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1 Introduction

Recent progress [1], along the lines of an older proposal [2], on understanding the extent

to which the E7(7) Cremmer-Julia duality symmetry [3, 4] is inherent to the full D = 11

supergravity theory [5] has lead to a new formulation of the D = 11 theory, which apart

from pointing to new geometric structures in eleven dimensions, provides an appropriate

framework in which to address questions regarding the relation between D = 11 supergrav-

ity and four-dimensional maximal gauged supergravity theories [6, 7]. In this paper, we

will clarify the relation of these results to more recent approaches to generalised geometry,

especially [8–10], and show how a synthesis of the different approaches emerges.

The formalism of ref. [1] is based on the SU(8) invariant reformulation of D = 11

supergravity [2], in which the local and global gravitational symmetries of the eleven-

dimensional theory are abandoned and one performs a 4+7 split of all fields in the theory.

Importantly, dependence on all eleven coordinates is retained throughout and one remains

on-shell equivalent to the original theory throughout the construction. An essential char-

acteristic of the analysis of ref. [2], and a main distinguishing feature in comparison with

more recent work, is the use of supersymmetry transformations to find new SU(8) and E7(7)

structures in the eleven-dimensional theory. The most significant such structures are the

“generalised vielbeine” [1, 2, 11], which replace the eleven-dimensional fields that would
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contribute to scalar degrees of freedom in a reduction to four dimensions. As in [2], these

are derived by considering the supersymmetry transformation of eleven-dimensional fields

that would contribute to vector degrees of freedom in a reduction to four dimensions. A

crucial ingredient in constructing the full set of “generalised vielbeine” is to consider dual

fields in eleven dimensions. These building blocks are to be viewed as the components of

a single E7(7) 56-bein V that we shall henceforth simply refer to as the “generalised viel-

bein”, in analogy with the terminology used in more recent literature [12]. In particular,

the generalised vielbein as derived directly from the D = 11 theory in [1] coincides with

the generalised vielbein that lies at the heart of other recent approaches to generalised

geometry [13] (see also [12]), where it is constructed from the E7(7)/SU(8) coset using an

algebraic method known as non-linear realisation [14–16]. More recently, the generalised

geometry ideas that have been used to describe the seven-dimensional sector of D = 11

supergravity in a 4 + 7 split have been extended to incorporate the four-dimensional part,

in this way arriving at an E7(7) covariant extension of the whole theory [10, 17].

An important aspect of the formalism developed in [1] is the fact that the components of

the generalised vielbein satisfy differential constraints [1, 2] — called “generalised vielbein

postulates” (GVPs) due to their resemblance to the usual vielbein postulate in differential

geometry. It should be emphasised that here these equations are not postulated, but follow

directly from the explicit expressions for the generalised vielbein in terms of the various

fields and dual fields of D = 11 supergravity. In this sense, the present approach is ‘bottom

up’, in contrast to other approaches, where similar relations follow from more abstract

geometrical reasoning. One of our main results here is to show how these ingredients can

be used to develop an Einstein-Cartan calculus that is largely analogous to the one for the

standard vielbein.

The GVPs divide into two sets: those in which the derivative acting on the component

of the generalised vielbein is taken with respect to the D = 4 directions and those in

which the derivative is with respect to the D = 7 directions. Using a terminology where

“external” refers to D = 4 in the 4 + 7 split of D = 11, and “internal” refers to D = 7,

even though we remain on-shell equivalent to the D = 11 theory and no reduction is

assumed, we refer to the former set as “external GVPs” and the latter set as “internal

GVPs”. The GVPs are important in establishing a link between the D = 11 theory

and D = 4 maximal gauged theories derived as a reduction thereof. In particular, the

external GVPs can be regarded as providing a higher dimensional origin of the embedding

tensor [18–22], as has been explicitly demonstrated for the S7 reduction [6] and Scherk-

Schwarz flux compactifications [7]. The relationship between D = 11 supergravity and

D = 4 supergravity is an important aspect of the SU(8) invariant reformulation of the

D = 11 theory [2], and recent developments therefrom [1, 11], in, for example, establishing

non-linear ansätze [6, 11, 23, 24] and consistency of the S7 reduction [25, 26]. Very recently,

this aspect has also been studied in ref. [27] where the generalised vielbein is related by

a generalised Scherk-Schwarz ansatz to the Ed(d) matrix parametrised by the scalars of

maximal gauged supergravity. This allows them to verify/conjecture non-linear ansätze

for various sphere reductions. The validity of the new ansätze can be established by an

analysis along the lines of refs. [2, 6, 11, 23] for the appropriate sphere reductions.
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In this paper, we return to the reformulation of D = 11 supergravity developed in [1]

and proceed to make concrete the indications that there is an E7(7) generalised geometry

underlying the constructions there. In particular, we make contact with recent results in

duality-manifest based approaches to generalised geometry [8, 9]1 that have focused on

similar issues from a duality group perspective. We condense all the objects and equations,

in particular the GVPs, into an E7(7) covariant form such that the previous expressions

can be obtained as particular components of the new expressions under SL(8) and GL(7)

decompositions of E7(7). Thus, even though general covariance in D = 11 has been aban-

doned in the 4+7 split, we obtain a reformulation that has general covariance in the D = 4

directions and a “generalised general covariance” based on E7(7) in the D = 7 space in a

manner consistent with the results of refs. [8–10].

A prerequisite for introducing E7(7) covariance, and thus replacing GL(7) indices with

E7(7) indices, is that the seven-dimensional space on which the generalised geometry is

constructed apparently requires an extension to a 56-dimensional space2 such that the

seven internal coordinates {ym} are extended to a set of 56 internal coordinates {yM},
where M labels the 56 representation of E7(7) [13]. However, in order for the geometric

structures, such as the algebra of generalised diffeomorphisms, to be consistent one must

impose a constraint, the section condition, that ultimately reduces the enlarged space

to an at most seven-dimensional space [8, 9]. While the necessity of such a restriction is

plainly evident from the fact that no consistent supergravity appears to exist beyond eleven

dimensions, its necessity can also be seen from a more geometrical perspective: supposing

that the generalised vielbein V did depend on 56 internal coordinates, we would have the

textbook formula

VM(y) = V ′
N (y′)

∂y′N

∂yM
(1.1)

for the transformation under arbitrary diffeomorphisms in 56 dimensions. However, the

transition matrix ∂y′M/∂yN being an element of GL(56), this operation would throw the

56-bein V out of the coset E7(7)/SU(8). One might therefore ask whether there exists a

set of restricted diffeomorphisms in 56 dimensions, such that ∂y′M/∂yN ∈ E7(7) and the

transformed generalised vielbein remains in the coset. However, this possibility is excluded

by Cartan’s Theorem, according to which there do not exist ‘exceptional algebras of vector

fields’ on manifolds, the only possibilities being (essentially) the algebras of ordinary diffeo-

morphisms, volume preserving diffeomorphisms and symplectomorphisms [36, 37] (see also

ref. [38]). Similar comments apply to the 3+8 split associated to the E8(8) duality group,

as already noted in [39]. In the context of O(d, d), the finite transformation law [40, 41]

is more general than the conventional transformation law given in equation (1.1) thereby

allowing a transformation that is contained in O(d, d), but it is nevertheless necessary to

have the section condition (see also refs. [42, 43] for global considerations).

1For further references see [28–35].
2More precisely, the 11-dimensional space-time manifold would have to be extended to a (4+56)-

dimensional space, but we can ignore the dependence on the four external coordinates for the argument to

be presented.
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In section 2, we review the required results from [1], rewriting them in a manner that

makes their E7(7) structure manifest. We rewrite the GVPs, in section 3, using the E7(7)

structures defined in section 2. Then, in section 4, we explicitly demonstrate how the coor-

dinate and gauge transformations of the generalised vielbein can be packaged into a single

transformation given by generalised diffeomorphisms [8]. Finally, in section 5, we similarly

package the GVPs into single E7(7) covariant equations. The equation corresponding to the

external GVPs is precisely of the same form as the Cartan equation in four-dimensional

maximal gauged theories, allowing us to identify the higher dimensional object, an oper-

ator, that gives the embedding tensor upon reduction to four dimensions. On the other

hand, the internal GVP is the generalised geometric analogue of the vielbein postulate and

yields the generalised connection for the generalised geometry. We give the transformation

properties of the generalised connection. Furthermore, we find that a covariant deriva-

tive defined using the generalised connection transforms as a generalised tensor density of

weight 1/2 less than the weight of the generalised tensor on which the covariant derivative

acts. Thus, a generalised Riemann curvature tensor obtained by commuting two covariant

derivatives transforms as a generalised tensor density of weight −1. We explicitly present

the components of the generalised Riemann tensor and note that it is indeed generalised

gauge covariant.

The conventions used in this paper are the same as those of ref. [2]. In particular,

M,N, . . . and A,B, . . . denote eleven-dimensional spacetime and tangent space indices, re-

spectively. Indices A,B, . . . are also used as SU(8) indices. However, it should be clear

from the context what type of index is being referred to. Similarly, µ, ν, . . . and α, β, . . .,

and m,n, . . . and a, b, . . . denote D = 4 and D = 7 spacetime and tangent space in-

dices, respectively.

2 Preliminaries

2.1 Generalised vielbein

As explained in much detail in our previous work [1], a generalised vielbein V , which can

be viewed as a 56-bein of E7(7), can be defined directly in eleven dimensions. This 56-

bein depends on the fields and on the dual fields of D = 11 supergravity, as obtained

by performing a 4 + 7 split on the original fields, with all fields still depending on all

eleven-dimensional coordinates. In particular, it depends on the siebenbein em
a, which is

obtained from a 4 + 7 decomposition of the original elfbein of D = 11 supergravity in a

triangular gauge (which breaks the original tangent space symmetry SO(1,10) of the theory

to SO(1,3) × SO(7)):

EM
A(x, y) =

(

∆−1/2e′µ
α Bµ

mem
a

0 em
a

)

, ∆ ≡ det em
a . (2.1)

Here, as usual, we split the eleven-dimensional coordinates {zM} into four external coor-

dinates {xµ} and seven internal coordinates {ym}. The 3-form and 6-form gauge fields, on
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which the 56-bein also depends, are linked via the duality relation

FM1···M7 = 7!D[M1
AM2···M7] + 7!

√
2

2
A[M1M2M3

DM4AM5M6M7]

−
√
2

192
iǫM1···M11

(

ΨRΓ̃
M8···M11RSΨS + 12Ψ

M8Γ̃M9M10ΨM11

)

(2.2)

in eleven dimensions, from which all pertinent relations linking the 4-form and 7-form field

strengths can be obtained by choosing the indices appropriately. Although we will ignore

the fermionic terms in this duality relation in the remainder, it should be clear that this

duality relation introduces a hidden dependence of the 56-bein (which we are about to

present) on the fermionic fields as well.

A main result of [1] is thus the complete identification of the 56-bein in terms of

the siebenbein, and the internal components of the 3-form and the 6-form, such that

V ≡ V(e,A(3), A(6)). With proper E7(7) normalisation, the components of the generalised

vielbein are explicitly given by

Vm
AB = −

√
2

8
∆−1/2Γm

AB, (2.3)

VmnAB = −
√
2

8
∆−1/2

(

ΓmnAB + 6
√
2AmnpΓ

p
AB

)

, (2.4)

Vmn
AB = −

√
2

8
· 1
5!

ηmnp1···p5∆−1/2

[

Γp1···p5AB + 60
√
2Ap1p2p3Γp4p5AB

− 6!
√
2
(

Aqp1···p5 −
√
2

4
Aqp1p2Ap3p4p5

)

Γq
AB

]

, (2.5)

VmAB = −
√
2

8
· 1
7!

ηp1···p7∆−1/2

[

(Γp1···p7Γm)AB + 126
√
2 Amp1p2Γp3···p7AB

+ 3
√
2× 7!

(

Amp1···p5 +

√
2

4
Amp1p2Ap3p4p5

)

Γp6p7AB

+
9!

2

(

Amp1···p5 +

√
2

12
Amp1p2Ap3p4p5

)

Ap6p7qΓ
q
AB

]

, (2.6)

where Γm ≡ emaΓ
a are the D = 7 gamma matrices with seven-dimensional curved indices

and ηm1...m7 is the seven-dimensional permutation symbol (tensor density of weight +1).

These expressions are obtained by insisting on the E7(7) covariance of the supersymmetry

variations (after appropriate field redefinitions), see also remarks in section 2.2 below.

The vielbein is subject to local SU(8) rotations (depending on all eleven coordinates),

such that the above expressions in terms of quantities of D = 11 supergravity correspond

to a special gauge choice, as explained already in [2]. Furthermore, complex conjugation

raises (lowers) SU(8) indices

VMN
AB ≡ (VMNAB)

∗ , VMNAB ≡ (VMN
AB)

∗, (2.7)

where we have combined the GL(7) indicesm,n, . . . into SL(8) indices M, N, . . . according to3

VMN ≡
(

Vmn,Vm8

)

, VMN ≡
(

Vmn,Vm8
)

. (2.8)

3For brevity, we will often use the simplifying notation Vm ≡ Vm8 = −V8m and Bm ≡ Bm8 = −B8m, etc.
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That is, complex conjugation only affects the SU(8) indices. We will also use proper E7(7)

indices M,N , . . . corresponding to the 56 representation, such that

VM ≡
(

VMN,VMN
)

, VM = ΩMNVN ≡
(

VMN,−VMN

)

, (2.9)

where the components of the symplectic form ΩMN are

ΩMN
PQ = δMNPQ , ΩMN

PQ = −δPQMN ,

ΩMN PQ = 0, ΩMN PQ = 0, (2.10)

and ΩMN is given by ΩMPΩNP = δMN . Moreover, with the above normalisation, V satisfies

the E7(7) properties

VM
ABVN AB − VMABVN

AB = iΩMN ,

ΩMNVM
ABVN CD = i δAB

CD,

ΩMNVM
ABVN

CD = 0, (2.11)

which can be directly verified from definitions (2.3)–(2.6). The generalised vielbein also

satisfies the following E7(7) covariant supersymmetry transformation

δVMAB =
√
2ΣABCDVM

CD, (2.12)

with the complex self-dual SU(8) tensor

ΣABCD = ε̄[AχBCD] +
1

4!
ǫABCDEFGH ε̄EχFGH . (2.13)

In the SU(8) invariant reformulation, the D = 11 gravitino ΨM is rewritten in terms of

SU(8) covariant chiral fermions ϕµ
A and χABC and their complex conjugates ϕµA, χ

ABC [2,

4]. The precise relation between (2.12) and the D = 11 supersymmetry variations also

involves an SU(8) rotation that we have dropped.

In addition to local SU(8) transformations, the generalised vielbein is subject to sev-

eral gauge transformations which it inherits from the fields on which it depends, to wit,

internal diffeomorphisms, and the tensor gauge transformations associated to the 3-form

and the 6-form gauge potentials. Recall that in our scheme all transformation parameters

depend on eleven coordinates. The transformations under internal diffeomorphisms are

straightforward to obtain:

δVm
AB = ξp∂pVm

AB − ∂pξ
mVp

AB − 1

2
∂pξ

pVm
AB,

δVmnAB = ξp∂pVmnAB − 2 ∂[mξpVn]pAB − 1

2
∂pξ

pVmnAB,

δVmn
AB = ξp∂pVmn

AB + 2 ∂pξ
[mVn]p

AB +
1

2
∂pξ

pVmn
AB,

δVmAB = ξp∂pVmAB + ∂mξpVpAB +
1

2
∂pξ

pVmAB. (2.14)

– 6 –
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Note that the density terms come from the overall factor of ∆±1/2 in the definition of VM.

With respect to the tensor gauge transformations, we have

δAmnp = 3! ∂[mξnp] , δAmnpqrs = 3
√
2 ∂[mξnpAqrs] (2.15)

and

δAmnp = 0 , δAmnpqrs = 6! ∂[mξnpqrs] (2.16)

with the 2-form and 5-form gauge parameters ξmn and ξmnpqr, respectively. Substituting

these transformations into the explicit expressions for the generalised vielbein components

in (2.3)–(2.6), it is straightforward to deduce the transformation properties

δVm
AB = 0, δVmnAB = 36

√
2 ∂[mξnp] Vp

AB,

δVmn
AB = 3

√
2 ηmnpqrst∂pξqr VstAB, δVmAB = 18

√
2 ∂[mξnp] Vnp

AB, (2.17)

and

δVm
AB = δVmnAB = 0, δVmn

AB = −6 · 6!
√
2 ηmnp1···p5∂[qξp1···p5]Vq

AB,

δVmAB = 3 · 6!
√
2 ηn1···n7∂[mξn1···n5]Vn6n7AB. (2.18)

We already see here that these transformation parameters can be nicely combined as

ΛM ≡
(

Λm,Λmn,Λ
mn, 0

)

(2.19)

where Λm ∼ ξm , Λmn ∼ ξmn and Λmn ∼ ηmnp1···p5 ξp1···p5 (the precise coefficients will be

conveniently chosen later). In this way ordinary diffeomorphisms and tensor gauge trans-

formations are unified into a single set of transformations. This will be shown explicitly

in section 4, where we will consider generalised diffeomorphisms and show how the above

transformations can be compactly written in terms of a single generalised Lie derivative,

see equation (4.2). The ‘missing’ seven components Λm in this identification are obviously

associated with ‘dual’ internal diffeomorphisms, but will actually be seen to drop out.

2.2 Vector fields

The components of the generalised vielbein can be obtained by considering the supersym-

metry of a set of eleven-dimensional fields with one D = 4 index [1, 2, 11]. As such they

are known as vectors in accord with the convention of using four-dimensional language for

analogous D = 11 structures adopted here. We similarly combine the vectors into a 56

of E7(7)

BM
µ = (BMN

µ , Bµ MN). (2.20)

– 7 –



J
H
E
P
0
6
(
2
0
1
4
)
0
2
1

The proper definitions of these 56 vector fields follow from the identifications

Bµ
m = −1

2
Bµ

m, Bµmn = −3
√
2
(

Aµmn −Bµ
pApmn

)

,

Bµ
mn = −3

√
2 ηmnp1...p5

(

Aµp1···p5 −Bµ
qAqp1···p5 −

√
2

4

(

Aµp1p2 −Bµ
qAqp1p2

)

Ap3p4p5

)

Bµm = −18 ηn1...n7

(

Aµn1...n7,m + (3c̃− 1) (Aµn1...n5 −Bµ
pApn1...n5)An6n7m

+ c̃An1...n6 (Aµn7m −Bµ
pApn7m) +

√
2

12
(Aµn1n2 −Bµ

pApn1n2)An3n4n5An6n7m

)

,

(2.21)

where c̃ is an undetermined constant. These are related to the generalised vielbein via the

following supersymmetry transformation [1, 2, 11]

δBµ
M = iΩMNVN AB

(

2
√
2εAϕB

µ + εCγµχ
ABC

)

+ h.c. (2.22)

using the supersymmetry transformations of the fields given in [1, 2, 11]. In particular [1]

δAµm1...m7,n = − 1

9!

(

εΓ̃µm1...m7Ψn − 8εΓ̃nΓ̃[µm1...m6
Ψm7]

)

+

√
2 c̃

5!
εΓ̃[µm1...m4

Ψm5Am6m7]n

+

√
2

3
εΓ̃[µm1

Ψm2

(

Am3...m7]n +

√
2

12
Am3...m5Am6m7]n

)

−
√
2 c̃ εΓ̃[µm1

Ψm2

(

Am3...m7]n +

√
2

4
Am3...m5Am6m7]n

)

, (2.23)

where Ψm is the component of the D = 11 gravitino along the internal directions (prior to

any redefinition).

The transformation of the components of BM
µ under internal diffeomorphisms is

δBµ
m = ξp∂pBµ

m − ∂pξ
mBµ

p,

δBµmn = ξp∂pBµmn − 2 ∂[mξpBµn]p,

δBµ
mn = ξp∂pBµ

mn + 2 ∂pξ
[mBµ

n]p + ∂pξ
pBµ

mn. (2.24)

We note that Bµ
mn transforms as a tensor density of weight 1 because of the tensor density

η in its definition, (2.21). The transformation of BM
µ under internal 2-form and 5-form

gauge transformations is

δBµ
m = 0, δBµmn = −36

√
2 ∂[mξnp]Bµ

p

δBµ
mn = −3

√
2∆ǫmnp1···p5 ∂p1ξp2p3Bµp4p5 . (2.25)

and

δBµ
m = δBµmn = 0, δBµ

mn = −6 · 6!
√
2 ηmnp1···p5∂[qξp1···p5]Bµ

q. (2.26)
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Since we do not know at this point how Aµm1...m7,n transforms under coordinate, 2-form

and 5-form gauge transformation we cannot, yet, determine the gauge transformation rule

for the final component Bµm. Let us nevertheless anticipate the results of section 4, where

we will find the transformation rule from the E7(7) structure of internal coordinate and

gauge transformations:

δBµm = ξp∂pBµm + ∂mξpBµp + ∂pξ
pBµm, (2.27)

δBµm = −18
√
2∂[mξpq]Bµ

pq, δBµm = 3 · 6!
√
2 ηn1···n7∂[mξn1···n5]Bµn6n7 , (2.28)

for coordinate, 2-form and 5-form gauge transformations, respectively. Going backwards

from these expressions, we can deduce that Aµn1...n7,m transforms as a tensor under in-

ternal coordinate transformations and under 2-form and 5-form gauge transformations it

transforms as:

δAµn1...n7,m = −18 c̃ ∂[mξn1n2]Aµn3...n7 +
√
2(9c̃− 2)∂n1ξn2n3Aµn4n5Amn6n7

− (9c̃− 2)√
2

∂[mξn1n2]Aµn3n4An5...n7 , (2.29)

δAµn1...n7,m = −6! (3c̃− 1)∂[mξn1...n5]Aµn6n7 , (2.30)

respectively. Here c̃ is the undetermined constant that appeared already in [1], and that

is also not fixed by imposing E7(7) covariance. As for the generalised vielbein, we will

show that the formulae (2.25), (2.26) and (2.28), together with the action of internal

diffeomorphisms, can be compactly assembled into a single E7(7) covariant formula, (4.12).

3 Generalised vielbein postulate

The generalised vielbeine satisfy differential constraints along the four external and the

seven internal directions, which are called generalised vielbeine postulates (GVPs) in anal-

ogy with the usual vielbein postulate in differential geometry. These constraints are iden-

tities that can be directly verified from the explicit expressions given above, just like the

usual vielbein postulate is an identity when the affine connection and the spin connection

are expressed in terms of the usual vielbein.

The external GVPs, which are the GVPs along the d = 4 directions are of the form4

∂µVm
AB+QC

µ [AVm
B]C+2Bµ

nDnVm
AB−2DnBµ

mVn
AB−DnBµ

nVm
AB = PµABCDVmCD,

(3.1)

∂µVmnAB +QC
µ [AV|mn|B]C + 2Bµ

pDpVmnAB − 4D[mB|µ|
pVn]pAB (3.2)

−DpBµ
pVmnAB + 6D[mB|µ|np]Vp

AB = PµABCDVmn
CD,

4Note that the sign in front of the P structures in both the external and internal GVPs is opposite to

what appears in the GVPs as written in ref. [1]. This is because of a differing definition of the generalised

vielbein V — more specifically, an extra factor of i in the definition of V.
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∂µVmn
AB +QC

µ [AVmn
B]C + 2Bµ

pDpVmn
AB + 6DpBµ

[mVnp]
AB (3.3)

−DpBµ
pVmn

AB +
1

2
ηmnp1...p5Dp1Bµ p2p3Vp4p5 AB+4DpBµ

p[mVn]
AB = PµABCDVmnCD,

∂µVmAB +QC
µ [AVmB]C + 2Bµ

pDpVmAB + 2DmBµ
pVpAB (3.4)

+DpBµ
pVmAB + 3D[mB|µ|pq]Vpq

AB − 2DpBµ
pqVqmAB = PµABCDVm

CD,

where Dm is the covariant derivative with respect to seven-dimensional diffeomor-

phisms, e.g.

DmBµ
n ≡ ∂mBµ

n + Γn
mpBµ

p (3.5)

with the internal affine connection Γp
mn. In GVPs, above, the combination of components

of the vector field Bµ
M and the generalised vielbein in each term is exactly such that the

discrepancy in the weights of the components of the generalised vielbein is compensated

by the differing weights in the components of the vector field Bµ
M. Hence the weights of

the terms in each GVP are consistent.

Note that in previous work [1, 2] these relations were given without the affine connec-

tion terms, but the relations above are still equivalent to the original ones (see [44]), as all

terms containing the affine connections cancel in the above relations, as well as the ones

given below. The connection coefficients are of the form

QA
µB = −1

2

[

emaDmBµ
nenb−(epaDµep b)

]

Γab
AB−

√
2

12
eµ

α
(

FαabcΓ
abc
AB−ηαβγδF

βγδaΓaAB

)

,

(3.6)

PµABCD =
3

4

[

emaDmBµ
nenb − (epaDµep b)

]

Γa
[ABΓ

b
CD] −

√
2

8
eµ

αFabcαΓ
a
[ABΓ

bc
CD]

−
√
2

48
eµαη

αβγδFaβγδΓb[ABΓ
ab
CD], (3.7)

where

Dµ ≡ ∂µ −Bµ
mDm ≡ ∂µ + 2Bµ

mDm . (3.8)

In the dimensionally reduced theory, the kinetic term for the scalar fields is ∝
PABCD
µ Pµ

ABCD, while the ‘composite’ SU(8) connection Qµ
A
B is required for the covari-

antisation of the fermionic couplings.

Similarly, the generalised vielbein satisfies a GVP along the internal directions. The

relevant relations were derived in [1] and read

∂pVm
AB + Γm

pnVn
AB +

1

2
Γn
pnVm

AB +QC
p [AVm

B]C = PpABCDVmCD,

(3.9)

∂pVmnAB + 2Γq
p[mVn]q AB +

1

2
Γq
pqVmnAB − 6

√
2Ξp|mnqVq

AB (3.10)

+QC
p [AVmnB]C = PpABCDVmn

CD,

∂pVmn
AB − 2Γ[m

pq Vn]q
AB − 1

2
Γq
pqVmn

AB − 6
√
2ηmnq1···q5 Ξp|q1...q6Vq6

AB (3.11)

− 1√
2
ηmnq1···q5 Ξp|q1q2q3Vq4q5 AB +QC

p [AVmn
B]C = PpABCDVmnCD,
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∂pVmAB − Γn
pmVnAB − 1

2
Γq
pqVmAB −

√
2ηn1···n7 Ξp|n1···n6

Vn7mAB (3.12)

−3
√
2Ξp|rsmVrs

AB +QC
p [AVmB]C = PpABCDVm

CD,

where the first few terms in each of the above equations correspond to the general covariant

derivative, i.e.

DmVn
AB ≡ ∂mVn

AB + Γn
mpVp

AB +
1

2
Γp
mpVn

AB, (3.13)

DpVmnAB ≡ ∂pVmnAB + 2Γq
p[mVn]qAB +

1

2
Γp
mpVn

AB, (3.14)

and so on. Note that the components of the generalised vielbein are densities with respect

to internal coordinate transformations, hence the extra terms involving Γn
mn. Furthermore,

the connection coefficients QA
mB and PmABCD are

QA
mB = −1

2
ωmabΓ

ab
AB +

√
2

14
ifemaΓ

a
AB −

√
2

48
em

aFabcdΓ
bcd
AB, (3.15)

PmABCD =

√
2

56
ifem

aΓab[ABΓ
b
CD] +

√
2

32
em

aFabcdΓ
b
[ABΓ

cd
CD], (3.16)

where

f = − 1

24
iηαβγδFαβγδ = − 1

7!
ηa1...a7Fa1...a7 . (3.17)

The above connection coefficients can also be written in a more suggestive form

QA
mB = −1

2
ωmabΓ

ab
AB +

√
2

14 · 6!Fma1...a6Γ
a1...a6
AB −

√
2

48
FmabcΓ

abc
AB, (3.18)

PmABCD = −
√
2

56 · 5!Fma1...a6Γ
a1
[ABΓ

a2...a6
CD] +

√
2

32
FmabcΓ

a
[ABΓ

bc
CD], (3.19)

whence it is clear that they are invariant under 2-form and 5-form gauge transformations.

The expressions for QA
mB and PmABCD given here differ from the expressions given before5

because of the replacement

epa∂mep b → epaDmep b ≡ −ωmab, (3.20)

where Dmena ≡ ∂mena − Γp
mnep a, so that ωmab is just the usual spin connection (these

modifications to the GVP were already introduced in [44]). By contrast there is now no

contribution to PmABCD from the derivative of the siebenbein because the spin connection

is antisymmetric in [ab] and thus vanishes when contracted with Γa
[ABΓ

b
CD]. Nevertheless,

the GVPs are fully equivalent to the ones given previously, with the only difference being

that some of the terms have now been absorbed into the affine connection terms. One

advantage of this rearrangement is that both Qm and Pm now transform as proper vectors

under internal diffeomorphisms, unlike the expressions originally given in [2].

5See equations (3.33) and (3.34) of ref. [2].
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The essential new feature in the internal GVPs (3.9)–(3.15) is the appearance of new

affine connection coefficients associated with the form fields, to wit,

Ξp|mnq ≡ DpAmnq −
1

4!
Fpmnq, (3.21)

Ξp|m1···m6
≡ DpAm1···m6 +

√
2

48
Fp[m1m2m3

Am4m5m6]

−
√
2

2

(

DpA[m1m2m3
− 1

4!
Fp[m1m2m3

)

Am4m5m6] −
1

7!
Fpm1...m6 . (3.22)

Observe that the above expressions vanish upon full antisymmetrisation:

Ξ[p|mnq] = 0 , Ξ[p|m1···m6] = 0 (3.23)

so that the gauge invariant 4-form and 7-form field strengths are uniformly projected out.

Under 2-form and 5-form gauge transformations, respectively, the connections trans-

form as

δΞp|mnq = 3!DpD[mξnq],

δΞp|m1···m6
= −3!

√
2

(

DpA[m1m2m3
− 1

4!
Fp[m1m2m3

)

∂m4ξm5m6], (3.24)

and

δΞp|mnq = 0, δΞp|m1···m6
= 6!DpD[m1

ξm2···m6] . (3.25)

As expected, these transformations contain second derivatives of the transformation pa-

rameters, in complete analogy with the transformation of the usual affine connection under

ordinary diffeomorphisms.

4 Generalised diffeomorphisms

The E7(7) generalised Lie derivative [8] incorporates the usual seven-dimensional spatial dif-

feomorphisms as well as the gauge transformations of the 3- and 6-form fields. Indeed, it is

immediately obvious from the explicit expressions (2.3)–(2.6) that the generalised vielbein

is not invariant under such gauge transformations, and that the transformation properties

can be read off directly from the components, equations (2.17) and (2.18). We will there-

fore combine all these transformations and internal diffeomorphisms into a generalised Lie

derivative of the 56-bein V , such that

δΛVMAB = L̂ΛVMAB, (4.1)

where [8, 9]6

L̂ΛXM =
1

2
ΛN∂NXM + 6(tα)M

N (tα)P
Q∂QΛ

PXN (4.2)

6The first prefactor is introduced for convenience: 1
2
ΛM∂M ≡ Λm8∂m8 + · · · ≡ Λm∂m + · · · .
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as is usually done in generalised geometry [8, 9, 31, 45, 46]. For a generalised covector

density of weight w, this formula generalises to

L̂(w)

Λ XM =
1

2
ΛN∂NXM + 6(tα)M

N (tα)P
Q∂QΛ

PXN +
1

2
w ∂NΛNXM. (4.3)

Note that generalised tensor densities are tensors that transform non-trivially under the

R
+ factor of Ed(d) ×R

+ in the language of [8]. Thus the generalised vielbein V has weight

zero. These relations are very suggestive of 56 internal coordinates yM, rather than only

the seven internal coordinates ym coming from D = 11 supergravity. However, it should be

understood that all relations are valid only in conjunction with the section condition7 [8, 9]

tMN
α ∂M ⊗ ∂N = 0, ΩMN ∂M ⊗ ∂N = 0. (4.4)

This condition is crucial in order for the algebra of generalised gauge transformations

to be properly defined. In fact, the closure of the algebra and the Jacobi identity only

hold if the above condition is satisfied [8, 9, 46, 48]. This condition also allows one to

introduce the extra structure associated with extra coordinates, and in an E7(7) covariant

manner, without having to view eleven-dimensional supergravity as a bona fide Kaluza-

Klein reduction of yet another genuinely higher dimensional theory (which does not appear

to exist). Therefore, the requirement that

∂M =

{

∂m if M = m8,

0 otherwise
(4.5)

is not a reduction ansatz, but simply a solution of constraint (4.4). Another solution of the

section condition leads to type IIB theory [8, 10, 17, 49, 50]. In this way by extending the

coordinates one can unify these various descriptions in a single framework. In this work,

we will always assume equation (4.5), reducing to a generalised geometric framework in

the sense of Hitchin and Gualtieri [51, 52].

In order to see the link with the explicit formulae at the end of section 2.1, we now

decompose the gauge transformation parameter in terms of the GL(7) subgroup as follows:

ΛM = (Λm,Λmn,Λ
pq,Λp) . (4.6)

Clearly, we can identify Λm as the diffeomorphism parameter and Λmn as the gauge parame-

ter of three-form gauge transformations. Dualising Λpq to a 5-form allows us to identify this

as the gauge parameter for 6-form transformations. The final component Λp ≡ Λp8 = −Λ8p

is less understood. However, it is clearly related to gauge transformations associated with

dual gravity. Although, we do not have a good understanding (at least not beyond the

linearised level) of what these gauge transformations could involve, this does not cause us

any problems. This is because dual gravity degrees of freedom do not contribute to the

56-bein. Equivalently, the 70 scalars in the four-dimensional theory have no contribution

from the dualisation of gravitational degrees of freedom. Therefore, we would expect that

7The section condition first appeared in the context of O(d, d) [47], where it is related to the level-

matching condition in bosonic string theory.
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the generalised gauge transformation of the 56-bein with respect to Λp transformations

vanishes. This can be shown simply: assume that

ΛM = (0, 0, 0,Λp).

Using equation (4.2), the generalised Lie derivative of the 56-bein reduces to

L̂ΛVMAB = 24(tα)M
N (tα)

p8 q8∂qΛpVN AB. (4.7)

But, we know that

(tα)
p8 q8 = (tα)

[p8 q8] = 0.

Hence, the 56-bein does not transform with respect to Λp gauge transformations.

Similarly, it is straightforward to check that (4.1) precisely reproduces the coordinate

and gauge transformations, (2.14), (2.17) and (2.18) with

Λm = ξm, Λmn = 12
√
2 ξmn, Λmn = 6!

√
2ηmnp1···p5 ξp1···p5 , (4.8)

where ξmn and ξm1...m5 are the 2-form and 5-form gauge parameters, see equations (2.15)

and (2.16). As an example, consider the transformation of component VmnAB:

δΛVmnAB = L̂ΛVmnAB =
1

2
ΛN∂NVmnAB + 6(tα)mn

N (tα)P
Q∂QΛ

PVN AB

= Λp∂pVmnAB+12(tα)mn
RS(tα)PQ

q8∂qΛ
PQVRSAB+12(tα)mn RS(tα)

PQ q8∂qΛPQVRS
AB

= Λp∂pVmnAB − 4
(

δRS
Q[nδ

q8
m]P − 1/8 δRSmnδ

q8
PQ

)

∂qΛ
PQVRSAB + 6δPQ q8mnRS∂qΛPQVRS

AB

=

(

ξp∂pVmnAB + 2∂[mξqVq]nAB − 1

2
∂pξ

pVmnAB

)

+ 36
√
2∂[pξmn]Vp

AB, (4.9)

where we have made use of the E7(7) representation given in appendix A. As can be verified

by a direct computation using the definition of VmnAB given in (2.4), this corresponds to

the transformation of VmnAB under coordinate and 3-form gauge transformations, (2.17).

Verifying the precise agreement between (4.1) and the formulae derived in section 2.1 for

the remaining components is equally straightforward.

We require that the generalised Lie derivative L̂ satisfies the product rule and that a

generalised scalar transforms as

L̂ΛS =
1

2
ΛN∂NS, (4.10)

from which the Lie derivative of any generalised tensor can be found. In particular,

L̂ΛX
M =

1

2
ΛN∂NXM − 6(tα)N

M(tα)P
Q∂QΛ

PXN . (4.11)

This encodes the gauge transformations of the components of vector fields BM
µ , equa-

tions (2.25) and (2.26). However, in order to obtain the correct coordinate transforma-

tions, (2.24) and (2.27), one must identify BM
µ as a generalised tensor density of weight

1/2, i.e.

L̂ΛBM
µ =

1

2
ΛN∂NBM

µ − 6(tα)N
M(tα)P

Q∂QΛ
PBN

µ +
1

4
∂NΛNBM

µ . (4.12)
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Furthermore, we can use equation (4.12) to find the transformation of Bµm under 2-

form and 5-form gauge transformations, equation (2.28). Thus, we can deduce that the

transformation of Aµn1...n7,m under 2-form and 5-form gauge transformations is given by

equations (2.29) and (2.30), respectively.

5 Generalised vielbein postulates and generalised geometry

The external GVPs, equations (3.1)–(3.4), can be identified as the components of a single

equation satisfied by V ,8

∂µVMAB + 2L̂BµVMAB +QC
µ [AVMB]C = PµABCDVM

CD, (5.1)

where L̂ is the E7(7) generalised Lie derivative defined in equation (4.2), or more specifically,

L̂BµVMAB =
1

2
Bµ

N∂NVMAB + 6(tα)M
N (tα)P

Q∂QBµ
PVNAB . (5.2)

We note that the combination

∂µ + 2L̂Bµ

already appears in reference [10] (see (2.27) of ref. [10]), where it is introduced as the

covariant derivative with respect to x-dependent generalised diffeomorphisms. It is now

straightforward to check that (5.1) indeed coincides component by component with equa-

tions (3.1)–(3.4).

In a four-dimensional maximal gauged theory the scalars satisfy a Cartan equation of

the form [22]

∂µVM ij − gBµ
PXPM

NVN ij +Qk
µ[iVM j]kVN ij = Pµ ijklVM

kl, (5.3)

where XM generate the gauge algebra. Comparing the eleven-dimensional equation (5.1)

with the four-dimensional equation (5.3) to which it reduces under reduction, we find that

from an eleven-dimensional point of view, the generators of the gauge algebra are given by9

Bµ
PXPM

NVN ij = −2L̂BµVMAB. (5.4)

Hence, the higher-dimensional origin of the embedding tensor is read off from the ex-

ternal GVPs [1] that directly reduce to the Cartan equation of the maximally gauged

four-dimensional theory that defines the embedding tensor as the gauge generators as an-

ticipated in [1] and explicitly verified for the S7 and Scherk-Schwarz reductions in [6, 7].

In refs. [8, 27, 53, 54] the embedding tensor is argued to be related to the generalised Lie

derivative by group theory arguments and consideration of the scalar potential.

8Recall that throughout this paper, we assume a solution of the E7(7) section condition of the form

∂M 6= 0 for M = m , otherwise 0.

9We would like to thank Henning Samtleben for discussions on this.
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The internal GVPs, (3.9)–(3.15), likewise can be viewed as defining generalised con-

nections: they can be written compactly as

∂mVMAB − ΓmM
NVN AB + QC

m[AVMB]C = PmABCDVM
CD . (5.5)

In this case, the generalised affine connection ΓMN
P is non-zero only for the components

with M = m, which is the component appearing in equation (5.5). With this restriction,

it can be decomposed as

ΓmM
N = Γm

α(tα)M
N , (5.6)

It thus takes values in the Lie algebra of E7(7), in analogy with the usual affine connection

that takes values in the Lie algebra of GL(n); hence we can write

Γm
α ≡

{

(Γm)M
N , (Γm)MNPQ

}

. (5.7)

In particular, we also define

(Γm)MNPQ ≡
1

24
ǫMNPQRSTU(Γm)RSTU . (5.8)

The components of the generalised affine connection ΓmN
P can be read off by direct

comparison with equations (3.9)–(3.15); the non-zero components are

(Γm)p8
q8 = −(Γm)q8p8 =

1

2
Γq
mp +

1

4
Γn
mnδ

q
p,

(Γm)pq
rs = −(Γm)rspq = 2Γ

[r
m[pδ

s]
q] −

1

2
Γn
mnδ

rs
pq,

(Γm)p8
rs = −(Γm)rsp8 = 3

√
2 ηrst1···t5 Ξm|pt1···t5 ,

(Γm)pq r8 = (Γm)r8 pq = 3
√
2Ξm|pqr,

(Γm)pq rs =
1√
2
ηpqrst1t2t3 Ξm|t1t2t3 , (5.9)

where Γp
mn is the usual affine connection for the seven internal directions. Equivalently,

the non-vanishing components of ΓM
α are

(Γm)n
p ≡ −Γp

mn +
1

4
δpnΓ

q
mq, (Γm)8

8 = −3

4
Γn
mn,

(Γm)8
n =

√
2ηnp1···p6 Ξm|p1···p6 , (Γm)n1···n4 =

1√
2
ηn1···n4p1p2p3 Ξm|p1p2p3 . (5.10)

Note that as required by the SL(8) property of the indices, we have (Γm)M
M = 0.

From a generalised geometry viewpoint, there is in principle no reason why a gener-

alised connection ΓMN
P cannot be non-zero for other values of M (as in ref. [8]) such that

∂MVN AB − ΓMN
PVP AB + QC

M[AVN B]C = PMABCDVN
CD . (5.11)

In our approach, the generalised connection is given to us by the equations that come

from D = 11 supergravity, or more precisely the on-shell equivalent SU(8) reformulation

– 16 –



J
H
E
P
0
6
(
2
0
1
4
)
0
2
1

thereof. However, as in usual differential geometry there is a freedom in redefining the

connections. For example, one such freedom is the fact that the affine and spin connec-

tions can be redefined using a covariant tensor in such a way that the vielbein postulate

remains unchanged. Analogously, such a redefinition with a generalised tensor with non-

zero components in all 56 directions can be used to “excite” the other components of the

generalised connections. Ultimately different redefinitions, while physically equivalent, will

be motivated by different contexts. For example, there are redefinitions of the connection

in which the scalar potential is purely given in terms of a generalised curvature scalar

rather than the generalised curvature scalar and the square of the non-metricity Pm (see

section 6). Moreover, there is an additional freedom in redefining the generalised con-

nections, which from an eleven-dimensional perspective corresponds to a redefinition that

leaves the fermion supersymmetry transformations unchanged [26]. In any case, D = 11

supergravity, as manifested in the SU(8) reformulation, leads us to conclude that, up to

redefinitions, any covariant derivative that acts on the generalised vielbein only has com-

ponents along the usual seven-dimensional space. We also note that E7(7) valuedness of

the affine connection implies

DMΩNP = 0 . (5.12)

The transformation of the generalised affine connection under generalised diffeomor-

phisms is

δΛΓMN
P = (L̂(−1/2)

Λ Γ)MN
P + 6(tα)N

P(tα)Q
R∂M∂RΛ

Q, (5.13)

where L̂(−1/2)

Λ Γ is the canonical generalised Lie derivative of Γ with weight −1/2 along Λ,

equation (4.3). The above transformation encodes the usual inhomogeneous transformation

of the affine connection as well as the gauge transformations of Ξ, which include second

derivatives of the 2-form and 5-form gauge parameters, equations (3.24) and (3.25).

When viewed as an analogue of the vielbein postulate, the internal GVP, (5.5), fur-

nishes an E7(7) and SU(8) covariant derivative along ym. The generalised affine connection

transforms in exactly such a way, (5.13), so that given a generalised vector density XM of

weight w,

DMXN ≡ ∂MXN + ΓMP
NXP − 2

3
wΓPM

PXN (5.14)

transforms as a generalised tensor density of weight (w−1/2)(note the order of indices in the

last term, which is ΓPM
P , and not ΓMP

P). Observe that the weight term in the covariant

derivative of a generalised tensor density differs from the usual covariant derivative of a

tensor density because of the way ΓPM
P transforms under generalised diffeomorphisms,

equation (5.13). The fact that the covariant derivative of a tensor density must itself be

a tensor density with weight 1/2 less than the weight of the original tensor must be true

of any covariant derivative that is defined in E7(7) generalised geometry. To see why this

is true consider the non-covariant terms in the transformation of ∂MXN , where XM is a

generalised tensor:

1

2
∂MΛQ∂QX

N − 6(tα)M
Q(tα)P

R∂RΛ
P∂QX

N − 6(tα)Q
N (tα)P

R∂M∂RΛ
PXQ. (5.15)
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The third term in the expression above must be cancelled by an inhomogeneous term in

the transformation of the connection. However, using [10]

(tα)M
N (tα)P

Q =
1

12
δQMδNP +

1

24
δNMδQP + (tα)MP (tα)

NQ − 1

24
ΩMP ΩNQ (5.16)

and the section condition (4.4), the remaining terms give

− 1

4
∂QΛ

Q∂MXN , (5.17)

hence the covariant derivative of XM, DMXN , must have weight −1/2 less than XM

itself.10 This is also the case in Ed(d) × R
+ generalised geometry [8] where the connection

naturally lowers the weight of the tensor because generalised vectors are weighted.11

6 Generalised E7(7) curvature

The generalised covariant derivative defined above can be used to define a generalised

curvature (generalised Riemann tensor) R, given by

[DM,DN ]XP = RMNP
QXQ. (6.1)

Note that because of the transformation property of the covariant derivative, the second

covariant derivative acts on a generalised tensor density of weight −1/2 (assuming that XP

is a generalised tensor, and thus of weight zero). Hence the generalised Riemann tensor is

in fact a tensor density of weight −1. Furthermore, using equation (5.14)

3Γ[MN ]
Q ∂QXP = ΓQ[M

Q ∂N ]XP (6.2)

(which follows directly from the explicit expressions for the components in (5.9)), the

fact that the covariant derivative modifies the weight of the generalised tensor is crucial

in cancelling

Γ[MN ]
Q∂QXP (6.3)

from the commutator of the covariant derivatives in equation (6.1). It is important that

the term above is cancelled because from equation (5.13) the antisymmetrisation (in M
and N ) of the generalised connection is not covariant — this is unlike ordinary differen-

tial geometry where the antisymmetrisation of an affine connection can be identified as a

covariant torsion. In fact, a generalised torsion TMN
P , as defined by

[DM,DN ]S = TMN
P∂PS (6.4)

for some scalar S, can simply be shown to vanish in our scheme. Hence, the absence of a

torsion term on the right hand side of equation (6.1). Let us emphasize once again that

it is the explicit knowledge of the affine connection coefficients in (5.9) that enables us to

overcome and resolve this well known difficulty encountered in previous work, see e.g. [55].

10The argument is essentially the same if XM is a generalised tensor density.
11We would like to thank Dan Waldram for correspondence on this point.
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Computing the left hand side of equation (6.1) using the definition of the covariant

derivative (5.14), gives the form of the Riemann tensor, which turns out to be analogous

to the expression for the conventional Riemann tensor in terms of an affine torsion-free

connection

RMNP
Q = −2∂[MΓN ]P

Q + 2Γ[M|P
RΓ|N ]R

Q. (6.5)

Since the generalised Riemann tensor is defined using covariant derivatives, it is by defini-

tion an object that transforms covariantly under generalised diffeomorphisms, up to weight

terms. However, in appendix B, we explicitly verify that it transforms covariantly under

generalised diffeomorphisms as a generalised tensor density of weight −1.

The non-zero components of the generalised Riemann curvature RMNP
Q can be di-

rectly computed from equations (5.9); they are

Rm8n8 p8
q8 = −Rm8n8

q8
p8 =

1

2
Rmnp

q,

Rm8n8 pq
rs = −Rm8n8

rs
pq = 2Rmn[p

[rδ
s]
q],

Rm8n8 p8
rs = −Rm8n8

rs
p8 = 2

√
2 δ[rp η

s]t1···t6D[mΞn]|t1···t6

+ 6ηrst1···t5Ξ[m||t1t2pΞ|n]|t4t5t6 ,

Rm8n8 pq r8 = Rm8n8 r8 pq = −6
√
2D[mΞn]|pqr,

Rm8n8
pq rs = −

√
2 ηpqrst1t2t3D[mΞn]|t1t2t3 . (6.6)

Equivalently, decomposing R as

RMNP
Q = RMN

α(tα)P
Q , RMN

α ≡
{

(RMN )M
N , (RMN )MNPQ

}

, (6.7)

the non-zero components of RMN
α are

(Rm8n8)p
q = −Rmnp

q,

(Rm8n8)8
p = −2ηpt1···t6

(√
2D[mΞn]|t1···t6 − Ξm|t1t2t3Ξn|t4t5t6

)

,

(Rm8n8)
p1···p4 = −

√
2ηp1···p4rstD[mΞn]|rst. (6.8)

Note that the above components of the generalised Riemann tensor are not invariant under

2- and 5-form gauge transformations. Indeed, this is to be expected since the definition of

the generalised Riemann tensor as a generalised tensor ensures its covariance, rather than

invariance, under generalised gauge transformations. While this may be antithetical to our

usual notions of gauge transformations and how physical fields must accordingly transform,

in a generalised geometric setting the appearance of gauge non-invariant terms should

not come as a surprise, and one ought to view gauge transformations as being similar to

coordinate transformations for which the notion of covariance, as well as invariance, exists.

In fact, we have already encountered this novelty before in the definitions of the generalised

vielbein VMAB and vectors Bµ
M. However, “gauge covariance” limits the dependence of

gauge non-invariant terms in a generalised tensor to bare 3-form and 6-form potentials,
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or their gauge invariant field strengths. Therefore, the gauge potentials can only enter

gauge non-invariant terms without any derivatives, as in the E7(7) 56-bein, and the fact

that they do (and thus all non-covariant terms cancel in the expressions below) constitutes

a non-trivial consistency check of our scheme. This claim can be explicitly verified for

the generalised Riemann tensor by expressing the above components directly in terms of

the 3-form and 6-form gauge potentials and their associated field strengths, using (3.21)

and (3.22),

(Rm8n8)8
p = −ηpq1···q6

(

6
√
2Rmnq1

rArq2···q6−
2
√
2

7!
D[mFn]q1···q6+

1

6
D[mFn]q1q2q3Aq4q5q6

− 3Rmnq1
rArq2q3Aq4q5q6 −

2

(4!)2
Fmq1q2q3Fnq4q5q6

)

,

(Rm8n8)
p1···p4 = −3

√
2

2
ηp1···p4rst

(

Rmnr
uAust −

1

36
D[mFn]rst

)

. (6.9)

It can now be explicitly verified that the transformation of components of the gener-

alised Riemann tensor under coordinate and gauge transformations precisely matches the

transformation given by generalised diffeomorphisms, as expected. For example, consider

the transformation of the following component of RMNP
Q:

Rm8n8
pq rs,

given in (6.6). We find that its transformation as derived from the generalised Lie deriva-

tive is

δRm8n8
pq rs = L(+1)

Λ (Rm8n8
pq rs)− 3

4
ηpqrstu1u2Rmnt

u3∂[u1
Λu2u3]. (6.10)

Hence, while the generalised curvature tensor is a generalised density of weight −1, the

component above transforms as a tensor density of weight +1 under usual coordinate

transformation and it also transforms non-trivially under a 2-form gauge transformation.

Noting that this component is equal to the expression given in equation (6.9) and using

equation (4.8), which gives the relation between Λmn and the 2-form gauge transformation

parameter ξmn, we find a precise match.

Now, consider the contraction of the generalised Riemann curvature:

RMN = RMPN
P . (6.11)

It is simple to see that the only non-zero component of RMN is

Rm8n8 = Rmn. (6.12)

Hence the only gauge-invariant objects that can be formed from the generalised Riemann

tensor are the Ricci tensor and the Ricci scalar. Therefore, at the 2-derivative level the

internal Ricci scalar can be obtained from the generalised Riemann tensor and the flux

terms correspond to the trace of the square of Pm. Together these would correspond to

the potential. In this sense the way the potential would be written here is different to
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the approach in [12] where the potential is written as a sigma-model in terms of the

generalised metric

MMN = VM
ABVN AB + VN

ABVMAB

and both the Ricci scalar and the flux terms arise from the same terms. The affine connec-

tion defined in equation (5.10) is not metric compatible with the non-metricity given by

Pm. Redefining a new connection that absorbs the non-metricity, similar to a redefinition

that can be made in usual differential geometry (see ref. [56] for a useful discussion of

torsion and non-metricity in differential geometry), will result in the scalar potential being

given solely by the generalised Ricci scalar, as in ref. [8].12 We defer a discussion of how

the generalised geometry determines the potential in terms of the E7(7) structures given

here to a future work.

7 Discussion

The issue of defining generalised differential geometric structures, such as connections and

curvatures, associated with exceptional duality groups and using them to construct the

dynamics is clearly an important one and has also been considered in refs. [8, 32, 55, 57].

In this paper, we use the formalism developed in ref. [1] to derive E7(7) generalised

geometric structures, including generalised connections and curvatures as well as making

explicit the higher dimensional origin of the embedding tensor, for which the GVP plays

a central role. We derive the E7(7) connection which is used to construct the generalised

curvature tensor, from the internal GVP and ultimately the D = 11 theory. Importantly,

and apart from the generalisation of the affine and spin connections, the internal GVP is

not just of the form DV = 0, but has an extra contribution from Pm (this vanishes in the

absence of the 4-form and 7-form field strengths, however, and then the GVP reduces to

the standard one). This is a main difference with the ansatz made in refs. [8, 55]. Another

notable feature of the generalised covariant derivative defined here, similar to that defined

in ref. [8] and as opposed to that defined in ref. [55], is that it changes the weight of the

resulting generalised tensor, which is crucial, from our perspective, in allowing a generalised

Riemann tensor to be defined.

In general, the approach taken in refs. [8, 32, 55, 57] is to try to generalise geometric

structures to exceptional geometry using notions taken from usual differential geometry,

such as metric compatibility of the connection, while incorporating the novelty of gener-

alised geometry. For example, in ref. [8], the index on the generalised connection that is

associated with the derivative has components along extended tangent space directions,

unlike the connection defined here — although this can be done in our case as well (see

comments after equation (5.13)). However, the difference in approach allows us to find

a new contribution to what can be viewed as a vielbein compatibility of the connection,

namely, Pm as well as a generalised Riemann tensor that transforms covariantly under full

generalised diffeomorphisms, as well as local SU(8) transformations. The existence of a gen-

eralised Riemann tensor that is unambiguously defined in terms of the physical fields has

12We would like to thank Malcolm Perry for pointing this out to us.
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been studied extensively in the generalised geometry literature associated to exceptional

as well as O(d, d) duality [8, 47, 58–63]. The approach taken in these papers has been to

define the connection using certain E7(7) covariant conditions such as metric-compatibility

and torsion-freeness. While these connections, which are not unique and contain ambigu-

ous pieces, do not define non-ambiguous Riemann tensors (though a Riemann tensor can

be defined), they can be used to uniquely define a generalised Ricci tensor and scalar that

corresponds to the potential. The approach taken in this paper is to use the connections

that are given by the SU(8) invariant reformulation of the D = 11 theory, without any

prejudice regarding any conditions that they ought to satisfy, to define the differential

geometrical quantities.

While, at the two-derivative level, the only scalar constructible from the generalised

Riemann tensor reduces to the usual internal Ricci scalar, at a higher-derivative level, other

scalars can be constructed that have explicit dependence on the gauge potentials. These

along with other scalars constructed from structures such as Pm may help in providing an

understanding of higher-derivative corrections from a generalised geometric perspective.

We will consider this possibility in the future.

The analysis performed in this paper can also be straightforwardly applied to the 3+8

split of D = 11 supergravity, pertinent to the E8(8) duality group. Some preliminary results

for this case have already been obtained in refs. [1, 39], and we hope to extend these partial

results in a future work.
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A E7(7) algebra and identities

In this appendix, we list useful equations with regard to the SL(8) decomposition of the

E7(7) algebra:

(tMN)
PQ

RS = 2

(

δPQ
N[Sδ

M

R] −
1

8
δMNδ

PQ

RS

)

, (tMN)RS
PQ = −2

(

δPQ
N[Sδ

M

R] −
1

8
δMNδ

PQ

RS

)

, (A.1)

(tPQRS)
T1...T4 = δT1...T4PQRS , (tPQRS)T1...T4 =

1

4!
ηPQRST1...T4 , (A.2)

κMN,
P
Q = 12

(

δMQδ
P
N −

1

8
δMNδ

P
Q

)

, κMNPQ,RSTU =
2

4!
ηMNPQRSTU, (A.3)

(κ−1)N
M, Q

P =
1

12

(

δMQδ
P
N −

1

8
δMNδ

P
Q

)

, (κ−1)MNPQ,RSTU =
1

2 · 4!η
MNPQRSTU. (A.4)

where κ is the Cartan Killing form on E7(7).
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B Generalised covariance of the curvature tensor

The generalised curvature tensor, defined in (6.5), is

RMNP
Q = −2∂[MΓN ]P

Q + 2Γ[M|P
RΓ|N ]R

Q. (B.1)

In this appendix we show that RMNP
Q as defined above indeed transforms as a generalised

tensor density of weight −1 under the transformation of the generalised connection, given

in equation (5.13),

δΛΓMN
P = (L̂(−1/2)

Λ Γ)MN
P + 6(tα)N

P(tα)Q
R∂M∂RΛ

Q. (B.2)

Under generalised diffeomorphisms, the transformation of the generalised Riemann tensor is

δΛRMNP
Q =− 2∂[MδΛΓN ]P

Q + 2
(

δΛΓ[M|P
R
)

Γ|N ]R
Q + 2Γ[M|P

R
(

δΛΓ|N ]R
Q
)

,

=− 2(L̂(−1/2)

Λ ∂Γ)MNP
Q + 12(tα)[M|

R(tα)S
T ∂T Λ

S∂RΓQ
|N ]P − ∂[M|Λ

R∂RΛ|N ]P
Q

+
1

2
∂[M|∂RΛRΓ|N ]P

Q + 12(tα)[M|
R(tα)S

T ∂|N ]∂T Λ
SΓQ

RP + 2(L̂(−1)

Λ Γ · Γ)MNP
Q,

where the generalised Lie derivatives L̂(−1/2)

Λ on ∂Γ and L̂(−1)

Λ on Γ are defined in analogy

with (4.3). Further evaluation of this expression by means of the E7(7) identity (5.16) and

the section condition (4.4) yields

δΛRMNP
Q =− 2(L̂(−1/2)

Λ ∂Γ)MNP
Q +

1

2
∂RΛ

R∂[M|Γ
Q
|N ]P + 2(L̂(−1)

Λ Γ · Γ)MNP
Q,

=(L̂(−1)

Λ R)MNP
Q .

Therefore, the generalised Riemann tensor transforms as a generalised density of weight −1.
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