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Abstract We investigate the role of degradation of mRNA on protein synthesis using the
totally asymmetric simple exclusion process (TASEP) as the underlying model for ribosome
dynamics. mRNA degradation has a strong effect on the lifetime distribution of the mRNA,
which in turn affects polysome statistics such as the number of ribosomes present on an
mRNA strand of a given size. An average over mRNA of all ages is equivalent to an average
over possible configurations of the corresponding TASEP—both before steady state and in
steady state. To evaluate the relevant quantities for the translation problem, we first study the
approach towards steady state of the TASEP, starting with an empty lattice representing an
unloaded mRNA. When approaching the high density phase, the system shows two distinct
phases with the entry and exit boundaries taking control of the density at their respective
ends in the second phase. The approach towards the maximal current phase exhibits the
surprising property that the ribosome entry flux can exceed the maximum possible steady
state value. In all phases, the averaging over the mRNA age distribution shows a decrease
in the average ribosome density profile as a function of distance from the entry boundary.
For entry/exit parameters corresponding to the high density phase of TASEP, the average
ribosome density profile also has a maximum near the exit end.
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1 Introduction

Translation is an essential step during protein synthesis, in which ribosomes move on mRNA
strands to produce proteins. Understanding protein production is a problem of central im-
portance in biology and, therefore, translation has attracted considerable experimental effort.
The theoretical challenge is to identify important mechanisms and develop simple models
that capture the experimental results and have predictive power. The totally asymmetric
simple exclusion process (TASEP) is a nonequilibrium lattice model that has been intensely
studied in connection to mRNA translation [1–5]. TASEPs are interesting models in them-
selves and have emerged as a paradigm in nonequilibrium physics because they lead to
nontrivial but analytically tractable behavior [6, 7].

The translation process consists of three steps: initiation, elongation and termination.
During initiation, two ribosomal subunits dispersed in the cytosol are assembled at the start
codon of the mRNA. The ribosomes now move forward, assembling the protein by attaching
one amino acid at a time. These amino acids, carried by tRNA, arrive randomly and the one
matching the codon at the ribosome location is accepted and added to the protein chain.
Thus, the movement of the ribosomes is unidirectional but stochastic. Once a ribosome
reaches the end codon, it disassembles and the protein is released. It is easy to see that the
TASEP with open boundaries is a suitable model for translation since it describes particles
that obey hard core exclusion, move stochastically in a single direction, enter the lattice at
one end and leave it at the other end with certain rates, which determine the steady state
phases of the system. The typical approach to model mRNA translation with TASEP was,
until now, to consider a steady state condition in which the number of ribosomes on the
mRNA had reached its stationary distribution. A more realistic view of translation, however,
should incorporate the effect of degradation of mRNA, which makes it important to consider
the effects of the transient state before the stationary distribution has been reached.

In this paper, we use TASEPs to study the effect of degradation of mRNA on transla-
tion. The degradation of mRNA is caused by RNA-degrading proteins [8] and can occur at
any stage of the mRNA life cycle [8–12]. In prokaryotic cells the mRNA can be degraded
cotranslationally, all ribosomes that are on the mRNA at the moment of degradation are
lost and the mRNA chains are degraded immediately [9, 11, 13]. In eukaryotic cells, the
degradation of mRNA proceeds in two steps. First, the initiation region is decapped to pre-
vent the assembly of new ribosomes. Second, the ribosomes present on the mRNA at the
moment of decapping are allowed to finish their translation [9, 14]. While degradation of
mRNA before completion of protein production looks like a wasteful process at first sight,
it is also a control mechanism that enhances the efficiency of protein synthesis [15]. The ef-
fects of mRNA degradation have largely been overlooked in previous studies of dynamical
models. Usually, it is assumed that a steady state average should reflect the experimental
observations [2, 3, 5]. In reality, the cell extract is expected to contain mRNA of various
ages, all of which will contribute to the average, see Fig. 1. We have tried to capture this ef-
fect in our recent work [16, 17] where we have studied a simple model with very low entry
rates, neglecting the hard core exclusion interaction between the ribosomes. We found that
degradation can have a significant effect on experimentally measurable quantities such as
the polysome size distribution and the density of ribosomes as a function of codon position.
We also showed that degradation induces a length dependence in the translation rate leading
to a decrease in the steady state amount of proteins per mRNA, the so-called translational
ratio, with increasing protein length [17].

Since exclusion effects can significantly reduce the efficiency of mRNA translation,
mRNA degradation could be a mechanism that helps avoiding major efficiency loss. Indeed,
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Fig. 1 Schematic diagram of mRNA translation for different ages. The two chains have the same length L

but differ in the number of loaded ribosomes. The upper chain is young and carries only a few ribosomes
that are close to the initiation region on the left. The chain at the bottom is older and thus is loaded with more
ribosomes. The ribosomes move from left to right as indicated by the large background arrow

degradation favors younger, sparsely loaded mRNA thus reducing the effect of ribosome
exclusion. It is therefore important to include both exclusion effects and degradation in the
theoretical description. In the present work, we consider the exclusion interaction between
ribosomes, which was neglected in our earlier work in [16]. We use TASEPs to describe
the ribosome dynamics, and the quantities of interest are calculated by averaging over the
mRNA age distribution. This involves taking an average over system configurations both
before and after steady state has been attained. While the steady state properties of TASEPs
have been very well studied, the approach to steady state is a more difficult problem with
fewer analytical results [18, 19].

In this paper, we use discrete time stochastic simulations and mean field approximations
to study the approach towards the steady states of TASEPs when the initial state corresponds
to completely empty mRNA strands. We numerically evaluate the total number of ribosomes
on the mRNA as a function of time and then use mean field arguments to understand these
results. We show that these arguments work fairly well for the high and low density phases.
A slight discrepancy is found in the maximal current phase. We then use these results to
calculate the quantities of interest for the translation problem by taking an average over the
age distribution.

Our results show that the average ribosome density profile can decrease significantly
as we move along the mRNA. This decrease is caused by averaging over mRNA of vari-
ous ages—younger mRNA strands, for which steady state has not been reached, contribute
more to the density of the initial part of the coding region. This leads to another interesting
consequence—the average density of ribosomes decreases as a function of the length of the
mRNA coding region. New experimental methods [20–24] allow for the measurements of
these quantities, and we expect that a detailed comparison between theory and experiment
will soon be possible.

The paper is organized as follows: In Sect. 2, we explain our theoretical approach. We
then describe the results for the approach to steady state of the TASEP in Sect. 3. Section 4
deals with the results for the mRNA translation. Here we report our computational results for
several quantities of interest, and compare them with approximations developed using our
results in Sect. 3. We discuss the implications of our theoretical results for experiments in
Sect. 5. To focus on translation, all our discussion below will be in terms of “ribosomes” and
“mRNA” instead of the usual terminology of “particles” and “lattice”. It is straightforward,
however, to rephrase our results in the usual TASEP terminology and to apply it to different
contexts.
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2 Theoretical Description

A single mRNA strand is represented by a one dimensional lattice with L sites, which corre-
sponds to the coding region. Ribosomes—which are equivalent to particles interacting with
each other via hard core repulsion—enter the mRNA at the initiation lattice site z = 1 with
rate ωon, walk in a directed fashion from site to site with a rate t−1

0 until they reach the last
lattice site z = L, and leave the mRNA from the termination lattice site z = L with rate ωex.
The basic time scale t0 in the system is determined by the ribosome dynamics. The distance
between two mRNA sites is taken to be l0 which is the longitudinal extension of a ribo-
some in codons and each ribosome attempts a forward move in time t0, implying that an
unhindered ribosome will move with a velocity v0 = l0/t0 codons per time unit or v0 = t−1

0
footprints per time unit. Since t0 is the basic unit of time, ωon and ωex are related to the en-
try and exit rates in the usual TASEP notation by α = min(ωont0,1) and β = min(ωext0,1).
The lattice parameter l0 is of the order of 10 codons and, thus, implies a certain coarse
graining of the ribosome dynamics since displacements (or translocations) of the ribosomes
corresponding to single codons are not resolved.

Since the binding processes of the transfer RNA molecules to the different ribosomes
represent statistically independent events, the new ribosome configuration after the next
time step is determined by a random, asynchronous update, i.e. by choosing a ribosome
at random and attempting to move it forward to the next binding site at the mRNA. One
time step consists of M(t) such moves where M(t) is the total number of ribosomes on the
mRNA at time t . This process corresponds to the usual TASEP.

The random life time U of the mRNA is described by a turnover time distribution, which,
for a fixed degradation rate ωde, is given by φU(t) = ωde exp(−ωdet). In general, mRNA
degradation is balanced by mRNA production via continuous transcription. We will assume
that this balance leads to a time-independent average number of mRNA molecules within
the cytosol. The mRNA age distribution is then given by

φA(t) = ωde exp(−ωdet), (1)

as was shown in [16]. At time t = 0, the mRNA molecules carry no ribosomes, which start
loading at one end of the mRNA and moving towards the other end as the age of the mRNA
increases. The relevant quantities will be calculated by taking an average over all ages of
mRNA. While the actual age distribution of mRNA age may not always be exponential, the
qualitative features of our results are expected to apply to other age distributions as well.

For the sake of clarity, we shall give here the precise definitions of the quantities that we
are going to study in the next section and, thus, also fix our notation. The random number of
ribosomes on an mRNA of age t will be distributed according to the probability distribution
Pn(t), for any integer 0 ≤ n ≤ L, where L is the length of the mRNA expressed in footprints.
L therefore gives the maximal number of ribosomes that can be loaded on an mRNA which
has Ll0 codons in the coding region. Thus, Pn(t) gives the probability that an mRNA of
age t is loaded with exactly n ribosomes. When there is no degradation, Pn(t) will converge
to the usual TASEP steady state distribution P st

n at large times. Incorporating the effect of
degradation involves weighting the distribution Pn(t) with the age distribution φA which
leads to the average probability distribution

Πn = 〈Pn〉 ≡
∫ ∞

0
dtPn(t)φA(t), (2)

where φA(t) is defined in (1). Notice that henceforth we will use the word average and the
symbol 〈·〉 to indicate averages over the age distribution φA.
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The quantity M(t) already introduced before is given by

M(t) =
L∑

n=0

nPn(t) (3)

as the mean over the distribution Pn(t) and represents the average number of ribosomes on
an mRNA of age t . Again, in the case of no degradation and large t , the number of ribosomes
will converge to the TASEP stationary value Mst, whose value will depend on the choices
of the rates ωon and ωex, as we shall see. The convolution of M(t) with the age distribution
φA as given by

〈M〉 =
∫ ∞

0
dtM(t)φA(t), (4)

represents the average number of ribosomes on a randomly chosen chain. The quantity,
〈M〉/L will be called the average ribosome density.

Finally, we will denote by m(z, t) the density profile of ribosomes at position z =
1,2, . . . ,L along an mRNA of age t . This profile represents the probability to find a ri-
bosome at position z on a mRNA of age t . For large t , the density profile will become
stationary and we have m(z, t) ≈ mst(z). As previously, mst(z) represents the steady state
value without degradation, whereas degradation leads to

〈m(z)〉 =
∫ ∞

0
dtm(z, t)φA(t), (5)

which gives the profile averaged over chains of all ages.
The quantities that are experimentally accessible are the averaged quantities Πn and 〈M〉

from centrifugation techniques, and 〈m(z)〉 from footprinting (deep sequencing) techniques.
If the typical life time of the mRNA is much larger than the transient times to reach steady
state, the age-averaged quantities in (2, 4, 5) will not differ much from their usual stationary
counterparts. Thus, in a general biological context, deviations of the averaged quantities
Πn, 〈M〉 and 〈m(z)〉 from the stationary quantities P st

n , M st and mst(z), respectively, should
reflect the rapid turn-over of the mRNA.

3 TASEP Evolving to Steady State

In this section, we will describe our results on the time evolution of a TASEP. We consider
an mRNA that is initially unoccupied and evolves towards steady state with time. We are
interested in studying the density profile and the total number of ribosomes on the mRNA
as a function of time.

Before describing our results for the approach to the steady state, we will summarize
some known results for this steady state. The phase diagram is displayed in Fig. 2. The
diagram shows three distinct phases depending on the entry and exit rates, ωon and ωex

respectively.
For ωont0 < ωext0 < 0.5, the system is in a low density (LD) phase. The stationary density

profile mst(z) on the mRNA is governed by the entry rate ωon. The density profile is flat
with an exponential tail near the exit boundary. The stationary bulk density value mst is
determined by equating the entry flux ωon(1 − mst) with the bulk current given by mst(1 −
mst)/t0 and has a value mst = ωont0. As a consequence, the average flux is ωon(1 − ωont0).
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Fig. 2 Phase diagram of the
TASEP as a function of entry rate
ωon and exit rate ωex. As
mentioned before, these rates are
related to the usual TASEP
parameters α and β via
α = min(ωont0,1) and
β = min(ωext0,1)

Steady state demands a constant flux throughout the mRNA, fixing the density mst at the
exit site to the value mst(L) = (1 − ωont0)ωon/ωex. Finally, disregarding the exponential
tail near the exit boundary, the stationary number of ribosomes in this phase is given by
M st

LD = ωont0L.
For ωext0 < ωont0 < 0.5, the entry rate exceeds the exit rate and the system goes into

a high density (HD) phase. In this case, the exit boundary controls the average density.
The stationary density profile mst(z) again is fixed by imposing that the exit current or flux
mstωex must equal the bulk current mst(1 − mst)/t0. This leads to the bulk density value
mst = 1 − ωext0 and there is an exponential tail at the entry boundary with the density at
the entry site being mst(1) = 1 − (1 − ωext0)ωex/ωon. Finally, disregarding the exponential
tail near the entry boundary, the stationary number of ribosomes in this phase is given by
M st

HD = (1 − ωext0)L.
Increasing both ωont0 and ωext0 beyond 0.5 leads to the maximal current (MC) phase. The

ribosome flux here is fixed at the value 1/(4t0), which is the maximum value possible in the
steady state. It is independent of the entry and exit rates. This flux fixes the densities at the
entry and exit ends: mst(1) = 1 − 1/(4ωont0) and mst(L) = 1/(4ωext0). The density profile
mst shows a power law decay at both ends towards the bulk density value of mst = 1/2. In
the limit of large lattice size L, the stationary number of ribosomes in this phase is given by
M st

MC = L/2.
Our results deal with the evolution towards the phases described above and we will see

that the entry and exit rates not only determine the steady state phases but also affect the
behavior in the time dependent regime.

3.1 Results for t < Lt0

The first ribosome entering the mRNA will take a time Lt0 to reach the other end since it
moves forward by one unit at each time step. Thus for time t < Lt0, the effect of the exit
boundary does not come into play. Therefore, any result in this regime will be independent
of the exit rate ωex. In fact, one can argue that in this time regime, the behavior close to
the entry end will always be as if the value of ωext0 is one. Assuming that correlations in
the system are short ranged, the entry end cannot distinguish between a completely open
exit boundary with ωext0 = 1 and no exit boundary at all since there is no restriction to the
motion of ribosomes, except for their own hard core repulsion that is effective in both cases.
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Fig. 3 Number of ribosomes on
the mRNA M(t) versus time
t/t0. (a) Entry rate ωon = 0.3/t0
and exit rate ωex = 0.1/t0 and
0.9/t0 (overlapping data). The
straight line with slope 0.21
completely overlaps with the data
showing excellent agreement.
Thus for ωont0 < 0.5 and
t < Lt0, we have
M(t) = ωon(1 − ωont0)t .
(b) Entry rate ωon = 0.7/t0 and
exit rate ωex = 0.1/t0 and 0.9/t0
(overlapping data). The straight
line has a slope 0.25. The
matching here is good but not as
good as in the case with
ωont0 < 0.5 case. The length of
the mRNA strand is L = 1024
and the data has been averaged
over 103 trajectories for both
figures

Therefore, guided by the steady state results, we predict that for times t < Lt0 the system
shows two instead of three different kinds of behavior. Namely, for ωont0 < 1/2, the system
behavior near the entry boundary is expected to be like that in a low density phase, implying
that the entry flux of ribosomes should be ωon(1 − ωont0). For ωont0 > 1/2, instead, it is
expected that the entry flux will be 1/4t0 as in the maximal current phase.

Figure 3(a) shows the number of ribosomes on the mRNA, M(t), as a function of t/t0
for ωont0 = 0.3. According to our argument above, we expect the average ribosome number
to behave as

M(t) = ωon(1 − ωont0)t for t < Lt0 (6)

and we see in Fig. 3(a) that this fits the data very well. Figure 3(b) shows the simulation
data for M(t) versus t/t0 for ωont0 = 0.7, which has been compared to the approximation,
M(t) = 0.25t/t0. We see that, interestingly, the entry flux of ribosomes here is slightly
higher than the expected value of 1/4t0, which, in fact, is the highest possible ribosome
entry flux in the steady state. Why does our assumption of a steady state-like behavior near
the entry boundary not work so well for ωont0 > 0.5?

A look at the density profiles m(z, t) on the mRNA provides some qualitative under-
standing. For ωont0 < 0.5, we see in Fig. 4(a) that there is a formation of a quasi-steady state
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Fig. 4 Density profile m(z, t) as
a function of the ribosome
position z for different choices of
the time t . (a) Entry rate
ωon = 0.3/t0, exit rate
ωex = 0.9/t0 and mRNA length
L = 1024 in units of the lattice
parameter l0. The figure shows
data for different times that
increase from left to right,
t = 100t0 (yellow, leftmost),
t = 300t0 (light blue), t = 700t0
(violet), t = 1100t0 (blue),
t = 1500t0 (green) and
t = 2500t0 (red, rightmost). The
straight line shows m(z) = 0.3.
(b) Entry rate ωon = 0.8/t0, exit
rate ωex = 0.9/t0 and mRNA
size L = 1024. The figure shows
data for different times that
increase from left to right,
t = 100t0 (yellow, leftmost),
t = 200t0 (light blue), t = 400t0
(violet), t = 600t0 (blue),
t = 800t0 (green) and t = 1000t0
(red, rightmost). The data for
both figures has been averaged
over 105 trajectories

region of constant density—same as the steady state value of ωont0—near the entry bound-
ary, even at small times. This region leads to the entry flux value of ωon(1 − ωont0). On the
other hand, for ωont0 > 0.5 as shown in Fig. 4(b), we do not see the emergence of such
a constant density region, even at larger times. Our argument above assumes short range
decay of correlations so that the entry boundary does not differentiate between a hindrance-
free motion and a completely open boundary at the other end. We know that the steady state
density correlation in the low density phase is exponentially decaying while in the maximal
current phase, it is long ranged, showing an algebraic decay. This suggests that our assump-
tion of short range decay of correlations might not hold in the ωont0 > 0.5 case, leading to a
deviation from the value expected from the steady-state like behavior.

3.2 Results for t > Lt0

We now consider times larger than Lt0. The ribosomes start reaching the exit boundary, the
exit rate ωex may now come into play, and the system will start approaching one of the three
steady state phases in Fig. 2 depending on the values of ωon and ωex.
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Fig. 5 Number M(t) of
ribosomes on the mRNA versus
time t/t0. (a) LD case: Entry rate
ωon = 0.3/t0 and exit rate
ωex = 0.9/t0. The broken
straight line with finite slope
shows the behavior for t < Lt0
and the broken horizontal line
shows the steady state ribosome
number Mst. (b) HD case: Entry
rate ωon = 0.7/t0 (upper data
set) and ωon = 0.2/t0 (lower
data set); exit rate ωex = 0.1/t0
for both. The broken straight
lines have slopes
0.25 − 0.1(1 − 0.1) = 0.16
according to (8)
and 0.2(1−0.2)−0.1(1−0.1) = 0.07
according to (7) and show a good
fit to the intermediate regime
with t > Lt0. (c) MC case: Entry
rate ωon = 0.7/t0 and exit rate
ωex = 1.0/t0. The broken
straight line with finite slope
shows the behavior for t < Lt0
and the broken horizontal line
shows the steady state ribosome
number. In all three cases, the
mRNA length L = 1024 in units
of the lattice parameter l0 and the
data has been averaged over 103

trajectories

3.2.1 Approach to Low Density Phase

The steady state for ωont0 < ωext0 and ωont0 < 0.5 is a low density phase with the number
of ribosomes in the steady state being Mst = ωonL. As we have seen in the previous section,
the number of ribosomes loaded on the mRNA at time t = Lt0 will be M(Lt0) = ωon(1 −
ωont0)Lt0. Thus, a total of M st − M(Lt0) = ω2

ont
2
0 L more ribosomes will be added in the

t > Lt0 time range to reach steady state. As we see in Fig. 5(a), the long-time behavior for
t > Lt0 interpolates smoothly between the two asymptotic regimes.

3.2.2 Approach to High Density Phase

The steady state for ωext0 < ωont0, ωext0 < 0.5 is a high density phase with the exit boundary
controlling the density profile, which has the value mst = 1 − ωext0. If ωont0 < 0.5, then at
times t > Lt0 but before the steady state is reached, we can make the assumption that the
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Fig. 6 Density profile m(z, t) as
a function of the ribosome
position z for various times.
(a) HD case: Entry rate
ωon = 0.2/t0, exit rate
ωex = 0.1/t0. (b) HD case: Entry
rate ωon = 0.7/t0, exit rate
ωex = 0.1/t0. In both cases, the
four data sets correspond to
t/t0 = 400, 800, 2000, and 4000
as indicated in the subfigures.
Likewise, in both subfigures, the
mRNA length L = 1024 and the
data has been averaged over 105

trajectories

entry is controlled by ωon, leading to ribosome entry flux of ωon(1 − ωont0) and the exit is
controlled by ωex leading to an exit per unit time of ωex(1 − ωext0). Thus the equation that
governs the time evolution of the number of ribosomes at intermediate times is given by

dM(t)

dt
= ωon(1 − ωont0) − ωex(1 − ωext0), (7)

which leads to the lower broken line in Fig. 5(b). This reasoning is supported by the density
profiles m(z, t) on the mRNA at different times. We can clearly see in Fig. 6(a) that at
larger times, there is a region with density equal to ωont0 near the entry boundary (left) and
1 − ωext0 near the exit boundary (right).

For ωont0 > 0.5 we can again make a similar approximation, with the value of the entry
flux being 1/4t0. As illustrated by the upper broken line in Fig. 5(b), the slope for M(t)

versus t/t0 in the range t > Lt0 is well fitted by the formula

dM(t)

dt
= 1

4t0
− ωex(1 − ωext0). (8)

The corresponding density profiles in Fig. 6(b) again show that entry and exit boundaries
control the densities on the two adjacent mRNA segments.
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3.2.3 Approach to Maximal Current Phase (ωont0 > 0.5, ωext0 > 0.5)

The steady state here is a maximal current phase. We see a nonlinear regime for t > Lt0
(Fig. 5(c)), again, we do not have a simple argument for the behavior in this regime.

4 Effect of mRNA Degradation

We now consider the effect of mRNA degradation on the process of translation. As we have
mentioned in the introduction, the process of degradation leads to an ensemble of mRNA
with a distribution of ages. The younger mRNA, where the translation has just begun, have
ribosomes only near the entry boundary while the older ones, which have reached a steady
state, have a more homogeneous ribosome density. The quantities recorded by the experi-
ments represent an average over this ensemble of mRNA and this is what we want to capture
in our model. Partially degraded mRNA may also contribute to this average in the experi-
mental data but we assume that this effect is small, specially in prokaryotes, where the
mRNA fragments are quickly digested. As mentioned in Sect. 2, the averages over mRNAs
of different ages will be indicated with the symbols 〈·〉. We have assumed a fixed degrada-
tion rate ωde leading to the mRNA age distribution φA given in (1). We have numerically
calculated the quantities of interest, namely—the average number of ribosomes 〈M〉 as a
function of mRNA coding region length L, the average density profile m(z, t) of ribosomes
as a function of position z along the mRNA and the average probability distribution Πn of
the number of ribosomes present on the mRNA. Our approach is to simulate the TASEP,
starting with an empty mRNA, and then stop and take data at a random time chosen ac-
cording to the age distribution φA. This process is repeated for a large number of times and
finally an average is taken over data from each configuration. We compare this data with
approximations developed using results of the previous section.

The parameter values have been chosen as follows [16]: The velocity v0 of unhindered
ribosomes has been taken to be 60 footprints (fp) per minute; a footprint refers to the length
l0 of the ribosome, which is approximately 10 codons. For very low density and collisionless
conditions, this would correspond to moving one footprint or one mRNA site per second
by every ribosome. Thus one Monte-Carlo move, which corresponds to t0 and involves a
number of updates equal to the total number of ribosomes on the mRNA, represents one
second. Assuming a typical life time of mRNA to be between 2 and 5 minutes, we take
ωde = 1/3.5 min−1 = 0.00476 sec−1. As we have seen in the previous section, the variation
of the entry and exit rates not only leads to different steady states, but also to different
behavior in the time dependent regime when the system is approaching steady state. We
now discuss the effect of degradation in the different regions of parameter space.

4.1 Low Density (LD) Case

We consider ωont0 < ωext0, ωont0 < 0.5 where the steady state is a low density phase with
stationary density profile mst = ωont0. Our numerical results for the average density profile,
〈m(z)〉, as a function of the distance z from the entry end, and the average density on the
mRNA, 〈M〉/L, as a function of the total number of sites L is shown in Figs. 7(a) and 8(a)
respectively.

The numerical results have been compared to results from the following approximation.
When the system is approaching the low density phase, we have seen in Fig. (5a) that the
number of ribosomes rises linearly, 〈M(t)〉 = ωon(1 − ωont0)t , until time t = Lt0 and then
the behavior changes to a nonlinear one until the steady state value Mst = ωont0L is reached.
We will neglect the nonlinear portion, which is relatively small, and assume that the number
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Fig. 7 Average density profile
〈m〉 as a function of ribosome
position z. (a) LD case: Entry
rate ωon = 0.2/t0, exit rate
ωex = 0.9/t0, degradation rate
ωde = 0.00476/t0 and different
values of the mRNA length
L = 60 (red), 120 (green), 200
(blue). All data points for the
different L-values lie on top of
each other apart from those data
points that correspond to z-values
close to z = L. The analytical
expression (11) leads to the solid
line, which is hardly visible since
it is in very good agreement with
the data. (b) HD case: Entry rate
ωon = 0.2/t0, exit rate
ωex = 0.1/t0, degradation rate
ωde = 0.00476/t0 and different
values of L: from left to right, the
three data sets correspond to
L = 60 (red), 120 (green), 200
(blue). The solid lines are
obtained from the analytical
expression (18). (c) MC case:
Entry rate ωon = 0.8/t0, exit rate
ωex = 0.9/t0, degradation rate
ωde = 0.00476/t0 and L = 60
(red), 120 (green), 200 (blue).
Again, all data points lie on top
of each other apart from those
data points that correspond to
z-values close to z = L. The data
for all three figures has been
averaged over 105 trajectories

of ribosomes increases in a linear manner all the way to the steady state (see Fig. 9(a)). The
density profile m(z, t) is approximated as a front of uniform density ωont0 that starts from
the entry boundary and moves towards the exit boundary,

m(z, t) =
{

0 0 < t ≤ z
v
,

ωont0 t > z
v
,

(9)

where the velocity of the front v = v0(1 − ωont0), which ensures that the ribosome number
M(t) rises with the rate ωon(1 − ωont0). The time to reach steady state therefore will be
tst = L/v for v expressed in footprints per second and we have

M(t) =
{

ωon(1 − ωont0)t 0 < t ≤ L/v,

ωont0L t > L/v,
(10)

where L is the length of the mRNA in units of footprints.
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Fig. 8 Average density 〈M〉/L
versus mRNA length L. (a) LD
case: Entry rate ωon = 0.2/t0,
exit rate ωex = 0.9/t0 and
degradation rate
ωde = 0.00476/t0. The
simulation data are well
described by the solid line
obtained from the analytical
expression (12). (b) HD case:
Entry rate ωon = 0.2/t0, exit rate
ωex = 0.1/t0 and degradation
rate ωde = 0.00476/t0. The line
corresponding to the prediction
from (19) again shows good
agreement with data points
obtained from simulations.
(c) MC case: Entry rate
ωon = 0.8/t0, exit rate
ωex = 0.9/t0 and degradation
rate ωde = 0.00476/t0. The
points correspond to the data and
the line provides a guide to the
eye. In all three figures, each data
point is a result of averaging over
105 trajectories

Using the above equations, we can calculate the average over the age distribution of the
density profile from (5) as

〈m(z)〉 = ωont0 exp

(
−ωdez

v

)
(11)

as well as the average density from (4) as

〈M〉
L

= ωon(1 − ωont0)

ωdeL

[
1 − exp

(
−ωdeL

v

)]
. (12)

The results from the above equations are compared with numerical data from our simulations
and as we see in Figs. 7(a) and 8(a), the approximation works very well.

Another quantity that we have numerically computed is the average probability distribu-
tion, Πn, of the total number of ribosomes, n as defined in (2). A plot of this quantity for
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Fig. 9 Average number M of
ribosomes on the mRNA versus
time t/t0. (a) LD case: Entry rate
ωon = 0.3/t0 and exit rate
ωex = 0.9/t0. Data from
simulations is shown in red and
the broken line shows the
approximation as in (10). (b) HD
case: Entry rate ωon = 0.2/t0 and
exit rate ωex = 0.1/t0. Data from
simulations is shown in red and
the broken line shows the time
evolution as in (17), which
provides a very good
approximation to the data. For
both figures, L = 1024 and the
data has been averaged over 103

trajectories

several choices of mRNA length L is shown in Fig. 10(a). This quantity can experimentally
be measured from ultracentrifugation experiments. For small mRNA lengths, the data from
the model is close to the steady state data from a TASEP without degradation. This is to be
expected since for very small mRNA, the degradation time can be long enough for the sys-
tem to reach close to the steady state. For larger L, we see a distinct difference between the
prediction from the model and the TASEP steady state behavior. We see a clear signature of
the degradation in an additional peak at small values of n which is different from the usual
steady state distribution without degradation.

4.2 High Density (HD) Case

When ωext0 < ωont0, ωext0 < 0.5, the exit boundary controls the steady state density and
the system is in a high density phase. As we have seen before, even within this parameter
regime, there is a difference in the approach towards steady state when ωont0 < 0.5 and
ωont0 > 0.5 (Figs. 4 and 6). When ωont0 < 0.5, guided by Fig. 6(a), we can approximate the
time dependent density profile as follows. Initially, a front of density ωont0 moves from the
entry end to the exit end with speed v1 = v0(1 − ωont0), like in the low density phase, until
this front hits the exit boundary at time tL = L/v1. Then a front of density (1 − ωext0) starts
going from the exit boundary towards the entry boundary with speed v2 where this velocity
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Fig. 10 Probability distribution
Πn of the number of ribosomes
on the mRNA. (a) LD case: Entry
rate ωon = 0.2/t0, exit rate
ωex = 0.9/t0 and degradation
rate ωde = 0.00476/t0 for three
values of L, 60 (red), 120 (dark
blue) and 200 (light blue). Also
shown is data for the
corresponding steady state
distribution with no degradation
for L = 60 (green), 120 (violet)
and 200 (yellow). (b) HD case:
Entry rate ωon = 0.2/t0, exit rate
ωex = 0.1/t0 and degradation
rate ωde = 0.00476/t0 for three
values of L, 60 (red), 120 (dark
blue) and 200 (light blue). Also
shown is data for the
corresponding steady state
distribution with no degradation
for L = 60 (green), 120 (violet)
and 200 (yellow). (c) MC case:
Entry rate ωon = 0.8/t0, exit rate
ωex = 0.9/t0 and degradation
rate ωde = 0.00476/t0 for three
values of mRNA length L, 60
(red), 120 (dark blue) and 200
(light blue). Also shown is data
for the corresponding steady state
distribution without degradation.
Here again we have L = 60
(green), 120 (violet) and 200
(yellow). The points in all the
figures correspond to the data and
the lines provide a guide to the
eye. The data for all three figures
has been averaged over 106

trajectories. In all three cases,
degradation leads to a broadening
of the distributions and to a shift
of the maxima towards smaller
values of n

can be obtained by equating

dM(t)

dt
= (1 − ωext0)v2 − ωont0v2, (13)

to (7). This finally leads to

v2 = v0[ωont0(1 − ωont0) − ωext0(1 − ωext0)]
1 − ωext0 − ωont0

. (14)

Steady state is reached when this density front reaches the entry boundary at time ts deter-
mined by

ts = L

v1
+ L

v2
. (15)
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Thus we can write

m(z, t) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 < t ≤ z
v1

,

ωont0
z
v1

< t ≤ L
v1

+ (L−z)

v2
,

1 − ωext0 t > L
v1

+ (L−z)

v2
.

(16)

The ribosome number is approximated by two piece-wise linear portions with different
slopes (see Fig. 9(b)) and we can write

M(t) =
⎧⎨
⎩

ωon(1 − ωont0)t 0 < t < tL,

ωon(1 − ωont0)tL + [ωon(1 − ωont0) − ωex(1 − ωext0)](t − tL) tL < t < ts ,

(1 − ωext0)L t > ts

(17)

where ts is defined in (15) and tL = L/v1. The averaging over age distribution according to
(5) and (4) then leads to

〈m(z)〉 = ωont0 exp

(
−ωde

z

v1

)

+ (1 − ωont0 − ωext0) exp

(
−ωde

(
L

v1
+ (L − z)

v2

))
(18)

and

〈M〉
L

= ωon(1 − ωont0)

Lωde
(1 − exp (−ωdetL))

+ ωon(1 − ωont0) − ωex(1 − ωext0)

Lωde
(exp(−ωdetL) − exp(−ωdets)) . (19)

Figures 7(b) and 8(b) show the comparison of the numerical data with prediction from the
above formulas and we see that they work quite well. We see a distinct feature in the aver-
aged density profile 〈m(z)〉 in Fig. 7(b)—a peak near the exit boundary. As we have seen
in Fig. 4(a), after the ribosomes start reaching the exit boundary, a jam starts building up,
which we have described above as a density front moving towards the entry boundary. This
density front contributes more to the density near the exit boundary and leads to the peak in
the average profile.

When ωont0 > 0.5, we have seen that the density does not evolve like a constant value
front (Fig. 4(b)) and we can not extend the analysis above. Figure 11(a) shows the average
density 〈M〉/L as a function of mRNA size and the behavior is qualitatively similar to the
ωont0 < 0.5 case. The averaged density profile 〈m(z)〉 in Fig. 11(b) again, similar to the case
ωont0 < 0.5, shows a peak near the exit boundary arising from a backward moving density
front.

We have also measured the probability distribution Πn for the HD case as shown in
Fig. 10(b). The age-averaged distribution Πn for the system with degradation is much
broader and shifted towards smaller value of n compared to the distribution for the steady
state without degradation. This change in behavior can be attributed to the larger time re-
quired to reach steady state. While the ribosomes start to reach the end codon at time of
the order of Lt0, the time to reach steady state is still of the order of Lt0. Thus, if the
mRNA-ribosome system works in the HD phase, we will find pronounced age effects in the
ultracentrifugation data.
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Fig. 11 (a) HD case: Average
density 〈M/L〉 versus L for entry
rate ωon = 0.7/t0, exit rate
ωex = 0.1/t0 and degradation
rate ωde = 0.00476/t0. The
points show simulation results
and the line provides a guide to
the eye. (b) HD case: Average
density profile 〈m〉 versus z for
entry rate ωon = 0.7/t0, exit rate
ωex = 0.1/t0, degradation rate
ωde = 0.00476/t0 and different
values of the mRNA lenght L:
from left to right, the three data
sets correspond to L = 60 (red),
120 (green), 200 (blue). The data
for both figures is a result of
averaging over 105 trajectories

4.3 Maximal Current (MC) Case

When ωont0, ωext0 > 0.5, the steady state of the system is a maximal current phase with a
fixed density of half, independent of the entry and exit rates. The numerical results for the
average density 〈M〉/L as a function of mRNA length is shown in Fig. 8(c) and the average
density profile 〈m(z)〉 versus z, expressed in footprints units has been shown in Fig. 7(c).

These results are qualitatively similar to those in the low density case. In the previous
section, we had seen that the initial increase in number of ribosomes for ωont0 > 0.5 is
linear, with a coefficient larger than the 1/4t0 expected from a simple argument. We had
also seen that the density profile (Fig. 4(b)) does not have an expanding region of constant
density as in the case ωont0 < 0.5. Thus we cannot extend the analysis that we had used in
the LD case to develop an analytic approximation.

Figure 10(c) shows the probability distribution, Πn, of the number of ribosomes num-
ber n. We again see a significant difference from the steady state without decay and, as
expected, the difference increases with increasing mRNA length.
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5 Conclusions

In this paper, we have studied the effect of degradation on the process of translation. We
have taken the totally asymmetric simple exclusion process to describe ribosome movement
on mRNA. The degradation has been introduced via an age distribution for the mRNA and
the average over this distribution provides experimentally observable quantities. This aver-
aging includes mRNAs of all ages—from very young, unloaded ones to older ones which
have reached a steady state ribosome density. Therefore, before considering the effect of
degradation, it is important to study the time evolution of a TASEP towards steady state
from an initial condition of empty mRNA. Therefore, we have presented our results in two
sections.

In Sect. 3, we have discussed the time evolution of the ribosome or particle density for
the various parameter regions. We have seen that our knowledge of the steady state behavior
of the system can provide an intuitive understanding of the initial time-dependent behavior.
We have, in fact, used this understanding to develop a simple approximation that describes
our numerical results quite well. The initial rise in the number of ribosomes is always linear
in time with coefficients depending on the entry rate ωon, see Fig. 3. The ribosome entry
flux for ωont0 > 0.5 has a value larger than 1/4t0, see Fig. 3(b), which is an unexpected and
interesting result since the entry flux value can never exceed 1/4t0 in steady state conditions.
For times larger than Lt0, the exit boundary becomes important, and for the high density
phase parameters as given by ωex < ωon and ωext0 < 0.5, the entry and exit boundaries
determine the fluxes in their vicinity, see Figs. 6(a) and (b), leading to a ribosome entry flux
of ωon(1 − ωont0) and an exit flux ωex(1 − ωext0). These results for the time evolution of a
TASEP are interesting in themselves and, as far as we know, new.

Section 4 addresses the biology problem at hand—the effect of degradation on protein
translation. We have focused here on three experimentally measurable quantities: (i) the
average density profile 〈m(z)〉 as a function of distance along the mRNA, (ii) the average
probability distribution Πn of the number of ribosomes on the mRNA and (iii) the average
number of ribosomes 〈M〉 on the mRNA. The initial phase of mRNA loading, before the
system has reached its steady state, contributes significantly to the average over the age
distribution. As a result, we find that there is a decrease in the averaged density profile
〈m(z)〉 as one moves away from the entry boundary, see (11) and Fig. 7(a). For parameters
corresponding to the low density steady state, the profile is similar to the one in the simple
model studied in [16]. We also reveal a new feature for the high density phase—a peak in
the average density near the exit boundary, see (18) and Figs. 7(b) and 11(b). This peak can
be understood in terms of a traffic jam caused by a low exit rate which contributes to the
high density near the exit end.

As far as translation by ribosomes is concerned, we have focused on the effect of degra-
dation, neglecting features such as ribosome drop off, effects of tRNA concentration etc. Our
results show that small degradation times can lead to significant effects on polysome statis-
tics. These results are relevant for prokaryotic organisms such as E. coli where the degrada-
tion mechanism is simple and the average age of the mRNA is comparable to the time scale
of translation, both of which can be of the order of a few minutes [15, 25–27]. In prokary-
otes, mRNA translation begins before the completion of transcription. In our study, we have
implicitly assumed that the average translation rate is smaller than the average transcription
rate. For E. coli, the average transcription rate was found to be 62 nucleotides/s or about
21 codons/s [28] whereas the average translation rate is estimated to be 600 codons/min or
10 codons/s [16]. Thus for this latter organism, the translation rate is indeed smaller than
the transcription rate, and we may then ignore possible effects of co-transcriptional transla-
tion on the polysome statistics. Some results on the density profile [23] and probability of
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polysome size [20] are also available for eukaryotes such as the yeast S. cerevisiae, and it
is expected that the translation profiles for other organisms will be explored using similar
experimental methods. It will be interesting to see to what extent future experiments confirm
our predictions. A comparison with the experimental data may require more detailed models
which include other important features such as the effect of extended particles [29] and the
sequence of codons [23, 30].
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