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Abstract

When transcription of a gene is induced by a stimulus, the number of its mRNA molecules changes with time. Here we
discuss how this time evolution depends on the shape of the mRNA lifetime distribution. Analysis of the statistical
properties of this change reveals transient effects on polysomes, ribosomal profiles, and rate of protein synthesis. Our
studies reveal that transient phenomena in gene expression strongly depend on the specific form of the mRNA lifetime
distribution.

Citation: Deneke C, Rudorf S, Valleriani A (2012) Transient Phenomena in Gene Expression after Induction of Transcription. PLoS ONE 7(4): e35044. doi:10.1371/
journal.pone.0035044

Editor: Magnus Rattray, University of Sheffield, United Kingdom

Received December 20, 2011; Accepted March 12, 2012; Published April 23, 2012

Copyright: � 2012 Deneke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: angelo.valleriani@mpikg.mpg.de

Introduction

Together with DNA replication and transcription, translation of

mRNA is one of the fundamental processes in cells. Indeed, the

fidelity of translation and the speed of ribosomes ensure correct

and reliable protein delivery. Yet the process of mRNA

degradation governs the reaction time of the cell to changing

environmental conditions. One can obtain a deeper understanding

of the dynamics of protein synthesis only by considering the time

scales that govern the dynamics of polysomes [1–3], the sequence

(or codon) dependent elongation speed of the ribosomes [4–6], and

the effect of mRNA stability on polysomes [2] and on the synthesis

of proteins [7].

This manuscript is a contribution to our understanding of

transient phenomena in gene expression. Here we describe

theoretically the time dependent balance between transcription

and mRNA degradation. We consider a population of cells under

balanced growth conditions, such as those considered theoretically

in [8] and often pursued in experiments: Under these conditions

the total number of cells is in balance between growth and

dilution, the cell size distribution is stationary, all external growth

conditions are also constant in time, and the cells are not

synchronized.

In many experiments, the transcription of genes placed on

recombinant plasmids within the cells is induced by specific drugs.

Therefore, conclusions about translation and protein expression

depend on the time of measurement after the induction. A similar

effect is observed also in certain natural systems. One example is

given by the reaction of the adaptive immune system T-cells to an

appropriate stimulus [9].

It is known that mRNAs are degraded by different biochemical

pathways both in prokaryotes and in eukaryotes [10]. In addition,

measurements of the decay of the mRNA amount [11–13] have

shown that many decay patterns do not follow an exponential

behavior [12,13]. Indeed, the clustering of decay patterns in ref.

[13] reveals that at most 117 out of 1102 mRNA species decay

more or less exponential. On the one hand, the non-exponential

behavior of the other mRNAs could in principle be due to the

perturbing nature of the experimental technique. On the other

hand, we believe that the non-exponential behavior is rather a

consequence of the complexity in the biochemistry of mRNA

degradation [10]. Yet, in absence of more precise experiments,

one cannot discern the contribution of these two possibilities.

We will first assume that transcription of one chosen gene is

induced at time zero with a constant transcription rate vtc per cell.

In those cases in which transcription is not identical between cells

or even if transcription is varying stochastically, we will assume

that vtc is the average transcription rate in a large sample of cells.

Furthermore, we consider the fact that the lifetime U of each

mRNA is random and that it is distributed according to the

probability density wU (t). The multitude and complexity of

degradation mechanisms lead to a large variety of mRNA lifetime

distributions. The theory developed in this article holds for any

form of the lifetime probability density wU (t). However, in the

following, we will consider two different exemplary cases of wU (t),
namely on the one hand the exponential lifetime density

w
(exp)
U (t)~vr exp({vrt) , ð1Þ

with average value SUT~v{1
r . A straightforward extension of

Eq. (1) is the gamma density

w(C)
U (t)~

l(lt)n{1

(n{1)!
exp({lt) , ð2Þ

with average value SUT~n=l. Note that for n~1 the gamma

density reconstitutes the exponential density.

Whereas the lifetime density w
(exp)
U describes the decay of

mRNA species in a simple first-order kinetic model, the density

w
(C)
U is related to a more refined model of mRNA decay where

multiple successive biochemical steps are required for degradation.
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Moreover, the decay related to a gamma lifetime distribution of

the mRNAs with general shape parameter n can in principle

describe the patterns found in the majority of the clusters found in

ref. [13].

In the following, to be able to better compare the two

degradation modes we set n~5 in (2) and fix l and vr such that

the average lifetimes SUT are identical for both distributions.

The two exemplary lifetime densities are depicted in Fig. 1a. Note

that the particular choice of n is not decisive for the results. To

see this, in Fig. S1 we compare the effect of different shape

parameters n on the lifetime density and the time evolution of the

number of mRNAs. Moreover, in order to emphasize certain

transient effects, we will compare short-living mRNAs with

mRNAs that are more stable by choosing different average

lifetimes SUT. To our knowledge, all previous works on modeling

of gene expression have assumed an exponential lifetime

distribution with constant decay rate such as in Eq. (1) [14–16].

If one instead considers the density (2), or any other non-

exponential density, one departs from the simple mathematical

framework based on the memoryless (or Markov) property

connected to the exponential distribution and one needs to

implement advanced techniques in stochastic processes that we

have treated in detail in section Models and Methods. To illustrate

our results we have chosen the relevant parameters such that they

match the experimental values of E. coli. Nevertheless, our

conclusions hold for eukaryotic cells as well. Experimentally, the

challenge consists in the simultaneous determination of the

synthesis and decay kinetics. A promising method is based on

metabolic labeling [17], however a high temporal resolution is

required to accurately determine the lifetime distribution and

transients related to mRNA expression.

Results and Discussion

Starting from zero amount of mRNA of a given gene, after the

induction of transcription there is an increase of the number of

mRNA molecules. This process eventually leads to a stationary

state, which reflects the balance between synthesis and degrada-

tion of mRNA. However, even if the average transcription rate per

cell vtc is constant, the patterns of growth of the number of

mRNAs depend on the choice of the lifetime density wU . To

illustrate this process, Fig. 1, panels (b) and (c), shows the first few

minutes of two randomly chosen realizations of the process of

mRNA growth. Clearly, the growth according to the exponential

lifetime density w
(exp)
U depicted in Fig. 1b produces mRNAs with a

broader lifetime span than the gamma distribution w
(C)
U shown in

Fig. 1c. This becomes evident if one considers the variance of the

two distributions. Whereas the variance of the exponential

distribution is 1=v2
r , for the gamma density it becomes n=l2.

Thus, for equal average lifetimes SUT, the variance of a gamma

density is smaller by a factor of n as compared to the exponential

case. For the exemplary case with shape parameter n~5 this can

be seen also in Fig. 1a.

Time dependent distribution of mRNAs
The distribution of the number of mRNAs at time t after the

start of transcription is given by

pk(t)~
vtcH(t)½ �kexp {vtcH(t)½ �

k!
, ð3Þ

where

H(t)~

ðt

0

d u (1{WU (u)) , ð4Þ

and WU (u) is the probability distribution of U as given by

WU (u)~

ðu

0

d twU (t) : ð5Þ

The density wU can be any probability density, in particular one of

the densities w(exp)
U or w(C)

U . Note that (3) is a time dependent

Poisson distribution with parameter vtcH(t). Thus, the average

number Nr of mRNA molecules can be easily written as

Nr(t)~vtcH(t) , ð6Þ

which can be followed in time in Fig. 2.

The time scale to reach a steady state depends critically on two

aspects. On the one hand, the average lifetime of the mRNA SUT
plays an important role, as for larger SUT the steady state is

reached at a later point. On the other hand, the time to steady

state is strongly influenced by the specific form of the lifetime

density wU (Fig. 1 and Fig. S1). This fact has several implications

that will be investigated in the next sections.

As t??, the number of mRNAs reaches a steady state and its

distribution probability is given by

Figure 1. Lifetime densities and growth of the number of
mRNAs. Panel (a) shows the exponential lifetime density w

(exp)
U (red)

defined in (1) and the gamma density w
(C)
U with n~5 (blue) defined in

(2) for equal average lifetimes SUT~4 min. The latter distribution is
more narrow since the variance scales with the inverse of the shape
parameter n. This difference in the variance plays a role in panels (b)
and (c) where we show examples of a simulation of the process of
creation and degradation of mRNA. Each horizontal bar represents one
mRNA and the mRNAs originate at random time points according to a
Poisson process. The length of each bar represents the lifetime of the
mRNA and for each bar the length is drawn at random according to the
distributions w

(exp)
U (panel (b)) and w

(C)
U (panel (c)). Clearly, the variation

of the length of the bars stems from the different variance of the
distributions shown in panel (a). One can follow the growth of the
number of mRNAs with time by counting, at each point in time, how
many mRNAs are present at that point in time. This is given by the
number of horizontal bars that are crossed by a vertical line at time t. In
this and in all following plots the origination of new mRNA molecules
occurs at a constant rate vtc~1 mRNA per minute per cell for
simplicity.
doi:10.1371/journal.pone.0035044.g001
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pst
k ~

vtcSUT½ �kexp {vtcSUT½ �
k!

, ð7Þ

which depends only on the average lifetime SUT and the

transcription rate vtc.

In Fig. 3a, indeed, the stationary distribution pst
k is completely

independent of the form of the lifetime density and depends only

on the average lifetime SUT. Thus, the distribution of the amount

of mRNA molecules after the start of transcription is Poissonian at

each time point with a parameter that depends on time. In

particular, the transient time to stationarity depends critically on the

lifetime density of the mRNA. Moreover, the transient time is

large if the lifetime density is very broad. This must be particularly

long in eukaryotic cells because in these organisms the average

lifetime of the mRNA can be particularly long. In contrast, in

prokaryotic cells, the lifetime of most mRNA molecules is

relatively short so that in most of the cases the stationary state is

reached within 20 minutes. The limiting (stationary) distribution

given in (7) depends instead only on the mean lifetime of the

mRNAs and not on any other details of the degradation process.

The mRNA age distribution
Due to the turnover of mRNA there is an age distribution,

which reflects the age composition of the mRNA pool. Also the

age distribution of the mRNAs expressed after the induction

evolves in time. We consider again a gene that was not transcribed

before the induction. The age probability density function at time t

after the induction of transcription is given by

wA(aDt)~
ðt

0

d t (1{WU (t))

� �{1

1{WU (a)ð Þ , ð8Þ

where A is the random variable that gives the age of a randomly

chosen mRNA at time t and the variable a obeys 0ƒavt (see

section Models and Methods for a derivation). The function WU (t) has

been defined in Eq. (5). In the limit t?? also the age distribution

becomes stationary and its expression is given by

wst
A(a)~

1{WU (a)

SUT
, ð9Þ

which is the stationary distribution of the age of a renewal process

[18]. In Fig. 3b we compare the stationary age distribution given

by a gamma lifetime density w(C)
U defined in Eq. (2) to the

exponential case w
(exp)
U defined in Eq. (1). Clearly, in the former

more young mRNAs are present, whereas in the exponential case

there is a higher proportion of older mRNAs. This follows directly

from the fact that the exponential distribution has a higher

variance as was shown in Fig. 1a.

The average age of the mRNAs at time t after the induction of

transcription is given by

SATt ~

ðt

0

d a a wA(aDt) , ð10Þ

and its time evolution can be followed in Fig. 4. While shortly after

the induction both mRNAs have a similar average age, the effect

of the different lifetime densities becomes more pronounced at

larger times. The average age at steady state is lower for gamma-

like mRNAs which follows from the different shape of the age

distribution as shown in Fig. 3.

The rate of protein synthesis
Both the age distribution and the distribution of the amount of

mRNA change in time depending on the shape of wU . This finding

 

 

 

 

Figure 2. Growth of the average number of mRNAs over time. The red lines represent Nr(t) from Eq. (6) when the lifetime density is
exponential and is given by Eq. (1). The blue lines depict Nr(t) when the lifetime density is gamma-like, as in Eq. (2). Panel (a) shows the growth of the
number of mRNAs under the two different lifetime densities when the average lifetime is SUT~4min, which is the estimated average lifetime in E.
coli cells [11]. Here the stationary state is reached earlier with the gamma distribution w

(C)
U than with the exponential distribution w

(exp)
U . In both cases,

the stationary state is reached before twenty minutes. Panel (b) shows the behavior of Nr(t) for the exponential and the gamma distributions if the
average lifetime is SUT~20min, which would correspond to long-living mRNAs in E. coli. Even twenty minutes after induction, the average level of
expression per cell depends on the form of the lifetime density. The inset of panel (b) shows that the steady state mRNA level is reached after about
two hours.
doi:10.1371/journal.pone.0035044.g002

Transient Phenomena in Gene Expression

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e35044



has implications on the rate of protein synthesis. The protein

synthesis rate in a cell is determined by the amount of mRNA and

the constant ribosome flux on each mRNA. At low ribosomal

densities, such as those found in in vivo measurements [6,19], the

average ribosome flux is given by the density r of ribosomes on an

mRNA and their average elongation speed v. However, in the

process of translation there is a transient time tL between initiation

of translation and the time until the leading ribosome completes

the synthesis of a protein. In eukaryotic cells and for certain

prokaryotic organisms [20,21] translation can initiate only after

the whole mRNA has been synthesized. Instead, whenever

translation occurs co-transcriptionally [22] translation can initiate

during the synthesis of the mRNA. In both cases the transient time

tL is proportional to the length of the mRNA and inversely

proportional to the average elongation speed v, such that tL~L=v.

The consequence of having this transient time tL is that at any

 

 

 

 

 

 

Figure 3. Stationary amount and age of mRNA. Panel (a) shows the histogram of the number of mRNAs for a stochastic simulation of mRNA
turnover. We consider two degradation patterns, the exponential w

(exp)
U (red bars) and the gamma w(C) (blue bars). The black bars represent the

theoretical prediction. Obviously, there are no differences between the three stationary distributions. The inset of panel (a) shows two realizations of
the stochastic process of synthesis and degradation of mRNA with the two choices of the lifetime density. Panel (b) shows the age distribution of the
mRNAs at steady state. Despite the fact that the stationary distributions shown in panel (a) are identical, the stationary age distributions in panel (b)
are different.
doi:10.1371/journal.pone.0035044.g003

 

 

 

 

 

 

Figure 4. Time evolution of the average age of mRNAs. The red lines give SATt from Eq. (10) under the lifetime density w
(exp)
U defined in (1).

The blue lines give SATt under the lifetime density w(C) defined in (2). Panel (a) shows the time evolution of the average age of the mRNAs under the
two different lifetime densities when the average lifetime is SUT~4min. During the transient to stationarity the two average ages are very similar to
each other. Conversely, at stationarity the average age under the lifetime density w(C) is clearly smaller than the average age under the exponential
distribution w

(exp)
U . Panel (b) shows the average age as function of time for the same lifetime densities but an average lifetime SUT~20min. During

the first twenty minutes of the transient, the average ages of the mRNAs are not very different if one compares the two distributions. However, the
transient to stationarity has a different duration and at stationarity the average ages differ greatly when comparing the two lifetime densities.
doi:10.1371/journal.pone.0035044.g004
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time t only those mRNAs that are older than tL can contribute to

the protein synthesis rate. Under this perspective, tL acts like a

delay time that affects the rate of protein synthesis vps, such that

vps(t)~vrNr(t)

ðt

tL

d a wA(aDt) for twtL ð11Þ

and zero otherwise, with wA defined in (8). The rate of protein

synthesis, thus, depends no both the average lifetime of the mRNA

and on the form of the lifetime density (see Fig. 5).

Indeed, after the induction of transcription the protein synthesis

is delayed by tL and it is followed by a transient that is governed by

the increasing mRNA level, on the one hand, and by the evolution

of the age distribution, on the other hand. However, ultimately

both factors are due to the specific form of the lifetime density wU .

If we define vp to be the degradation rate of proteins in a cell

population under balanced conditions, the long time limit of (11)

gives the steady state amount of proteins. This amount is given by

Pst~vst
ps=vp, as derived for instance in [7], and this limit leads to

Pst~
vrvtcSUT

vp

ð?
tL

d awA(aDt) : ð12Þ

Note that in principle the steady state protein level is different for

the two lifetime densities since they give rise to different stationary

age distributions as was pointed out in the previous section.

However, this difference is small if the average lifetime is large

compared to tL. The varying rate of protein synthesis (11) has a

cell biological implication. Indeed, for mRNA species that are

constantly transcribed during the lifetime of the cell the amount of

mRNA at the beginning of the life of the cell, namely just after cell

division, will not be at the steady state level. It will reach the steady

state level only if the transient to stationarity is shorter than the

division time of the cell. It is thus possible that the amount of some

mRNA species is never at steady state if their average lifetime SUT
is long or if their lifetime density is very stretched. Hence, if this is

the case, also the rate of protein synthesis is not constant, as shown

in Fig. 5. Consequently, in a cell, the level of expression of very

stable mRNAs and proteins is likely to be always away from steady

state. This means that assuming steady state in a single cell may

not be always accurate.

Time evolution of polysomes and ribosomal profiles
Recently, important tools to analyze the process of translation

have been developed. On the one hand, the number of ribosomes

attached to each mRNA in a sample can be determined by

centrifugation through sucrose gradient [19]. As a result one

obtains the polysome profile that gives the distribution of the

number of ribosomes translating each species of mRNA. On the

other hand, even more details can be concluded from ribosomal

profiling [6,24] where also the location of the ribosomes on a

species of mRNA can be determined.

Both polysome and ribosome profiles change in time since the

number of ribosomes bound to an mRNA depends on the age of

that mRNA. In a sample of cells, the polysome and footprinting

statistics will thus depend on the age distribution of the mRNAs at

the time of measurement. When the mRNA level is in steady state,

this observation has been already considered in [2,3]. However,

after the induction of transcription we have to take the non-

stationary age distribution into account. The analytical, or

mathematical, treatment of polysomes and ribosomal profiles is

possible only under several simplifying conditions. The difficulties

arise due to the extended nature of the ribosomes and to exclusion

events at large ribosomal densities. One can however determine

the time evolution of polysomes and ribosomal profiles by running

 

 

 

 

Figure 5. Average rate of protein synthesis as function of time. Panels (a) and (b) show the time evolution of the average protein synthesis
rate vps(t) arising from the translation of the average number of mRNAs Nr(t) at each time point t, as derived in Eq. (11). The red lines represent
vps(t) when the lifetime density is w

(exp)
U defined in (1). The blue lines depict vps(t) when the lifetime density is w(C) defined in (2). In both cases we

have assumed a ribosome density equal to 20% of the maximal packing [23], corresponding to r~0:02 ribosomes per codon and a velocity of 600
codons per minute. Panel (a) shows the change over time of the average rate of protein synthesis under the two different lifetime densities when the
average lifetime is SUT~4min. Over an initial interval of time, the rate of protein synthesis is smaller if the underlying lifetime density is exponential.
At steady state the exponential lifetime leads to a larger protein synthesis rate. In (b), instead, for SUT~20min the two rates attain similar values only
after about two hours. The rates are more similar than in (a) because in (b) the contribution of tL is smaller with respect to the average life time. In
both plots we have fixed the length of the coding sequence L~1025 codons, corresponding to the length of the lacZ gene in E. coli.
doi:10.1371/journal.pone.0035044.g005
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extensive computer simulations with a simple model of ribosomal

walk with self exclusion (see section Models and Methods for details of

the simulation technique).

In the simulations, we have considered two different lifetime

densities w(exp)
and w(C)

defined in (1) and (2), respectively, with an

average lifetime SUT~4 minutes and an mRNA of L~1025
codons, corresponding to the length of the lacZ gene in E. coli, see

Fig. 6. We find that the polysome statistics and the profile densities

depend only weakly on the underlying lifetime distribution (see

Fig. 6). However, both quantities depend strongly on the time of

measurement following the induction of transcription. This is due

to the fact that both quantities depend on the age distribution of

the mRNAs in the sample, which changes with time as we have

seen. Therefore, it is important to take into consideration the time

after the start of induction when performing an experiment of this

kind.

An additional effect of the heterogeneous age composition of the

samples is given by the relatively large plateau in the polysome

statistics at small polysomes [2]. This plateau depends on the form

of the lifetime densities. This implies that the polysome statistics

and in particular the relative amount of mRNA with small

polysomes carries a signature of the degradation process of the

mRNA.

Methods

For our theoretical description, we will assume that transcrip-

tion occurs at a fixed constant population transcription rate Vtc. If

each cell i, at time t, produces mRNA molecules at a rate vi(t),
then the total transcription rate is given by Vtc(t)~

P
i vi(t). Even

if the rates vi fluctuate in time in a non-synchronized way, the rate

Vtc(t) can be expressed as the sample average Vtc(t)~Ncellsvtc(t)
where Ncells is the total number of cells under balanced conditions.

If Ncells is very large, fluctuations of vi will average out and Vtc

will be constant. Therefore, the process of transcription is a

Poisson process with constant rate Vtc. In the following, we will use

the average rate vtc~Vtc=Ncells to describe the process of

origination or generation of new mRNAs in an average cell.

We define Y (t) as the stochastic variable that gives the number

of mRNAs at time t. We assume that transcription starts at time

zero and that the initial condition of our process is hence given by

Y (0)~0. The stochastic variable U denotes the random lifetime

of an mRNA molecule. The probability function WU (u) of U is

given by

WU (u):PrfUƒug~
ðu

0

d twU (t) , ð13Þ

where wU is the probability density function of U . In this section

we will not make any restriction concerning the form of the density

wU except that it must be normalized and it must have a well

defined average value. Therefore, in order to leave the modeling

open to any possible functional form of wU , we will henceforth

consider the generic form given in (13). The biochemical and

theoretical considerations that allow to determine the various

particular forms of the density wU will be studied elsewhere.

In summary, we assume that mRNAs are generated at a fixed

rate and live for a random time according to the probability

density wU . We should therefore expect that, after a certain

amount of time, these two processes will balance and that the

number of mRNAs Y attains a stationary distribution.

 

 

 

 

 

 

 

 

Figure 6. Time dependent polysome and ribosomal profiles. Panel (a) shows the distribution of the number of ribosomes on an mRNA chain
of 1025 codons at two different points in time, namely after t~1:5 minutes and after t~20 minutes. The two curves correspond to simulations based
on the lifetime probability densities w

(exp)
U (red) and w(C) (blue), respectively. Apart for the region around small polysome sizes, both distributions lead

to similar polysome profiles. However, at different time points after induction there is a noticeable change of the profiles. Thus, this demonstrates
that the outcome of such an experiment depends critically on the time of measurement after the induction of that particular gene. Panel (b) shows
the profile density of the ribosomes along the mRNA. The y-axis in panel (b) gives the probability that the corresponding codon in the x-axis is found
covered by a ribosomes at time t. Similar to the polysome profiles, the ribosome profile densities depend on the measurement time t because the
age composition of the sample changes with time during the transient. However, the ribosome profiles depend only weakly on the form of the
underlying lifetime density wU in the present case. For the simulations, we have used typical parameters determined in experiments on E. coli. The
rate of translation initiation has been fixed to von~1=5sec{1 [25] and the average velocity of ribosomes is 10 codons per second [26]. Each curve is
an average over 15000 independent realizations. For all plots shown here we have taken the average lifetime SUT~4 minutes. Both plots show also
the predictions of the simple theory developed in [2] (solid lines) that are in remarkably good agreement with the computer simulations.
doi:10.1371/journal.pone.0035044.g006
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The distribution of the amount of mRNA
Let X (t) be the underlying Poisson process that describes the

amount of mRNA molecules delivered to the cytoplasm until time

t with transcription rate vtc,

PrfX (t)~kDX (0)~0g~ (vtct)k exp({vtct)

k!
: ð14Þ

We now ask for the random number of mRNA molecules Y (t)
that are still present in the cell at time t. Under the general

assumptions made before, we wish to compute the distribution of

Y (t), which we can formally write as

PrfY (t)~kDX (0)~0g : ð15Þ

Note that 0ƒY (t)ƒX (t) for all t§0. In order to determine this

probability, we follow the method described in [27] chapter V

section 4. The law of total probability allows us to express (15) as

PrfY (t)~kjX (0)~0g

~
X?
n~0

PrfY (t)~kjX (0)~0, X (t)~ngPrfX (t)~njX (0)~0g :
ð16Þ

We shall first recall that conditioned on the number of events up to

time t, namely on X (t)~n, the events of a Poisson process are

uniformly distributed in ½0,t) [27]. Let now O be the random

origination time of a randomly chosen mRNA and let U be its

random lifetime. This mRNA molecule will be present at time t

only if the variable Z~OzU satisfies Z§t. The probability p of

this event gives the probability per mRNA to be present at time t

and is given by

p~PrfZ§tg~1

t

ðt

0

d sPrfZ§tDO~sg~1

t

ðt

0

d u 1{WU (u)ð Þ ,ð17Þ

where WU (u) is defined in (13) and we have made use of the fact

that PrfZ§tDO~sg~PrfU§t{sg. Thus, conditioned on

X (t)~n, the number of mRNAs still present at time t is

binomially distributed according to

PrfY (t)~kDX (0)~0,X (t)~ng~
n

k

� �
pk(1{p)n{k , ð18Þ

with p given in (17). At this point, using the law of total probability

given in (16) together with (14), the time dependent distribution of

the number of mRNAs at time t after the start of transcription is

given by

PrfY (t)~kDX (0)~0g~ vtcH(t)½ �kexp {vtcH(t)½ �
k!

, ð19Þ

where

H(t)~

ðt

0

d u (1{WU (u)) : ð20Þ

Note that (19) is a time dependent Poisson distribution with

parameter vtcH(t). Nevertheless, one can show that H(t)?SUT
as t?? with

SUT~

ð?
0

d u u wU (u) , ð21Þ

being the average lifetime of the mRNA molecules. This leads to

the stationary distribution

PrfY st~kg~ vtcSUT½ �kexp {vtcSUT½ �
k!

, ð22Þ

which depends only on the average lifetime and not anymore on

the details of the degradation process. However, as explained

earlier, the time scales related to the dynamics do still depend on

the form of the density wU .

Age and residual life distributions
Given that there is a turnover of the mRNA, there is an age

distribution of the molecules. We are interested in the age of a

randomly chosen mRNA at any time point t. Therefore, in the

following, we consider a single mRNA that has been created

according to a Poisson process in the interval ½0,t) and has a

random lifetime U distributed according to WU . Using the same

notation as before, the given mRNA will be present at time t only

if the variable Z~OzU satisfies Z§t. Let A be the random

variable that gives the age of a randomly chosen mRNA. Then,

the age distribution of the mRNA is given by the distribution of

A~t{O under the condition Z§t. In order to compute this

quantity we shall first realize that

PrfAƒaDZ§tg~1{PrfOvt{aDZ§tg , ð23Þ

and thus compute the probability density for O conditional that

Z§t. To compute this quantity, recall that, in this case, we

condition that the number of transcribed mRNAs until time t is

just one. Therefore, the random variable O is uniformly

distributed in ½0,t). Since the transcription events are independent

from another, we can thus compute the age distribution of a

sample of mRNAs. Thus, we have

PrfOvxDZ§tg~ PrfOvx,Z§tg
PrfZ§tg ~

~
Ð?

t{x
d u

PrfOvx,Z§tDU~ugwU (u)

PrfZ§tg ~

~
Ð?

t{x
d u

Prft{uƒOvxgwU (u)

PrfZ§tg ,

ð24Þ

where 0ƒxvt because we implicitly conditioned that the

origination time point is before time t. We shall now use the

fact that the random variable O is uniformly distributed in ½0,t)
(because we have conditioned that there is one mRNA alive at

time t) and thus that PrfZ§tg is given by (17). This leads to

Ð?
t{x

d u
Prft{uƒOvxgwU (u)

PrfZ§tg ~

~
Ð t

0
d y (1{WU (y))

� �{1Ð?
t{x

d u x{max(0,t{u)½ �wU (u) ,

ð25Þ

from which we can compute the distribution of the age A~t{O

under the condition Z§t. This distribution is given by (23) and

reads
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PrfAƒaDZ§tg~1{PrfOƒt{aDZ§tg~

~1{
Ð t

0
d y(1{WU (y))

� �{1Ð?
a

d u min(u,t){a½ �wU (u) ,

ð26Þ

which upon differentiation with respect to a finally leads to the

probability density function

wA(aDt)~
ðt

0

d u (1{WU (u))

� �{1

1{WU (a)ð Þ , ð27Þ

for 0ƒavt and zero otherwise.

The residual (or excess) lifetime R of an mRNA is a statistical

quantity complementary to the age of the mRNA. The derivation

of its distribution proceeds in a similar fashion as for the age

distribution except from the fact that by keeping the time of

origination O between 0 and t, it results

PrfZ§tzxg~ 1

t

ðtzx

x

d u (1{WU (u)) : ð28Þ

Let Z~OzU be the sum of the time origin and of the lifetime of

a given mRNA and let t be the time of observation or

measurement after the induction of transcription. The residual

lifetime is given by R~Z{t. Hence, the probability distribution

of the residual lifetime under the condition that Z§t is given by

PrfRƒrjZ§tg~PrfZƒtzrjZ§tg~

PrfZ§tg{PrfZ§tzrg
PrfZ§tg ,

ð29Þ

which, using (17) and (28) and upon derivation by r, results in the

probability density for R

wR(rDt)~
ðt

0

d u (1{WU (u))

� �{1

WU (tzr){WU (r)ð Þ , ð30Þ

for r§0. Hence, both, the age distribution as well as the residual

lifetime distribution, depend on the form of the lifetime probability

density wU and on the time after start of transcription t.

Computer simulations
In Fig. 6 we have simulated the motion of ribosomes along an

mRNA as a simple stepping of self excluding extended objects on a

linear, homogeneous chain. New ribosomes enter the initially

empty mRNA only if enough space is provided. That means that

the A-site of the ribosome closest to the start codon must be at least

one ribosomal footprint length (10 codons) away from it. The time

between two of these initiation events is exponentially distributed

with an average given by the inverse initiation rate von (5sec). The

ribosomes dwell on a codon before they move to the next one

provided that it is not occupied by the preceding ribosome. The

dwell times are also random with an exponential distribution and

an average of 0:1sec. A blocked ribosome can move forward only

after the preceding ribosome has left the position and a random

dwell time has passed. The simulation is stopped when the mRNA

has reached a predefined age. The positions of all ribosomal A-

sites are recorded and further analyzed to obtain the ribosomal

profile density and the polysome distribution.

We have compared these simulations to a theoretical prediction

from the model developed in [2] where it was found that the time-

dependent polysome statistics can be computed analytically when

neglecting effects related to the mutual self-exclusion of the

ribosomes. This is justified when translation initiation occurs at a

small rate thus leading to a small ribosomal density. Under the

same conditions, also the ribosome profile can be computed in an

analytical way.

Supporting Information

Figure S1 Lifetime densities and evolution of the
average number of mRNAs. In panel (a) we show the lifetime

density as given in Eq. (2) with different shape parameters n and

fixed average lifetime density SUT~4 min (red: n~1, solid blue:

n~5, dashed blue: n~2, solid green: n~1=5, dashed green:

n~1=2). For fixed SUT the variance of the distribution scales as

SUT2=n. Each lifetime distribution leads to a different pattern of

the growth of the mRNA number, Nr(t), according to Eq. (6)

(Panel (b)). The time to a steady state amount depends critically on

the shape parameter n - the larger n the faster a steady state is

attained. Conversely, for small parameters such as n~1=5 a steady

state is reached only after about 100 min despite an average

lifetime of 4 min. Note that the gamma density describes a large

variety of possible mRNA lifetime distributions, although for non-

integer values of the shape parameter n there is no clear

relationship to the number of biochemical steps related to

degradation.
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