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Abstract

Submicron scale domains of membrane-anchored receptors play an important role in cell signaling. Central questions
concern the stability of these microdomains, and the mechanisms leading to the domain formation. In immune-cell
adhesion zones, microdomains of short receptor-ligand complexes form next to domains of significantly longer receptor-
ligand complexes. The length mismatch between the receptor-ligand complexes leads to membrane deformations and has
been suggested as a possible cause of the domain formation. The domain formation is a nucleation and growth process
that depends on the line tension and free energy of the domains. Using a combination of analytical calculations and Monte
Carlo simulations, we derive here general expressions for the line tension between domains of long and short receptor-
ligand complexes and for the adhesion free energy of the domains. We argue that the length mismatch of receptor-ligand
complexes alone is sufficient to drive the domain formation, and obtain submicron-scale minimum sizes for stable domains
that are consistent with the domain sizes observed during immune-cell adhesion.
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Introduction

In the past years, microdomains of proteins in cell membranes

have emerged as a central aspect of cell signaling [1–4]. The

activation of T cells, for example, is initiated by submicron-scale

domains of T cell receptors (TCRs) [1,5–7]. The TCRs recognize

foreign peptides presented by MHC ligands (MHCpeptide) in an

apposing cell membrane. During T-cell adhesion, domains of

TCR-MHCpeptide form within seconds in the adhesion zone

[8,9].

Several mechanisms have been proposed for the formation

of TCR-MHCpeptide domains during T-cell adhesion. These

mechanisms are based on the actin cytoskeleton [10,11], enhanced

cis-interactions between TCRs due to conformational changes after

binding [1], pre-clustering of TCRs prior to adhesion [12,13], and

the length difference between the TCR-MHCpeptide complexes

and other receptor-ligand complexes and proteins in the T-cell

adhesion zone [14–22]. We argue here that the length differences

between TCR-MHCpeptide complexes and other complexes alone

can account for the formation of clusters and domains during T-cell

adhesion. The TCR-MHCpeptide complex has a length of about

13 nm [23–25], while complexes between the integrin LFA-1 and

its ligand ICAM-1 have a length around 40 nm [10]. This length

mismatch induces a membrane-mediated repulsion between dif-

ferent complexes in the T-cell contact zone because the membranes

have to bend to compensate the mismatch, which costs bending

energy. Beyond certain threshold or critical concentrations of the

receptors and ligands, the membrane-mediated repulsion leads to a

segregation of TCR-MHCpeptide and integrin complexes into

domains enriched in these complexes.

In previous work, we have derived general expressions for the

critical receptor and ligand concentrations required for domain

formation. These general expressions depend on the length mis-

match between the receptor-ligand complexes and on the bending

rigidity of the membranes [26,27]. We have also found that large,

repulsive glycoproteins and additional complexes with a length close

to the TCR-MHCpeptide complex, such as the CD2–CD48

complex [25], increase the tendency for domain formation [26].

In this article, we determine the free energy and stability of

clusters and domains of long and short receptor-ligand complexes.

Our main results are general expressions for the line tension and

adhesion free energy of the domains in terms of the concentrations

and affinities of the receptors and ligands as well as the length

mismatch of the receptor-ligand complexes. These general expres-

sions fully include the effects of membrane shape fluctuations and

the translational entropy of the receptors and ligands, and depend

only on experimentally accessible quantities. Our expressions lead

to estimates for the minimal size of stable TCR-MHCpeptide

microdomains that are consistent with the submicron-scale sizes

observed during T-cell adhesion.

Methods

Membrane conformations, interactions and elasticity
To describe the conformations of the two apposing membranes

in a cell adhesion zone, we divide these membranes into small
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patches. Each patch can contain a single receptor or ligand

molecule [28–30]. A receptor binds to a ligand molecule if the

ligand is located in the membrane patch apposing the receptor,

and if the separation li of the two membrane patches is close to the

length of the receptor-ligand complex. The mobile receptor and

ligand molecules diffuse by ‘hopping’ from patch to patch, and the

thermal fluctuations of the membranes are reflected in variations

of the separation of apposing membrane patches.

The energy of a membrane conformation

Hfl,m,ng~HelflgzHintfl,m,ng ð1Þ

is the sum of the elastic energy Helflg of the membranes and the

interaction energy Hintfl,m,ng of the receptors and ligands. For a

membrane with two types of receptors R1 and R2 that bind to the

ligands L1 and L2 in the apposing membrane, the interaction

energy is [27,31]

Hintfl,n,mg~
X

i

½dni ,1
dmi ,1

V1(li)zdni ,2
dmi ,2

V2(li)� ð2Þ

Here, the occupation number ni~1, 2, or 0 indicates whether a

receptor R1, a receptor R2, or no receptor is present in patch i of

the cell membrane in the contact zone, while mi~1, 2, or 0
indicates whether a ligand L1, a ligand L2, or no ligand is present

in the apposing membrane patch i. The Kronecker symbol di,j

equals 1 for i~j and is equal to 0 for i=j. The potential V1 thus

describes the interaction of a receptor R1 with a ligand L1, and the

potential V2 the interaction between R2 and L2. For simplicity, V1

and V2 are taken to be square-well potentials

V1(li)~{U1 for l1{lwe=2vlivl1zlwe=2

~0 otherwise
ð3Þ

and

V2(li)~{U2 for l2{lwe=2vlivl2zlwe=2

~0 otherwise
ð4Þ

with binding energies U1 and U2 and equilibrium lengths l1vl2 of

the complexes R1L1 and R2L2. We have assumed here that the

two complexes have the same binding width lwe.

The rigidity-dominated elastic energy of the membranes has the

form [28,30]

Helflg~
k

2a2

X
i

Ddlið Þ2 ð5Þ

where li is the local separation of the apposing membrane patches

i. The elastic energy depends on the mean curvature (Dd li)=(2a2)
of the separation field li with the discretized Laplacian

Dd li~li1zli2zli3zli4{4li. Here, li1 to li4 are the membrane

separations at the four nearest-neighbor patches of membrane

patch i on the quadratic array of patches. The linear size a of the

membrane patches is chosen to be around 5 nm to include the

whole spectrum of bending deformations of the lipid membranes

[32]. The effective bending rigidity of the two membranes with

rigidities k1 and k2 is k~k1k2=(k1zk2). If one of the membranes,

e.g. membrane 2, is a planar supported membrane, the effective

bending rigidity k equals the rigidity k1 of the apposing membrane

since the rigidity k2 of the supported membrane is taken to be

much larger than k1.

Effective adhesion potential of the membranes
The equilibrium proporties of the membranes can be deter-

mined from the free energy F~{kBT lnZ where Z is the

partition function. The partition function Z~
Ð

Dl
Ð

DmÐ
Dn exp ({Hfl,m,ng=kBT) is the integral over all membrane

conformations, with each conformation weighted by its Boltzmann

factor. In our model, the integration over the distributions m and n

of receptors and ligands can be performed exactly [27], which

leads to Z~
Ð

Dl exp ({Hefflg=kBT) with the effective confor-

mational energy

Hefflg~Helflgza2
X

i

Vef (li) ð6Þ

For long and short receptors and ligands with interaction energy

(2), the effective potential is a double-well potential (see fig. 1(b)).

The two wells of this potential are centered around the lengths l1
and l2 of the complexes R1L1 and R2L2, and the width lwe of these

wells is equal to the binding width of the two complexes. The

depths U ef
1 and Uef

2 of the wells depend both on the concen-

trations and on the binding affinities of the receptors and ligands.

The typical concentrations of receptors and ligands in cell

adhesion zones are much smaller than the maximal concentration

1=a2^4:104=mm2 in our model. For these small concentrations,

we obtain

Uef
1 &kBT K1½R1�½L1� ð7Þ

Figure 1. Effective adhesion potential. (a) Two membranes
interacting via long (red) and short (green) receptor-ligand complexes.
The length mismatch of the complexes causes membrane deforma-
tions, which cost bending energy and lead to a membrane-mediated
repulsion between different receptor-ligand complexes. - (b) The
attractive interactions between the two types of receptors and ligands
lead to an effective double-well adhesion potential Vef of the
membranes. The potential well 1 at small membrane separations l
reflects the interactions of the short receptor-ligand complexes, and the
potential well 2 at larger membrane separations the interactions of the
long receptor-ligand complexes. The depths Uef

1 and Uef
2 of the two

potential wells depend both on the concentrations and on the binding
energies of the two types of receptors and ligands, see eqs. (7) and (8).
doi:10.1371/journal.pone.0023284.g001
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Uef
2 &kBT K2½R2�½L2� ð8Þ

where ½R1�, ½R2�, ½L1� and ½L2� are the area concentrations of

unbound receptors and ligands, and K1~a2eU1=kBT and K2~

a2eU2=kBT are the binding constants for receptors and ligands

within the appropriate binding ranges [26,27]. The summation

over the degrees of freedom m and n of the receptors and ligands

thus ‘maps’ the problem of two membranes interacting via long

and short receptor-ligand complexes to the problem of a

membrane with effective rigidity k in an effective double-well

potential.

The effective potential can be generalized to cases with more

than two receptor-ligand complexes, or with additional repulsive

molecules [26]. For T cells adhering to antigen-presenting cells, for

example, a third important receptor-ligand complex is the CD2–

CD48 complex, which has about the same length as the TCR-

MHCpeptide complex. In this case, the well depth Uef
1 in the

effective double-well potential depends on the concentrations and

binding constants of TCR and MHCp as well as CD2 and CD48

[26]. In addition, complexes between TCRs and self MHCpeptide

molecules, besides foreign MHCpeptides, can contribute to this

well depth [26].

The effective potential helps to determine and illustrate the

equilibrium behavior. If the two wells of the effective potential are

relatively shallow, thermal membrane fluctuations can easily drive

membrane segments to cross from one well to the other. If the two

wells are deep, the crossing of membrane segments from one well

to the other well is impeded by the potential barrier of width lba

between the wells (see fig. 1). Beyond a critical depth of the

potential wells, the potential barrier leads to the formation of large

membrane domains that are predominantly bound in well 1 or

well 2. Within each domain, the adhesion of the membranes is

predominantly mediated either by the receptor-ligand complexes

R1L1 or by the complexes R2L2, which leads to different con-

centrations ½R1L1� and ½R2L2� of these complexes in the different

domains. However, the equilibrium concentrations ½R1�, ½R2�,
½L1�, and ½L2� of unbound receptors and ligands are identical in

the different domains since these receptors and ligands are free to

diffuse between the domains. Therefore, the effective potential is

also identical in the different domains (see eqs. (7) and (8)). In

general, the diffusion of individual receptors and ligands is fast

compared to the domain formation [20].

We have previously found that the critical potential depth for

domain formation is

Uef
c &

c(kBT)2

klwelba

ð9Þ

with the prefactor c~0:225+0:02 determined from Monte Carlo

simulations [27]. Domain formation or, in other words, segrega-

tion of the complexes R1L1 and R2L2 can only occur if the

effective potential depths U
ef
1 and U

ef
2 exceed the critical potential

depth U ef
c . The critical potential depth depends on the tem-

perature T and the bending rigidity k as well as on the width lwe

and separation lba of the two potential wells. In deriving eq. (9), we

have neglected direct membrane-membrane contacts, which is

reasonable for typical concentrations and lengths of receptor-

ligand complexes in cell adhesion zones since the thermal

membrane roughness is smaller than the lengths of the receptor-

ligand complexes for these concentrations and lengths [27,33].

In this article, we determine how the adhesion free energy and

line tension of the domains depends on the depths as well as on the

width lwe and separation lba of the two wells. The starting point for

our calculations and simulations is the effective conformational

energy (6) with the double-well potential Vef shown in fig. 1(b).

Effective parameters and Monte Carlo simulations
We use a combination of Monte Carlo simulations and scaling

arguments to determine the free energy difference and line tension

of membrane domains that are bound in the two potential wells of

the effective potential Vef (l). To reduce the number of parameters,

we use the rescaled separation field zi~(li=a)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=(kBT)

p
in the

simulations. The effective conformational energy (6) then has the

form Hfzg=kBT~
X

i
½1
2

Ddzið Þ2za2Vef (zi)=kBT � where Vef is

the effective potential shown in fig. 1(b). The four parameters of

the Monte Carlo simulations are the rescaled width and separation

zwe~(lwe=a)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=(kBT)

p
and zba~(lba=a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=(kBT)

p
ð10Þ

of the potential wells, and the dimensionless well depths

~UUef
1 ~a2U ef

1 =(kBT) and ~UUef
2 ~a2U ef

2 =(kBT) ð11Þ

A scaling analysis (see Appendix S1) indicates that there are only

three independent parameters if the lateral correlation length of

the membranes is much larger than the linear size a of the discrete

membrane patches, which is the case if the membranes are only

weakly bound in the potential wells. These three parameters are

the rescaled well depths

u1~ ~UU ef
1 z2

we~U
ef
1 k l2

we=(kBT)2~k l2
weK1½R1�½L1�=(kBT) ð12Þ

u2~ ~UU ef
2 z2

we~U
ef
2 k l2

we=(kBT)2~k l2
weK2½R2�½L2�=(kBT) ð13Þ

and the ratio

zba=zwe~lba=lwe ð14Þ

of the separation and width of the potential wells. From eq. (9), we

obtain the rescaled critical potential depth

uc&U ef
c k l2

we=(kBT)2~clwe=lba ð15Þ

with c~0:225+0:02, which depends only on the ratio of these

two characteristic lengths of the double-well potential.

In the Monte Carlo simulations, we attempt local Monte Carlo

moves in which the rescaled separation zi of the membrane patch i
is shifted to a new value zizf where f is a random number

between {1 and 1. Following the standard Metropolis criterion

[34], a local move is always accepted if the change DH in

conformational energy is negative, and accepted with the

probability exp ({DH=kBT) for DHw0. We perform simulations

with up to 107 attempted local moves per patch i and membrane

sizes up to N~160|160 patches. The membrane size is always

chosen to be much larger than the lateral correlation length of the

membranes, since thermodynamic averages of membrane quan-

tities then do not depend on the finite size of the membranes.

Further details of our Monte Carlo simulations are described in

ref. [30].

Line Tension of Receptor Domains in Cell Adhesion
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Results

Adhesion free energy of receptor-ligand domains
The free energy of domains of long or short receptor-ligand

complexes can be determined from the effective double-well

adhesion potential of the membranes (see fig. 1). We consider first

a domain of short receptor-ligand complexes, i.e. a domain bound

in well 1 of the effective adhesion potential. The free energy per

area of this membrane domain is (see Appendix S2)

f1~fub{
(kBT)2

kl2
we

ðu1

0

Pb(u)du ð16Þ

where fub is the free energy per area of the unbound membrane,

and Pb is the area fraction of the membrane domain bound in the

well. The rescaled well depth u1 depends on the concentrations

and affinity of the receptors and ligands, on the effective bending

rigidity k of the membranes, and on the width lwe of the well (see

eq. (12)). Similarly, the free energy per area of a domain of long

receptor-ligand complexes, i.e. of a domain bound in well 2 of the

effective potential, can be written as

f2~fub{
(kBT)2

kl2
we

ðu2

0

Pb(u)du ð17Þ

For equal widths lwe of the two potential wells, the free energy

difference per area between domains bound in well 1 and well 2 is

then

Dfb~f1{f2~{
(kBT)2

kl2
we

ðu1

u2

Pb(u)du ð18Þ

The function Pb(u) is linear in the rescaled well depth u for

small values of u, and attains the limiting value of 1 for large values

of u at which the membrane domain is essentially fully bound in

the well [29,33]. The precise form of this function can be easily

determined from Monte Carlo simulations of a membrane bound

in a single well (see fig. 2). To derive a general analytical expres-

sion for the free energy difference Dfb, we consider here the single-

parameter fit [33]

Pb(u)^P
(1)
b (u)~

u

c1zu
ð19Þ

with c1^0:071 for the Monte Carlo data at the rescaled well width

zwe~1. For Pb=0:7, the single-parameter function P
(1)
b coincides

with overall more precise three-parameter functions P
(3)
b at zwe~

0:5 and zwe~1 (see fig. 2). With eq. (19), we obtain the general

expression

Dfb^{
(kBT)2

kl2
we

u1{u2{c1 ln
c1zu1

c1zu2

� �� �
ð20Þ

for the adhesion free energy difference between domains bound in

well 1 and well 2 of the effective adhesion potential shown in

fig. 1(b).

Classical nucleation theory of domain formation
We use classical nucleation theory to determine the line tension

between domains of long and short receptor-ligand complexes.

Equilibrium properties of the membranes, such as the line tension

between the domains of receptor-ligand complexes, can be

obtained from the effective double-well adhesion potential of the

membranes shown in fig. 1(b). We consider now a circular

membrane domain of radius r that is bound in well 1 of the

effective adhesion potential, surrounded by a large domain bound

in well 2. We assume that the rescaled depths of the two potential

wells are beyond the critical depth (15), with u1wu2. In classical

nucleation theory, the excess free energy of the circular domain is

DF (r)~2prlzr2pDfb ð21Þ

where l is the line tension of the domain boundary, and Dfbv0 is

the free energy difference per area between the two domains. The

excess free energy has a maximum at the critical radius

rc~{
l

Dfb

ð22Þ

which follows from d(DF(r))=dr~0. For radii rwrc, the circular

domain grows into a stable domain since the excess free energy

decreases with increasing r. For radii rvrc, the circular domain is

instable and shrinks since the excess free energy decreases with

decreasing r. Using eq. (22), we will determine the line tension l
from the free energy differences Dfb and the critical radii rc

obtained from Monte Carlo simulations.

Critical domains sizes from Monte Carlo simulations
We determine the critical radii of domain nucleation from

Monte Carlo simulations. The simulations start from pre-

equilibrated initial conformations with a circular nucleus of radius

r bound in the deeper well 1, surrounded by a membrane domain

bound in well 2 (see fig. 3). The pre-equilibration ensures (i) that

the circular nucleus contains the expected fraction Pb(u1) of

membrane patches bound in well 1, (ii) that the surrounding

domain contains a fraction Pb(u2) of membrane patches bound in

well 2, and (iii) that the domain boundary is relaxed. To create a

Figure 2. Fraction Pb of membrane patches inside a single well
as a function of the rescaled depth u of the well. The data points
are from Monte Carlo simulations with the rescaled well widths
zwe~0:5 (filled circles) and zwe~1 (open circles). The full lines result
from fits of the three-parameter function P

(3)
b (u)~(uzc2u2zc3u3)=

(c1zuzc2u2zc3u3) with c1^0:073, c2^{0:99, and c3^6:44 for
zwe~0:5 and c1^0:070, c2^{0:32, and c3^0:50 for zwe~1. The
dashed line results from a fit of eq. (19) with c1^0:071 to the data
points for zwe~1 and Pbv0:6 (see [33] for details).
doi:10.1371/journal.pone.0023284.g002
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pre-equilibrated initial conformation, we ‘cut out’ a circular

domain of radius r from a Monte Carlo simulation of a membrane

that only ‘feels’ well 1, ‘freeze’ this domain, and place it into a

membrane that only ‘feels’ well 2. The domain boundary is then

relaxed by a simulation in which the nucleus remains ‘frozen’ (no

Monte Carlo moves inside the nucleus), and in which the

surrounding membrane continues to ‘feel’ only well 2.

Nuclei with a radius r smaller than the critical radius rc tend to

shrink, while nuclei with a radius larger than rc tend to grow (see

fig. 3). To quantify this tendency of the nuclei to grow or shrink,

we perform 30 simulations for each nucleus size, and determine

the fraction of the simulations in which the nucleus grows. These

growth fractions are displayed in fig. 4 for simulations with the

rescaled depth u1~0:125 of well 1 and rescaled depths between

u2~0:1 and 0:12 for well 2. After data smoothening, the critical

radius rc is defined as the radius at which the smoothed growth

fractions have the value 0.5 (see caption of fig. 4 for details).

According to eq. (22), the line tension now follows as l~{rcDfb

from the critical radii rc and the free energy differences Dfb, which

are calculated from eq. (18) with Pb(u)^P
(3)
b where P

(3)
b is the three-

parameter function at the rescaled well width zwe~0:5 shown in

fig. 2. The resulting values for the line tension are shown in fig. 5.

The line tension increases with the rescaled depth u2 of well 2 since

the potential barrier increases (see fig. 1(b)). The line tension for the

symmetric double-well potential with well equal depths u1~u2 can

be obtained from extrapolation (see fig. 5).

Line tension between domains of long and short
receptor-ligand complexes

To derive a general relation for the line tension l, we now focus

on the extrapolated line tensions for the symmetric double-well

potential. The symmetric double-well potential corresponds to the

equilibrium situation in the case of large coexisting domains since

the free-energy difference per area (18) between the domains

vanishes for equal rescaled well depths u1~u2 [26,31]. Our values

for the extrapolated line tensions at different rescaled depths u and

separations zba are shown in fig. 6. Each of the data points in this

figure results from an extrapolation analogous to fig. 5.

For small and intermediate values of u, the line tension l
depends linearly on u (see fig. 6(a)). This linear dependence is in

agreement with previous evidence [35,36] that the critical point of

membranes in a double-well potential is in the same universality

class as the critical point of the two-dimensional Ising model. In

the vicinity of the critical temperature Tc, the line tension in the

Ising model depends linearly on jT{Tcj for TvTc. Therefore,

the line tension l of the membrane domains can be expected to

depend linearly on jT{Tcj for TvTc as well, which implies a

linear dependence on u{uc for uwuc in the vicinity of the critical

potential depth uc.

The critical potential depth uc can be estimated from

extrapolation to l~0 since the line tension l vanishes at the

Figure 3. Stability of adhesion domains. (a) and (b): Time sequences of Monte Carlo snapshots of a membrane in the effective double-well
potential of fig. 1(b) with rescaled depths u1~0:125 and u2~0:12, rescaled width zwe~0:5 and rescaled separation zba~2. Membrane patches bound
in well 1 are indicated in green, and membrane patches bound in well 2 are red. In (a), the initial radius of the green domain bound in well 1 of the
effective potential is below the critical radius for domain stability. Therefore, the domain shrinks and finally vanishes in the simulations. The shapshots
are taken at times t~0, 2:104 , 7:104 , 8:104 , and 106 Monte Carlo steps per patch. In (b), the initial radius of the green domain is above the critical
radius. The domain thus increases until the whole membrane is bound in the deeper potential well 1. The shapshots are taken at times t~0, 5:104 ,
3:5:105, 4:105 , and 106 Monte Carlo steps per patch.
doi:10.1371/journal.pone.0023284.g003

Figure 4. Growth probability of a circular nucleus as a function
of the nucleus radius r in units of the linear size a of the
membrane patches. The initial nucleus is bound in well 1 of the
effective adhesion potential shown in fig. 1(b), and the surrounding
membrane is bound in well 2 (see Monte Carlo snapshots in fig. 3). The six
curves are from simulations with the rescaled depths u2~0:1, 0.105, 0.11,
0.115, 0.1175, and 0.12 of well 2 (from left to right). In all simulations, the
rescaled depth of well 1 is u1~0:125, and the rescaled separation and
width of the wells are zba~2 and zwe~0:5. Each data point was obtained
from averaging over 30 simulations. To extract the critical radius from a
curve, we fit the curve with three different fit functions and determine
the three radii r at which these fit functions attain the value 0.5. The
critical radius rc is defined as the average of these three radii. For the six
curves, we obtain the values rc~5:10, 6.70, 9.81, 16.12, 22.58, and 35.08
of the critical radius. The three fit functions are h1(r)~1=(1z exp½{
(r{d1)=d2�) (full lines), h2(r)~0:5(1zerf ½(r{d1)=d2�) (dashed lines), and

h3(r)~0:5(1z(r{d1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½d2z(r{d1)2�

q
) (dotted lines).

doi:10.1371/journal.pone.0023284.g004
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critical point. From the three curves in fig. 6(a), we obtain the

values uc~0:052+0:003, 0:025+0:003, and 0:021+0:002 for

zba~2, 4, and 6. Within the numerical accuracy, these values

agree with the values uc~0:056+0:005, 0:028+0:003, and

0:019+0:002 obtained from eq. (15). This agreement confirms

our approach since eq. (15) has been derived independently from a

finite-size scaling analysis of Monte Carlo data [27].

The values of the rescaled well depth u in fig. 6(a) range from 0

to 0.25. For this range of values, the fraction Pb of membrane

patches bound in a single well only depends on u, and not on the

well width zwe (see fig. 2). We therefore expect that the values of l
shown in fig. 6(a) only depend on the rescaled depth u and the

ratio zba=zwe~lba=lwe of the separation and width of the wells.

The line tension l in 6(a) is linear in u and vanishes at the critical

depth uc. From a dimensional analysis (see Appendix S1), we

obtain the scaling form

l&
(kBT)3=2

lwek1=2
g

lba

lwe

� �
u{ucð Þ ð23Þ

for the line tension in the vicinity of the critical point.

The scaling function g in eq. (23) can be obtained from an

analysis of the slope of the three lines in fig. 6(a) as a function of

lba=lwe (see fig. 7). From the Monte Carlo simulations, we obtain

the line tension in units of kBT=a. To extract the scaling function

g from the Monte Carlo data, we note that eq. (23) can be written

as

la

kBT
&

1

zwe

g
zba

zwe

� �
u{ucð Þ ð24Þ

where zwe and zba are the rescaled width and separation of the

potential wells defined in eq. (10). The three data points in fig. 7

for the slopes of the three lines in fig. 6(a) can be well fitted with a

linear function. According to eq. (24), this linear function is

g(lba=lwe)=zwe. For the rescaled well width zwe~0:5 used in our

Monte Carlo simulations, we obtain

g(x)^d1zd2x ð25Þ

with d1~1:5+0:1 and d2~0:42+0:01. From a previous scaling

analysis of uc [27], we expect that eq. (23) holds for lba=lwe *> 2.

However, the scaling relation (23) is not unreasonable in the limit

of small lba=lwe. In this limit, the line tension l vanishes since uc

diverges according to eq. (15) and since l is 0 for uvuc.

Minimum sizes of stable TCR microdomains
We consider now a situation in which a domain of long

receptor-ligand complexes R2L2 extends over the whole adhesion

zone of two cells, and determine the critical size for the nucleation

of microdomains of short R1L1 complexes within this large R2L2

domain. This situation corresponds to a T cell that adheres to a

second cell via long integrin complexes and that forms micro-

domains of short TCR-MHCpeptide complexes if foreign

MHCpeptides are present on the apposing cell surface. According

to classical nucleation theory, the critical radius beyond which

these microdomains are stable is rc^{l=Dfb (see eq. (22)). From

our general relations (23) and (20) for the line tension l and the

Figure 5. Line tension extrapolation. Line tension l as function of
the rescaled depth u2 of well 2 for the rescaled depth u1~0:125 of well
1. The six data points result from the six values of the critical radius rc

determined in fig. 4. The line tension l is obtained from the critical radii
as l~{rcDfb (see eq. (22)), with the free energy difference Dfb

calculated from eq. (18) with the function Pb(u)^P
(3)
b (u) given in

Appendix S2 and in the caption of fig. 2. Linear extrapolation of the four
right data points leads to the estimated value l~0:474+0:002kBT=a
for the line tension of the symmetric double-well potential with
rescaled depth u~u1~u2~0:125 and rescaled separation zba~2 and
zwe~0:5 of the wells.
doi:10.1371/journal.pone.0023284.g005

Figure 6. Extrapolated line tensions l for the symmetric
double-well potential with rescaled depth u~u1~u2 of the
potential wells. The data points are from Monte Carlo simulations
with the rescaled well width zwe~0:5 and the rescaled well separations
zba~2, 4 and 6. (a) For small and intermediate values of u, the line
tension l is linear in u; (b) At large values of u, the line tension l is a
nonlinear function of u. Note that the first three data points are
identical with the black data points in subfigure (a). The line tension
vanishes at the critical potential depth uc for domain formation, which
depends on the separation zba and width zwe of the two potential wells
(see eqs. (14) and (15)).
doi:10.1371/journal.pone.0023284.g006
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free energy difference Dfb, we obtain

rc(u1,u2,lwe,lba)^lwe

ffiffiffiffiffiffiffiffiffi
k

kBT

r
(d1zd2lba=lwe)(u2{clwe=lba)

u1{u2{c1 ln½(c1zu1)=(c1zu2)�ð26Þ

with numerical parameters d1^1:5, d2^0:42 (see eq. (25)),

c^0:225 (see eq. (15)), and c1^0:071 (see eq. (20)). The

nucleation of a microdomain of short receptor-ligand complexes

R1L1 within the large R2L2 domain can only occur for effective

binding energies u1wu2 of the domains. We assume here that

the line tension for this nucleation event can be estimated by

eq. (23) with u~u2 since the barrier crossed in the event has the

height u2.

To estimate the magnitude of the rescaled effective binding

energy u2 of the domain of R2L2 complexes, we assume now the

values ½R2�^½L2�^20=mm2 and K2^2mm2 for the concentrations

and binding constants of the receptors and ligands, which lead to

the effective binding energy Uef
2 &kBTK2½R2�½L2�^800kBT=mm2

of these complexes (see eq. (8)). The rescaled effective binding

energy defined in eq. (13) is then u2~Uef
2 kl2

we=(kBT)2^0:02 for

the interaction range lwe^1 nm of the complexes and the effective

bending rigidity k~25kBT of the membranes. The fraction

Pb(u2) of the membranes within binding range of the receptors

and ligands is then approximately 0:22 according to eq. (19), and

the concentration of bound receptor-ligand complexes is ½R2L2�~
Pb(u2)K2½R2�½L2�^175=mm2 [33]. These concentrations are

within the range of typical concentrations in cell adhesion zones

[37].

For T cells, the length difference lba between the TCR-

MHCpeptide and the integrin complexes is about 25 nm, which

leads to the ratio lba=lwe^25 of the separation and width of the

two wells in the effective potential. According to eq. (15), the

critical rescaled well depth for domain formation is then

uc^0:009. As required for domain coexistence, this value of the

critical well depth is below our estimate for u2, and also below u1

since nucleation of the R1L1 microdomain implies u1wu2. In

fig. 8, the critical radii rc obtained from eq. (26) are plotted as a

function of u1{u2. Depending on the difference between u1 and

u2, the critical radii vary between tens and hundreds of

nanometers, which is in the range of microdomain sizes observed

in T-cell adhesion [8,9,38,39].

Conclusions
While the line tension and stability of lipid domains has been

investigated for a long time[40–49], the line tension of protein

domains in the adhesion zones of membranes has not been

addressed, to the best of our knowledge, in previous studies. In this

article, we have derived general relations for the line tension l and

the free energy difference Dfb between domains of long and short

receptor-ligand complexes in cell adhesion zones (see eqs. (20) and

(23)). These relations were obtained from a combination of scaling

arguments and Monte Carlo simulations and fully include the

thermal shape fluctuations of the membranes. In addition, the

degrees of freedom of the receptors and ligands related to their

lateral mobility along the membranes are systematically taken into

account via partial integration in the partition function. These

general relations for the line tension and adhesion free energy of

the receptor-ligand domains depend only on parameters that can

be directly related to experimentally accessible quantities. Using

typical values for T-cell adhesion zones, we find that stable

submicron-scale domains of TCR-MHCpeptide complexes may

form solely because of their length mismatch to integrin

complexes. The role of the T-cell cytoskeleton thus may be

limited to the observed transport of TCR-MHCpeptide micro-

domains to the contact zone center via weak frictional coupling of

the cytoskeleton to the TCRs [50,51].
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Figure 8. Critical radius rc for the nucleation of a microdomain
of short R1L1 complexes within a large domain of long R2L2

complexes, as a function of the difference u1{u2 between the
rescaled effective binding energies of the domains (see eq.
(26)). We have assumed here the values lwe^1 nm and lba^25 nm for
the width and separation of the two wells in the effective potential. The
critical radius decreases with u1{u2 for constant value of u2 , and
decreases with u2 for constant u1{u2 .
doi:10.1371/journal.pone.0023284.g008

Figure 7. Slopes of the three curves in fig. 6(a) as a function of
the ratio lba=lwe of the separation and width of the potential
wells. The slopes can be well fitted by a linear function (see text).
doi:10.1371/journal.pone.0023284.g007
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