Janos H. Fendler

Nanoparticles and Nanostructured Films

Further Titles of Interest

D. F. Evans, H. Wennerström **The Colloidal Domain** ISBN 1-56081-525-6

G. Schmid (Ed.) Clusters and Colloids From Theory to Applications ISBN 3-527-29043-5

Advanced Materials The leading journal in high-tech materials science Published monthly ISSN 0935-9648 Janos H. Fendler (Ed.)

Nanoparticles and Nanostructured Films

Preparation, Characterization and Applications

Weinheim • New York • Chichester Brisbane • Singapore • Toronto Prof. Janos H. Fendler Center for Advanced Material Processing Clarkson University Potsdam, NY 13699 USA

This book was carefully produced. Nevertheless, author and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Every effort has been made to trace the owners of copyrighted material; however, in some cases this has proved impossible. We take this opportunity to offer our apologies to any copyright holders whose rights we may have unwittingly infringed.

Library of Congress Card No. applied for.

A catalogue record for this book is available from the British Library.

Deutsche Bibliothek Cataloguing-in-Publication Data:

Nanoparticles and nanostructured films: preparation, characterization and applications / Janos H. Fendler (ed.). - Weinheim; New York; Chichester; Brisbande; Singapore; Toronto: Wiley-VCH, 1998

ISBN 3-527-29443-0

© WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1998

Printed on acid-free and chlorine-free paper.

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition: Asco Trade Typesetting Ltd., Hong Kong.

Printing: betz-druck gmbh, D-64291 Darmstadt.

Bookbinding: Wilhelm Osswald & Co, D-67433 Neustadt.

Printed in the Federal Republic of Germany.

Preface

Small is not only beautiful but also eminently useful. The virtues of working in the nanodomain are increasingly recognized by the scientific community, the technological world and even the popular press. The number of research publications in this area has been increasing exponentially. Additionally, national and international biological, physical, chemical, engineering, and materials science societies and government agencies have been organizing workshops, meetings, and symposia around some aspects of nanoparticle research with increasing frequency. This burgeoning interest is amply justified, of course, by the unique properties of nanoparticles and nanostructured materials and by the promise these systems hold as components of optical, electrical, electro-optical, magnetic, magneto-optical, and catalytic sensors and devices.

The appearance of numerous review articles and books on nanoparticle research has helped the neophyte to digest the veritable information overload. No recent overview has appeared, however, to the best of our knowledge, that focuses upon the utilization of "wet" chemical and colloid chemical methods for the preparation of nanoparticles and nanostructured films. The purpose of the present book is to fill this gap by summarizing current accomplishments in preparing and characterizing nanoparticles and nanostructured films and to point out their potential applications. Versatility, relative ease of preparation and transfer from the liquid to the solid phase, convenience of scale-up, and economy are the advantages of the chemical approach to advanced materials synthesis.

Electrochemistry has reached sufficient maturity and sophistication to be used for the layer-by-layer deposition of nanoparticles and nanoparticulate films. In Chapters 1 and 3 the state-of-the-art electrodeposition of quantum dots, superlattices, and nanocomposites is surveyed. Chemists have plenty to learn from mother nature. Much of the work on template-directed nanoparticle growth is inspired by biomineralization, the oriented growth of inorganic crystals in biomembranes. Advantage has been taken of organized surfactant assemblies that mimic the biological membranes to grow nanoparticles and nanoparticulate films. Chapters 2 and 4 highlight the growth of metallic, semiconducting, and magnetic nanoparticles under monolayers and within the confines of reverse micelles. More rigid templates have also been employed for nanoparticle preparations. This approach is illustrated for such diverse templates as opal (Chapter 13), nanoporous membranes (Chapter 10), and zeolites (Chapter 17). Chapter 7 emphasizes the use of block copolymer micelles as hosts for generating metallic nanoparticles.

The recent attention to porous silicon nanoparticles has been prompted by their demonstrated photoluminescence and electroluminescence, as well as by their promise to function as optical interconnects and chemically tunable sensors, which require passive surfaces that are stable to oxidation yet are able to conduct current efficiently. Chemical and plasma-induced silicon nanocluster formation and growth are examined in Chapters 5 and 8. The potentially important, albeit as yet un-explored fullerene nanoparticles and their two-dimensional crystal growth are surveyed in Chapter 6.

Nanoparticles themselves can be used as building blocks for two-dimensional arrays and/or three-dimensional networks. They can also be derivatized and treated as if they were simple molecules. This approach should lead to the type of hetero-supramolecular structures that are illustrated in Chapter 16. Such complex chemistries must go hand-in-hand with an improved understanding of surface and colloid chemical interactions. Some aspects of these are discussed in Chapters 11 and 12.

Exploitation of nanoparticles and nanostructured materials requires an appreciation of electron and photoelectron transfer mechanisms therein. Chapter 9 presents a well balanced view of the electron transfer processes in nanostructured semiconductor thin films while Chapter 14 discusses charge transfer at nanocrystalline metal, oxide-semiconductor interfaces and its relation to electrochromic-battery and photovoltaic-photocatalytic interfaces. Significantly, as summarized in Chapter 15, nanoparticles provide us with the possibility of monitoring, and ultimately exploiting, single electron transfer events.

An attempt has been made in the last chapter to provide the newcomer with handy "recipes" for the preparation of nanoparticles and nanostructured films as well as to summarize current accomplishments and future prospects in this intellectually fascinating and highly relevant area of research. Inevitably, current activities soon become "past achievements", and interested readers will have to acquaint themselves with the latest results as they appear in primary publications and as they are disseminated at scientific meetings. Chapter 18 also lists selected data on the properties of the most frequently used bulk semiconductors in order to permit much needed comparisons between the bulk and size-quantized materials.

I am grateful to all the contributing authors who took time from their busy schedule to write their chapters and thus to share their expertise with the scientific community. I also thank Dr. Peter Gregory and Dr. Jörn Ritterbusch, the Editors at WILEY-VCH, and their staff or initiating this project and for providing enthusiastic support throughout the various stages of publication.

October 1997

Janos H. Fendler

Contents

List of Contributors

XVII

1	Elec	trodepo	sited Quantum Dots: Size Control by Semiconductor-Substrate		
	Latt	ice Mis	match	1	
	G. Hodes, Y. Golan, D. Behar, Y. Zhang, B. Alperson, and I. Rubinstein				
	1.1	Introd	luction	1	
	1.2	The C	EdSe/Au System	3	
	1.3	Chang	ge of Semiconductor Lattice Spacing – Cd(Se, Te)/Au	5	
	1.4	Chang	ge of Substrate Lattice Spacing – CdSe/Pd	6	
	1.5	Thick	er Layers of CdSe on Au and Pd	7	
	1.6	Other	Semiconductor-Substrate Systems	8	
		1.6.1	(Cd, Zn)Se/Au	9	
			1.6.1.1 CDs/Au	10	
			1.6.1.2 CDs/Pd	12	
			1.6.1.3 CdSe/Au–Pd	13	
	1.7	Bandg	gap Measurements	16	
	1.8	Concl	usion and Speculations	19	
	Ack	nowled	gments	20	
	Refe	erences		20	
2	Orie	nted G	rowth of Nanoparticles at Organized Assemblies	23	
	F. C. Meldrum				
	2.1	Introd	luction	23	
	2.2	Orient	ted Crystal Growth on Self-assembled Monolayers and		
		Multilayers		25	
		2.2.1	Growth of Zincophosphate Zeolites on Zirconium Phosphate		
			Multilayers	25	
		2.2.2	Oriented Aluminophosphate Zeolite Crystals Grown on		
			Self-assembled Monolayers	25	
		2.2.3	Nucleation and Growth of Oriented Ceramic Films on		
			Self-assembled Monolayers	26	

	2.3	Epitaz	xial Crystal Growth on Langmuir–Blodgett Films	27
	2.4	Langr	nuir Monolayers as Templates for Epitaxial Crystal	
		Grow	th	28
		2.4.1	Epitaxial Growth of Semiconductor Nanoparticles under	
			Langmuir Monolayers	28
		2.4.2	Formation of PbS Crystals under Arachidic Acid (AA) and	
			Octadecylamine (ODA) Monolayers	29
		2.4.3	Investigation of PbS Physiochemical Properties as a Function	
			of Crystal Morphology	32
		2.4.4	Epitaxial Growth of Cadmium Sulfide Nanoparticles under	
			Arachidic Acid Monolayers	33
		2.4.5	Epitaxial Growth of PbSe Crystals under Arachidic Acid	
			Monolayers	35
	2.5		m Chloride Growth under Monolayers	40
		2.5.1	Ice Nucleation under Aliphatic Alcohol Monolayers	41
		2.5.2	Kinetic Measurements of Ice Nucleation under Alcohol	
			Monolayers	43
	2.6		ineralization	44
		2.6.1	Growth of Calcium Carbonate under Langmuir	
			Monolayers	45
		2.6.2	Epitaxial Growth of Barium Sulfate under Surfactant	
			Monolayers	47
		2.6.3	Oriented Nucleation of Gypsum $(CaSO_4 \cdot 2H_2O)$ under	10
	D (Langmuir Monolayers	49
	Refe	erences		50
3	Elec	trodepo	sition of Superlattices and Nanocomposites	53
		Switze	• •	
	3.1	Introd	luction	53
	3.2	Electr	odeposition of Inorganic Materials	54
		3.2.1	Electrodeposition of Metal Chalcogenides	55
		3.2.2	Electrodeposition of Metal Oxides	56
	3.3		odeposition of Nanophase Materials	57
		3.3.1	Growth in Nanobeakers	57
		3.3.2	Scanning Probe Nanolithography	57
		3.3.3	Epitaxial Growth of Quantum Dots	58
		3.3.4	Electrodeposition of Superlattices	58
	3.4	Chara	cterization of Superlattices	59
		3.4.1	X-ray Diffraction	59
		3.4.2	Scanning Probe Microscopy	61
	3.5		u Studies of Epitaxial Growth	62
	3.6		odeposition of Nanocomposites	63
	3.7	The F		67
			gments	67
	Refe	rences		68

4	Size	and Morphology Control of Nanoparticle Growth in Organized	
	Surf	actant Assemblies	71
	M_{\cdot} .	P. Pileni	
	4.1	Introduction	71
	4.2	Reverse Micelles	73
		4.2.1 Syntheses and Optical Properties of Metallic Copper Particles	73
		4.2.2 Syntheses and Optical Properties of Semiconductor	
		Semimagnetic Quantum Dots	74
	4.3	Oil in Water Micelles	77
		4.3.1 Magnetic Fluids: Syntheses and Properties	78
		4.3.2 Control of the Shape of Metallic Copper Particles	82
	4.4	Interconnected Systems	84
	4.5	Onion and Planar Lamellar Phases in Equilibrium	87
	4.6	Spherulites	87
	4.7	Self-organization of Nanoparticles in 2D and 3D Superlattices	90
		4.7.1 Silver Sulfide, $(Ag_2S)n$, Self-assemblies	92
		4.7.2 Self-assemblies Made with Silver Metallic Nanoparticles	94
	4.8	Conclusions	98
	Ack	nowledgments	98
		erences	98
5	Syn	thesis of Silicon Nanoclusters	101
-		1. Bley and S. M. Kauzlarich	
		Introduction	101
	5.2		101
	5.3	Development of Semiconductor Nanoclusters	103
		5.3.1 Development of Silicon Nanoclusters	104
		5.3.2 Crystalline Structure of Silicon	104
		5.3.3 Band Structure of Silicon	105
	5.4	Synthetic Methods of Silicon Nanocluster Production	107
		5.4.1 Decomposition of Silanes	107
		5.4.2 Silicon Nanoparticles from Porous Silicon	108
		5.4.3 Solution Synthesis of Silicon Nanoparticles	108
	5.5	Characterization	111
		5.5.1 Infrared Spectroscopy	111
		5.5.2 Electron Microscopy	112
		5.5.3 Absorption Spectrum	113
		5.5.4 Photoluminescence Spectroscopy	114
	5.6		116
	Ack	nowledgments	116
		erences	117
6		D-Dimensional Crystal Growth of Fullerenes and Nanoparticles	119
	D. 1 6.1	M. Guldi Introduction	119

	6.2	Pristin	ne Fullerenes	120
		6.2.1	Films of Pristine Fullerenes, C_{60} and C_{70}	120
		6.2.2	Langmuir-Blodgett Films of Pristine Fullerenes, C ₆₀ and C ₇₀	122
		6.2.3	Langmuir-Blodgett Films of Pristine C ₆₀ /Amphiphilic	
			Matrix Molecules	125
	6.3	Langr	nuir-Blodgett Films of Functionalized Fullerene Derivatives	125
		6.3.1	Mono-functionalized Fullerene Derivatives	126
		6.3.2	Mono-functionalized Fullerene Derivatives Bearing	
			Hydrophilic Groups	128
		6.3.3	Multiply Functionalized Fullerene Derivatives	131
		6.3.4	Transfer to Solid Substrates	132
	6.4		enes Covalently Attached to Self-assembled, Monolayers and	
		Self-as	ssembled Monolayers of Functionalized Fullerene Derivatives	134
		6.4.1	Self-assembled Monolayers of Fullerene Containing	
			Supramolecular Dyads	136
		6.4.2	Self-assembly of Functionalized Fullerene Derivatives via	
			Electrostatic Interaction	136
	6.5	Outlo	ok and Application	137
		nowled	gment	138
	Refe	rences		138
7			oids in Block Copolymer Micelles: Formation and Material	
	-	erties		145
			n, M. Antonietti, and P. Valetsky	145
	7.1		luction	145
	7.2		iew of Current Activities on Amphiphilic Block Copolymers	140
	7 0		ilored Protecting Systems for Colloids	146
	7.3		istry of Amphiphilic Block Copolymers and Their	
			gation Behavior; Loading of the Micelles and Binding inside	148
			icelles	140
		7.3.1	Amphiphilic Block Copolymers	140
		7.3.2	Aggregation Behavior of Amphiphilic Block Copolymer Micelles	150
		7.3.3		150
	7.4		Metal Salt Incorporation esis of Metal Colloids in the Presence of Amphiphilic Block	151
	/.4		lymers in Organic Solvents	153
		7.4.1	Synthesis of Metal Colloids inside the Micellar Cores: The	155
		/.4.1	Nanoreactor Concept	153
		7.4.2	Fast Homogeneous Reduction	155
		7.4.2	Slow Homogeneous Reduction	155
		7.4.4	Generation of the Metal Colloids with Heterogeneous	155
		/.4.4	Interface Reactions	156
		7.4.5	Homogeneous Colloid Production and Heteroaggregation	150
		7.4.3	with Amphiphilic Copolymer Micelles	160
	7.5	Sunth	esis of Metal Colloids in the Presence of Amphiphilic Block	100
	1.5		lymers in Water or Related Polar Solvents	162
		0000	iviliers in water of inclated polar solvents	102

		7.5.1	Micelle Formation due to Hydrophobic/Hydrophilic Block Copolymers and Interaction of Metal Salts with the	
			Hydrophilic Shell	162
		7.5.2	Colloid Synthesis in "Double-Hydrophilic" Block	
			Copolymers	163
	7.6	Cataly	tic Properties of Metal Colloids Stabilized by Amphiphilic	
		Copol		166
	7.7		etic Properties of Co-colloids Stabilized by Amphiphilic Block	
		Copol	•	168
	7.8		usion and Outlook	169
		rences		170
8	Plas	ma-Pro	duced Silicon Nanoparticle Growth and Crystallization Process	173
	J. D	utta, H	. Hofmann, C. Hollenstein, and H. Hofmeister	
	8.1		luction	173
	8.2	Exper	imental Methods	174
		8.2.1	Powder Preparation and Annealing	174
		8.2.2	Transmission Electron Microscopy	175
		8.2.3	Vibrational Spectroscopy	175
		8.2.4	Plasma and In Situ Powder Diagnostics	175
	8.3		ure of the Silicon Nanoparticles	177
			Morphology	177
		8.3.2	Vibrational Spectroscopy	180
			Infrared Spectra	180
		8.3.4	Raman Spectra	181
	8.4		n Nanoparticle Synthesis and Related Properties	183
		8.4.1	Powder Precursors	183
		8.4.2	Powder Formation and Agglomeration	186
			Powder Dynamics	189
		8.4.4	In Situ Diagnostics of Powder Properties	189
	8.5		n Nanoparticle Processing	191
		8.5.1	Crystallization	191
			Sintering	195
			Thermodynamics	195
		8.5.4	Kinetics	199
	8.6		usions and Prospects	201
	Ack		gments	202
		erences		202
9	Elec	tron Tr	ansfer Processes in Nanostructured Semiconductor Thin Films	207
	P. V	. Kama	at	
	9.1	Introc	luction	207
	9.2	Prepa	ration and Characterization of Nanostructured Semiconductor	
		Thin 1		208
		9.2.1	From Colloidal Suspensions	209
		9.2.2	Chemical Precipitation	210

		9.2.3	Electrochemical Deposition	211
		9.2.4	Self-assembled Layers	211
		9.2.5	Surface Modification	211
	9.3	Optica	al Properties	212
		9.3.1	Electron Storage and Photochromic Effects	212
		9.3.2	Photocurrent Generation	214
		9.3.3	Sensitization of Large-Bandgap Semiconductors	216
		9.3.4	Photocatalysis	217
	9.4	Mech	anism and Electron Transfer in Semiconductor Thin Films	219
		9.4.1	Charge Injection from Excited Dye into Semiconductor	
			nanoclusters	219
		9.4.2	Kinetics of the Charge Injection Process	220
		9.4.3	Modulation of Electron Transfer at the Semiconductor-Dye	
			Interface	223
			Back Electron Transfer	226
		9.4.5	Charge Transport in Semiconductor Films	228
	9.5	Concl	lusion	229
	Ack	nowled	gments	229
	Refe	rences		229
10	Tem	plate S	ynthesis of Nanoparticles in Nanoporous Membranes	235
	J. C.	Hulte	en and C. R. Martin	
	10.1	Intro	oduction	235
	10.2		nbranes Used	236
			1 "Track-etch"	236
			2 Porous Alumina	236
			.3 Other Nanoporous Materials	238
	10.3		plate Synthetic Strategies	238
			1 Electrochemical Deposition	238
			2 Electroless Deposition	240
			.3 Chemical Polymerization	241
			.4 Sol-Gel Deposition	242
		10.3		242
	10.4		nposite Nanostructures	244
	10.5		cal Properties of Gold Nanoparticles	247
			.1 Fabrication	247
		10.5		248
		10.5		249
	10.6		oelectrode Ensembles	250
		10.6		250
		10.6	-	251
	10.5	10.6		253 254
	10.7		al Nanotube Membranes	254 255
		10.7		255 255
		10.7	.2 Ion-Selective Membranes	255

	10.8	Semicor	nductor Nanotubules and Nanofibers	257
		10.8.1	Structural Characterization	257
		10.8.2	Photocatalysis	258
	10.9	Conclus	sion	259
	Ackn	lowledger	nents	260
	Refe	rences		260
11	Mor	ohology-E	Dependent Photocatalysis with Nanoparticle Aggregates	263
	М. Т	'omkiewic	cz and S. Kelly	
		Introdu		263
	11.2	TiO ₂ A		265
			Morphology	265
		11.2.2	Control	267
	11.3		on of Coordination Structure	267
			Raman Scattering	267
		-	m Efficiencies	271
		owledgm	lent	273
	Refei	rences		273
12			and Colloid Reaction Kinetics	275
	Р. М 12.1	<i>ulvaney</i> Introdu	ation	275
	12.1		DL around Metal Oxides	275 276
	12.2		The Helmholtz Region	276
			The Diffuse Layer	270
			The Diffuse Layer for Micron Sized Colloid Particles	279
			The Diffuse Layer for Nanosized Particles	280
			The ZOS Model for Poorly Defined Nanoparticles	281
			The Point of Zero Charge and the Isoelectric Point	282
	12.3		Electron Transfer Kinetics – Theory	285
	12.5		Mass-Transfer-Limited Reactions	285
			Activation-Controlled Electron Transfer	285
		12.3.2	The Transition between Activation and Mass Transfer	207
		12.5.5	Limits	288
	12.4	Colloid	Kinetics – Experimental Data	289
	12.1		The Effect of pH	289
		12.4.2	The Effect of Electrolyte Concentration on Electron	207
		122	Transfer	290
		12.4.3	The Effect of the Zeta Potential and Radical Charge on the	270
			Rate of Electron Transfer	291
		12.4.4	Non-Nernstian Behavior	295
		12.4.5	Extensions to Other Systems	296
	12.5		ect of Zeta on Radical Scavenging Yields	296
	12.6		Nucleation and Nanoparticle Stability	300
		12.6.1	Some Unresolved Aspects of Colloid Redox Chemistry	302

Ackn	owledgments	304
Refer		305
	L (N Three Dimensional Matrices	307
13 Semic	conductor Nanoparticles in Three-Dimensional Matrices	307
	Romanov and C. M. Sotomayor-Torres	307
	Introduction	308
	Material Issues	312
	Optical Properties	312
	Transport Properties	318
	Prospects	331
	owledgements	331
Refer	ences	551
14 Char	ge Transfer at Nanocrystalline Metal-Oxide Semiconductor/Soluti	on
Interf	aces: Mechanistic and Energetic Links between Electrochromic/	
Batte	ry Interfaces and Photovoltaic/Photocatalytic Interfaces	335
	Lemon, L. A. Lyon, and J. T. Hupp	
	Introduction	335
14.2	Electrochromics	337
- • •	$14.2.1 V_2O_5$	337
	14.2.2 MoO_3	338
	14.2.3 WO ₃	339
143	Photovoltaics	340
11.5	14.3.1 General Observations	340
	14.3.2 TiO ₂	340
	14.3.3 SnO_2	343
	14.3.4 ZnO	344
14 4	Energetic Considerations	344
14.4	14.4.1 Potentials	344
	14.4.2 Reactivity Implications	346
14.5	Conclusions	346
	owledgment	347
	rences	347
15 Nona	particle-Mediated Monoelectron Conductivity	349
	urrara	
15.1		349
15.2	Historical Review	350
	15.2.1 Single Charge Phenomena	350
	15.2.2 The Theory	352
	15.2.3 Experimental Results	353
	15.2.4 Technological Applications	355
15.3	Monoelectron Conductivity	356
10.0	15.3.1 Semiclassical models	356
	15.3.2 Electrostatic Considerations	358
	15.3.3 Current in a Monoelectron System	360

	15.4	Nanoparticle-Mediated Monoelectron Conductivity	362
		15.4.1 Nanoparticles as Traps	363
		15.4.2 Electrical Capacitance of a Nanoparticle	364
		15.4.3 The Role of Nanoparticle Size	365
	15.5	Conclusions	367
		rences	368
16	Hete	rosupramolecular Chemistry	371
		arguerettaz, L. Cusack, and D. Fitzmaurice	
	16.1	•	371
	16.2	Heterosupermolecules	371
		16.2.1 Covalent Assembly of a Heterosupermolecule	372
		16.2.2 Noncovalent Self-assembly of a Heterosupermolecule	374
		16.2.3 Heterosupermolecules – Are They Necessary?	377
	16.3	Heterosupramolecular Assemblies	378
		16.3.1 Covalent Heterosupramolecular Assemblies	378
		16.3.2 Noncovalent Heterosupramoelecular Assemblies	381
		16.3.3 Heterosupramolecular Assemblies – What Do We Gain?	384
	16.4	Heterosupramolecular Chemistry and Molecular-Scale Devices	385
	Refe	rences	387
17	Nano	clusters in Zeolites	389
	J. B.	Nagy, I. Hannus, and I. Kiricsi	
		Introduction	389
	17.2	Synthesis of Nanoparticles in Zeolite Hosts	390
		17.2.1 Description of Some Common Zeolite Structures	390
		17.2.2 Synthesis of Metal Particles and Ionic Clusters in Zeolites	393
	17.3	Characterization of Nanoparticles in Zeolite Hosts	398
		17.3.1 Silver and Silver Halide Zeolites	400
		17.3.2 Alkali Metal and Ionic Clusters in Zeolites	405
		17.3.3 Transition Metal Clusters in Zeolites	413
		17.3.4 Miscellaneous	418
		17.3.4.1 New Forms of Luminescent Silicon	418
		17.3.4.2 Semiconductor Nanoclusters in Zeolites	420
		17.3.4.3 Quantum Chains	422
		17.3.4.4 Microporous Semiconductors	423
	17.4	Prospects	424
	Ackn	owledgments	425
	Refer	rences	425
18	Nano	particles and Nanostructured Films: Current Accomplishments and	
	Futur	e Prospects	429
	J. H.	Fendler, Y. Tian	
	18.1	Introduction	429
	18.2	Preparations of Nanoparticles and Nanostructured Films: Current	
		State of the Art	430

Index		463
Refe	rences	456
Ackn	nowledgments	456
18.4	Current Trends and Future Directions	454
	Nanoparticles Compared and Contrasted	449
18.3	Properties of Bulk Semiconductors and Semiconductor	
	Arrays, and Nanostructured Films	441
	18.2.3 Preparation of Composite Nanoparticles, Nanoparticle	
	18.2.2 Chemical Preparations of Nanoparticles	431
	18.2.1 Definitions	430

Contributors

B. Alperson

Department of Materials and Interfaces The Weizmann Institute of Science IL-76100 Rehovot Israel

M. Antonietti

Max-Planck-Institut für Kolloid- und Grenzflächenforschung Kantstraße 55 14513 Teltow-Seehof Germany

D. Behar

Department of Materials and Interfaces The Weizmann Institute of Science IL-76100 Rehovot Israel

R. A. Bley

Department of Chemistry University of California Davis, CA 95616 USA

L. Bronstein

The Russian Academy of Sciences A. N. Nesmeyanov Institute of Organoelement Compounds 28 Vavilov St., INEOS Moscow Russia

S. Carrara

Institute of Biophysics University of Genova Via Giotto 2 16153 Genova Italy

L. Cusack

Department of Chemistry University College Dublin Belfield Dublin 4 Ireland

J. Dutta

Powder Technology Laboratory Department of Materials Science Swiss Federal Institute of Technology CH-1015 Lausanne Switzerland

J. H. Fendler

Center for Advanced Material Processing Clarkson University Potsdam, NY 13699 USA

D. Fitzmaurice

Department of Chemistry University College Dublin Belfield Dublin 4 Ireland

Y. Golan

Department of Materials and Interfaces The Weizmann Institute of Science IL-76100 Rehovot Israel

D. M. Guldi

Radiation Laboratory University of Notre Dame Notre Dame, IN 46556 USA

I. Hannus

Applied Chemistry Department Jozsef Attila University Rerrich Béla tér 6720 Szeged Hungary

G. Hodes

Department of Materials and Interfaces The Weizmann Institute of Science IL-76100 Rehovot Israel

H. Hofmann

Powder Technology Laboratory Department of Materials Science Swiss Federal Institute of Technology CH-1015 Lausanne Switzerland

H. Hofmeister

Powder Technology Laboratory Department of Materials Science Swiss Federal Institute of Technology CH-1015 Lausanne Switzerland

C. Hollenstein

Powder Technology Laboratory Department of Materials Science Swiss Federal Institute of Technology CH-1015 Lausanne Switzerland

J. C. Hulteen

Department of Chemistry Colorado State University Fort Collins, Colorado 80523 USA

J. T. Hupp

Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston, IL 60208-3113 USA

P. V. Kamat

Radiation Laboratory University of Notre Dame Notre Dame, IN 46556 USA

S. M. Kauzlarich

Department of Chemistry University of California Davis, CA 95616 USA

S. Kelly

Department of Physics Brooklyn College of CUNY Brooklyn, NY 11210 USA

I. Kiricsi

Applied Chemistry Department Jozsef Attila University Rerrich Béla tér 6720 Szeged Hungary

B. I. Lemon

Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston, IL 60208-3113 USA

L. A. Lyon

Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston, IL 60208-3113 USA

X. Marguerettaz

Department of Chemistry University College Dublin Belfield Dublin 4 Ireland

C. R. Martin

Department of Chemistry Colorado State University Fort Collins, Colorado 80523 USA

F. C. Meldrum

Department of Applied Mathematics Research School of Physical Sciences Australian National University Canberra, ACT 0200 Australia

P. Mulvaney

School of Chemistry University of Melbourne Parkville, VIC 3052 Australia

J. B. Nagy

Laboratoire de Résonance Magnétique Nucléaire Facultés Universitaires Notre-Dame de la Paix 61 Rue de Bruxelles 5000 Namur Belgium

M.-P. Pileni

Laboratoire S.R.S.I. U.R.A.C.N.R.S. 1662 Université P. et M. Curie (Paris VI) 4 Place Jussieu F-75231 Paris Cedex 05 France

S. G. Romanov

University of Wuppertal Dept. of Electronics Fuhlrottstr. 10 42097 Wuppertal Germany

I. Rubinstein

Department of Materials and Interfaces The Weizmann Institute of Science IL-76100 Rehovot Israel

C. M. Sotomayor-Torres

University of Wuppertal Dept. of Electronics Fuhlrottstr. 10 42097 Wuppertal Germany

J. A. Switzer

Martin E. Straumanis Hall University of Missouri-Rolla Rolla, MI 65401-0249 USA

M. Tomkiewicz

Department of Physics Brooklyn College of CUNY Brooklyn, NY 11210 USA

P. Valetsky

The Russian Academy of Sciences A. N. Nesmeyanov Institute of Organoelement Compounds 28 Vavilov St., INEOS Moscow Russia XX Contributors

Y. Zhang

Department of Materials and Interfaces The Weizmann Institute of Science IL-76100 Rehovot Israel