive to large positive values, the mole fraction
X

[2]
a,∗ decreases monotonically from the value Xa,β(T̄ ) to X [2]

a,∗ = 0.

6.5. Phase Separation in Segment S [2]

Now, consider the situation, in which segment S [2] of the adhering membrane undergoes phase
separation. Repeating the arguments of the previous subsection, it then follows that the mole fraction
X

[2]
a,∗ of segment S [2] satisfies

Xa,β(T̄ ) ≤ X [2]
a ≤ Xa,α(T̄ ) (60)

and that ∆G(X
[2]
a ) = 0 as in (51). The mole fraction X

[1]
a in segment S [1] then satisfies the

implicit equation
∆G(X [1]

a ) = +∆U2,1 = −∆U1,2 (61)

which implies
X

[1]
a = X

[2]
a = Xa for ∆U2,1 = 0

= X
[1]
a,∗ 6= X

[2]
a for ∆U2,1 6= 0

(62)

where X [1]
a,∗ denotes the mole fraction of the uniform spectator phase in segment S [1].

Using again the general properties of the function ∆G(x), we find from (61) that the mole fraction
X

[1]
a = X

[1]
a,∗ increases monotonically with increasing affinity contrast U2,1. More precisely, as one

increases ∆U2,1 from large to small negative values, the mole fraction X [1]
a,∗ increases from X

[1]
a,∗ = 0

to Xa,β(T̄ ), jumps at ∆U2,1 = 0 from Xa,β(T̄ ) to Xa,α(T̄ ), and finally increases monotonically from
Xa,α(T̄ ) to X [1]

a,∗ = 1 as the affinity contrast ∆U2,1 is increased from small to large positive values. Thus,
the mole fraction X [1]

a,∗ satisfies

0 < X [1]
a,∗ < Xa,β(T̄ ) for ∆U2,1 < 0 (63)

and
Xa,α(T̄ ) < X [1]

a,∗ < 1 for ∆U2,1 > 0 . (64)
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Furthermore, this mole fraction exhibits the limiting behavior

X
[1]
a,∗ ≈ 0 for large negative ∆U2,1

≈ Xa,β(T̄ ) for small negative ∆U2,1
(65)

as well as
X

[1]
a,∗ ≈ Xa,α(T̄ ) for small positive ∆U2,1

≈ 1 for large positive ∆U2,1 .
(66)

7. Phase Diagrams for Adhering Membranes

From an experimental point of view, it is most useful to describe the phase behavior in terms
of overall composition and temperature. The corresponding phase diagrams can be derived by
combining the partitioning relation (44) with the chemical equilibrium relations as discussed in the
previous subsections. Thus, inserting (i) the inequalities (53) for the mole fraction X

[1]
a and (ii) the

equalities (56)–(59) for the mole fractionX [2]
a = X

[2]
a,∗ of the uniform spectator phase into the partitioning

relation (44), we obtain the binodals for the two-phase coexistence region of segment S [1] in the
(Xa, T̄ )-plane. Likewise, the binodals for the coexistence region of segment S [2] in the (Xa, T̄ )-plane is
obtained by inserting the inequalities (60) for the mole fraction X [2]

a and the equalities (63)–(66) for the
spectator phase mole fraction X [1]

a = X
[1]
a,∗ into the partitioning relation (44).

The two coexistence regions for the two membrane segments are separated by an intermediate
one-phase region as long as the affinity contrast ∆U2,1 does not vanish, i.e., as long as the two membrane
segments are characterized by different relative affinities ∆U [m] = U

[m]
a − U [m]

b . Thus, for ∆U2,1 6= 0

or relative affinities ∆U [2] 6= ∆U [1], the adhesion-induced partitioning into two segments leads to two
distinct two-phase coexistence regions within the (Xa, T̄ )-plane.

7.1. Parameter Dependence of Phase Diagrams

The phase diagrams of the adhering membranes in the (Xa, T̄ )-plane depend on the parameters that
enter the partitioning relation (44) and the chemical equilibrium relations. The partitioning relation (44)
contains only one parameter, the area fraction q[1] of segment S [1], in addition to the overall mole
fraction Xa of the a-molecules. The chemical equilibrium relations, on the other hand, involves the
function ∆G(X) and the affinity contrast ∆U2,1. The function ∆G(X) depends on the interaction
parameters Uaa, Uab, and Ubb in the configurational energy (40) via the dimensionless temperature
T̄ ≡ 4kBT/(2Uab − Uaa − Ubb) as introduced in (12).

Therefore, for the lattice model considered here, the phase diagrams of the adhering membranes
depend only on four parameters: (i) overall mole fraction Xa, (ii) dimensionless temperature T̄ , (iii) area
fraction q[1], a purely geometric parameter, and (iv) affinity contrat ∆U2,1.

The four-dimensional parameter space is most easily explored via two-dimensional slices. In the
following, we will display two-dimensional phase diagrams that depend on the overall mole fraction Xa

and on the rescaled temperature T̄ /T̄c = T/Tc for fixed values of the area fraction q[1] and of the affinity
contrast ∆U2,1, see Figures 4–7 below. This choice is convenient because it allows a direct comparison
with the phase diagram of the two-component membrane in a uniform environment. The latter phase
diagram, which depends only on mole fraction Xa and on temperature, is recovered for the limiting
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values q[1] = 0 and q[1] = 1 of the area fraction as well as for vanishing affinity contrast ∆U2,1 = 0. In
the following, we will use the term “uni-env membrane” as an abbreviation for “membrane in a uniform
environment”.

The phase diagrams in Figures 4–6 below are based on the exact binodals of the lattice binary model
as described by (17) and on the exact values of the spectator phase mole fractions X [1]

a,∗ and X
[2]
a,∗ as

given by (63)–(66) and (56)–(59) for small and large values of the affinity contrast. Therefore, the phase
diagrams in Figures 4–6 are exact as well. In contrast, the phase diagrams in Figure 7 are based on the
mean-field approximation.

In all phase diagrams displayed in Figures 4–7 below, the two coexistence regions for the membrane
segments are distinguished by their color: the coexistence regions of segment S [1] are blue whereas the
coexistence regions of segment S [2] are red. Furthermore, the remaining white regions in the phase
diagrams represent one-phase regions, in which the membranes attain uniform compositions without
domains.

Figure 4. Exact phase diagrams of the lattice model for adhering membranes as a function of
mole fraction Xa and reduced temperature T/Tc for (a) large and (b) small positive values of the
affinity contrast ∆U2,1 = ∆U [2] − ∆U [1] and fixed area fraction q[1] = 0.7 of membrane segment
S [1]. The blue and red regions represent the two-phase coexistence regions of segment S [1] and S [2],
respectively. Likewise, the blue and red curves correspond to the binodal lines for these two segments.
Positive values of ∆U2,1 imply that the a-molecules prefer to stay in segment S [1] corresponding to
the unbound segments in Figure 2 and Figure 3a as well as to the weakly bound segment in Figure 3b.
Therefore, as one increases the mole fraction Xa starting from Xa = 0, one first enters the blue
coexistence region for segment S [1] and subsequently the red coexistence region for segment S [2].
The two critical points depicted in (b) merge in the limit of vanishing affinity contrast, ∆U2,1 = 0.
The broken line in (a) represents the binodals for the coexistence region of the uni-env membrane, i.e.,
for the same two-component membrane in a uniform environment; in (b), the broken line is masked
by the blue and red binodals. For T > 0, the blue and red coexistence regions in (a) and (b) are
separated by an intermediate one-phase region, in which the adhering membrane does not undergo
phase separation even though the uni-env membrane does.
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7.2. Phase Diagrams for Positive Affinity Contrasts

In Figure 4, we display the phase diagrams of adhering membranes in the (Xa, T/Tc)-plane as
obtained from the lattice binary mixture for small and large positive values of the affinity contrast
∆U2,1 = ∆U [2] − ∆U [1] keeping the area fraction q[1] of segment S [1] constant. The relative affinities
∆U [m] are related to the molecular interaction potentials U [m]

a and U [m]
b via ∆U [m] = U

[m]
a −U [m]

b which
implies that

U2,1 > 0 iff U
[2]
b − U

[1]
b < U [2]

a − U [1]
a . (67)

Because we use the sign convention that attractive interaction potentials are negative, see (32), the second
inequality in (67) applies to systems, in which the b-molecules prefer to stay in segment S [2] while the
a-molecules prefer to stay in segment S [1]. Therefore, as one increases the mole fraction Xa starting
from Xa = 0, the a-molecules are first enriched in segment S [1], which then undergoes phase separation
leading to the blue coexistence regions in Figure 4.

For large positive values of the affinity contrast ∆U2,1 as shown in Figure 4a, the two coexistence
regions differ only in their width but have the same shape. For small positive values of U2,1 as shown in
Figure 4b, the two coexistence regions provide a decomposition of the coexistence region of the uni-env
membrane, the latter being depicted by the broken line in Figure 4a.

Figure 5. Exact phase diagrams of the lattice model for adhering membranes as a function of mole
fraction Xa and reduced temperature T/Tc for different area fractions q[1] = 0.1, 0.3, 0.5, and 0.9 in
(a), (b), (c), and (d), respectively. The affinity contrast ∆U2,1 is kept fixed at a large positive value
as in Figure 4(a). As one varies the parameter q[1] from q[1] = 0 up to q[1] = 1, the coexistence
regions smoothly evolve from a single red region for segment S [2] to a single blue region for segment
S [1]. As in Figure 4, the broken line represents the binodals of the coexistence region for the uni-env
membrane, i.e., for the same two-component membrane in a uniform environment.
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The phase diagrams in Figure 4 correspond to fixed area fraction q[1] = A[1]/A = 0.7. In general, this
area fraction can vary in the range 0 ≤ q[1] ≤ 1. In Figure 5, we show how the phase diagram evolves
with increasing values of q[1] for large, positive values of the affinity contrast ∆U2,1. For q[1] = 0, the
adhering membrane consists of segment S [2] only and we are left with the red coexistence region only.
For small nonzero values of q[1], a narrow blue region appears at small values of Xa, see Figure 5a.
As we further increase the area fraction q[1] and, thus, the relative size of segment S [1], the blue region
grows at the expense of the red region, see Figure 5b–d. Finally, as we reach the limiting value q[1] = 1,
the adhering membrane consists only of segment S [1] and we are left with the blue coexistence region
only. Thus, as we change the area fraction q[1] for fixed affinity contrast ∆U2,1, the phase diagram in
the (Xa, T/Tc)-plane evolves smoothly for all values of q[1] including the limiting values q[1] = 0 and
q[1] = 1. In the latter cases, we recover the coexistence region for the uni-env membrane as depicted by
the broken line in Figure 5.

All phase diagrams shown in Figures 4 and 5 have the same topology: the single coexistence region
for the uni-env membrane, i.e., the membrane in a uniform environment, is replaced, for nonzero affinity
contrast ∆U2,1, by two coexistence regions, a blue one for segment S [1] and a red one for segment S [2].
For T > 0, these two coexistence regions are separated by an intermediate one-phase region that lies
within the coexistence region of the uni-env membrane. This generic topology of the phase diagrams
has interesting consequences for experimental observations. Thus, consider a two-component membrane
that is phase separated when exposed to a uniform environment. After this membrane is segmented by
adhesion, the phase separation is restricted to one of the two membrane segments, i.e., phase separation
can be observed either in segment S [1] or in segment S [2] but not in both segments simultaneously.
Furthermore, for mole fractions and temperatures that correspond to the intermediate one-phase regions
between the two coexistence regions of the membrane segments, the phase separation in the uni-env
membrane is suppressed by the adhesion-induced segmentation.

7.3. Phase Diagrams for Negative Affinity Contrasts

In Figure 6, we display the phase diagrams of adhering membranes in the (Xa, T/Tc)-plane as
obtained from the lattice model for small and large negative values of the affinity contrast ∆U2,1 =

∆U [2]−∆U [1] keeping the area fraction q[1] of segment S [1] constant. When the relative affinities ∆U [m]

are expressed in terms of the molecular interaction energies U [m]
a and U [m]

b , we now find that

∆U2,1 < 0 iff U [2]
a − U [1]

a < U
[2]
b − U

[1]
b (68)

Because we use the sign convention that attractive interaction energies are negative, see (32), the second
inequality in (68) applies to systems, in which the a-molecules prefer to stay in segment S [2] while the
b-molecules prefer to stay in segment S [1]. Therefore, as one increases the mole fraction Xa starting
from Xa = 0, the a-molecules are first enriched in segment S [2], which then undergoes phase separation
leading to the red coexistence regions in Figure 6.

The phase diagrams for negative values of the affinity contrast are intimately related to those for
positive values. This relation can be understood as follows. Instead of changing the sign of the affinity
contrast ∆U2,1, we could also interchange the names of the a- and the b-molecules. We would then
obtain the same phase diagrams as in Figures 4 and 5 but with Xa replaced by Xb. If we now redraw
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these diagrams in terms of Xa = 1−Xb, we swap the relative positions of the blue and red coexistence
regions and recover the phase diagrams for negative values of the affinity contrast as shown in Figure 6.

Figure 6. Exact phase diagrams of the lattice model for adhering membranes as a function of
area fraction Xa and reduced temperature T/Tc for (a) large and (b) small negative values of the
affinity contrast ∆U2,1 and fixed area fraction q[1] = 0.7. Negative values of ∆U2,1 imply that the
a-molecules prefer to stay in membrane segment S [2], corresponding to the bound segments in
Figure 2 and Figure 3a as well as to the strongly bound segment in Figure 3b. The blue and red regions
again represent the two-phase coexistence regions of the segments S [1] and S [2], respectively, but,
compared to Figures 4 and 5, these two coexistence regions have now swapped their relative positions.

7.4. Phase Behavior for Variable Affinity Contrasts

The variation of the area fraction q[1] for fixed affinity contrast U2,1 leads to a smooth evolution of the
coexistence regions in the (Xa, T/Tc)-plane as shown in Figure 5. In contrast, the coexistence regions
undergo abrupt changes as we vary the affinity contrast ∆U2,1 from small positive to small negative
values, or vice versa, for fixed values of the area fraction q[1].

As an example, consider the phase diagram for small negative affinity contrasts ∆U2,1 and q[1] =

0.7 as shown in Figure 6b. This phase diagram exhibits a relatively narrow red coexistence region for
mole fractions Xa in the range 0 . Xa . 0.3 and a relatively broad blue coexistence region for mole
fractions within 0.3 . Xa . 1, separated by a very narrow one-phase region. For vanishing affinity
contrast ∆U2,1 = 0, this one-phase region has disappeared and the red and blue regions have merged
into the single coexistence region for the uni-env membrane, see broken lines in Figures 4 and 6. Finally,
for small positive affinity contrasts ∆U2,1, the blue and the red coexistence regions swap their relative
positions: the relatively broad blue coexistence region is now located at 0 . Xa . 0.7 and the relatively
narrow red coexistence region at 0.7 . Xa . 1. Thus, as we change the sign of the affinity contrast, the
phase diagrams change in an abrupt and discontinuous manner.

The abrupt changes of the (Xa, T/Tc) phase diagrams arising from variations of the affinity contrast
are limited to the vicinity of ∆U2,1 = 0. Indeed, as long as we do not cross ∆U2,1 = 0, a continuous
change of the affinity contrast ∆U2,1 leads to a smooth variation of the two coexistence regions within the
(Xa, T/Tc)-plane. This latter property is illustrated in Figure 7, which displays such a smooth variation
for negative values of U2,1 as obtained from the mean-field approximation to the lattice model defined in
Section 5.2.
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Figure 7. Mean-field phase diagrams of the lattice model for adhering membranes as a function
of mole fraction Xa and reduced temperature T/Tc for fixed area fraction q = 0.25. The
different subfigures correspond to different negative values of the reduced affinity contrast Ū2,1 ≡
U2,1/(kBTc): (a) Ū2,1 = −5, (b) Ū2,1 = −0.5, (c) Ū2,1 = −0.05, and (d) Ū2,1 = 0. Inspection
of these subfigures shows that the blue and red coexistence regions for the two membrane segments
change smoothly as the affinity contrast is increased from large negative to small negative values.
Furthermore, in the limit of vanishing affinity contrast, the two coexistence regions merge into the
single region for the uni-env membrane as described by the broken black lines in (a–d).

8. Summary and Outlook

In this paper, we first emphasized that the adhesion of membranes often leads to two membrane
segments, denoted by S [1] and S [2], that are in contact with two different environments. Examples are
provided by the adhesion of vesicles, see Figure 2, by hole- or pore-spanning membranes, see Figure 3a,
and by membranes supported by chemically patterned surfaces, see Figure 3b. We then studied how
these adhesion geometries affect the phase behavior of two-component membranes and vesicles.

Our theoretical analysis was based on the configurational energies E [1] and E [2] for the two membrane
segments as described by the expression (39), which generalizes the standard lattice model for binary
mixtures to the different adhesion geometries considered here. In the configurational energies E [1] and
E [2], the interactions of the a- and b-molecules with the different environments are taken into account
by the relative affinities ∆U [1] and ∆U [2] as defined in (33). These relative affinities shift the relative
chemical potential ∆µ = µa − µb for the a- and b-molecules within the two membrane segments.
From these shifts alone, we can conclude that the two membrane segments undergo two distinct phase
transitions for ∆U [1] 6= ∆U [2] as follows from the relations in (42).

In order to obtain theoretical predictions that are accessible to experiments, we then considered the
mole fractions X [1]

a and X
[2]
a in the two membrane segments and showed how these mole fractions

determine the phase diagrams as a function of the overall mole fraction Xa and the dimenionsless
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temperature T̄ via the partitioning relation (44) and the chemical equilibrium between the two membrane
segments. As a result, we found that the phase behavior of the adhering membranes depends, in general,
on four parameters: overall mole fraction Xa, temperature T̄ , area fraction q[1], and affinity contrast
∆U2,1 = ∆U [2] −∆U [1] as defined in (49).

For the generic case of nonzero affinity contrast, the phase diagrams for the adhering membranes
contain two distinct coexistence regions in the (Xa, T̄ )-plane separated by an intermediate one-phase
region as shown in Figures 4–7. These different regions evolve smoothly as one changes one of the four
parameters except for variations of the affinity contrast ∆U2,1 across the hyperplane defined by ∆U2,1 =

0. The latter behavior is illustrated by the phase diagrams in Figures 4b and 6b, which correspond to
small positive and small negative values of the affinity contrast, respectively.

All phase diagrams shown in Figures 4–7 have the same topology. This universality has interesting
consequences for experimental observations. Thus, consider a two-component membrane or vesicle
that is phase separated when exposed to a uniform environment. When this membrane or vesicle
is brought into contact with two different environments that lead to a nonzero affinity contrast, see
the examples in Figure 2 or Figure 3, the phase separation is confined to one of the two membrane
segments, i.e., phase separation may be observed either in segment S [1] or in segment S [2] but not in both
segments simultaneously. Furthermore, if the mole fraction and temperature of the adhering membrane
belong to the intermediate one-phase region between the two two-phase coexistence regions in the
(Xa, T̄ )-plane, phase separation and domain formation are suppressed by the adhesion-induced
segmentation. In this way, we predict generic features of the adhesion-induced phase behavior that
can be scrutinized by experiment.

The theory described here can be extended and generalized in several ways. First, it is possible to
study the dynamics of the phase separation processes, which proceed via the formation and coarsening
of intramembrane domains within the two membrane segments, by simulations of the lattice model. We
have already performed preliminary Monte Carlo simulations that support the phase diagrams described
in this paper. Second, one can apply the theoretical approach used here for the lattice binary mixture
to any two-component membrane. One exampe is provided by binary cholesterol/DPPC mixtures, for
which the phase diagram in Figure 1 has been deduced [5,8]. This phase diagram is primarily based on
nuclear magnetic resonance measurements, which reveal intramembrane domains. In the study presented
here, we adopted the view that these domains arise from phase separation into liquid-ordered and
liquid-disordered phases in agreement with the latest data analysis [5] and the recent review in [8]. It has
also been suggested that the domains may arise via different mechanisms such as enhanced composition
fluctuations or the formation of molecular complexes as reviewed in [6]. The experimental confirmation
of the adhesion-induced phase behavior described here would provide rather strong evidence for domain
formation via phase separation. Third, our theory can be extended to membranes in contact with
an arbitrary number of environments as well as to membranes containing three or more molecular
components as will be shown elsewhere.

For two-component membranes exposed to two different environments as considered here, the phase
diagrams depend on four parameters, three of which are easy to determine experimentally. Indeed,
the mole fraction Xa the temperature T are standard thermodynamic control parameters while the area
fraction q[1] can be controlled by the design of the adhesion system. The remaining parameter provided
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by the affinity contrast ∆U2,1 could also be determined experimentally. For adhering vesicles, for
instance, one can measure the adhesion energy of the bound membrane segment for different membrane
compositions, from which the relative affinities of the bound membrane segment and, thus, the affinity
contrast can be deduced. Alternatively, one may also obtain these relative affinities from molecular
dynamics simulations of atomistically resolved membranes.
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Appendix

A. Spherical Cap Shape of Adhering Vesicles

In this appendix, we consider the spherical cap shape of an adhering vesicle in the strong adhesion
regime as shown in Figure 2 and collect a few simple geometric relations.

First, the area fractions A[1]/A and A[2]/A can be expressed in terms of the effective contact angle
θeff via

q[1] =
A[1]

A
=

2

3 + cos(θeff)
(69)

and

q[2] =
A[2]

A
=

1 + cos(θeff)

3 + cos(θeff)
(70)

Likewise, the reduced volume v of the vesicle satisfies the relation

v = 2
[1− cos(θeff)]1/2 [2 + cos(θeff)]

[3 + cos(θeff)]3/2
(71)

Inverting this latter relation numerically, one obtains

cos(θeff) = f(v) (72)

as shown in Figure A1a. When (72) is inserted into (28), the area ratio q[1] assumes the form

q[1] =
A[1]

A
=

2

3 + f(v)
=

2

3 + cos(θeff)
(73)

for 0 ≤ v ≤ 1 as displayed in Figure A1b. For v = 0, the vesicle has a pancake shape with contact angle
θeff = 0 and area fraction q[1] = 1

2
, for v = 1, it has a spherical shape with θeff = π and q[1] = 1. The

relation (73) shows that the area fractions can be directly determined by measuring the effective contact
angle θeff .

For constant areaA and volume V , the areasA[1] andA[2] of the two membrane areas are fixed. On the
other hand, if the volume of the adhering vesicle is changed by osmotic inflation or deflation, its contact
area will decrease and increase, respectively, as described by relation (73) and shown in Figure A1b.
Therefore, the vesicle volume provides an experimentally accessible control parameter that can be used
to change the area fraction q[1].



Int. J. Mol. Sci. 2013, 14 2227

Figure A1. Spherical cap geometry: (a) Cosine of the effective contact angle θeff and
(b) Area fractions q[1] = A[1]/A and q[2] = A[2]/A of the unbound [1]-segment and the
bound [2]-segment as a function of reduced vesicle volume v.
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30. Rózycki, B.; Weikl, T.R.; Lipowsky, R. Stable patterns of membrane domains at corrugated
substrates. Phys. Rev. Lett. 2008, 100, 098103.



Int. J. Mol. Sci. 2013, 14 2229

31. Hu, J.; Weikl, T.; Lipowsky, R. Vesicles with Multiple Membrane Domains. Soft Matter 2011,
7, 6092–6102.

32. Kofke, D.A.; Glandt, E.D. Monte Carlo simulation of multicomponent equilibria in a semigrand
canonical ensemble. Mol. Phys. 1988, 64, 1105–1131.

33. de Miguel, E.; del Rio, E.M.; da Gama, M.M.T. Liquid-liquid phase equilibria of symmetrical
mixtures by simulation in the semigrand canonical ensemble. J. Chem. Phys. 1995, 103,
6188–6196.

34. McCoy, B.M.; Wu, T.T. The Two–Dimensional Ising Model; Harward University Press:
Cambridge, MA, USA, 1973.

35. Chandler, D. Intoduction to Modern Statistical Mechanics; Oxford University Press: New York,
NY, USA, 1987.

36. Seifert, U.; Lipowsky, R. Adhesion of vesicles. Phys. Rev. A 1990, 42, 4768–4771.
37. Gruhn, T.; Franke, T.; Dimova, R.; Lipowsky, R. Novel Method for Measuring the Adhesion

Energy of Vesicles. Langmuir 2007, 23, 5423–5429.
38. Gordon, V.D.; Deserno, M.; Andrews, C.M.J.; Egelhaaf, S.U.; Poon, W.C.K. Adhesion promotes

separation in mixed-lipid membranes. EPL 2008, 84, 48003.
39. Hategan, A.; Law, R.; Kahn, S.; Discher, D.E. Adhesively-Tensed Cell Membranes: Lysis

Kinetics and Atomic Force Microscopy Probing. Biophys. J. 2003, 85, 2746–2759.
40. Hategan, A.; Sengupta, K.; Kahn, S.; Sackmann, E.; Discher, D.E. Topographical Pattern

Dynamics in Passive Adhesion of Cell Membranes. Biophys. J. 2004, 87, 3547–3560.
41. Parikh, A.N. Membrane-substrate interface: Phospholipid bilayers at chemically and topographi-

cally structured surfaces. Biointerphases 2008, 3, FA22–FA32.
42. Tawa, K.; Morigaki, K. In situ imaging of micropatterned phospholipid membranes by surface

plasmon fluorescence microscopy. Colloid. Surface. B 2010, 81, 447–451.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Liquid-Liquid Coexistence in Two-Component Membranes
	Lattice Model for Two-Component Membranes
	Lattice Description of Large Membrane Segments
	Configurational Energy of Binary Mixture
	Phase Behavior of Binary Mixture
	Relative Chemical Potential as a Function of Mole Fraction

	Membrane Adhesion and Segmentation
	Adhesion of Vesicles
	Strong Adhesion Regime
	Area Fractions

	Supported Membranes
	Partially Supported Membranes
	Membranes Supported by Chemically Patterned Surfaces

	Membrane Segments Characterized by Relative Affinities

	Lattice Model for Adhering Membranes
	Two Sublattices for Two Membrane Segments
	Configurational Energy of Adhering Membranes
	Phase Transitions in Membrane Segments

	Phase Behavior in Terms of Mole Fractions
	Partitioning of Membrane Molecules
	Relative Chemical Potentials of Membrane Segments
	Chemical Equilibrium Between Membrane Segments and Affinity Contrast
	Phase Separation in Segment S[1]
	Phase Separation in Segment S[2]

	Phase Diagrams for Adhering Membranes
	Parameter Dependence of Phase Diagrams
	Phase Diagrams for Positive Affinity Contrasts
	Phase Diagrams for Negative Affinity Contrasts
	Phase Behavior for Variable Affinity Contrasts

	Summary and Outlook
	Spherical Cap Shape of Adhering Vesicles

