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Abstract
We develop a general approach to simplify the derivation of the holographic
Weyl anomaly. As an application, we derive the holographic Weyl anomaly
from general higher derivative gravity in asymptotically AdS5 and AdS7.
Interestingly, to derive all the central charges of 4d and 6d conformal field
theories (CFTs) we make no use of equations of motion. Following Myers’
idea, we propose a formula of holographic entanglement entropy for higher
derivative gravity in asymptotically AdS5. Applying this formula, we obtain
the correct universal term of entanglement entropy for 4d CFTs. It turns out
that our formula is the leading term of Dong’s proposal in asymptotically AdS5.
Since only the leading term contributes to the universal log term, we actually
prove that Dong’s proposal yields the correct universal term of entanglement
entropy for 4d CFTs. This is a nontrivial test of Dong’s proposal.

Keywords: AdS/CFT correspondence, holographic Weyl anomaly, holographic
entanglement entropy
PACS numbers: 04.20.−q, 11.25.Tq, 11.25.Hf, 04.50.Kd

1. Introduction

The AdS/CFT correspondence [1] is an exact realization of the holographic principle [2–4],
which claims that the quantum gravity theory in the bulk is dual to the gauge field theory on
the boundary. It provides a powerful tool to study the nonperturbative phenomena of gauge
theories [5].

An interesting test of AdS/CFT correspondence is the successful derivation of the
holographic Weyl anomaly from gravity theories. It was firstly proposed by Witten [6] and
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then worked out in detail by Henningson et al for Einstein gravity [7]. Applying the so-called
‘PBH transformation’ (relation between diffeomorphisms in the bulk and Weyl transformation
on the boundary), Imbimbo et al obtain a universal formula for the type A anomaly (which is
related to the Euler characteristic) for higher derivative gravity [8]. Interestingly, they make
no use of equations of motion. While for the type B anomaly, there is no universal formula
for higher derivative gravity so far. For interesting developments of the holographic Weyl
anomaly, please refer to [9–17]. For a good review of the Weyl anomaly, please refer to [18].
See also [19–21] for the general structure of the Weyl anomaly.

In this note, we try to develop a simple approach to derive the holographic Weyl anomaly
from general higher derivative gravity. We firstly expand the action around a referenced
curvature, then select and calculate the terms relevant to the Weyl anomaly. Interestingly, we
only need to calculate very few terms after expanding the action, which highly simplifies
calculations. Remarkably, there are only two (four) relevant terms in five (seven) dimensional
spacetime, which is just the number of independent central charges of the corresponding
CFTs. Applying our approach, we derive the general formulas of type B anomaly from higher
derivative gravity in asymptotically AdS5 and AdS7. Interestingly, we make no use of equations
of motion to obtain all the charges of 4d and 6d CFTs. However, it is expected that one has to
solve equations of motion for the type B anomaly in higher dimensions.

As an application of our general formulas, we propose a formula of holographic
entanglement entropy [22–24] for higher derivative gravity in asymptotically AdS5. We prove
that it yields the correct logarithmic term of the entanglement entropy for 4d CFTs. Besides,
it is consistent with the formula of holographic entanglement entropy for Love-Lock gravity
[25, 26], the curvature-squared gravity [27] and recent proposals of Dong [28] and Camps
[29]. We find that our formula is the leading term of Dong’s proposal in asymptotically
AdS5. Since only the leading term contributes to the universal log term, we actually prove
that Dong’s proposal yields the correct universal term of entanglement entropy for 4d CFTs.
This is a nontrivial test of Dong’s proposal. For other recent developments of the holographic
entanglement entropy, please refer to [30–34].

The paper is organized as follows. In section 2, we develop a general approach to simplify
the calculations of the holographic Weyl anomaly from higher derivative gravity. We derive
the universal formulas of the holographic Weyl anomaly for 4d and 6d CFTs. In section 3,
we study some examples to show the application of our general approach. In section 4, we
propose a formula of holographic entanglement entropy in asymptotically AdS5. We conclude
in section 5.

2. Holographic Weyl anomaly

In this section, we develop a simple approach to derive the holographic Weyl anomaly from
general higher derivative gravity in AdS/CFT correspondence. The main idea is as follows.
Firstly we expand the action around a referenced curvature, then select and calculate the terms
relevant to the holographic Weyl anomaly. For simplicity, we list the complicated formulas of
Riemann tensors and the referenced curvature in the appendix. We find they are useful in our
following discussions.

Let us consider the higher derivative gravity with the action

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ f (R̂μνρσ ) + SB, (1)

where f (R̂μνρσ ) is a scalar function constructed from the curvature, SB is the boundary term
for a well-defined variational principle. For simplicity, we focus on the case that f (R̂μνρσ )
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contains no derivatives of the curvatures. Our discussions can be easily generalized to the case
with derivatives of curvatures. We study those cases in some examples. We also ignore SB in
the following discussions since it does not contribute to the Weyl anomaly. From equation (1),
we can derive the equations of motion as

P αρσ
μ R̂ναρσ − 2∇ρ∇σ Pμρσν − 1

2 f Ĝμν = 0, (2)

with Pμνρσ = δ f /δR̂μνρσ . We assume equation (2) has an asymptotically AdS solution with
the metric

ds2 = Ĝμν dxμ dxν = 1

4ρ2
dρ2 + 1

ρ
gi j dxi dx j, (3)

where gi j = g(0)i j + ρg(1)i j + · · · + ρ
d
2 (g( d

2 )i j + h d
2

log ρ) + · · · when d is even.
Now let us begin to derive the holographic Weyl anomaly. Using the asymptotically AdS

solution equation (3), we can expand the action as

2κ2
d+1S =

∫
dd+1x

√
−Ĝ f (R̂μνρσ ) = 1

2

∫
dρddxρ− d

2 −1
√−g(0)b(x, ρ),

b(x, ρ) = b0(x) + ρb1(x) + ρ2b2(x) + · · · . (4)

According to [8], the holographic Weyl anomaly is〈
T i

i

〉 = 1

2κ2
d+1

b d
2
, (5)

with d an even number. By dimensional analysis, we note that b2m contains the square of
g(m)i j. So we can derive equations of motion of g(m)i j from the variation of

√−g(0)b2m

(m > 0). Besides, bm+1 contains only linear terms of g([ m+1
2 ]+1)i j, . . . , g(m+1)i j. Using equations

of motion, all these linear terms vanish.
Let us expand f around a referenced curvature R̄μνρσ = −(ĜμρĜνσ − Ĝμσ Ĝνρ ):

f (R̂μνρσ ) = f (R̄) + Pμνρσ

∣∣∣∣
R̄

(R̂ − R̄)μνρσ + 1

2

δ2 f

δR̂μνρσ δR̂μ1ν1ρ1σ1

∣∣∣∣
R̄

× (R̂ − R̄)μνρσ (R̂ − R̄)μ1ν1ρ1σ1 + 1

3!

δ3 f

δR̂μνρσ δR̂μ1ν1ρ1σ1δR̂μ2ν2ρ2σ2

∣∣∣∣
R̄

× (R̂ − R̄)μνρσ (R̂ − R̄)μ1ν1ρ1σ1 (R̂ − R̄)μ2ν2ρ2σ2 + · · · . (6)

Notice that the referenced curvature is different from the asymptotically AdS curvature
−(Ĝ(0)μρĜ(0)νσ − Ĝ(0)μσ Ĝ(0)νρ ) with Ĝ(0)00 = 1

4ρ2 , Ĝ(0)i j = 1
ρ

g(0)i j. For useful properties of
the referenced curvature, please refer to equations (A.5)–(A.8) in the appendix. Let us denote
the nth order of Taylor expansions by fn

fn = 1

n!

δn f

δR̂μ1ν1ρ1σ1 ...δR̂μnνnρnσn

∣∣∣∣
R̄

(R̂ − R̄)μ1ν1ρ1σ1 ...(R̂ − R̄)μnνnρnσn . (7)

According to equations (A.6)–(A.8) in the appendix, we find that fn behaves at least as order
o(ρn). So to derive the holographic Weyl anomaly in d dimensions, we only need to consider
the terms up to the d

2 th order ( f0, f1, . . . , f d
2
). In general, we have

1

n!

δn f

δR̂μ1ν1ρ1σ1 . . . δR̂μnνnρnσn

∣∣∣∣
R̄

=
mn∑
i=1

cn
i Xn

i μ1ν1ρ1σ1,...,μnνnρnσn
, (8)

where cn
i are constants and mn is the number of independent scalars constructed from

appropriate contractions of n curvature tensors. For example, m1 = 1, m2 = 3, m3 = 8.
Tensor Xn

i is defined as

Xn
i μ1ν1ρ1σ1,...,μnνnρnσn

= 1

n!

δnKn
i

δR̂μ1ν1ρ1σ1 . . . δR̂μnνnρnσn
, (9)
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with Kn
i denotes the independent scalars constructed from n curvature tensors. For example,

we have

K1
1 = R̂,

K2
i = (R̂μνρσ R̂μνρσ , R̂μνR̂μν, R̂2),

K3
i = (R̂3, R̂R̂μνR̂μν, R̂R̂μνρσ R̂μνρσ , R̂ν

μR̂ρ
ν R̂μ

ρ , R̂μν R̂ρσ R̂μρσν, R̂μν R̂μρσλR̂ν
ρσλ,

R̂μνρσ R̂μνλχ R̂ρσ
λχ , R̂ννρσ R̂νλχσ R̂ν ρ

λχ ),

. . . . (10)

Applying equations (8)–(10), we can rewrite fn in a very nice form as

fn =
mn∑
i=1

cn
i K̃n

i , (11)

with K̃n
i = Kn

i |[R̂→(R̂−R̄)] and cn
i is determined by the action. It should be mentioned that not all

of K̃n
i (n � d

2 ) contribute to the holographic Weyl anomaly. Applying equations (A.6), (A.7),
we can select the terms relevant to the Weyl anomaly.

Using the assumption that the higher derivative gravity has an asymptotically AdS solution,
we can prove c1

1 = − f0

2d . We show the proof below. From the above equations, we can derive

Pμνρσ |R̄ = c1
1

2
(ĜμρĜνσ − Ĝμσ Ĝνρ ). (12)

A useful formula in the following derivations is

g(1)i j = − 1

d − 2

(
R(0)i j − R0

2(d − 1)
g(0)i j

)
, (13)

which is determined completely by PBH transformation [8] and independent of equations of
motion. Based on our above discussions, we can derive g(1)i j from the variation of b2. To get b2,
we only need to consider terms f0, f1, f2. As we shall show in the next section, equation (13)
can be derived from

√
−Ĝ f2 independently. Thus, we must be able to derive equation (13)

from
√

−Ĝ( f0 + f1). Using equation (12), we have√
−Ĝ( f0 + f1) = c1

1

√
−Ĝ

(
R̂ + d2 + d + f0

c1
1

)
. (14)

Compared with the Einstein–Hilbert action with a negative cosmological constant√
−Ĝ(R̂ − 2
) =

√
−Ĝ(R̂ + d2 − d), (15)

it is clear that c1
1 = − f0

2d is the only solution which can yield the correct expression of g(1)i j

equation (13). Thus, in general, we have

Pμνρσ |R̄ = − f0

4d
(ĜμρĜνσ − Ĝμσ Ĝνρ ), (16)

√
−Ĝ( f0 + f1) = − f0

2d

√
−Ĝ(R̂ + d2 − d). (17)

Actually, there is a simple method to derive c1
1. Suppose that AdS is an exact solution to equation

(2), then the curvature R̂μνρσ becomes exactly the referenced curvature R̄μνρσ . Substituting
R̄μνρσ and equation (12) into equation (2), we can derive c1

1 = − f0

2d directly.
To summarize, we list the main steps of our approach. Firstly, we expand the action around

the referenced curvature (A.5) up to the d
2 -order

f =
d
2∑

n=0

fn =
d
2∑

n=0

mn∑
i=1

cn
i K̃n

i . (18)
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Secondly, we select the terms relevant to the Weyl anomaly with the help of equations (A.6),
(A.7). As we shall show in the following sections, only very few terms contribute to the Weyl
anomaly. Finally, we calculate these relevant terms to derive the holographic Weyl anomaly.

2.1. 4d Weyl anomaly

In this subsection, we derive the holographic Weyl anomaly for 4d CFTs. As discussed in the
above section, we only need to consider the terms

√
−Ĝ( f0 + f1 + f2) for the calculations of

the Weyl anomaly 〈T i
i 〉 = 1

2κ2
5
b2.

Applying equation (27) of [9] and equations (13), (17), we can derive√
Ĝ( f0 + f1) =

√
g(0)

2ρ

f0

64
(E4 − Ci jklC

i jkl ) + · · · (19)

‘ . . .’ in this paper denotes the total derivative or terms irrelevant to the Weyl anomaly.
E4 = R(0)i jklR

i jkl
(0)

− 4R(0)i jR
i j

(0)
+ R 2

(0) and Ci jklCi jkl = R(0)i jklR
i jkl

(0)
− 2R(0)i jR

i j
(0)

+ 1
3 R 2

(0) are
the four-dimensional Euler density and square of Weyl tensor, respectively.

Now let us go on to compute
√

−Ĝ f2. From equations (8)–(10), we have

1

2

δ2 f

δR̂μνρσ δR̂μ1ν1ρ1σ1

∣∣∣∣
R̄

= c2
1X2 μνρσ

1μ1ν1ρ1σ1
+ c2

2X2 μνρσ

2μ1ν1ρ1σ1
+ c2

3X2 μνρσ

3μ1ν1ρ1σ1
, (20)

where X2
1 , X2

2 , X2
3 are three independent tensors defined as follows:

X2 μνρσ

1μ1ν1ρ1σ1
= ∂R̂μ1ν1ρ1σ1

∂R̂μνρσ

= 1

12

(
δμν
μ1ν1

δρσ
ρ1σ1

− 1

2
δμρ
μ1ν1

δσν
ρ1σ1

− 1

2
δμσ
μ1ν1

δνρ
ρ1σ1

+ δμν
ρ1σ1

δρσ
μ1ν1

− 1

2
δμρ
ρ1σ1

δσν
μ1ν1

− 1

2
δμσ
ρ1σ1

δνρ
μ1ν1

)
(21)

X2 μνρσ

2μ1ν1ρ1σ1
= 1

4 Ĝαβ

(
X2 μαρβ

1μ1ν1ρ1σ1
Ĝνσ − X2 μασβ

1μ1ν1ρ1σ1
Ĝνρ − X2 ναρβ

1μ1ν1ρ1σ1
Ĝμσ + X2 νασβ

1μ1ν1ρ1σ1
Ĝμρ

)
(22)

X2 μνρσ

3μ1ν1ρ1σ1
= 1

4 (ĜμρĜνσ − Ĝμσ Ĝνρ )(Ĝμ1ρ1 Ĝν1σ1 − Ĝμ1σ1 Ĝν1ρ1 ). (23)

Here we have δμν
μ1ν1

= δμ
μ1

δν
ν1

− δμ
ν1

δν
μ1

. Let us define a new tensor Y for d = 4

Y = 1
210

(
6X2

1 − 8X2
2 + X2

3

)
, Y ∗ X2

1 = 1, Y ∗ X2
2 = Y ∗ X2

3 = 0, (24)

where Y ∗ X = Y μνρσ
μ1ν1ρ1σ1

Xμ1ν1ρ1σ1
μνρσ .

Using equation (27) of [9] and equation (13), we can derive√
ĜX2 μνρσ

1μ1ν1ρ1σ1
(R̂μνρσ − R̄μνρσ )(R̂μ1ν1ρ1σ1 − R̄μ1ν1ρ1σ1 )=

√
Ĝ(R̂μνρσ − R̄μνρσ )(R̂μνρσ − R̄μνρσ )

=
√

Ĝ(R̂μνρσ R̂μνρσ + 4R̂ + 2d(d + 1))

=
√

g(0)

2ρ
Ci jklC

i jkl + o(1). (25)

A useful formula in the above derivation is X μνρσ

1μ1ν1ρ1σ1
Zμ1ν1ρ1σ1 = Zμνρσ where Zμνρσ has the

same symmetry properties as R̂μνρσ . Following the same methods, one can derive√
ĜX2 μνρσ

2μ1ν1ρ1σ1
(R̂μνρσ − R̄μνρσ )(R̂μ1ν1ρ1σ1 − R̄μ1ν1ρ1σ1 ) =

√
Ĝ(R̂μν − R̄μν )(R̂

μν − R̄μν )

= o(ρ), (26)

√
ĜX2 μνρσ

3μ1ν1ρ1σ1
(R̂μνρσ − R̄μνρσ )(R̂μ1ν1ρ1σ1 − R̄μ1ν1ρ1σ1 ) =

√
Ĝ(R̂ − R̄)2

= o(ρ), (27)

5
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which do not contribute to the holographic Weyl anomaly. In the above calculations, we have
used equation (A.7). As mentioned in the above section, we can derive equation (13) form the
variation of the third line of equation (25) with respect to g(1)i j.

Now we obtain√
Ĝ f2 =

√
g(0)

2ρ
c2

1Ci jklC
i jkl + o(1). (28)

From equations (20), (24), we have

c2
1 = 1

2

δ2 f

δR̂μνρσ δR̂μ1ν1ρ1σ1

∣∣∣∣
R̄

Y μ1ν1ρ1σ1
μνρσ . (29)

Combining equations (19), (28), we get

b2 = f0

64
E4 −

(
f0

64
− c2

1

)
Ci jklC

i jkl . (30)

So the holographic Weyl anomaly for 4d CFT is〈
T i

i

〉 = 1

2κ2
d+1

b2 = c

16π2
Ci jklC

i jkl − a

16π2
E4, (31)

with

a = − f0

8

π2

κ2
5

, c =
(

8c2
1 − f0

8

)
π2

κ2
5

. (32)

Note that we have R̂ = −d(d + 1) and thus f0 < 0. As an simple example, one can check that
our formula equation (32) yields the correct central charges (equation (6.5) of [26]) for the
curvature-squared action. Our formula is more general, it can apply to any higher derivative
gravity with an asymptotically AdS solution.

Note that c2
1 is the number of Ri jklRi jkl included in b2. From equations (A.2)–(A.4), we

observe that it is R̂μνρσ rather than R̂μν and R̂ that contributes to Ri jkl . One can also find that
g(n) with n > 1 do not contribute to b2, while g(1) equation (13) is independent of Ri jkl . So
R̂μνρσ is the only term that can contribute to Ri jkl . Thus c2

1 vanishes if f (R̂μνρσ ) is made of
scalars with less than two R̂μνρσ . For example, c2

1 = 0 for f (R̂, R̂μν R̂μν, R̂μν R̂ρσ R̂μνρσ ). In
other words, f (R̂, R̂μν R̂μν, R̂μν R̂ρσ R̂μνρσ ) gravity has the same a charge and c charge.

2.2. 6d Weyl anomaly

In this section, we derive the holographic Weyl anomaly for 6d CFTs. We need to calculate
b3. Only terms f0, f1, f2, f3 will contribute to b3. Besides, because b3 only contains terms
linear with g(2)i j which vanish on shell, so we do not need g(2)i j for the derivations of b3. This
means that we do not need to solve equations of motion in order to derive the holographic
Weyl anomaly for 6d CFT. We have checked straightly that the g(2)i j terms in b3 indeed vanish
after imposing equation (13).

Let us list the Weyl invariant quantities in six dimensions:

I1 = Cki jlC
imn jC kl

m n, I2 = C kl
i j C mn

kl C i j
mn ,

I3 = Ciklm

(
∇2δi

j + 4Ri
j − 6

5
Rδi

j

)
C jklm

E0 = 384π3E6 = K3
1 − 12K3

2 + 3K3
3 + 16K3

4 − 24K3
5 − 24K3

6 + 4K3
7 + 8K3

8 , (33)

where K3
i is defined as

K3
i = (

R3, RRi jR
i j, RRi jklR

i jkl, Rj
i Rk

jR
i
k, Ri jRklRikl j, Ri jR

iklmR j
klm,

Ri jklR
i jmnRkl

mn, Ri jklR
imnlR j k

mn

)
. (34)

6
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Firstly, let us compute the term
√

−Ĝ( f0 + f1):√
Ĝ( f0 + f1) = − f0

2d

√
−Ĝ(R̂ + d2 − d)

= − f0

2d

√− ˆg(0)

2ρ

1

192
(E0 − 12I1 − 3I2 + I3) + · · · . (35)

Next, let us calculate
√

−Ĝ f2. From equations (11), (A.7), we note that

K̃2
2 = (R̂ − R̄)μν (R̂ − R̄)μν = o(ρ4),

K̃2
3 = (R̂ − R̄)2 = o(ρ4), (36)

which do not contribute to b3. So we only need to calculate the K̃2
1 term for the holographic

Weyl anomaly. After a long calculation, we obtain√
Ĝ f2 = c2

1

√
Ĝ(R̂ − R̄)μνρσ (R̂ − R̄)μνρσ + · · ·

= c2
1

√− ˆg(0)

2ρ

(
−1

3
I1 + 1

12
I2 + 1

12
I3

)
+ · · · . (37)

Finally, let us calculate the last term
√

−Ĝ f3. Using equations (11), (A.7), we have

K̃3
1 = o(ρ6), K̃3

2 = o(ρ6), K̃3
3 = o(ρ4), K̃3

4 = o(ρ6), K̃3
5 = o(ρ5), K̃3

6 = o(ρ4),

K̃3
7 = o(ρ3), K̃3

8 = o(ρ3). (38)

Focus on the o(ρ3) terms which contribute to Weyl anomaly, we only need to calculate the
terms K̃3

7 , K̃3
8 . After a complicated calculation, we get√

−ĜK̃3
7 =

√−g(0)

2ρ
I2,√

−ĜK̃3
8 =

√−g(0)

2ρ
I1. (39)

Combining equations (35), (37), we can derive the holographic Weyl anomaly for 6d CFT
as

〈
538T i

i

〉 = 1

2κ2
7

b3 =
3∑

n=1

BnIn + 2AE6, (40)

with

2κ2
7 A = −π3

12
f0,

2κ2
7 B1 = −1

3
c2

1 + c3
8 + 1

192
f0,

2κ2
7 B2 = 1

12
c2

1 + c3
7 + 1

768
f0,

2κ2
7 B3 = 1

12
c2

1 − 1

2304
f0. (41)

The calculations of the coefficients c2
1, c3

7 and c3
8 for the general action are quite complicated.

We list the main steps and results in the appendix. While for a given action, as we shall show in
the next section, we can always get these coefficients easily by expanding the action directly.

It is interesting that only four independent coefficients ( f0, c2
1, c3

7, c3
8) contribute to the Weyl

anomaly which exactly agrees with the number of independent central charges of CFT. It is also

7
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remarkable that, similar to the 4d case, only
√−G( f0 + f1) rather than

√−G( f2 + f3 + · · ·)
contribute to the central charge with respect to the Euler density. In fact, this is a general
conclusion. According to [8], the type A trace anomaly from general gravity action is

b d
2

= f0

(d!)2
E2n + · · · (42)

where ‘...’ denotes the type B anomaly. So for Einstein gravity equation (15), we have
b d

2
= − 2d

(d!)2 E2n + · · ·. Note that
√−G( f0 + f1) equation (14) is just the Einstein–Hilbert

action multiplied by a factor − f0

2d . So
√−G( f0 + f1) contributes a term f0

(d!)2 E2n to b d
2
. This

means that the other terms
√−G( f2 + f3 + · · ·) cannot contribute to the type A anomaly.

3. Examples

In this section, we study some examples to show the application of our general approach. In
particular, we investigate gravity theories with derivatives of the curvature. Let us recall the
main steps of our approach. We firstly expand the action around a referenced curvature, and
then select the relevant terms with suitable orders. Finally, we calculate these relevant terms
to derive the holographic Weyl anomaly. This approach can highly decrease the numbers of
terms needed to be computed. For example, there are only two (four) relevant terms in five
(seven) dimensional spacetime, which is just the number of independent central charges of the
corresponding CFTs.

3.1. Love-Lock gravity

Love-Lock gravity is a general theory of gravity whose equations of motion are only second
order in derivatives. The action of Love-Lock gravity is

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ

⎡
⎣d(d − 1)

L2
+ R̂ +

[ d+1
2 ]∑

p=2

cpL2p

⎤
⎦ , (43)

where L2p is defined as

L2p = 1

2p
δ

ν1ν2...ν2p−1ν2p
μ1μ2...μ2p−1μ2p R̂

μ1μ2
ν1ν2

...R̂
μ2p−1μ2p

ν2p−1ν2p . (44)

Similar to Einstein gravity, Love-Lock gravity has a well-defined Gibbons–Hawking surface
term and Brown–York surface stress tensor [37]. There is also an exact form of holographic
entanglement entropy for Love-Lock gravity [25, 26]. Let us begin to derive the holographic
Weyl anomaly for Love-Lock gravity. For simplicity, we introduce the following notation

λp = (−1)p (d − 2)!

(d − 2p)!
cp, f∞ = L2

L̃2
, (45)

where L̃ is the curvature scale of the AdS vacua. We set L̃ = 1 in this paper. We have assumed
that AdS vacua is a solution to Love-Lock gravity, which yields

1 = f∞ −
[d/2]∑
p=2

λp( f∞)p. (46)

For d = 4, the action becomes

S = 1

2κ2
5

∫
d5x

√
−Ĝ

[
12

L2
+ R̂ + λL2

2
L4

]
, (47)

8
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where L4 is given by

L4 = R̂μνρσ R̂μνρσ − 4R̂μν R̂μν + R̂2. (48)

Expanding the action around the referenced curvature (A.5) and selecting the terms relevant
to the Weyl anomaly, we get

S = 1

2κ2
5

∫
d5x

√
−Ĝ

[
− f0

8
(R̂ + 12) + λL2

2
(R̂ − R̄)μνρσ (R̂ − R̄)μνρσ + · · ·

]
, (49)

with f0 = 12
f∞

−20+60λ f∞. Applying equation (46), we can simplify f0 as f0 = −8+48λ f∞.
Using equations (19), (25), we obtain the Weyl anomaly (31) with the charges

a = π2

κ2
5

(1 − 6λ f∞), c = π2

κ2
5

(1 − 2λ f∞), (50)

which exactly agrees with equation (4.4) of [26].
Similarly, for d = 6 the action is

S = 1

2κ2
7

∫
d7x

√
−Ĝ

[
30

L2
+ R̂ + λL2

12
L4 − L4

24
μL6

]
, (51)

with

L6 = K3
1 − 12K3

2 + 3K3
3 + 16K3

4 − 24K3
5 − 24K3

6 + 4K3
7 + 8K3

8 . (52)

We refer the reader to equation (10) for the definitions of K3
i . Expanding the action around the

referenced curvature (A.5) and selecting the terms relevant to the Weyl anomaly, we obtain

S = 1

2κ2
7

∫
d7x

√
−Ĝ

[
− f0

12
(R̂ + 30) + c2

1K̃2
1 + c3

7K̃3
7 + c3

8K̃3
8 + · · ·

]
, (53)

with

f0 = 4(−3 + 10 f∞λ + 45 f 2
∞μ),

c2
1 = f∞

12
λ + 3

4
f 2
∞μ,

c3
7 = − f 2

∞
6

μ,

c3
8 = − f 2

∞
3

μ. (54)

It should be mentioned that we have used equation (46) to simplify f0. Applying our formula
(41), we obtain the holographic Weyl anomaly (40) with the corresponding charges

A = π3

κ2
7

3 − 10 f∞λ − 45 f 2
∞μ

6
,

B1 = 1

κ2
7

−9 + 26 f∞λ + 51 f 2
∞μ

288
,

B2 = 1

κ2
7

−9 + 34 f∞λ + 75 f 2
∞μ

1152
,

B3 = 1

κ2
7

1 − 2 f∞λ − 3 f 2
∞μ

6
, (55)

which is exactly the same as equation (5.4) of [26].
To summarize, we have derived the correct holographic Weyl anomaly for Love-Lock

gravity in asymptotically AdS5 and AdS7. It can be regarded as a test of our general formulas.
Our method is much simpler than the traditional one. First, we make no use of equations of
motion. Second, we only need to calculate a few relevant terms. It helps a lot to simplify the
calculations.

9
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3.2. f (R) gravity

Consider f (R̂) gravity with the action

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ f (R̂), (56)

which has an asymptotically AdS solution. Expanding the action around the referenced
curvature (A.5), we get

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ

(
f (R̄) + f ′(R̄)(R̂ − R̄) + 1

2
f ′′(R̄)(R̂ − R̄)2 + · · ·

)

= 1

2κ2
d+1

∫
dd+1x

√
−Ĝ

(
− f (R̄)

2d
(R̂ + d2 − d) + 1

2
f ′′(R̄)(R̂ − R̄)2 + · · ·

)
. (57)

Note that (R̂ − R̄)2 ∼ o(ρ4) does not contribute to the Weyl anomaly for d = 4, 6. Thus we
only need to calculate the first term of the second line of the above equation. And f (R̂) gravity
behaves effectively as Einstein gravity with a negative cosmological constant for d = 4, 6,
just replacing 1

2κ2
d+1

by − f (R̄)

2d
1

2κ2
d+1

. It is consistent with the fact that f (R̂) gravity is equivalent

to Einstein gravity plus a scalar field. Now it is clear that the Weyl Anomaly of f (R̂) gravity
is just − f (R̄)

2d times the one of Einstein gravity for d = 4, 6.

3.3. Critical gravity

According to [35], the one-parameter critical theory is given by the action

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ

[
R̂ + d(d − 1)

L2
− L2

4(d − 2)
ĈμνρσĈμνρσ

]
. (58)

Here Ĉμνρσ is the Weyl tensor and

ĈμνρσĈμνρσ = R̂μνρσ R̂μνρσ − 4

d − 1
R̂μνR̂μν + 2

d(d − 1)
R̂2. (59)

For simplicity, we set L = 1 below. This critical gravity has a unique AdS vacuum in
which there are only massless spin-2 modes. Besides, the mass and angular momenta of all
asymptotically Kerr-AdS and Schwarzschild-AdS black holes vanish.

Expanding the action around the referenced curvature (A.5) and keeping only the relevant
terms, we get

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ

[
R̂ + d(d − 1) − 1

4(d − 2)
K̃2

1 + · · ·
]

. (60)

It is easy to observe that f0 = −2d and c2
1 = − 1

4(d−2)
. Applying the general formulas (32),

(41), we can easily obtain the holographic Weyl anomaly. For d = 4, we get the holographic
Weyl anomaly (31) with the charges

a = π2

κ2
5

, c = 0. (61)

And for d = 6, we obtain the holographic Weyl anomaly (40) with the charges

A = π3

2κ2
7

, B1 = − 1

48κ2
7

,

B2 = − 1

96κ2
7

, B3 = 0. (62)

10
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As we mentioned above, the mass of the black holes in critical gravity vanish. One may
doubt that the critical gravity is a trivial theory. However, as we have derived above, the central
charges of the CFT dual to critical gravity is nonzero generally, which implies that the critical
gravity is indeed nontrivial. It is also interesting to note that some of the type B anomaly
vanish for the critical gravity.

3.4. Gravity with derivatives of curvatures

The general method developed in section 2 can be easily generalized to the modified gravity
with derivatives of curvatures. We firstly expand the action around the referenced curvature
R̄μνρρ (A.5), then select and calculate the terms which contribute to the Weyl Anomaly. Let us
study an example with the action

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ

(
R̂ + d2 − d

L2
+ λ1R̂ � R̂ + λ2R̂μν � R̂μν + λ3R̂μνρσ � R̂μνρσ

)
.

(63)

The first two terms above are just Einstein–Hilbert action with a negative cosmological
constant. We have calculated the Weyl anomaly from these terms. Expanding the last three
terms around the referenced curvature, we have

S = 1

2κ2
d+1

∫
dd+1x

√
−Ĝ(R̂ + d2 − d

L2
+ λ1(R̂ − R̄)�(R̂ − R̄) + λ2(R̂ − R̄)μν �(R̂ − R̄)μν

+λ3(R̂ − R̄)μνρσ �(R̂ − R̄)μνρσ ). (64)

Here we have dropped some total derivatives. Applying � ∼ o(1) together with equations
(A.6), (A.7), we obtain√

−Ĝ(R̂ − R̄)�(R̂ − R̄) ∼ o(ρ3− d
2 )√

−Ĝ(R̂ − R̄)μν �(R̂ − R̄)μν ∼ o(ρ3− d
2 )√

−Ĝ(R̂ − R̄)μνρσ �(R̂ − R̄)μνρσ ∼ o(ρ1− d
2 ). (65)

For (d = 4, 6), it is clear that only the last term contributes to the Weyl anomaly. For
simplicity, let us denote

K3
i = (

R̂3, R̂R̂μν R̂μν, R̂R̂μνρσ R̂μνρσ , R̂ν
μR̂ρ

ν R̂μ
ρ , R̂μν R̂ρσ R̂μρσν, R̂μν R̂μρσλR̂ν

ρσλ,

R̂μνρσ R̂μνλχ R̂ρσ
λχ , R̂ννρσ R̂νλχσ R̂ν ρ

λχ , R̂ � R̂, R̂μν � R̂μν, R̂μνρσ � R̂μνρσ
)
. (66)

Then the last term becomes
√

−ĜK3
11 =

√
−ĜK̃3

11, where K̃ = K|R̂→R̂−R̄. Note that

K3
11 + K3

9 − 4K3
10 + 4

(
K3

4 + K3
5

) − 2K3
6 + K3

7 − 4K3
8 = ∇μJμ (67)

is a total derivative. Since total derivatives do not contribute to the anomaly, this formula can
help us to rewrite K̃3

11 in terms of the other K̃n
i (n � 3, i � 10). We can derive√

−ĜK̃3
11 =

√
−Ĝ(R̂ − R̄)μνρσ �(R̂ − R̄)μνρσ ,

=
√

−ĜR̂μνρσ � R̂μνρσ + · · ·
=

√
−Ĝ

( − 4K3
4 − 4K3

5 + 2K3
6 − K3

7 + 4K3
8 − K3

9 + 4K3
10

) + · · ·
=

√
−Ĝ

( − 4K̃3
4 − 4K̃3

5 + 2K̃3
6 − K̃3

7 + 4K̃3
8 − K̃3

9 + 4K̃3
10

− 4K̃2
3 + 4(2 + d)K̃2

2 − 2dK̃2
1 + · · · ) (68)

11
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where ‘. . .’ denotes the total derivatives.
For d = 4, it is clear that only K̃2

1 in equation (68) contributes to the Weyl anomaly. Using
equation (25), we have√

−ĜK̃3
11 =

√
−Ĝ

(−2dK̃2
1 + · · · )

=
√−g(0)

2ρ
(−2dCi jklC

i jkl + · · ·). (69)

Thus we obtain the 4d Weyl anomaly (31) with charges

a = π2

κ2
5

, c = (1 − 64λ3)
π2

κ2
5

. (70)

For d = 6, only terms K̃2
1 , K̃3

7 , K̃3
8 in equation (68) contribute to the Weyl anomaly. Using

equations (37), (39), we can derive√
−ĜK̃3

11 =
√

−Ĝ
(−K̃3

7 + 4K̃3
8 − 2dK̃2

1 + · · · )

=
√− ˆg(0)

2ρ
(8I1 − 2I2 − I3) + · · · . (71)

Then we obtain the 6d Weyl anomaly (40) with charges

A = π3

2κ2
7

,

B1 = 1

2κ2
7

(
− 1

16
+ 8λ3

)
,

B2 = 1

2κ2
7

(
− 1

64
− 2λ3

)
,

B3 = 1

2κ2
7

(
1

192
− λ3

)
. (72)

Interestingly, although terms (R̂ � R̂, R̂μν � R̂μν) in the action affect the equations of
motion, they do not contribute to the holographic Weyl anomaly. This is a reflection of the fact
that the holographic Weyl anomaly for d = 4, 6 is independent of the equations of motion.

4. Holographic entanglement entropy

In this section, we propose a formula of the holographic entanglement entropy in asymptotically
AdS5 and compare it with universal term of entanglement entropy for 4d CFTs [36]. For
simplicity, we work in the Euclidean signature. So the entropy formula is different from the
usual Lorentzian one by a minus sign. Based on the works of Myers [26] and Fursaev et al [27],
we assume the holographic entanglement of general higher derivative gravity in asymptotically
AdS5 is

SHE = −2π

κ2
5

∫
m

d3x
√

h
δ f

δR̂μνρσ
(nμnρ )(nνnσ ) + SK, (73)

where nμ
ι with ι = 1, 2 are the two vectors orthogonal to m and (nμnρ) denotes nμ

ι nρι. The
first term is just the Wald entropy while the second term SK denotes the contribution from the
extrinsic curvature

SK = 4π

κ2
5

∫
m

d3x
√

h

(
c2

1Kια
β K α

ιβ + 1

4
c2

2Kια
α Kβ

ιβ

)
. (74)

12
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See equation (8) for the definition of cn
i . Note that SK is designed to be consistent with

the formula of the holographic entanglement entropy of Love-Lock gravity [25, 26] and the
curvature-squared gravity [27].

The universal logarithmic term of the entanglement entropy for 4d CFTs is

SEE = log(l/δ)
1

2π

∫
�

d2x
√

h

[
aR� − c

(
Cabcdhachbd − KιabKιab + 1

2
Kιa

a Kb
ιb

)]
, (75)

which was found in [36] using the conformal symmetry and the holography. We compare this
formula with our proposal (73) below.

Now let us derive the universal contribution to the entanglement entropy from equation
(73). Firstly, we focus on the Wald entropy term. Applying the methods of [8, 26], we can
derive the logarithmic term as

SW = log(l/δ)

2π

∫
�

d2x
√

h

[
a

(
R� + KιabKιab − 1

2
Kιa

a Kb
ιb

)
− cCabcdhachbd

]
. (76)

A useful technique in the above derivation is that we expand SW around R̄μνρσ equation (A.5):

δ f

δR̂μνρσ
(nμnρ )(nνnσ ) = Pμνρσ |R̄(nμnρ )(nνnσ )

+ δ2 f

δR̂μνρσ δR̂μ1ν1ρ1σ1

∣∣∣∣
R̄

(R̂μ1ν1ρ1σ1 − R̄μ1ν1ρ1σ1 )(n
μnρ )(nνnσ ) + o(ρ2)

= − f0

2d
+ n1(R̂μνρσ − R̄μνρσ )(nμnρ )(nνnσ ) + o(ρ2)

= − f0

2d
+ ρn1C

abcdhachbd + o(ρ2). (77)

In the above derivations, we have used the following useful formulas

R̂μνρσ (nμnρ )(nνnσ ) = −2 + ρCabcdhachbd + o(ρ2),

R̂μν (n
μnν ) = −8 + o(ρ2), R̂ = −20 + o(ρ2). (78)

Let us go on to calculate SK . After some calculations, we obtain

SK = 4π

κ2
5

∫
m

d3x
√

h

(
c2

1Kια
β K α

ιβ + 1

4
c2

2Kια
α Kβ

ιβ

)

= (c − a)
log(l/δ)

2π

∫
�

d2x
√

h

[
KιabKιab − 1

2
Kιa

a Kb
ιb

]
. (79)

From equations (76), (79), we finally obtain the logarithmic term of SHE as

SEE = log(l/δ)
1

2π

∫
�

d2x
√

h

[
aR� − c

(
Cabcdhachbd − KιabKιab + 1

2
Kιa

a Kb
ιb

)]
, (80)

which agrees with the result of CFTs equation (75).
Let us comment on our results. First, the holographic entanglement entropy takes the same

form as the Wald entropy for gravity theories with the same ‘a’ charge and ‘c’ charge (such
as Einstein gravity and f (R) gravity). Second, our proposal of the holographic entanglement
entropy (73) only works effectively in asymptotically AdS5. By ‘effectively’, we mean that it is
the leading term of holographic entanglement entropy in asymptotically AdS5. And the correct
formula of holographic entanglement entropy must reduce to ours in asymptotically AdS5.
After the work is finished, other interesting formulas of holographic entanglement entropy
for higher derivative gravity are proposed by Dong [28] and Camps [29], respectively. Camps

13
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later realized that his proposal only applies to curvature-squared gravity and can be regarded
as a special case of Dong’s proposal. Thus we focus on Dong’s proposal below. We shall
show that our formula is just the leading term of Dong’s proposal in asymptotically AdS5.
Since the higher order terms do not contribute to the universal term of entanglement entropy
for 4d CFTs, we actually shall prove Dong’s proposal yields the correct universal term of
entanglement entropy for 4d CFTs.

According to Dong [28], the general SK in (73) should be

SK = π

κ2
5

∫
m

d3x
√

h

(
∂2 f

∂Rμ1ρ1ν1σ1∂Rμ2ρ2ν2σ2

)
α

2Kλ1ρ1σ1 Kλ2ρ2σ2

qα + 1

×[(nμ1μ2 nν1ν2 − εμ1μ2εν1ν2 )n
λ1λ2 + (nμ1μ2εν1ν2 + εμ1μ2 nν1ν2 )ε

λ1λ2 ]. (81)

Please refer to [28] for the definitions of qα, nμν, εμν . In asymptotically AdS5, using the
method developed in this paper, we can expand the above SK around R̄μνρσ (A.5). Let us focus
on the leading term. From equation (8), we have

∂2 f

∂Rμ1ρ1ν1σ1∂Rμ2ρ2ν2σ2

∣∣∣∣
R̄

= 2
(
c2

1X2
1 + c2

2X2
2 + c2

3X2
3

)μ1ρ1ν1σ1μ2ρ2ν2σ2
, (82)

where the tensor X2
i is defined in equations (21)–(23). Since X2

i contains only the metric,
according to [28] we have qα = 0. Thus, the leading term of equation (81) in asymptotically
AdS5 becomes

SK = 4π

κ2
5

∫
m

d3x
√

h
(
c2

1X2
1 + c2

2X2
2 + c2

3X2
3

)μ1ρ1ν1σ1μ2ρ2ν2σ2 Kλ1ρ1σ1 Kλ2ρ2σ2

× [(nμ1μ2 nν1ν2 − εμ1μ2εν1ν2 )n
λ1λ2 + (nμ1μ2εν1ν2 + εμ1μ2 nν1ν2 )ε

λ1λ2 ] + · · ·
= 4π

κ2
5

∫
m

d3x
√

h

(
c2

1Kια
β K α

ιβ + 1

4
c2

2Kια
α Kβ

ιβ

)
+ · · · (83)

which is exactly our proposal equation (74). Here ‘. . .’ denotes the high order terms in ρ and
these terms do not contribute to the universal log term of entanglement entropy. Now we have
proved that our formula equation (73) is the leading term of Dong’s proposal in asymptotically
AdS5. Since only the leading term contributes to universal log term, we actually prove that
Dong’s proposal yields the correct universal term of entanglement entropy for 4d CFTs. This
is a nontrivial test of Dong’s proposal.

5. Conclusions

We develop a simple approach to derive the holographic Weyl anomaly from general higher
derivative gravity. Applying our approach, we only need to calculate a few relevant terms
which highly simplify the derivations of the Weyl anomaly. It is remarkable that we make
no use of equations of motion to derive all the central charges of 4d and 6d CFTs. As an
application of our results, we propose a formula of holographic entanglement entropy for
general higher derivative gravity in asymptotic AdS5. Our proposal is consistent with the
holographic entanglement entropy of Einstein gravity and Love-Lock gravity. Furthermore,
our proposal can yield the correct universal term of entanglement entropy for 4d CFT. We
find that our formula of holographic entanglement entropy is just the leading term of Dong’s
proposal in asymptotic AdS5. Since only the leading term contributes to universal log term of
entanglement entropy, we actually prove that Dong’s proposal can yield the correct universal
term of entanglement entropy for 4d CFTs. This is a nontrivial test of Dong’s proposal. It is
interesting to check if Dong’s proposal could yield the universal term of entanglement entropy
for 6d CFTs [38]. We hope to address this problem in future.
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Appendix A. Useful formulas

In this appendix, we provide some useful formulas of Riemann tensor. Our conventions for
the curvature tensors are [∇μ,∇ν]V ρ = R ρ

μν σV σ , Rμν = Rρ
μρν . We assume the metric in the

bulk takes the following form:

ds2 = Ĝμν dxμ dxν = 1

4ρ2
dρ2 + 1

ρ
gi j dxi dx j. (A.1)

According to [9], we have formulas for scalar curvature

R̂ = −d2 + d

l2
+ ρR + 2(d − 1)ρ

l2
gi jg′

i j + 3ρ2

l2
gi jgklg′

ikg′
jl − 4ρ2

l2
gi jg′′

i j − ρ2

l2
gi jgklg′

i jg
′
kl

(A.2)

for Ricci tensor

R̂ρρ = − d

4ρ2
− 1

2
gi jg′′

i j + 1

4
gikgl jg′

klg
′
i j

R̂iρ = 1

2
gjk(g′

ki; j − g′
k j;i)

= 1

2
gjkg′

ki, j − 1

2
gk jg′

jk,i + 1

2
gjk

, j g
′
ki + 1

4
gklg′

lig
jmg jm,k − 1

4
gk j

,i g′
jk

R̂i j = Ri j − 2ρ

l2
g′′

i j + 2ρ

l2
gklg′

kig
′
l j − ρ

l2
g′

i jg
klg′

kl − 2 − d

l2
g′

i j + 1

l2
gi jg

klg′
kl − d

l2ρ
gi j (A.3)

and for the Riemann tensor

R̂iρ jρ = − 1

4ρ3
gi j + 1

4ρ
gklg′

kig
′
l j − 1

2ρ
g′′

i j

R̂ρi jk = 1

2ρ
(g′

i j;k − g′
ik; j)

= 1

4ρ
{2g′

i j,k − 2g′
ik, j − glm(gim,k + gkm,i − gik,m)g′

l j + glm(gim, j + g jm,i − gi j,m)g′
lk}

R̂i jkl = 1

ρ
Ri jkl − 1

ρ2l2
{(g jl − ρg′

jl )(gik − ρg′
ik) − (g jk − ρg′

jk)(gil − ρg′
il )}. (A.4)

Here ‘ ′ ’ denotes the derivative with respect to ρ. ‘;’ and ‘R’ stand for the covariant derivative
and curvature with respect to gi j, respectively.

Let us define a reference curvature as

R̄ = −d(d + 1), R̄μν = −dĜμν, R̄μνρσ = −(ĜμρĜνσ − Ĝμσ Ĝνρ ). (A.5)

Please do not confuse the reference curvature R̄μνρσ with R̂μνρσ |AdS = −(Ĝ(0)μρĜ(0)νσ −
Ĝ(0)μσ Ĝ(0)νρ ). Using equations (A.2)–(A.4), we observe that

R̂ − R̄ = o(ρ), R̂μν − R̄μν = o(1), R̂μνρσ − R̄μνρσ = o

(
1

ρ

)
. (A.6)

Applying equation (13), we can get stronger conditions

R̂ − R̄ = o(ρ2), R̂i j − R̄i j = o(ρ), R̂iρ − R̄iρ = o(ρ). (A.7)
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In fact, in general, we have

f (R̂μνρσ ) − f (R̄μνρσ ) = o(ρ2), (A.8)

where f is a scalar function. The above equations can be used to simplify the calculations of
Weyl anomaly.

Appendix B. Coefficients

In this appendix, we provide a general method to derive the coefficients cn
i of equation (8):

1

n!

δn f

δR̂μ1ν1ρ1σ1 . . . δR̂μnνnρnσn

∣∣∣∣
R̄

=
m∑

i=1

cn
i Xn

i μ1ν1ρ1σ1,...,μnνnρnσn
,

Xn
i μ1ν1ρ1σ1,...,μnνnρnσn

= 1

n!

δnKn
i

δR̂μ1ν1ρ1σ1 . . . δR̂μnνnρnσn
. (B.1)

For simplicity, we focus on the case that f (R̂μνρσ ) contains only the curvature but not the
derivatives of the curvature. To get cn

i , we need to find a class of tensors Y n
j with the conditions:

Y n
j μ1ν1ρ1σ1,...,μnνnρnσn

=
m∑

i=1

(
xn

j

)
iX

n
i μ1ν1ρ1σ1,...,μnνnρnσn

,

Y n
j ∗ Xn

i = Y n
j μ1ν1ρ1σ1,...,μnνnρnσn

Xn μ1ν1ρ1σ1,...,μnνnρnσn
i = δi j. (B.2)

Then one can obtain cn
i as

cn
i = 1

n!
Y n

i ∗ δn f

(δR̂)n

∣∣∣∣
R̂→R̄

. (B.3)

Note that the solution to Y n
i is unique. In general, the calculation is highly nontrivial. We list

the results for d = 4 and d = 6 below.
For d = 4, only c2

1 is relevant to the Weyl anomaly. Solving equation (B.2), we get

c2
1 = 1

2
Y 2

1 ∗ δ2 f

(δR̂)2
|R̂→R̄

Y 2
1 = 12

(d + 3)(d3 + d2 − 4d − 4)
X2

1 − 48

(d2 − 1)(d + 3)(d2 − 4)
X2

2

+ 24

d(d2 − 1)(d + 3)(d2 − 4)
X2

3 . (B.4)

Set d = 4, we obtain equation (24).
For d = 6, only c2

1, c3
7, c3

8 contribute to the Weyl anomaly. We have derived c2
1 as above.

For c3
7, we have

c3
7 = 1

3!
Y 3

7 ∗ δ3 f

(δR̂)3

∣∣∣∣
R̂→R̄

Y 3
7 =

8∑
i=1

(
x3

7

)
iX

3
i , (B.5)

where (x3
7)i are given by

(
x3

7

)
1 = 64(48 + 65d + d2)

d(1+d)2(2880− 2304d −1796d2 +976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

7

)
2 = − 192(48 + 65d + d2)

(1+d)2(2880− 2304d −1796d2 +976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,
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(
x3

7

)
3 = 288(24 − 4d − 7d2 + 5d3)

d(1+d)2(2880 −2304d −1796d2 +976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

7

)
4 = 128(144 + 24d + 23d2 + 31d3)

d(1+d)2(2880 −2304d −1796d2 +976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

7

)
5 = − 192(−144 − 24d + 25d2 + 34d3 + d4)

d(1+d)2(2880 −2304d −1796d2 +976d3+389d4 − 116d5 −34d6 + 4d7 + d8)
,

(
x3

7

)
6 = − 576(24 − 4d − 7d2 + 5d3)

(1+d)2(2880 −2304d −1796d2 +976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

7

)
7 = 16(−144 + 192d + 109d2 − 24d3 − 39d4 + 14d5)

d(1+d)2(2880 −2304d − 1796d2 +976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

7

)
8 = 64(144 − 264d − 25d2 + 33d3 + 3d4 + d5)

(−3 + d)(−1 + d)d(1 + d)2(3 + d)(5 + d)(−16 + d2)(−4 + d2)
. (B.6)

Similarly, for c3
7, we have

c3
8 = 1

3!
Y 3

8 ∗ δ3 f

(δR̂)3
|R̂→R̄ Y 3

8 =
8∑

i=1

(
x3

8

)
iX

3
i , (B.7)

where (x3
8)i are given by

(
x3

8

)
1 = 512(21 + 11d + d2)

d(1+d)2(2880 − 2304d − 1796d2 + 976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

8

)
2 =− 1536(21 + 11d + d2)

d(1+d)2(2880−2304d −1796d2+976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

8

)
3 = 1152(−24 + d + 4d2 + d3)

d(1+d)2(2880 − 2304d − 1796d2 + 976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

8

)
4 = 1024(−72 + 24d + 23d2 + 4d3)

d(1+d)2(2880 − 2304d − 1796d2 + 976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

8

)
5 =− 1536(72 − 24d − 2d2 + 7d3 + d4)

d(1+d)2(2880−2304d −1796d2 + 976d3 + 389d4 − 116d5 −34d6 + 4d7 + d8)
,

(
x3

8

)
6 =− 2304(−24 + d + 4d2 + d3)

d(1+d)2(2880 − 2304d − 1796d2 + 976d3 + 389d4 − 116d5−34d6+4d7+ d8)
,

(
x3

8

)
7 = 64(144 − 264d − 25d2 + 33d3 + 3d4 + d5)

d(1+d)2(2880 − 2304d − 1796d2 + 976d3 + 389d4 − 116d5 − 34d6 + 4d7 + d8)
,

(
x3

8

)
8 = 512(−72 + 168d − 25d2 − 21d3 + 3d4 + d5)

(−3 + d)d(1 + d)2(5 + d)(−16 + d2)(−4 + d2)(−3 + 2d + d2)
. (B.8)
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