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Abstract

From the early HMAX model to Spatial Pyramid Matching, spatial pooling has
played an important role in visual recognition pipelines. By aggregating local statis-
tics, it equips the recognition pipelines with a certain degree of robustness to translation
and deformation yet preserving spatial information. Despite of its predominance in cur-
rent recognition systems, we have seen little progress to fully adapt the pooling strategy
to the task at hand. In this paper, we propose a flexible parameterization of the spatial
pooling step and learn the pooling regions together with the classifier. We investigate
a smoothness regularization term that in conjuncture with an efficient learning scheme
makes learning scalable. Our framework can work with both popular pooling operators:
sum-pooling and max-pooling. Finally, we show benefits of our approach for object
recognition tasks based on visual words and higher level event recognition tasks based
on object-bank features. In both cases, we improve over the hand-crafted spatial pooling
step showing the importance of its adaptation to the task.

1. Introduction
Spatial pooling plays a crucial role in modern object recognition and detection systems.
Motivated from biology [7, 9, 19, 25] and statistics of locally orderless images [12], the
spatial pooling approach has been found useful as an intermediate step of many today’s
computer vision methods ranging from local features based approaches [16, 30] to higher-
level semantic representations [22]. In order to form more robust features under translation
or small object deformations, activations of codes and features are pooled over larger areas
in a spatial pyramid scheme [16, 30] via a sum or max operator. Unfortunately, this critical
decision, namely the spatial division, is most prominently based on hand-crafted layouts and
therefore data and task independent.

We propose a flexible parameterization that allows for a richer set of possible pooling re-
gions and show results on classification tasks using two different pipelines [2, 22]. Moreover,
we extend the learnable pooling regions [23] to the events recognition task with object banks
as high level features. The representation is learned jointly with the classifier to support the
recognition task. In order to deal with the increased flexibility of the model, we investigate
different regularizers and efficient learning schemes. In particular, we propose a smoothness
regularizer that yields the strongest performance improvements in our experiments.
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Related Work There is an increasing interest to push the boundary of learning based
approaches towards fully optimized and adaptive architectures where design choices, that
would potentially constrain or bias a model, are kept to a minimum. Neural networks have a
great tradition of approaching hierarchical learning problems and training intermediate rep-
resentations [18, 24]. Along this line, we propose a learnable spatial pooling strategy that can
discriminatively shape the pooling regions. In contrast to convolutional neural architectures
[24], our particular architecture has a direct interpretation as a global pooling strategy and
therefore subsumes popular spatial pyramids as a special case. Yet we have the freedom to
investigate different regularization terms that lead to new pooling strategies when optimized
jointly with the classifier.

Recent progress has been made in learning pooling regions in the context of image clas-
sification using the Spatial Pyramid Matching (SPM) pipeline [16, 30]. Some researchers
[6, 10, 11, 13, 14, 26, 27] have further investigated how to liberate the recognition from
preconceptions of the hand crafted recognition pipelines. However, these methods still make
quite strong assumptions on the solutions that can be achieved. For instance Jia and Huang
[10] optimizes binary pooling strategies that are given by the superposition of rectangular
basis functions, and Feng et al. [6] finds pooling regions by applying a linear discriminant
analysis for individual pooling strategies and training a classifier afterwards. Krapac et al.
[14] and Koniusz and Mikolajczyk [13] model spatial location of the visual words by fitting
Mixture of Gaussians. Russakovsky et al. [26] and Sánchez et al. [27] have shown improve-
ment over SPM by pooling the objects and background separately. Although the last two
methods are image-dependent they strongly depend on the object localization which is a
non-trivial task if bounding boxes are absent during training time. In contrast, our method
learns the shape of the pooling region without resorting to the notion of the bounding boxes.
However both Russakovsky et al. [26] and Sánchez et al. [27] can be combined with our
approach as they are complementary. Our method is also complementary to van Gemert [29]
which exploits bias in the photographic style and generalizes SPM to quantize and pool over
such attributes as colorfulness, depth of field, viewpoint, lighting, and saliency. In contrast,
we learn the pooling regions directly without the use of such additional cues.

Outline First, we propose our parameterized pooling operator and show how to jointly op-
timize the parameters together with the classifier. To cope with the large number of param-
eters, we investigate regularizers and an efficient learning scheme. We evaluate our method
on the CIFAR-10 and show strong improvements in the regime of small dictionaries where
our flexible model shows its capability to make best use of the representation by explor-
ing spatial pooling strategies specific to every coordinate of the code. We also show strong
classification performance on the CIFAR-100 dataset where our method outperforms, to the
best of our knowledge, the state-of-the-art on this dataset in the regime of spatial pyramid
architectures. Finally, we also apply our model to higher level events classification tasks that
utilize a representation based on object-bank features [22].

2. Method
In contrast to the methods that use fixed spatial pooling regions in the object classification
task (e.g. [16, 30]) our method jointly optimizes both the classifier and the pooling regions.
In this way, the learning signal available in the classifier can help shaping the pooling regions
in order to arrive at better pooled features.
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2.1. Parameterized pooling operator
The simplest form of the spatial pooling is computing histogram over the whole image. This
can be expressed as Σ(U) := ∑

M
j=1 u j, where u j ∈ RK is an encoded patch extracted from

the image (out of M such codes) and an index j refers to the spatial location that the code
originates from1. Another popular pooling scheme that has been proven successful [30] is
max-pooling: M(U) := maxM

j=1 u j. Since the pooling approach looses spatial information of
the codes, Lazebnik et al. [16] proposed to first divide the image into subregions, and after-
wards to create pooled features by concatenating histograms computed over each subregion.
There are two problems with such an approach: first, the division is largely arbitrary and in
particular independent of the data; second, discretization artifacts occur as spatially nearby
codes can belong to two different regions as the ’hard’ division is made.

In this paper we address both problems by using a parameterized version of the pooling
operator

Θw(U) := ρ
M
j=1(w j ◦u j) (1)

where a ◦ b is the element-wise multiplication, and ρ is a pooling function. Here, we in-
vestigate either sum or max pooling functions and therefore ρ ∈ {max,∑}. Standard spatial
division of the image can be recovered from Formula 1 by setting the vectors w j either to
a vector of zeros 0, or ones 1. For instance, features obtained from dividing the image
into 2 subregions using sum pooling can be recovered from Θ by concatenating two vec-

tors: ∑

M
2
j=1 1 ◦ u j +∑

M
j=M

2 +1
0 ◦ u j, and ∑

M
2
j=1 0 ◦ u j +∑

M
j=M

2 +1
1 ◦ u j, where

{
1, ..., M

2

}
and{M

2 +1, ...,M
}

refer to the first and second half of the image respectively.
In general, let F := {Θw}w be a family of the pooling functions given by Eq. 1, parame-

terized by the vector w, and let w∗,l be the ’best’ parameter chosen from the family F based
on the initial configuration l and a given set of images. First row of Table 2 shows four initial
configurations that mimic the standard 2-by-2 spatial image division. Every initial configu-
ration can lead to different w∗,l as it is shown in Table 2. Clearly, the family F contains all
possible ’soft’ and ’hard’ spatial divisions of the image, and therefore is their generalization.

2.2. Learnable pooling regions
In the SPM architectures the pooling weights w are designed by hand, whereas here we aim
for joint learning w together with the parameters of the classifier. Intuitively, the classifier
during training has access to the classes that the images belong to, and therefore can shape the
pooling regions. On the other hand, the method aggregates statistics of the codes over such
learned regions and pass them to the classifier allowing to achieve higher accuracy. Such joint
training of the classifier and the pooling regions can be done by adapting the backpropagation
algorithm [1, 20], and so can be interpreted as a densely connected multilayer perceptron
[1, 4].

Consider a sampling scheme and an encoding method producing M codes each K dimen-
sional. Every coordinate of the code is an input layer for the multilayer perceptron. Then we
connect every j-th input unit at the layer k to the l-th pooling unit ak

l via the relation wk
l ju

k
j.

Since the receptive field of the pooling unit ak
l consists of all codes at the layer k, we have

ak
l := ∑

M
j=1 wk

l ju
k
j or ak

l := maxM
j=1 wk

l ju
k
j, and so in the vector notation

al := ρ
M
j=1(w

l
j ◦u j) = Θwl (U) (2)

1That is j = (x,y) where x and y refer to the spatial location of the center of the extracted patch.
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Next, we connect all pooling units with the classifier allowing the information to circulate
between the pooling layers and the classifier. We use logistic regression which is connected
to the pooling units via the formula

J(Θ) :=− 1
D

D

∑
i=1

C

∑
j=1

1{y(i) = j} log p(y(i) = j|a(i);Θ) (3)

where D denotes the number of all images, C is the number of all classes, y(i) is a label
assigned to the i-th input image, and a(i) are responses from the ’stacked’ pooling units
[al ]l for the i-th image2. We use the logistic function to represent the probabilities: p(y =

j|x;Θ) :=
exp(θ T

j x)

∑
C
l=1 exp(θ T

l x)
. Since the classifier is connected to the pooling units, our task is

to learn jointly the pooling parameters W together with the classifier parameters Θ, where
W is the matrix containing all pooling weights. Finally, we use standard gradient descent
algorithm that updates the parameters using the following fixed point iteration

X t+1 := X t − γ∇J(X t) (4)

where in our case X is a vector consisting of the pooling parameters W and the classifier
parameters Θ.

2.3. Regularization terms
In order to improve the generalization, we introduce regularization of our model as we deal
with a large number of the parameters. For the classification Θ and pooling parameters W ,
we employ L2 regularization terms: ||Θ||2l2 and ∑k ||W k||2l2 . In order to maintain interpretable
pooling regions we constraint the solution to the unit cube. This is implemented via projects
onto the cube during the optimization. To reduce quantization artifacts of the pooling strategy
as well as to ensure smoothness of the output w.r.t. small translations of the image, the
model penalizes weights whenever the pooling region is non-smooth. This can be done
by measuring the spatial variation ||∇xW k||2l2 + ||∇yW k||2l2 for every layer k. Therefore our
overall optimization objective is

minimize
W ,Θ

JR(Θ,W ) := (5)

− 1
D

D

∑
i=1

C

∑
j=1

1{y(i) = j} log p(y(i) = j|a(i);Θ)

+
α1

2
||Θ||2l2 +

α2

2
||W ||2l2

+
α3

2
(
||∇xW ||2l2 + ||∇yW ||2l2

)
subject to W ∈ [0,1]K×M×L

where al is the l-th pooling unit described by Formula 2, and ||W ||l2 is the Frobenius norm.

2Providing the codes U (i) are collected from the i-th image and a(i)l := Θwl (U (i)) then a(i) := [a(i)l ]l .
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2.4. Approximation of the model
The presented approach is demanding to train in the means of the CPU time and memory
storage when using high dimensional representations. The number of the pooling parame-
ters to learn grows as K×M×L, where K is dimensionality of codes, M is the number of
patches taken from the image and L is the number of pooling units. Therefore, we propose
two approximations to our method making the whole approach scalable to large dictionar-
ies. However, we emphasize that learned pooling regions have very little if any overhead
compared to standard spatial division approaches at test time.

The first approximation does a fine-grained spatial partition of the image (3 by 3 pixels),
and then pools the codes over such subregions. This operation reduces the number of spa-
tial locations by the factor of the pre-pooling size. The second approximation divides a K
dimensional code into K

D batches, each D dimensional. Then we train our model on all such
batches in parallel to obtain the pooling weights. Afterwards, we train the classifier on top
of the concatenation of the trained, partial models. We also consider a redundant set of such
batches in our experiments in order to compensate for potential approximation errors. As
opposed to the approximations proposed by Le et al. [17], our training is fully parallel and
doesn’t need communication between different batches/machines. In addition, the training
of the small models per batch shows on average 5 times faster convergence than the full
models.

Implementation details To learn the parameters of the model we use the limited-memory
BFGS algorithm3. The hyperparameters were selected by 5-fold cross-validation. Our im-
plementation is available at http://www.d2.mpi-inf.mpg.de/datasets.

3. Experimental Results
First, we evaluate our method on the CIFAR-10 and CIFAR-100 object recognition datasets
[15]. Furthermore, we provide insights into the learned pooling strategies as well as inves-
tigate transfer between datasets. Second, we show that our method also translates to a high
level recognition task of events in a max pooling setting with object bank features [22] on
the UIUC sports events dataset. [21]. We start by describing our experimental setup.

Datasets The CIFAR-10 and CIFAR-100 datasets contain 50000 training color images and
10000 test color images from respectively 10 and 100 categories, with 6000 and 600 images
per class respectively. All images have the same size: 32× 32 pixels, and were sampled
from the 80 million tiny images dataset [28]. UIUC sports events [21] is a dataset containing
8 sports categories such as rowing, badminton, polo, bocce, snowboarding, croquet, sailing,
and rock climbing. The number of images varies per class from 137 to 250. We follow Li-Jia
et al. [22] and use 70 images per class for training, and 60 images per class for testing.

Feature representations In order to insure comparability we follow the evaluation pipeline
of Coates and Ng [2] for the object recognition experiment. We extract normalized and
whitened 6×6 patches from images using a dense, equispaced grid with a unit sample spac-
ing. As the next step, we employ the K-means assignment and triangle encoding [2, 3] to
compute codes – a K-dimensional representation of the patch. As we want to be compara-
ble to Coates et al. [3], who uses a spatial division into 2-by-2 subregions which results in
4 ·K pooled features, we use 4 pooling units, too. Furthermore, we use a standard division

3implementation by Mark Schmidt: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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Figure 1: Figure 1(a) shows accuracy of the classification with respect to the number of dic-
tionary elements on smaller dictionaries. Figure 1(b) shows the accuracy of the classification
for bigger dictionaries when batches, and the redundant batches were used. Experiments are
done on CIFAR-10.

(first row of Table 2) as an initialization of our model. In addition to the Coates and Ng [2]
pipeline, we also apply our architecture to max pooling and object banks [22]. The latter use
object filters [5] and spatial pyramid matching [16, 30] to build a high-level representation of
the image. For both feature representations we use the source code provided by the authors.

Evaluation of our method on small dictionaries Figure 1(a) shows the classification ac-
curacy of our full method against the baseline [2]. Since we train the pooling regions without
any approximations in this set of experiments the results are limited to dictionary sizes up
to 800. Our method outperforms the approach of Coates by 10% for dictionary size 16 (our
method achieves the accuracy 57.07%, whereas the baseline only 46.93%). This improve-
ment is consistent up to the bigger dictionaries although the margin is getting smaller. Our
method is about 2.5% and 1.88% better than the baseline for 400 and 800 dictionary elements
respectively.

Scaling up to sizable dictionaries In subsection 2.4 we have discussed how to divide the
codes into low dimensional batches and learn the pooling regions on those. In the following
experiments we use batches with 40 entries extracted from the original code, as those fit
conveniently into the memory of a single, standard machine (about 5 Gbytes for the main
data) and can all be trained in parallel.

Besides a reduction in the memory requirements, the batches have shown multiple bene-
fits in practice due to smaller number of parameters. We need less computations per iterations
as well as observe faster convergence. Figure 1(b) shows the classification performance for
larger dictionaries where we examined the full model [Our], the baseline [Coates], random
pooling regions (described in subsection 3), bag of features, and two possible approximation
- the batched model [Our (batches)], and the redundantly batched model [Our (redundant
batches)].

Our test results are presented in Table 1. We observe little if any drop in accuracy when
using our approximation scheme. We attribute this to the better conditioned learning problem
of the smaller codes within one batch. With an accuracy for the batched model of 79.6% we
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Method Dict. size Features Acc.
Jia 1600 6400 80.17%
Coates 1600 6400 77.9%
Our (batches) 1600 6400 79.6%
Our (redundant) 1600 12800 80.02%

Table 1: Comparison of our methods against the baseline [2] and Jia and Huang [10] with
respect to the dictionary size, number of features and the test accuracy on CIFAR-10.

regularization pooling weights
dataset: CIFAR-10 ; dictionary size: 200

Coates (no learn.)

l2

smooth

smooth & l2
dataset: CIFAR-10 ; dictionary size: 1600

smooth & batches
dataset: CIFAR-100 ; dictionary size: 1600

smooth & batches
Table 2: Visualization of different pooling strategies obtained for different regularizations,
datasets and dictionary size. Every column shows the regions from two different coordinates
of the codes. First row presents the initial configuration also used in standard hand-crafted
pooling methods. Brighter regions denote larger weights.

outperform the Coates baseline by 1.7%. Interestingly, we gain another small improvement
to 80.02% by adding redundant batches which amounts to a total improvement of 2.12%
compared to the baseline. Our method performs comparable to the pooling strategy of Jia
and Huang [10] which uses more restrictive assumptions on the pooling regions and employs
feature selection algorithm.

To the best of our knowledge Goodfellow et al. [8] achieves the best results on the
CIFAR-10 dataset with an accuracy 90.65% with a method based on convolutional maxout
networks architecture and data augmentation – different from global pooling architectures
that we investigate in our study.

Random pooling regions Our investigation also includes results using random pooling
regions where the weights for the parameterized operator (Eq. 2) were sampled from normal
distribution with mean 0.5 and standard deviation 0.1, that is wl

j ∼ N (0.5,0.1) for all l.
This notion of the random pooling differs from the Jia et al. [11] where random selection of
rectangles is used. The experiments show that the random pooling regions can compete with
the standard spatial pooling (Figure 1(a) and 1(b)) on the CIFAR-10 dataset, and suggest that
random projection can still preserve some spatial information. This is especially visible in
the regime of bigger dictionaries where the difference is only 1.09%. The obtained results
indicate that hand-crafted division of the image into subregions is questionable, and call for
a learning-based approach.

Investigation of the regularization terms Our model (Eq. 5) comes with two regulariza-
tion terms associated with the pooling weights, each imposing different assumptions on the
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Regularization CV Acc. Test Acc.
free 68.48% 69.59%
l2 67.86% 68.39%
smooth 73.36% 73.96%
l2 + smooth 70.42% 70.32%

Table 3: We investigate the impact of the regularization terms on the CIFAR-10 dataset
with dictionary size equals to 200. Term “free” denotes the objective function without both
regularization terms. The cross-validation accuracy and test accuracy are shown.

Method Dict. size Features Acc.
Jia 1600 6400 54.88%
Coates 1600 6400 51.66%
Our (batches) 1600 6400 56.29%

Table 4: The classification accuracy on CIFAR-100, where our method is compared against
the Coates and Ng [2] and Jia and Huang [10].

pooling regions. Hence, it is interesting to investigate their role in the classification task by
considering all possible subsets of {l2,smooth}, where “l2” and “smooth” refer to ||W ||2l2 and(
||∇xW ||2l2 + ||∇yW ||2l2

)
respectively. Table 3 shows our results on CIFAR-10. We choose a

dictionary size of 200 for these experiments, so that we can evaluate different regularization
terms without any approximations. We conclude that the spatial smoothness regularization
term is crucial to achieve a good predictive performance of our method whereas the l2-norm
term can be left out, and thus also reducing the number of hyper-parameters. Based on the
cross-validation results (second column of Table 3), we select this setting for further experi-
ments.

Experiments on the CIFAR-100 dataset We also investigate how the model performs on
more demanding CIFAR-100 dataset with 100 classes. Our model with the spatial smooth-
ness regularization term on the 40 dimensional batches achieves 56.29% accuracy. To our
best knowledge, this result constitutes the state-of-the-art performance on this dataset in the
regime of SPM architecture, outperforming Jia and Huang [10] by 1.41%, and the base-
line by 4.63%. Non-global pooling schemes like the convolutional max-out networks have
recently achieved a performance of up to 61.43% [8].

Transfer of the pooling regions between datasets Beyond the standard classification
task, we also examine if the learned pooling regions are transferrable between datasets. In
this scenario the pooling regions are first trained on the source dataset and then used on
the target dataset to train a new classifier. We use dictionary of 1600 with 40-dimensional
batches. Our results (Table 5) suggest that the learned pooling regions are indeed transfer-
able between both datasets. While we observe a decrease in performance when learning the
pooling strategy on the less diverse CIFAR-10 dataset, we do see improvements for learning
on the richer CIFAR-100 dataset. We arrive at a test accuracy of 80.35% which is an addi-
tional improvement of 0.75% and 0.18% over our best results (batch-based approximation)
and Jia and Huang [10] respectively.

Visualization and analysis of pooling strategies Table 2 visualizes different pooling strate-
gies investigated in this paper. The first row shows the widely used rectangular spatial di-
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Source Target Accuracy
CIFAR-10 CIFAR-100 52.86%
CIFAR-100 CIFAR-10 80.35%

Table 5: We train the pooling regions on the ’Source’ dataset. Next, we use such regions to
train the classifier on the ’Target’ dataset where the test accuracy is reported.

UIUC sports
Object Banks + SPM [22] 76.3%
Object Banks + our method 79.4%

Table 6: Our approach described in section 2 with max pooling function and object banks.

vision of the image. The other visualizations correspond to pooling weights discovered by
our model using different regularization terms, datasets and dictionary size. The second row
shows the results on CIFAR-10 with the “l2” regularization term. The pooling is most distinct
from the other results, as it learns highly localized weights. This pooling strategy has also
performed the worst in our investigation (Table 3). The ”smooth” pooling performs the best.
We see that weights are localized but vary smoothly over the image. The weights expose a
bias towards initialization shown in the first row. All methods with the spatial smoothness
regularization tend to focus on similar parts of the image, however “l2 & smooth” is more
conservative in spreading out the weights. The last two rows show weights trained using our
approximation. Visual inspection shows a similar level of localization and smoothness to the
regions obtained without approximation. This further supports the use of our division into
independent batches.

Results using object banks Lastly, we investigate event recognition on the UIUC Sports
database based on object bank features. Li-Jia et al. [22] proposes a spatial pyramid matching
architecture on top of the object bank features – which makes it an application target for our
learned pooling regions. Please note that this setting is quite different form the previous
task as high level event recognition is addressed and we optimize pooling regions in a max
pooling context. In the experiments we use 4 pooling units with max pooling function on
top of the response maps from the object bank filters [5, 22]. Our results (Table 6) show the
importance of adaptive approaches also in this high level recognition context. We improve
the results from [22] that use a hand crafted SPM architecture by 3.1%.

4 Conclusion

In this paper we propose a flexible parameterization of global pooling operators which can
be trained jointly with the classifier. We study the effect of different regularizers showing
the importance of the smoothness. To train the large set of parameters we propose approxi-
mations to our model allowing efficient and parallel training without loss of accuracy. Our
method outperforms popular hand-crafted pooling-based methods. While our improvements
are consistent over the whole range of dictionary sizes, the margin is most impressive for
small dictionaries with the improvement up to 10% compared to the baseline [2]. Finally, we
apply our method and improve over SPM to high level event recognition using object-banks
representation. We believe that our method is a flexible framework to further investigate
different pooling strategies and is broadly applicable in spatial pooling architectures.
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