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Abstract

This study investigated how substrate geometry influences in-vitro tissue formation at length scales much larger than a
single cell. Two-millimetre thick hydroxyapatite plates containing circular pores and semi-circular channels of 0.5 mm radius,
mimicking osteons and hemi-osteons respectively, were incubated with MC3T3-E1 cells for 4 weeks. The amount and shape
of the tissue formed in the pores, as measured using phase contrast microscopy, depended on the substrate geometry. It
was further demonstrated, using a simple geometric model, that the observed curvature-controlled growth can be derived
from the assembly of tensile elements on a curved substrate. These tensile elements are cells anchored on distant points of
the curved surface, thus creating an actin ‘‘chord’’ by generating tension between the adhesion sites. Such a chord model
was used to link the shape of the substrate to cell organisation and tissue patterning. In a pore with a circular cross-section,
tissue growth increases the average curvature of the surface, whereas a semi-circular channel tends to be flattened out.
Thereby, a single mechanism could describe new tissue growth in both cortical and trabecular bone after resorption due to
remodelling. These similarities between in-vitro and in-vivo patterns suggest geometry as an important signal for bone
remodelling.
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Introduction

Cells are not only sensitive to biochemical signals [1], but also to

the mechanical properties [2] and the geometry [3] of their

environment. They detect and respond to these physical charac-

teristics at different length scales. On the sub-cellular level, cells

sense and integrate mechanical information via their Focal

Adhesions (FAs). These complexes of proteins link the extracellular

environment to the cytoskeleton and enable cells to both apply and

‘‘feel’’ forces [4]. The internal cytoskeletal stress is constantly

tuned by actin fibre remodelling and acto-myosin contractility [5],

giving rise to a mechanical homeostasis in the cell [6]. This in turn

enables the geometrical [7,8] and physical [2] properties of the

underlying extracellular matrix (ECM) or substrate to be sensed.

The information is then transmitted to the nuclei [9] allowing cells

to adapt proliferation [10], differentiation [11], apoptosis [12],

spreading [13], migration [14], ECM production [15], and

orientation during mitosis [16]. As cells are linked directly via

cell/cell contacts or indirectly via the ECM, they can mechanically

communicate with each other [17] and synchronise their

individual decisions to act in a collective way giving rise to cell

patterning [10,18] and ECM organisation [19,20] during mor-

phogenesis for example [21].

At the tissue level, the influence and emergence of mechanical

properties have been investigated in the context of cancer research

[22], cardio-vascular disease [23] and tissue engineering [24].

While a lot of studies on porous scaffolds also revealed an effect of

porosity and pore size on cell adhesion, proliferation and matrix

deposition (see e.g. [25,26]), relatively few focused on quantifying

the role of scaffold architecture on tissue growth kinetics [27,28].

In one study, Ripamonti and co-workers compared tissue growth

in natural bone structures and artificial hydroxyapatite scaffolds

implanted in vivo [29], and showed preferential tissue production

in concave areas of the scaffolds, as also observed in vitro [30].

The kinetics of in vitro bone tissue growth was also measured in

pores of controlled geometries in another study [27]. In their

study, they showed that the thickness of tissue produced by

osteoblasts depended on the local surface curvature. This led to the

description of tissue development in terms of curvature-controlled

tissue growth (CCTG), which gave good predictions of the tissue

shape. Since this description is purely geometric, additional studies

are required to elucidate the potential effects of mechanical and

biological processes involved in the interfacial motion of tissue (e.g.

cell proliferation and ECM production).

A classic example of the interaction between geometry and

tissue growth can be found in the process of bone remodelling [31]

which allows bone to renew and to adapt to slowly changing

mechanical environments. During bone remodelling, three cell

types are involved: osteocytes sense mechanical loads in existing

bone [32,33,34]and forward the signal to osteoclasts which resorb

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36336



old or damaged bone, and to osteoblasts which produce new

collagenous tissue called osteoid. By definition, resorption and

deposition are two processes that locally change the surface

geometry of the bone tissue. In cortical bone remodelling,

osteoclasts resorb bone, leaving cylindrical pores called osteons

[35]. These are then refilled by osteoidal tissue with a central

blood vessel, the Haversian canal [36]. During the remodelling of

trabecular bone however, osteoclasts dig out small semi-circular

channels or grooves called resorption pits or trails which can be

seen as hemi-osteons, that are later refilled with osteoid by the

osteoblasts [35]. Despite the continually changing local geometry,

the mean curvature of the trabecular bone surface is tightly

controlled [37]. Indeed, the signals responsible for such a precise

spatial orchestration of the cells on the millimetre scale are still

unclear. For instance, it is not clear why osteoblasts stop tissue

production once a hemi-osteonal lacuna is filled. This provides a

strong motivation to understand the influence of geometry on

tissue deposition during bone remodelling – the goal of this paper.

Besides the quantitative description of tissue deposition on bone-

like substrates, the present study proposes a new physical

explanation of how the organisation of contractile cells leads to

CCTG, as observed by Rumpler et al. [27]. Circular pores and

semi-circular surfaces were designed in hydroxyapatite scaffolds to

mimic osteons and osteoclastic resorption pits (hemi-osteons),

respectively, and the scaffolds were incubated with MC3T3-E1

pre-osteoblast cells. In order to quantify geometry evolution on

experimental images, a computational tool based on the approach

of Frette et al. [38] was used to measure the curvature profiles and

integrated into an algorithm for CCTG. In this paper, CCTG is

shown to be equivalent to a simple geometrical construction

representing the organisation of individual tensile elements and

called the chord model. This new approach enables curvature-

controlled tissue growth to be interpreted as the result of the

superposition of linear elements such as stretched cells and

collagen fibres. By comparing a simple geometrical model to

experiments, this paper also highlights that the sum of mechanical

and biological processes responsible for tissue growth responds to

simple geometrical rules giving rise to the patterns observed in

vitro. This suggests geometry as a key regulatory element for the

tight control of tissue deposition during bone remodelling.

Materials and Methods

Production of the Hydroxyapatite (HA) Plates
HA plates (2 mm thick) containing circular pores and semi-

circular vertical channels (nominal diameter 1 mm) were made by

slurry casting. The moulds were designed using the computer-

aided design (CAD) software Alibre Design (Alibre Inc., Richard-

son, TX) and produced with a three-dimensional (3D) wax printer,

Model Maker II (Solidscape Inc., Merrimack, NH) as described in

[39] (Fig. 1A). The moulds were filled with a HA slurry made of

15 g of methacrylamide monomers (MAM), 5 g of N-N’-

Methylenebisacrylamide (BMAM), 75 g of water and 12.5 g of

Dextran for 300 g of HA powder, and crosslinked with

ammonium persulfate and N,N,N’,N’-Tetramethylethylenedia-

mine (TEMED). The structures were slowly air dried, pre-sintered

and finally sintered as done in [40] (Fig. 1B).

Cell Culture
Murine pre-osteoblastic cells MC3T3-E1 (provided by the

Ludwig Boltzmann Institute of Osteology, Vienna, Austria) were

seeded with a density of 105 cells/cm2 on the surface of the HA

scaffolds and cultured for 28 days in a-MEM (Sigma-Aldrich, St.

Louis, MO) supplemented with 10% foetal calf serum (PAA

laboratories, Linz, Austria), 0,1% ascorbic acid (Sigma-Aldrich, St.

Louis, MO) and 0,1% gentamicin (Sigma-Aldrich, Steinheim,

Germany) in a humidified atmosphere with 5% CO2 at 37uC
(Fig. 1C).

Imaging and Analysis
Each pore was imaged every 3 to 4 days using a phase contrast

microscope (Nikon Eclipse TS100, Japan) equipped with a digital

camera (Nikon Digital sight DS 2Mv) (Fig. 1D). All pictures were

taken with a 46objective, yielding the final image resolution

1mm~205pxl.

The digital images were semi-automatically binarised using

ImageJ (National Institutes of Health, Bethesda [41]). The contrast

in the images enabled scaffold and tissue (black in the binarised

images) to be distinguished from the medium (white).

Measurement of the Tissue Production
Tissue production in the pores was quantified by determining

the projected tissue area (PTA) formed in the pores (Fig. 1D). As

this measurement is two-dimensional, it is only a proxy for

quantifying the volume of growth into the depth of the pore. The

free section of a pore, corresponding to the white regions in the

binarised images, decreases with time. The PTA was then

calculated by subtracting the binarised image at an initial time

point from the image at the time of interest. As cells needed time to

settle and start tissue deposition, the initial pore section was taken

on the fourth day after seeding (D4).

The experiments presented here included 6 pores for each

shape: circular pores (CIR) and semi-circular channels (SC). Two

other sets of experiments repeated in the same conditions showed

similar results (data not shown).

Immunofluorescence Staining
Some scaffolds were washed with phosphate buffered saline

(PBS), fixed with 4% paraformaldehyde and permeabilized with

0.1% Triton-X100 (Sigma-Aldrich, Steinheim, Germany). After

15 min blocking in 10% blocking reagent (Roche, Germany), the

samples were incubated for 1 h in a 1:200 solution of myosin IIb

antibody (Cell Signaling Technology, Beverly, MA) and 1 h in a

1:200 solution of anti-Rabbit IgG AF 488 (Cell Signaling

Technology, Beverly, MA). Once washed in PBS, the tissue was

stained for actin stress fibers by incubating with TRITC-Phalloidin

461028 M (Sigma-Aldrich, Steinheim, Germany) for 40 min.

After fixation, some of the samples were permeabilized as

mentioned above and stained for nuclei with a 1:300 solution of

TO-PRO3 (Invitrogen, Oregon, USA) for 5 min. Images of stress

fibres, myosin and nuclei were obtained using a confocal laser

scanning microscope (Leica, Germany).

Curvature Measurement
The curvature profile of the interface between the tissue and

the medium on each binarised image was calculated using

Frette’s algorithm [38,42] implemented in a custom made

Matlab code (Matlab 7.8.0 R2009a, MathWorks, Natick, MA).

This method has an advantage over other curvature measure-

ments based on spline fitting [43], in that it can be applied

directly to digital images coming from the phase contrast

measurements. The algorithm first located the pixels on the

tissue-medium interface in the binarised image. The local

curvature k~
1

R
associated with an interface pixel was then

estimated from the ratio of the number of black to white pixels

lying within a given radius from the interface:

Geometric Control of Bone Tissue Growth
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k~
3p

r

A

Atot

{
1

2

� �
ðEq:1Þ

where A is the number of pixels in the mask and on the outer

side of the interface, Atot is the number of pixels in the mask and

r is the mask radius (Fig. 2A and B). The calculation was made

for all pixels on the interface on each side of the border. The

local curvature in one position of the interface was taken as the

mean value of the curvatures measured on the outer pixel and

the inner pixel. In the limit of a perfectly smooth interface and

an infinitely small radius, this ratio corresponds to the local

curvature. In this paper, a positive curvature is defined as a

concave surface (Fig. 3). Average curvatures kave were deter-

mined along the perimeter of the pore for circles, and along a

portion of the interface in semi-circles. The precision of the

measurements are discussed in Text S1.

Curvature-controlled Tissue Growth
An equivalent of the CCTG model presented by Rumpler et al.

[27] was implemented by incorporating the curvature estimation

of Frette et al. [38]. The technique to estimate interfacial

curvature on a binary image was extended towards a description

of growth by scanning the mask over the entire image, giving

‘‘effective curvature’’ values for all pixels (Fig. 2C). Assuming that

growth occurs only in concave regions, each white pixel where the

effective curvature is positive was changed to black, representing

tissue deposition. The process was then iterated to describe

CCTG. This method has the advantage that growth can be

directly compared with the experimental pore geometries.

In the approximation Rwwr, the local thickness of tissue

produced in one step is proportional to the local curvature (for a

proof see Text S1) and compares with the description of CCTG

proposed in [27]:

dComp~
r2

6
k ðEq:2Þ

Results

Tissue deposition was observed in each pore by phase contrast

microscopy over a period of 28 days. Fig. 3A presents images taken

at different times during the culture (D4, D7, D14 and D21) and is

compared with the CCTG description in Fig. 3B. In circular

Figure 1. Experimental protocol. A - Moulds are produced by rapid prototyping. A build wax (blue) is used to print the mould in 3 D. A support
wax (red) is added to reinforce the object while printing, and then removed by dissolution. B - Hydroxyapatite slurry is cast into the moulds, slowly
dried and sintered. C - Pre-osteoblast cells are seeded (105 cells/cm2) on the scaffolds and cultured for 28 days. D - Tissue growth is quantified by
phase contrast microscopy twice a week by measuring the projected tissue area (PTA) in each pore.
doi:10.1371/journal.pone.0036336.g001
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pores, tissue deposition occured homogeneously along the

interface, leading to a uniform concentric closing of the cylinder.

On semi-circular channels, no tissue formed on the convex corners

of the channel neither on the external flat surfaces. Growth is

therefore pinned within the channel, resulting in different amounts

of tissue as a function of position in the lacuna. In contrast to

circular pores, the interface of semi-circular channels flattened

with time.

The evolution of tissue shape reveals the determining role of the

boundary conditions in the interfacial motion between 4 and 28

days. The average curvature measured on the experimental

images increased with ongoing tissue growth in circular pores,

whereas curvature slowly decreased on a semi-circular channel

(Fig. 3A and 4A).

On the growth curves in Fig. 4B, the PTA was normalised by

the area of the pore (PA) measured on the fourth day of culture. In

semi-circular channels, PA was taken to be the free area under the

scaffold surface (dashed line in Fig. 5). A direct comparison of the

fraction of available space filled with tissue was then possible. The

experimental data displayed a linear increase of the amount of

tissue produced in circular pores up to day 14 in agreement with

previous results [27]. Afterwards, tissue amplification slowed

down. Comparison of the early growth behaviour in circular

and semi-circular channels, calculated between day 4 and day 14,

revealed that tissue growth was significantly higher in the circles

compared to semi-circular surfaces (Fig. 4C).

Although the local curvature was supposed to be the same on

each point of the surface, the initial growth rates (between D4 and

D14) in a circular pore and on a semi-circular surface are different

(Fig. 4C). A two-way analysis of variance ANOVA showed a

statistical difference between the shapes (CIR vs SC) and no

significant influence of the methods used (Experiment vs

Simulation on experimental shapes vs Simulation on ideal shape).

All pair-wise multiple comparisons were done following the Holm-

Sidak method and p values of less than 0:05 were considered

significant. The geometry of the substrate influenced the speed of

Figure 2. Computational methods. A-B - Principle of curvature measurement on continuous (A) and discrete (B) interfaces (adapted from [38]).

The grey area represents the contributing area A in equation 1 where r~8:5pxl is the radius of the mask, Atot~pr2 in A and Atot~
X
mask

pixels in B. C -

Implementation of CCTG. The whole image is scanned with the mask (12) and the ratio
A

Atot

is attributed to each pixel (22). A threshold of 0.5,

corresponding to k~0, is applied: free pixels where kw0 are filled with tissue (32). The interface is then updated and the entire procedure is
repeated.
doi:10.1371/journal.pone.0036336.g002
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tissue production by the cells. The CCTG description correctly

predicted that the average curvature diverges as the circular pore

filled whereas it should converge toward zero (flat surface) in semi-

circular channels (Fig. 4A).

In order to compare predictions and in vitro results, a time scale

parameter a in step:day{1 was derived from the ratio between

simulated and experimental growth rates measured in circular pores

in mm2:step{1 and mm2:day{1 respectively. The tissue growth rate

was derived from the simulations performed on experimental

images with r~8:5pxl,
DPTA

Dt

����
sim

~0:00167mm2:step{1 and

experimentally measured on the early stage (D7 to D14) and is

considered constant:
dPTA

dt

����
exp

~0:0284mm2:day{1: The time

scale used in the following is thus a~17:0step:day{1:
Quantitative results predicted by application of CCTG on

experimental images at D4 are reported in Fig. 4B. The simulated

projected tissue areas (PTA) were normalised by the area of the

respective pores at D4 (PA) and averaged (n~6): An additional

lag time was used to overlap simulated and experimental data:

t0 CIR~4day and t0 SC~5day: t0 represents the time cells need to

spread and colonize the scaffold before starting growth and is

known to depend on the geometry of the pore [44]. Once the

single free parameter of the calculations is fitted on the

experimental growth in circular pores (a~17:0step:day{1),
CCTG also correctly described the initial growth behaviour on

semi-circular channels (Fig. 4A, B and C). However, it did not

explain the notable slowdown observed experimentally in both

geometries from D14.

A ‘‘Chord Model’’ to Explain Curvature-controlled Tissue
Growth

Although CCTG can predict both the geometry and the linear

kinetics of tissue formation, it contains no intrinsic time scale and

provides no mechanistic explanation of the curvature sensing of

cells and tissue.

In the following, tissue is considered as a collection of stretched

cells and fibrous ECM, and growth is described as occurring via

the assembly of such tensile elements (chords) on a surface. In this

section, it is demonstrated that CCTG is a direct consequence of

this simple geometric construction. Besides giving a mechanistic

interpretation of the CCTG on the cellular level, the chord model

also motivates the interaction range (mask size) chosen for

measuring curvature and thereby justifies the time scale of the

computational implementation.

As cells are the tissue manufacturers, a geometrical description

of single cells settled on a surface (Fig. 5) provides hints to the local

dependence of tissue organisation on the geometry. Once attached

to the substrate, cells contract their cytoskeleton thus defining a

new interface between the FAs [45]. If the surface is flat or convex,

cytoskeletal contraction results in a downward motion of the cell

towards the substrate (Fig. 5A). However, if the surface is concave,

the contracting cell is stretched between the FAs and locally forms

a flat interface (Fig. 5B).

The chord model presented here consists of a tensile element of

length l that connects two points on a surface (Fig. 5C) and locally

defines a new interface. The effect induced in the perpendicular

direction can be described using the largest distance dChord

between the chord and the substrate. Simple geometrical relations

(detailed in Text S1 and Figures S1 and S2) demonstrate that the

local interfacial motion induced by the deposition of a single chord

dChord is proportional to the local curvature k~
1

R
with the

hypothesis Rwwl:

dChord~
l2

8
k ðEq:3Þ

Combining this effect for all possible positions of the chord on

the substrate predicts the location of the interface once a collection

of tensile elements has been laid down (Fig. 5D). Additional layers

can then settle iteratively on the surface.

Equations 2 and 3 demonstrate that the superposition of tensile

elements on a curved surface generates an interfacial motion

equivalent to the CCTG evolution presented earlier (Fig. 2 and

Figure 3. Qualitative results: evolution of the geometry. A -
Evolution of the tissue interface in a circular pore and on a semi-circular
surface. Images taken at different culture times (D4, D7, D14 and D21)
during in vitro experiments show behaviours comparable to those
observed in osteons and hemi-osteons during bone remodelling. B -
The superposition of the interfaces obtained experimentally (top)
compares to the one derived from CCTG applied to the actual geometry
of the experimental pores at D4 (bottom). 7, 14 and 21 days of culture
are simulated by 51; 170 and 289 steps for the circle and 34; 153 and
272 steps for the semi-circle respectively (r~8:5pxl, a~17:0step=day).
doi:10.1371/journal.pone.0036336.g003

Geometric Control of Bone Tissue Growth

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e36336



[27]). Using r~

ffiffiffi
3
p

2
l as the radius of the mask in the

computational method leads to full quantitative consistency

between the chord model and the CCTG description:

d~dChord~dComp~
l2

8
k: Mathematical details are provided in

the Text S1. Moreover, Fig. 5D reveals that geometries derived

from the chord model also compared well with the experimental

observations (Fig. 3).

Considering cells as tensile elements, the chord model can describe

tissue growth and its curvature-driven behaviour. Additional support

comes from the observation of actin fibres that indicate stresses

produced by interacting cells. These stress fibres formed rings inside

circular channels (Fig. 6B), as previously observed [27], which are

reminiscentofcontractileactin–myosinrings foundinwoundhealing

for other cell types [46,47,48]. Actin fibres co-localizing with myosin

are shown in concave regions on Fig. 6A. These fibres have an

arrangement very similar to the chords in Fig. 5B, supporting the idea

that cells in the tissue collectively exert tensile stress as they adhere to

matrix and substrate. On convex surfaces however, Fig. 6A clearly

shows a much lower density of contractile chords, also in agreement

with themodel inFig.5.Aconvex surface (Fig.6D)wasalso testedand

interestingly only a mono-layer of tissue was observed even up to late

growth stages.

Staining tissue for cell nuclei reveals a homogeneous cell density all

over theprojected tissuearea (Fig.6C).This showedthatcelldensity is

independent of curvature. Note that the global geometry of the new

interface was independent of the number of chords, i.e. cell density, in

one layer.Moreover, thegeometryofa substrate isknownto influence

cell proliferation by determining the stress distribution in the

contractile cell layer [10]. Although no proliferation study was

performed here, the constant cell density suggests that cell

proliferation adapts as the curvature increases and the adhesion

surface decreases during tissuegrowth, leading to the overall constant

cell density.

In the computational description presented earlier, the radius of

the mask defined the interaction range around a given point and

influences the precision of curvature estimation. The equivalence

between the CCTG and the chord model together with the

cellular approach proposed above motivated us to scale this range

to the approximate length of a cell: r~

ffiffiffi
3
p

2
l: For an elongated

osteoblast, l&50mm but with r~8:5pxl and 1mm~205pxl, the

actual cell length considered here is l&47mm: Thereby, the

effective curvature values derived in the computational imple-

mentation of CCTG represent what cells ‘‘feel’’ from the

geometrical features of the surface.

In terms of PTA, the simulated growth rate in mm2:step{1 in

an ideal circular pore is constant:

DPTA

Dt

����
id

(t)~2pR(t)d(t)~
pl2

4
~

pr2

3
ðEq:4Þ

This constant rate derived in closed convex shapes (circles)

confirms the equivalence between the chord model and the CCTG

description proposed by Rumpler et al. [27], see also Fig S3.

According to equation 4, the simulated growth rate and thus the

time scale of the model depend on the interaction range chosen.

The simplest approach to determine this time scale is to assume

that the experimental growth rate is also proportional to

curvature. This requires the definition of one parameter a(l) that

fits the time t of simulated growth in steps to the time t of

experimental tissue growth in days, which leads to:

dPTA

dt

����
exp

~a(l)
pl2

4
~a(r)

pr2

3
ðEq:5Þ

Equations 4 and 5 show that a(l) scales with the inverse of the

square of the interaction range chosen in the model and can

always be derived by comparing simulated and measured tissue

growth rates in the experimental pores. The interaction range

being fixed to l~47mm, a is a constant accounting for the kinetics

of all the biological phenomena contributing to tissue deposition

(cell migration, proliferation, ECM synthesis, etc.).

t and t being proportional, the interfacial motion derived from

the model can be described as a continuous function of time t~
t

a
:

Figure 4. Quantitative results: curvature profile and growth rate. Quantitative analysis of tissue growth in circular pores (CIR) and on semi-
circular channels (SC) of 1 mm diameter. A - The average curvature along the perimeter of the circular pore and on a given portion of the semi-
circular surfaces is measured on experimental images at different culture times. As k0 CIR~2:047mm{1, theoretically circular pores should be filled in
about 432 steps or 25.4 days. B - The projected tissue area (PTA) is normalised by the area of the pore (PA) at D4 (reference) and reported as a
function of culture time. In A and B, the full lines correspond to the prediction given by CCTG (r~8:5pxl; a~17:0step=day). A lag time is used to
overlap simulated and experimental data (t0 CIR~4day and t0 SC~5day). C - Growth rates are calculated between D7 and D14 with the experimental
and the simulated data as well as data simulated on ideal geometries with a radius derived from the experimental images. ANOVA analysis shows no
significant differences between the methods used but a statistical difference in the tissue growth rates achieved in CIR and SC (pv0:05). Dots and
error bars represent mean values and standard errors, respectively (n~6).
doi:10.1371/journal.pone.0036336.g004
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To quantify kinetics, the evolution of the distance between tissue

interface and the substrate (in mm:step{1) was derived in an ideal

pore by integrating equation 3:

d(t)~a
l2

8R(t)
~{

dR(t)

dt
ðEq:6Þ

This gives a solution in terms of curvature:

k(t)~
1

R(t)
~

k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

l2k2
0

4
at

r ðEq:7Þ

The time needed for an ideal circle to be filled was determined

for a radius equal to zero and an infinite curvature:

tfill~
4

l2k2
0a

ðEq:8Þ

Discussion

The amount and the shape of the tissue produced by MC3T3-

E1 cells cultured in pores of controlled geometries were quantified

in terms of PTA and curvature on phase contrast images taken

over a period of 28 days. The chord model not only agrees with

the computational implementation of CCTG as described in Fig. 2,

but it also provides a relevant interpretation on the cellular scale of

the equivalent behaviour observed during tissue growth (Fig. 3).

Moreover, the works of Théry et al. [13] about the shape and the

stress state of a cell after spreading and contraction, support the

approach sketched on Fig. 5.

Figure 5. A chord model to describe tissue growth. After adhering on a substrate (pink dots), a cell contracts its cytoskeleton (purple arrows) to
reach a stable tensile state. A - On a convex surface, the cell remains bent and exerts pressure on the substrate. B - On a concave surface, cell
contraction stretches the membrane and results in a local flattening of the surface. C - A chord representing a static stretched cell defines an element
of tissue, which thickness d is proportional to the local curvature of the surface. D - A collection of stretched cells sitting on a concave surface can be
seen as an assembly of segments. Each cell locally generates a zero curvature and defines an element contributing to the local thickness of tissue
produced. With this new interface being defined, another collection of cells can settle and contribute to tissue growth. The interfacial motion derived
from this simple geometrical interpretation compares with the experimental observations (Fig. 3).
doi:10.1371/journal.pone.0036336.g005
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As described earlier, one step of the computational implemen-

tation of CCTG represents roughly the contribution of one layer

of cells to the tissue thickness. In agreement with the hypothesis of

CCTG, the simulation predicts a constant tissue growth rate (in

mm2:step{1) in an ideal circle [27]. This rate only depends on the

cell size, arbitrarily set to 47mm (Eq.7). Measuring the initial

experimental rate (in mm2:day{1) in circular pores enabled us to

fit the model of growth with a unique parameter that introduces a

linear time scale by giving the number of steps needed to represent

one day of experiment: a~17:0step:day{1. Although this

parameter should theoretically represent the number of cell layers

deposited in one day of culture, the high value suggests that some

assumptions are too simple. For example, stretched osteoblasts in

culture are probably not homogeneous in size l and are likely to be

larger than 47mm. Moreover, a chord model only based on cells

implies that the contribution of the ECM is neglected although

Fig. 6B reveals the presence of collagen fibres aligned with the

interface, just as actin fibres in stretched cells. Considering larger

cells and/or adding collagen fibres in the definition of the tensile

elements would increase the simulated growth rate and decrease a
toward more realistic values. Importantly, a does not interfere with

the geometrical behaviour of the interface but just rescales the

evolution in time.

The circular pores and semi-circular surfaces produced in the

experiments were chosen with the same radius, i.e. the same local

curvature, along the interface. Although CCTG supposes a local

growth rate proportional to the local curvature, Fig. 4C shows a

significant difference in the normalised global growth rates

(PTA=PA) on circular pores and semi-circular surfaces. The

qualitative results (Fig. 3) as well as the evolution of the average

curvature (Fig. 4A) suggest the importance of the boundary

conditions for the pattern of tissue deposition. As no growth occurs

on the convexities (Fig. 6D), the tissue laid down within concavities

flattens the surface in semi-circular channels, i.e. decreases the

average curvature. In circular pores however, the concentric

growth increases curvature.

To underline the determining role of the convex corners as seen

in Fig. 6, CCTG was simulated on artificial images (Fig. 7A–F). All

geometries were based on a semi-circle (R~0:5mm) that is

differently linked to the surrounding flat surfaces. Fig.7 shows that

although the local curvature is the same on a given portion, tissue

deposition (in time and space) depends strongly on the geometry of

Figure 6. Tissue organisation. A - Tissue produced in a pore made of 4 adjacent circles and stained for actin stress fibres and myosin IIb. Actin
fibres colocalised with myosin IIb are present on the whole surface but their higher density on concave interfaces suggests a local higher stress state
of the cells. B - Tissue is made of cells and collagen. Nuclei (red), actin stress fibres (green) and collagen fibres (visualized by polarized microscopy) are
oriented parallel to the interface. The white arrows show polarisation direction. C - The homogeneous distribution of nuclei shows that cell density is
independent of geometry and suggests a local dependence of cell proliferation on the local curvature. D - An example of a convex HA surface (D35)
on which only a mono-layer of tissue was formed.
doi:10.1371/journal.pone.0036336.g006
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the surroundings. As the tissue grows, changes in the curvature

profile of the interface affect both local and global growth rates.

Although the phenomenon is slightly exaggerated due to the

discrete character of the computational method (Fig. 7A and B), it

is interesting to note the slowdown of growth when tissue reaches

the convex corners. This suggests geometry as a potential signal for

osteoblasts to decrease and eventually stop tissue production when

a hemi-osteonal lacuna is filled.

Fig. 4B reveals a slowdown of the experimental tissue growth

after 18 days of cell culture that is not predicted by the chord

model fitted with a linear time scale. However, more complex

scaling laws could be used to depict the non-linearities induced as

cells slow down proliferation and ECM synthesis when they

differentiate and mature [49]. For example, pre-osteoblasts

differentiate towards osteoblasts during culture and begin to

synthesise alkaline phosphatase (ALP). As the plateau often

appears after 14 days of culture or later, which approximately

corresponds to the beginning of ALP synthesis by such cells [50],

the influence of the differentiation could be a possible explanation

for the decrease in tissue production. In parallel, the ECM

synthesized by the osteoblasts also undergoes maturation, whereby

cross-link formation in the collagen matrix increases with culture

time [51,52]. This could implement a denser packing of the tissue

and explain the plateau in PTA. As the CCTG description is

intrinsically a geometrical description, adapting the time scale

would be a simple way to take the effects of cell and matrix

maturation into account. For a given interaction range, the

number of steps representing one day of culture a(t) would then

decrease with time, and the scaling law would require an

additional time characteristic representing the slowdown of cell

activity with ageing.

Alternatively, the plateau in tissue production observed after

two weeks of culture may have a geometrical origin. In the

experiments, tissue is grown in 2 mm thick scaffolds with straight

sided pores, and only the projected tissue area is measured on

phase contrast images. Using PTA as a proxy to quantify the

amount of tissue produced in the pore implies that the local tissue

thickness is homogeneous along the third axis, which is unlikely.

Indeed, cells need time to migrate and therefore can not build the

same thickness of tissue simultaneously throughout the depth of

the channel. Moreover, the extremities of the pore present convex

corners in 3 D and such boundary conditions are expected to

affect the growth pattern along the z-axis. As a consequence, pores

are unlikely to remain straight during growth, and a second

principal curvature (different from zero) should then complete the

geometrical characterisation of the interface in 3 D. Although this

second principal curvature is expected to play a role, the

approaches proposed in this study assume that only one principal

curvature (in the image plane) changes during growth whereas the

other remains constant and zero (straight sided pores). The

slowdown of tissue growth observed in terms of PTA could then be

explained by the emergence of a convexity (negative second

principal curvature) in the z-direction that is not taken into

account in the previous calculations. Extending the CCTG

description to 3 D would be of great interest to understand which

combination of the two principal curvatures is relevant for tissue

growth: mean curvature, Gaussian curvature, maximal curvature,

etc. As such models predict interface evolution toward surfaces of

minimal energy, this 3 D mean curvature would then decrease

and tend towards zero, much akin to what is observed in

trabecular bone [37].

Interestingly, curvature-controlled growth is well known in

physics and material sciences and has been used to describe

electrochemical coating [53–54], solidification [55], and grain

growth [56], for example. Such processes come about in systems

with high surface tensions, in which surface energy is linked to

Figure 7. Importance of boundary conditions. Tissue growth (orange) is simulated on different artificial images using the CCTG description (A
to F). The predicted PTA is reported as a function of iteration steps. Each initial interface (black) contains a semi-circle with a radius of 0.5 mm. The
different boundary conditions show the influence expected on tissue growth rate and organisation. On A, B and C, the model predicts that the
sharper the convex corners, the slower the growth. Tissue is eventually deposited on convex surfaces after the surroundings have been filled and the
interface has locally become concave (red arrows). Comparing A, D and E reveals that shifting the convex corners upward prolongs the duration of a
constant growth rate which is half of the one obtained in a full circle (F). Tissue deposition can expand on the walls until it reaches the convex
corners. From this time point (inset), the surface joining the pinning points is minimised, which decreases the curvature and slows the growth.
doi:10.1371/journal.pone.0036336.g007
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curvature through the Laplace equation, as commonly seen in

wetting problems [57]. Surface tension has also been shown to be a

determining factor in biology, mainly in the context of the

Differential Adhesion Hypothesis [58]. This interfacial character-

istic is not only responsible for self sorting on the cell level during

gastrulation [59] and tumour invasion [60] but also for tissue

organisation [28].

While it was known that tissue-producing cells respond to

geometry [29] following a principle of CCTG on a millimetre scale

[27], the present study shows that the patterns of growth obtained

in circular pores and on semi-circular channels are analytically

equivalent to those derived from a simple construction based on

tensile elements representing stretched cells. No direct geometry

sensing is necessary to explain the resulting curvature-controlled

growth. The shape of the surface affects the spatial distribution of

FAs and thereby the shape of the contractile cells [13] as well as

the forces they sense [8] and produce [10]. Adding a time scale

enables the model to predict the kinetics of tissue deposition: faster

growth occurs in circular pores compared to semi-circular

surfaces.

The chord model was able to explain the shape-dependence of

growth solely in terms of tension and curvature, without any

biological mechanisms such as stress-dependent proliferation or

migration. Although such mechanisms are involved on the cellular

level and need to be taken into account in a physiological context,

our results show that the interplay of contractility and geometry

alone can coordinate growth in scaffolds. This reveals a generic

physical control mechanism for biological growth processes in

bone, independent of specific functional aspects and signalling

pathways, that may also be relevant to other tissue types.

The interfacial motion predicted by the model and supported by

the experiments is similar to the one occurring in osteons and

osteoclastic resorption lacunae during bone remodelling: while

circular pores are filled in a concentric way, semi-circular channels

are filled layer by layer until the interface becomes flat i.e. the

curvature of the surface becomes zero. This implies that

osteoblasts do not need a specific signal to stop matrix production

when the resorption pit is filled, but the gradual flattening of the

bone surface during the filling process are sufficient as a cue.

Interestingly the observation that semi-circular pores fill at a

slower rate than circular ones is also observed in trabecular and

cortical bone, with the filling of hemi-osteons being slower than for

osteons (see e.g. [61,62,63]). These results strongly suggest that

surface geometry is an important signal for controlling bone

remodelling. In this respect the model may also have implications

for tissue engineering and of course may be interesting to use it in

the design of scaffold materials for implants [64,65,66]. One major

difficulty in testing the model in-vivo is the limited amount of

kinetics data available in which local growth rates within a scaffold

have been measured. It is possible that recent developments in in-

vivo CT may provide suitable data that enables a comparison with

the model [67].

The chord model presented in this paper makes the link

between the macroscopic curvature-controlled tissue growth

observed in vitro and in vivo, and the assembly of stretched cells

and other fibrous elements making up the tissue.
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