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Preface 

Small is not only beautiful but also eminently useful. The virtues of working in the 
nanodomain are increasingly recognized by the scientific community, the techno- 
logical world and even the popular press. The number of research publications in 
this area has been increasing exponentially. Additionally, national and international 
biological, physical, chemical, engineering, and materials science societies and gov- 
ernment agencies have been organizing workshops, meetings, and symposia around 
some aspects of nanoparticle research with increasing frequency. This burgeoning 
interest is amply justified, of course, by the unique properties of nanoparticles and 
nanostructured materials and by the promise these systems hold as components of 
optical, electrical, electro-optical, magnetic, magneto-optical, and catalytic sensors 
and devices. 

The appearance of numerous review articles and books on nanoparticle research 
has helped the neophyte to digest the veritable information overload. No recent 
overview has appeared, however, to the best of our knowledge, that focuses upon 
the utilization of “wet” chemical and colloid chemical methods for the preparation 
of nanoparticles and nanostructured films. The purpose of the present book is to fill 
this gap by summarizing current accomplishments in preparing and characterizing 
nanoparticles and nanostructured films and to point out their potential applications. 
Versatility, relative ease of preparation and transfer from the liquid to the solid 
phase, convenience of scale-up, and economy are the advantages of the chemical 
approach to advanced materials synthesis. 

Electrochemistry has reached sufficient maturity and sophistication to be used 
for the layer-by-layer deposition of nanoparticles and nanoparticulate films. In 
Chapters 1 and 3 the state-of-the-art electrodeposition of quantum dots, superlat- 
tices, and nanocomposites is surveyed. Chemists have plenty to learn from mother 
nature. Much of the work on template-directed nanoparticle growth is inspired 
by biomineralization, the oriented growth of inorganic crystals in biomembranes. 
Advantage has been taken of organized surfactant assemblies that mimic the bio- 
logical membranes to grow nanoparticles and nanoparticulate films. Chapters 2 and 
4 highlight the growth of metallic, semiconducting, and magnetic nanoparticles 
under monolayers and within the confines of reverse micelles. More rigid templates 
have also been employed for nanoparticle preparations. This approach is illustrated 
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for such diverse templates as opal (Chapter 13), nanoporous membranes (Chapter 
lo),  and zeolites (Chapter 17). Chapter 7 emphasizes the use of block copolymer 
micelles as hosts for generating metallic nanoparticles. 

The recent attention to porous silicon nanoparticles has been prompted by their 
demonstrated photoluminescence and electroluminescence, as well as by their 
promise to function as optical interconnects and chemically tunable sensors, which 
require passive surfaces that are stable to oxidation yet are able to conduct current 
efficiently. Chemical and plasma-induced silicon nanocluster formation and growth 
are examined in Chapters 5 and 8. The potentially important, albeit as yet un- 
explored fullerene nanoparticles and their two-dimensional crystal growth are sur- 
veyed in Chapter 6. 

Nanoparticles themselves can be used as building blocks for two-dimensional 
arrays and/or three-dimensional networks. They can also be derivatized and treated 
as if they were simple molecules. This approach should lead to the type of hetero- 
supramolecular structures that are illustrated in Chapter 16. Such complex chem- 
istries must go hand-in-hand with an improved understanding of surface and colloid 
chemical interactions. Some aspects of these are discussed in Chapters 11 and 12. 

Exploitation of nanoparticles and nanostructured materials requires an appreci- 
ation of electron and photoelectron transfer mechanisms therein. Chapter 9 presents 
a well balanced view of the electron transfer processes in nanostructured semi- 
conductor thin films while Chapter 14 discusses charge transfer at nanocrystalline 
metal, oxide-semiconductor interfaces and its relation to electrochromic-battery 
and photovoltaic-photocatalytic interfaces. Significantly, as summarized in Chapter 
15, nanoparticles provide us with the possibility of monitoring, and ultimately ex- 
ploiting, single electron transfer events. 

An attempt has been made in the last chapter to provide the newcomer with 
handy “recipes” for the preparation of nanoparticles and nanostructured films as 
well as to summarize current accomplishments and future prospects in this intel- 
lectually fascinating and highly relevant area of research. Inevitably, current activ- 
ities soon become “past achievements”, and interested readers will have to acquaint 
themselves with the latest results as they appear in primary publications and as they 
are disseminated at scientific meetings. Chapter 18 also lists selected data on the 
properties of the most frequently used bulk semiconductors in order to permit much 
needed comparisons between the bulk and size-quantized materials. 

I am grateful to all the contributing authors who took time from their busy 
schedule to write their chapters and thus to share their expertise with the scientific 
community. I also thank Dr. Peter Gregory and Dr. Jorn Ritterbusch, the Editors 
at WILEY-VCH, and their staff or initiating this project and for providing enthu- 
siastic support throughout the various stages of publication. 

October 1997 Janos H. Fendler 
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