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1 Introduction and main results

In the last few years, there has been a renewed interest in the topic of non-geometry and

non-geometric fluxes (for reviews see [2–4]). The non-geometric backgrounds of string

theory exhibit unusual behaviors, leading to new possibilities and opening still fairly un-

explored directions. Their study has been conducted from various angles, including world-

sheet and CFT approaches, target space constructions such as Double Field Theory (DFT)

and its U-duality extensions (for reviews see [5–7]), ten-dimensional supergravities and Gen-

eralized Geometry, and four-dimensional supergravities. We take in this paper the last two

points of view, and study the Bianchi identities for NSNS fluxes, the related NS-branes,

and properties of further ten-dimensional backgrounds with non-geometric fluxes.

Some four-dimensional gauged supergravities have as gaugings or components of the

embedding tensor the so-called non-geometric fluxes [8–10]. In the NSNS sector, those are

given by Qc
ab and Rabc. These Q- and R-fluxes give rise to specific terms in the four-

dimensional potential that are of phenomenological interest. They were shown in various

examples to help in stabilising moduli [11–13] or in obtaining de Sitter vacua [14–19].

Then, it is natural to ask whether such configurations with non-zero Q- and R-fluxes can

be obtained as backgrounds of string theory. To answer this question, we follow here

the approach of flux compactifications, that considers dimensional reductions from ten-

to four-dimensional supergravity on an internal compact manifold M. Traditionally, four-

dimensional vacua with Q- and R-fluxes are then rather believed to uplift to non-geometric

backgrounds, where M can be a non-geometry. In these backgrounds, stringy symmetries

such as T-duality are used instead of diffeomorphisms or gauge transformations [9, 20, 21]

(a more precise definition is given in section 4.2.1). This results mostly in non-standard

spaces for M, on which the compactification procedure cannot be applied. The relation

between these four- and ten-dimensional perspectives looks thus not well established.

Progress on these aspects have been made recently thanks to local reformulations of

standard supergravity into new ten-dimensional theories, in [1, 3, 22, 23] and [24–26]. This

is achieved in the NSNS sector, with the standard Lagrangian LNSNS (2.4), by redefining

the metric gmn, b-field bmn and dilaton φ into a new set of fields g̃mn, β
mn, φ̃, where β is

an antisymmetric bivector. As a consequence, the standard H-flux is traded for two new

fluxes, identified as the ten-dimensional Q- and R-fluxes. Their definition depends on the

– 1 –
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theory, and we follow here β-supergravity [1], where

Qc
ab = ∂cβ

ab − 2βd[af b]cd , Rabc = 3βd[a∇dβbc] , (1.1)

as in [23, 27, 28].1 The Lagrangian of the NSNS sector of β-supergravity is given by

L̃β = e−2d
(
R(g̃) + 4(∂φ̃)2 + 4(βab∂bφ̃− T a)2 −

1

2
ηabR

acdf bcd

− 1

12
ηadηbeηcfR

abcRdef + 2ηabβ
ad∂dQc

bc − ηcdQaacQbbd

− 1

2
ηcdQa

bcQb
ad − 1

4
ηadηbeηcfQa

bcQd
ef

)
, (1.2)

as detailed in section 2.1. It looks very similar to the four-dimensional scalar potential

of gauged supergravities with Q- and R-fluxes. So β-supergravity appears to be a good

candidate to uplift four-dimensional gauged supergravities, as argued in [1]. A dimensional

reduction on a concrete background can only be performed though, if at least, the metric g̃

describes a standard manifold. Fortunately, this reformulation of standard supergravity not

only provides ten-dimensional non-geometric fluxes, but it also transforms in some examples

a non-geometry given by g into a standard geometry described by g̃. The information on

the former non-geometry gets encoded in the new non-geometric fluxes. This reformulation

allows eventually to relate these backgrounds properly to the four-dimensional description.

Using β-supergravity, one can now study backgrounds with non-geometric fluxes di-

rectly in ten dimensions; this is the main purpose of this paper. In a first half, we focus

on Bianchi identities (BI) for the NSNS fluxes, and how they are corrected on specific

backgrounds corresponding to NS-branes. The corrections show that these branes actu-

ally source those fluxes. In a second half, we make a generic study of (the NSNS sector

of) geometric backgrounds of β-supergravity, and try to determine whether those lead to

new physics.

While the BI bring constraints to be satisfied by the vacua, the equations of motion

should be verified in the first place. Those were derived in [1] in curved indices. We

rewrite them here in flat indices, so that fabc and Qc
ab appear: this simplifies the study of

solutions. We use two methods for this rewriting: a direct reformulation, and a Generalized

Geometry approach, following [29]. The non-trivial result is the β equation of motion given

in (2.24).

Bianchi identities and NS-branes. We study in section 3 a particular type of back-

grounds: the NS-branes. The NS5-brane is a codimension 4 brane and a known vacuum

of standard supergravity. Smearing it along one direction and T-dualising leads to the

Kaluza-Klein (KK) monopole, that can be viewed as a codimension 3 brane. The latter

is a solution of general relativity, and as such, it is a vacuum of both standard super-

gravity and β-supergravity. Smearing it once and T-dualising again leads finally to the

522-brane [30, 31] (the former two were denoted there 502 and 512), that we prefer to call

1Throughout the paper, a . . . l denote tangent space flat indices and m. . . z curved space indices. The

structure constant or geometric flux fabc is defined in (A.2) and we refer to appendix A for more conventions.

– 2 –
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here the Q-brane [32]. This brane is codimension 2. It appears in terms of standard su-

pergravity as a non-geometric background [30, 31], but a geometric description is restored

in β-supergravity [32, 33]. We verify in appendix D.1 that it satisfies the β-supergravity

equations of motion. More details on these branes, their smearing and T-duality relations,

are given in section 3.2.

The BI of supergravity fluxes can get corrected in presence of a brane: the latter

provides a source term. The resulting equation usually boils down to the Poisson equation

on a warp factor. Let us recall the standard case of the H-flux with an NS5-brane, before

presenting our extensions to the other NSNS fluxes and branes. The BI for the H-flux is

given by the four-form dH. In terms of its coefficient in flat indices, the BI, in presence of

an NS5-brane, is written

NS5−brane : ∂[aHbcd] −
3

2
fe[abHcd]e =

CH
4

ε4⊥abcd δ
(4)(r4) . (1.3)

The right-hand side (r.h.s. ) localises the brane in its four transverse directions (as indicated

by the ⊥) at the radius r4 = 0. The factor CH will be specified in the paper, and conventions

on the ε4 are given in appendix A. With the fluxes of the NS5-brane background, (1.3)

becomes the Poisson equation on the warp factor fH (with a normalisation constant cH)

∆4fH = cH δ(4)(r4) , (1.4)

as we will verify explicitly. Another BI that the background should satisfy is given below

by equation (1.7). This condition is obtained either by considering d2 = 0 in flat indices

(more precisely d(dea) = 0), or from the Jacobi identity of the Lie bracket on Cartan

one-forms [34], or the first BI of the Riemann tensor. This BI (1.7) on the geometric flux

is automatically satisfied when expressing f in terms of vielbeins. The BI for the H-flux

without source behaves similarly: dH vanishes when replacing H by db. This property

holds if the fields have no singularity. A source is responsible for a singular point, hence

the r.h.s. in (1.3) and (1.4). These two equations still vanish locally at any point away

from the source. We will recover the same behaviour in what follows. Finally, the two BI

without a source verify another important property: they are recovered by setting to zero

the square of the “derivative” d − H∧ acting on a form A. We can as well introduce a

dilaton factor, and write

For DA = 2eφ(d−H∧)(e−φA) , D2 = 0 ⇔ d2 = 0 and dH = 0 . (1.5)

For constant Habc and fabc, their BI without source can also be obtained from the

Jacobi identities of some algebra. This algebra can be extended to the gauging algebra of

four-dimensional gauged supergravity: it then includes all NSNS fluxes

[Za, Zb] = HabcX
c + f cabZc (1.6)

[Za, X
b] = −f bacXc +Qa

bcZc

[Xa, Xb] = Qc
abXc −RabcZc .

– 3 –
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The Jacobi identities of (1.6), given in (3.6)–(3.10), were thus proposed as the BI for

constant NSNS fluxes (without source) [8]. For a vanishing H-flux, we propose here a

ten-dimensional generalization of those, for non-constant fluxes

∂[bf
a
cd] − fae[bfecd] = 0 , (1.7)

∂[cQd]
ab − βe[a∂ef b]cd −

1

2
Qe

abfecd + 2Q[c
e[af b]d]e = 0 , (1.8)

∂dR
abc − 3βe[a∂eQd

bc] + 3Re[abf c]de − 3Qd
e[aQe

bc] = 0 , (1.9)

βe[a∂eR
bcd] +

3

2
Re[abQe

cd] = 0 . (1.10)

It is worth stressing that for H = 0 and constant fluxes, our BI boil down to those of [8].

Such a generalization was already obtained in [34] from Jacobi identities of Lie brackets,

and at the level of DFT in [33]. We show in appendix C.1 that those match the simpler

expressions given by our BI (1.7)–(1.10). These equations are meaningful in β-supergravity,

where fluxes can be expressed in terms of vielbeins and β. Interestingly, using these explicit

local expressions, the four BI are then automatically satisfied, exactly as above for dH.

This is actually how these four conditions were discovered in [1] (see appendix C.3). These

BI are therefore natural candidates to have non-zero r.h.s. in the presence of NS-branes.

We propose indeed the following BI for the geometric flux f in presence of a KK-monopole

(see also [35])

KK−monopole : ∂[bf
a
cd] − fae[bfecd] =

CK
3

ε3⊥bcd ε1||e η
ea δ(3)(r3) , (1.11)

where ε1||e is non-zero and equal to one for e being the direction along the brane, and the

factor CK will be specified in the paper. All other BI should as well be satisfied with a

vanishing r.h.s. . In presence of a Q-brane, we propose the following BI for the Q-flux

Q−brane : (1.12)

∂[cQd]
ab − βe[a∂ef b]cd −

1

2
Qe

abfecd + 2Q[c
e[af b]d]e =

CQ
2

ε2⊥cd ε2||ef η
eaηfb δ(2)(r2) ,

and all other BI should again be satisfied with a vanishing r.h.s. . We will verify that these

sourced BI boil down to Poisson equations on warp factors once evaluated on the brane

solutions

KK−monopole : ∆3fK = cK δ(3)(r3) , Q−brane : ∆2fQ = cQ δ(2)(r2) . (1.13)

Similarly to (1.5), a “derivative” D] was built for constant fluxes [11, 36], such that

D2
] = 0 would be equivalent to the (sourceless) BI of the NSNS fluxes (3.6)–(3.10), i.e. the

Jacobi identities of the algebra (1.6), together with a further scalar condition [36] given

in (3.13). Here we generalize this idea for non-constant fluxes and H = 0: we introduce a

D such that

D2 = 0 ⇔ BI (1.7)–(1.10) + scalar condition . (1.14)

– 4 –
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As explained in section 3.1, D is the Dirac operator associated to the Spin(D,D) × R+

covariant derivative DA that can be built from the Generalized Geometry approach

DΨ = ΓADAΨ =

(
ΓA∂A +

1

4
Ω̂ABCΓABC +

1

2
Ω̂D

D
CΓC

)
Ψ , (1.15)

where the ΓA satisfy the Spin(D,D) Clifford algebra, and we represent them with forms

and contractions using a Clifford map. Similarly, Ψ is a spinor and can be viewed as a

polyform. Using the connection coefficients computed in [1], we recover (1.5) for standard

supergravity with b-field, and get for β-supergravity

DA = 2eφ̃(∇a · ẽa ∧ −∇̌a · ιa + T ∨+R∨)(e−φ̃A) . (1.16)

We recall that ∇a · ẽa∧ = d, and understand the dot as acting only on the coefficient of

the form A; we denote by ιa or ∨ the contractions (see appendix A), and ∇̌a is a covariant

derivative containing the Q-flux (2.15). This D of (1.16) verifies (1.14). We also show that

D] corresponds to the second term in the r.h.s. of (1.15), clarifying how our D generalizes

the constant flux situation. An explicit expression for D in terms of fluxes is given in (3.26),

while tensorial formulations of the BI are discussed around (3.5) and (3.39).

Geometric vacua of β-supergravity. In section 4, we study vacua of β-supergravity

more generally. β-supergravity is of particular interest with respect to standard supergrav-

ity when its solutions are geometric. As explained above, such backgrounds can provide

a ten-dimensional uplift to some four-dimensional solutions of gauged supergravities with

non-geometric fluxes. In addition, a geometric vacuum of β-supergravity is non-geometric

when expressed in standard supergravity, at least in the examples considered so far. A geo-

metric, target space, description of a non-geometric string background is therefore restored.

Those are the two main achievements of β-supergravity. So the first question we study is

to determine the conditions for a geometric vacuum of β-supergravity. Two examples (or

at least their NSNS sector) are helpful: the Q-brane mentioned previously, and the toroidal

example studied in details in [1, 3, 37]. For both, their standard supergravity description

is non-geometric, but also T-dual to a geometric one. From a four-dimensional point of

view, such backgrounds are then said to be on a geometric (T-duality) orbit. All theories

on an orbit are the same, up to a redefinition of the four-dimensional fields. So the theory

obtained from the toroidal example does not describe new physics, with respect to the

one from the T-dual configuration that is geometric in standard supergravity. The second

question is then whether geometric vacua of β-supergravity ever lead to new physics. To

address these questions, we pursue the following reasoning:

1. Consider a field configuration defined on a set of patches of a space. To form a valid

vacuum of a theory, these fields should at least glue from one patch to the other with

symmetries of that theory. This allows to describe the configuration on all patches

with only one theory (here one Lagrangian) [26].

2. A symmetry leaves a Lagrangian invariant up to a total derivative, and the two La-

grangians LNSNS and L̃β only differ by a total derivative (see section 2.1), so they

– 5 –
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share the same symmetries. These are diffeomorphisms and b-field gauge transforma-

tions, where the latter can be translated in terms of the fields of β-supergravity [1].

Field configurations gluing with such symmetries are geometric for standard super-

gravity.2 They may as well, under some restrictions, be geometric in terms of β-

supergravity, but there is no need for such a description, since standard supergravity

already gives a proper one [1, 26].

3. Getting an interesting geometric background of β-supergravity therefore requires

other symmetries. This can be achieved by considering a modification, e.g. a re-

striction, of the theory, that would lead to a symmetry enhancement [1]. Here, the

restriction to be made is to consider the presence of N isometries. This provides a

further symmetry to LNSNS and L̃β, that is T-duality. We prove this in appendix E.

4. One of the T-duality transformations that brings some novelty is the β-transform.

Expressing it in β-supergravity is simple: it results in a constant shift of β along

isometries. The Lagrangian L̃β is manifestly invariant under such a transformation,

as we show in details. In particular, the Q- and the R-flux are invariant under

this symmetry. Field configurations gluing with β-transforms and diffeomorphisms

are thus geometric for β-supergravity, and in most cases non-geometric for standard

supergravity: this defines a class of interesting geometric vacua of β-supergravity.

The two examples mentioned above are of this type.

5. We however show that such vacua (or at least their NSNS sector) are always T-dual to

geometric ones for standard supergravity, i.e. they are on a geometric orbit. So they

do not give new physics. The converse point of view remains interesting: we know

precisely when geometric backgrounds of standard supergravity have non-geometric

T-duals that can be described geometrically by β-supergravity. The latter then pro-

vides an uplift to some non-geometric points on the four-dimensional orbit. We still

list various possibilities beyond the setting just mentioned, that could circumvent the

result, and maybe lead to new physics.

The paper is structured as follows. β-supergravity is reviewed in section 2.1, with

conventions in appendix A. Equations of motion are rewritten in flat indices in section 2.2

and appendix B. We then turn to the sourceless BI in section 3.1 and appendix C, where

we review the literature and construct the Spin(D,D)×R+ covariant derivative and Dirac

operator D. We study NS-branes in section 3.2 and appendix D by showing their smearing

and T-duality relations, the source corrections to BI and the derivation of Poisson equa-

tions. Finally, we detail in section 4.1 and appendix E the symmetries of LNSNS and L̃β,

including the T-duality for N isometries. We study how using them leads to geometric or

non-geometric vacua in section 4.2. T-duals of some geometric vacua of β-supergravity are

analyzed in section 4.3. An outlook is eventually provided in section 5.

2Definitions of geometric and non-geometric field configurations are given in section 4.2.1.
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2 β-supergravity and its equations of motion

We gave in the Introduction several motivations to consider β-supergravity, a ten-

dimensional theory that contains non-geometric Q- and R-fluxes. In this section, we briefly

review this theory by providing the technical material needed in the rest of the paper. We

mostly follow [1]. Then, we turn to the rewriting of its equations of motion in flat indices.

2.1 Technical review of β-supergravity

A local reformulation of the NSNS sector of standard supergravity was proposed in [3, 22,

23]. It is based on a field redefinition transforming the standard NSNS fields into a new

metric g̃mn, an antisymmetric bivector βmn and a new dilaton φ̃

g̃−1 = (g + b)−1g(g − b)−1

β = −(g + b)−1b(g − b)−1

}
⇔ (g + b)−1 = (g̃−1 + β) , e−2φ̃

√
|g̃| = e−2φ

√
|g| ≡ e−2d ,

(2.1)

where we introduce the quantity d. This field redefinition was read-off from a

reparametrization of the generalized metric H, that usually depends on g and b. This

is equivalent to choosing another generalized vielbein Ẽ instead of the usual E , where Ẽ
depends on the new fields

E =

(
e 0

e−T b e−T

)
, Ẽ =

(
ẽ ẽβ

0 ẽ−T

)
, I =

(
ηD 0

0 η−1D

)
, (2.2)

H =

(
g − bg−1b −bg−1

g−1b g−1

)
= ET I E = ẼT I Ẽ =

(
g̃ g̃β

−βg̃ g̃−1 − βg̃β

)
, (2.3)

where H is a 2D × 2D matrix for a D-dimensional space-time, ηD denotes the flat metric,

and the vielbeins e and ẽ are associated to the metrics g = eT ηDe and g̃ = ẽT ηDẽ. This

reparametrization was inspired from earlier Generalized Complex Geometry papers [27, 38,

39]. The field redefinition is then an O(D − 1, 1)×O(1, D − 1) transformation [1].

The standard NSNS Lagrangian, where Hmnp = 3∂[mbnp], is given by

LNSNS = e−2φ
√
|g|
(
R(g) + 4(∂φ)2 − 1

2
H2

)
, (2.4)

with conventions in appendix A. Building on the above, the field redefinition (2.1) per-

formed on LNSNS lead in [1] to the Lagrangian L̃β of the NSNS sector of β-supergravity

LNSNS(g, b, φ) = L̃β(g̃, β, φ̃) + ∂(. . . ) , (2.5)

– 7 –
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up to a total derivative ∂(. . . ) detailed in section 4.1.1. In curved indices, L̃β is given by

L̃β = e−2φ̃
√
|g̃|
(
R(g̃) + 4(∂φ̃)2 + 4(βmp∂pφ̃− T m)2 + Ř(g̃)− 1

2
R2

)
, (2.6)

with Ř = g̃mnŘmn , Řmn = −βpq∂qΓ̌mnp + βmq∂qΓ̌
pn
p + Γ̌mnp Γ̌qpq − Γ̌qmp Γ̌pnq , (2.7)

Γ̌mnp =
1

2
g̃pq (−βmr∂rg̃nq − βnr∂rg̃mq + βqr∂rg̃

mn) + g̃pq g̃
r(m∂rβ

n)q − 1

2
∂pβ

mn , (2.8)

T n ≡ Γ̌pnp = ∂pβ
np − 1

2
βnmg̃pq∂mg̃

pq =
1√
|g̃|
∂p

(
βnp
√
|g̃|
)

= ∇pβnp , (2.9)

Rmnp ≡ 3βq[m∂qβ
np] = 3βq[m∇qβnp] , (2.10)

and conventions in appendix A. Note that Rmnp, T m and Řmn are tensors. This last

“Ricci tensor” is related to a new covariant derivative ∇̌m built from βmn∂n and the

connection Γ̌mnp

∇̌mV p = −βmn∂nV p − Γ̌mpn V n , ∇̌mVp = −βmn∂nVp + Γ̌mnp Vn . (2.11)

That derivative plays a crucial role, as we will see. Another useful tensor is Γ̌(t)
mn
p

Γ̌mnp = Γ̌(t)
mn
p + βmsΓnps , Γ̌(t)

mn
p =

1

2
g̃pq (g̃rm∇rβnq + g̃rn∇rβmq − g̃qr∇rβmn) . (2.12)

It allows to relate the covariant derivatives ∇ and ∇̌, and then to rewrite the R-flux

∇̌mV p = −βmn∇nV p − Γ̌(t)
mp
n V n , ∇̌mVp = −βmn∇nVp + Γ̌(t)

mn
p Vn , (2.13)

Rmnp = 3 βq[m∇qβnp] =
3

2
∇̌[mβnp] . (2.14)

Imposing the condition βmn∂n· = 0 (as well as ∂pβ
np = 0), where the dot stands for any

field, reduces L̃β to the Lagrangian obtained in [3]. One gets Rmnp = 0, T m = 0, and

Ř results only in a (∂β)2. This subcase is useful in some examples, like the Q-brane: see

appendices B.3 and D.1.

We now turn to flat indices: this reveals the Q-flux given in (1.1), since it is not a

tensor. It rather plays an analogous role in ∇̌ as f does in∇ with Levi-Civita connection [1]

ẽamẽ
n
b∇nV m = ∇bV a ≡ ∂bV a + ωabcV

c

⇔ ωabc =
1

2

(
fabc + ηadηcef

e
db + ηadηbef

e
dc

)
(2.15)

ẽmaẽ
b
n∇̌nVm = ∇̌bVa ≡ −βbd∂dVa − ωQbca Vc

⇔ ωQ
bc
a =

1

2

(
Qa

bc + ηadη
ceQe

db + ηadη
beQe

dc
)
,

where we introduced ωQ, (the opposite of) the spin connection associated to Γ̌. This ωQ
enjoys similar properties as those of (A.3)

ηdcωQ
bc
a = −ηacωQbcd , Qa

bc = 2ωQ
[bc]
a , ωQ

ad
a = Qa

ad , ηbcωQ
bc
a = ηadQb

db . (2.16)
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From it, we can define a quantity RQ analogous to the standard Ricci scalar R(g̃)

R(g̃) = 2ηbc∂aω
a
bc + ηbcωaadω

d
bc − ηbcωadbωdac (2.17)

= 2ηab∂af
c
bc − ηcdfaacf bbd −

1

4

(
2ηcdfabcf

b
ad + ηadη

beηcgfabcf
d
eg

)
,

RQ ≡ 2ηbcβ
ad∂dωQ

bc
a + ηbcωQ

ad
a ωQ

bc
d − ηbcωQ

db
a ωQ

ac
d (2.18)

= 2ηabβ
ad∂dQc

bc − ηcdQaacQbbd −
1

4

(
2ηcdQa

bcQb
ad + ηadηbeηcgQa

bcQd
eg
)
,

and RQ is related to Ř as follows

Ř = RQ −
1

2
Racdf bcdηab . (2.19)

The Lagrangian L̃β (2.6) can then be rewritten as in (1.2), where the four terms in Q

match RQ. Finally, let us give a few useful expressions, such as Řab in (D.8), and

2 Rcd = ∂af
a
cd + 2ηab∂af

g
b(cηd)g − 2∂cf

b
bd + faab

(
f bcd + 2ηbgfhg(cηd)h

)
(2.20)

− f bacfabd − ηbgηahfhgcfabd −
1

2
ηahηbjηciηdgf

i
jaf

g
hb ,

Rabc = 3βd[a∂dβ
bc] − 3βd[af bdeβ

c]e = 3βd[aQd
bc] + 3βd[af bdeβ

c]e ,

T a = −Qbba +
1

2
βcdfacd .

We rederived in [1] the Lagrangian L̃β (1.2) and most of the structures just presented

(in particular ∇̌ and ωQ) from the Generalized Geometry formalism, building on [29].

Choosing the generalized vielbein Ẽ in (2.2) plays a crucial role for this purpose. We recall

some results of this derivation in section 2.2, and use them in section 3.1.2 to compute

the Spin(D,D)×R+ covariant derivative. In addition, β-supergravity can be derived from

DFT [22, 23, 28, 33].

Finally, the equations of motion for the NSNS sector of β-supergravity were de-

rived in [1]

1

4

(
R(g̃) + Ř(g̃)− 1

2
R2

)
= (∂φ̃)2 −∇2φ̃+ (βmr∂rφ̃− T m)2 + g̃mn∇̌m(βnr∂rφ̃− T n) (2.21)

Rpq − g̃m(pg̃q)nŘmn +
1

4
g̃pmg̃qng̃rsg̃uvR

mruRnsv

= −2∇p∂qφ̃− 2g̃m(pg̃q)n∇̌m(βnr∂rφ̃− T n) (2.22)

1

2
g̃msg̃rug̃np

(
e2φ̃∇̌m(e−2φ̃Rsun)− 2T mRsun

)
(2.23)

=
1

2
g̃npg̃rq g̃

sme2φ̃∇m(e−2φ̃∇sβnq) + 2g̃n[pRr]sβns

− e−2φ̃∇q(e2φ̃g̃n[p∇r]βnq) + 4g̃n[p∇r](βnq∂qφ̃) .

Those are given in curved indices. We now turn to their rewriting in flat indices.
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2.2 Equations of motion in flat indices and Generalized Geometry formalism

The equations of motion for the NSNS sector of β-supergravity, derived from L̃β (2.6)

in [1], have just been given: the one for the dilaton (2.21), the Einstein equation (2.22),

and the β equation of motion (2.23). They are in curved indices; in this section, we rewrite

them with flat indices: this allows to make the fluxes fabc and Qc
ab appear, since those are

not tensors. Having an explicit dependence on the fluxes is more convenient when looking

for solutions. It will indeed be the case in appendix D.1 when verifying that the Q-brane

is a vacuum of β-supergravity. To perform this rewriting, we follow two methods: first, a

direct approach is detailed in appendix B.1, and secondly we use the Generalized Geometry

formalism, building on [29] and the results of [1]. This second method is presented below.

Since all terms in the above equations are tensors, going to flat indices is only a

multiplication by vielbeins. The difficulty is rather to make the fluxes appear explicitly. For

the dilaton and Einstein equations, this essentially amounts to give the expressions of the

Ricci scalars and tensors in terms of the fluxes: those can be found in (2.17), (2.18), (2.19)

for the scalars, and (2.20), (D.8) for the tensors. The equation of motion for β requires

more work. Both methods lead to the following result for this equation

− 1

2
ηabηcdηef ∇̌aRbdf +Qa

gffag[cηe]f +
1

2
ff haQ[c

haηe]f (2.24)

− 1

2
Qa

agf iecηgi +
1

2
ηefηcdη

gkQg
fdfaak + ηgiη

abQa
dgf ib[eηc]d

= −1

2
ηgiβ

ga∂af
i
ce − βdf∂dfaa[cηe]f + ηf [e∂c]Qa

af

− 1

2
ηefηcdη

ab∂aQb
fd + 2ηf [e∇c]T f + ηabηcdηefR

bdf
(
βag∂gφ̃− T a

)
+ ηabηcdηef∇bβfd ∂aφ̃+ 4βabηa[c∇e]∂bφ̃+ 2ηa[c∇e]βab ∂bφ̃ .

Although it looks at first complicated, many terms would drop out upon reasonable assump-

tions: we argued in [1] in favor of an ansatz with ∀b , faab = 0 , Qa
ab = 0 , T b = 0 , ∂bφ̃ = 0

that would make several terms vanish, e.g. the last row. Finally, let us mention that a com-

plete use of (2.24) would require to expand ∇̌aRbdf , but the procedure should be straight-

forward. The resulting terms would not mix with the others, given the number of β.

Derivation using the generalized geometry formalism. We presented in [1] a useful

formulation of β-supergravity based on the formalism of Generalized Geometry, established

in [29] for standard type II supergravities. This formulation clarified the origin of the

various structures appearing in β-supergravity, including the fluxes, the covariant derivative

∇̌a, and T a. It also lead us to reobtain the Lagrangian L̃β (1.2). Using these tools, we derive

here the three equations of motion in flat indices. This amounts to compute generalized

quantities analogous to a Ricci scalar and a Ricci tensor.

The starting point of Generalized Geometry is to consider a generalized bundle with

structure group O(D,D) × R+. Various objects, covariant with respect to this structure

group, can then be constructed. The crucial one is the generalized (flat) covariant derivative

DAV
B = ∂AV

B + Ω̂A
B
CV

C , (2.25)
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that acts on a generalized vector component V B. To reproduce β-supergravity, we chose a

generalized frame related to the generalized vielbein Ẽ given in (2.2); standard supergravity

is rather obtained from E . Then, using metric compatibility, a constraint on the generalized

torsion and some further fixing, we showed in great details in [1] how to determine the

generalized connection coefficients Ω̂A
B
C (as well as ∂A). Those are essentially given in

terms of fluxes. This is analogous to the standard case of the spin connection for Levi-Civita

connection. We then restricted the structure group to O(D − 1, 1)× O(1, D − 1), leading

to covariant derivatives with respect to that subgroup. Going to the spinorial version

Spin(D − 1, 1)× Spin(1, D − 1), we obtained as well derivatives on spinors, in particular

γaDaε
+ =

(
γa∇a − γaηad∇̌d +

1

24
ηadηbeηcfR

defγabc − 1

2
γcΛc

)
ε+ , (2.26)

Daε
+ =

(
∇a + ηad∇̌d −

1

8
ηadηbeηcfR

defγbc
)
ε+ , (2.27)

Daw
a = ∇awa + ηad∇̌dwa − Λaw

a , (2.28)

Daw
b = ∇awb − ηad∇̌dwb −

1

2
ηadηcfR

dbfwc , (2.29)

where in (2.26) and (2.27), ∇ and ∇̌ are the spinorial derivatives naturally defined

from (2.15). Conventions for γ-matrices are given in appendix A, and the unbarred-barred

notation refers to the two orthogonal groups. This notation disappears when choosing

aligned vielbeins [1]. These derivatives can be rewritten as in [1] using only the following

quantities

Xabc =
1

4
ηbe

(
ωeac − ηadωQdec +

1

6
ηadηcfR

def

)
, (2.30)

Xa =
1

2

(
ωdda + ηacωQ

dc
d − Λa

)
, (2.31)

Yabc =
1

4
ηbe

(
ωeac + ηadωQ

de
c −

1

2
ηadηcfR

def

)
, (2.32)

Za = ωd
da
− ηacωQdcd − Λa , (2.33)Λa = λa + ηadξ

d

Λa = λa − ηadξd
, λa = 2∂aφ̃ , ξ

a = 2(βad∂dφ̃− T a) . (2.34)

From those derivatives, we calculated in [1] the scalar S, defined in [29] as

− 1

4
Sε+ =

(
γaDaγ

bDb − ηabDaDb

)
ε+ . (2.35)

This quantity is related to the Lagrangian, and we reproduced from it L̃β (1.2).

We obtained

S = R(g̃) +RQ −
1

2
Racdf bcdηab −

1

2
R2 (2.36)

− 4(∂φ̃)2 + 4∇2φ̃− 4(βab∂bφ̃− T a)2 − 4ηab∇̌a(βbc∂cφ̃− T b) .
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In addition, it was shown in [29] to encode the dilaton equation of motion for standard

supergravity, by considering S = 0. Here, we get the analogous result: S = 0 reproduces

the dilaton equation of motion (2.21) in flat indices.

To derive the two other equations of motion, we calculate the generalized Ricci tensor

1

2
Rabγ

aε+ = [γaDa, Db]ε
+ , (2.37)

that depends on the above derivatives.3 For standard supergravity, it was shown in [29]

that setting the symmetric part to zero, R(ab) = 0, corresponds to the Einstein equation,

while the antisymmetric part R[ab] = 0 yields the equation of motion for the b-field. In

analogy here we should obtain the equations of motion for g̃ and β taking respectively the

symmetric or antisymmetric part of Rab. Using the quantities defined above, (2.37) becomes

1

2
Rabγ

aε+ =
(
γa∂a + γaηadβ

dc∂c +Xacdγ
acd +Xaγ

a
)(

∂b − ηbgβ
ge∂e + Ybghγ

gh
)
ε+

− γaωc
ab

(
∂c − ηcgβge∂e + Ycghγ

gh
)
ε+

+ γaηadωQ
dc
b

(
∂c − ηcgβge∂e + Ycghγ

gh
)
ε+

− 1

2
γaηadηbfR

dfc
(
∂c − ηcgβge∂e + Ycghγ

gh
)
ε+ (2.38)

−
(
∂b − ηbgβ

ge∂e + Ybghγ
gh
)(

γa∂a + γaηadβ
dc∂c +Xacdγ

acd +Xaγ
a
)
ε+ .

We leave the computational details of the above expression to appendix B.2, and give here

the result. After aligning the vielbeins, and considering only the first order in γ-matrices,
1
2Rabγ

a gives(
1

2
Rba −

1

2
ηe(aηb)gŘge +

1

8
ηaeηbgηifηcdR

igcRdfe (2.39)

+∇b∇aφ̃− ηe(aηb)g∇̌g(∇̌eφ̃)− ηe(aηb)g∇̌gT e

+
1

4
ηaeηbgη

df∂dQf
eg − 1

2
ηe[a∂b]Qd

de − 1

4
βgc∂cf

e
abηge +

1

2
βgc∂cf

d
d[aηb]g

+
1

4
ηbgηaeη

chfddcQh
eg − 1

4
ηchQd

dcfhab

+
1

4
fgcdQ[a

dcηb]g +
1

2
ηe[af

h
b]dQi

ecηchη
di +

1

2
ηe[af

h
b]cQh

ec

− ηe[a∇b](∇̌eφ̃)− ηe[a∇b]T e + ηg[b∇̌g∇a]φ̃

− 1

2
ηaeηbgηfcR

gfeT c +
1

4
ηaeηbgηdfe

2φ̃∇̌d(e−2φ̃Rgfe)
)
γa .

The first order in γa will be enough to recover the equations of motion derived above, i.e.

the higher orders in γa should vanish, as they did for S [1].

3Analogous quantities to S and Rab were considered before in [40–46]; their relations to the Lagrangian

and the equations of motion were as well studied. The DFT quantities were shown in [47] to match those

of (2.35) and (2.37) for standard supergravity.
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As explained above, setting Rab = 0 and therefore the expression (2.39) to vanish, we

should obtain the equations of motion for g̃ and β. More precisely, setting the symmetric

part of (2.39) to vanish gives

1

2
Rba −

1

2
ηe(aηb)gŘge +

1

8
ηaeηbgηifηcdR

igcRdfe (2.40)

+∇b∇aφ̃− ηe(aηb)g∇̌g(∇̌eφ̃)− ηe(aηb)g∇̌gT e = 0 ,

that matches the Einstein equation (2.22). Similarly, the antisymmetric part of (2.39) gives

1

4
ηaeηbgη

df∂dQf
eg − 1

2
ηe[a∂b]Qd

de − 1

4
βgc∂cf

e
abηge +

1

2
βgc∂cf

d
d[aηb]g (2.41)

+
1

4
ηbgηaeη

chfddcQh
eg − 1

4
ηchQd

dcfhab

+
1

4
fgcdQ[a

dcηb]g +
1

2
ηe[af

h
b]dQi

ecηchη
di +

1

2
ηe[af

h
b]cQh

ec

−ηe[a∇b](∇̌eφ̃)− ηe[a∇b]T e + ηg[b∇̌g∇a]φ̃

−1

2
ηaeηbgηfcR

gfeT c +
1

4
ηaeηbgηdfe

2φ̃∇̌d(e−2φ̃Rgfe) = 0 .

This last result matches (2.24), the equation of motion for β in flat indices.4

3 Bianchi identities and NS-branes

3.1 NSNS Bianchi identities without sources

In this section, we first review the appearance of NSNS Bianchi identities (BI) through

the literature. As mentioned in the Introduction, the BI in the NSNS sector have been

treated in different ways. We recall approaches based on algebras with various brackets,

that eventually lead to the BI using their Jacobi identities. The BI have also been derived

from a nilpotency condition on generalizations of the standard exterior derivative, where

including the geometric and non-geometric fluxes plays an important role. We will then

make use of these ideas, and rederive the BI (1.7)–(1.10) by considering the square of a

Spin(D,D)× R+ derivative.

3.1.1 Sourceless NSNS Bianchi identities through the literature

In the Introduction, we gave our BI for the NSNS fluxes in the absence of source (1.7)–

(1.10). We repeat them here for convenience

∂[bf
a
cd] − fae[bfecd] = 0 , (3.1)

∂[cQd]
ab − βe[a∂ef b]cd −

1

2
Qe

abfecd + 2Q[c
e[af b]d]e = 0 , (3.2)

∂dR
abc − 3βe[a∂eQd

bc] + 3Re[abf c]de − 3Qd
e[aQe

bc] = 0 , (3.3)

βe[a∂eR
bcd] +

3

2
Re[abQe

cd] = 0 . (3.4)

4To verify this, one should multiply the equation (2.41) by 2 and match its indices (a, b) with those (e, c)

of (2.24). In addition, one can use (2.13) and (2.12) on the term in ∇̌∇φ̃.
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Let us first make a few remarks on them. As mentioned in the Introduction, the condi-

tions (3.1)–(3.4) are actually identities: they hold automatically if one uses the definitions

of the fluxes, and this is how we obtained them in the first place in [1] (see appendix C.3).

Moreover, (3.1) corresponds to the first BI of the Riemann tensor, as can be seen in the

following equalities derived from the torsionless Cartan equations

1

2
Ra[bcd] = ∂[cω

a
db] −

1

2
ωae[bf

e
cd] + ωe[cdω

a
b]e =

1

2

(
∂[cf

a
db] + fe[cdf

a
b]e

)
, (3.5)

or using d(dẽa). Similarly, (3.3) should correspond to the BI for the Riemann tensor associ-

ated to Ř, given in (3.44) or (3.47) of [23]. Finally, (3.4) can be derived from ∇̌[mRnpq] = 0

obtained in [22, 23]. The case of (3.2) is discussed around (3.39). Let us now review the

appearance of NSNS BI in the literature and draw a connection to the above relations.

Algebraic interpretation. This approach is based on having an algebra where the ge-

ometric and non-geometric fluxes appear as structure constants; the NSNS BI are then

obtained by considering the Jacobi identities of the algebra. This idea first appeared for

standard geometric backgrounds: the algebra was that of the gaugings of four-dimensional

gauged supergravity, and the generators Z and X were understood as descending from ten-

dimensional ones, for diffeomorphisms and b-field gauge transformation respectively [48–

51]. For T-duality covariance in four dimensions, this algebra was extended towards the

famous one (1.6) to include non-geometric fluxes [8, 10].5 A further extension was consid-

ered in [52] to include other sectors of supergravities. As mentioned already, the Jacobi

identities of the algebra (1.6) generate the following set of NSNS BI [8]

fe[abHcd]e = 0 (3.6)

He[bcQd]
ae + fae[bf

e
cd] = 0 (3.7)

1

2
HecdR

abe − 1

2
Qe

abfecd + 2Q[c
e[af b]d]e = 0 (3.8)

Re[abf c]de −Qde[aQebc] = 0 (3.9)

Re[abQe
cd] = 0 (3.10)

Setting the H-flux to vanish, one can see that these BI exactly match our relations (3.1)–

(3.4) for constant fluxes. Our BI can thus be thought of as a generalization when fluxes

are not constant.6

Such a generalization has already been obtained in [34].7 There, a quasi-Poisson struc-

ture given by β is considered. Applying in ten dimensions the Lie bracket on the generators

5Our conventions differ by a minus sign on the R-flux with those of [8].
6It was argued in [8] that the BI (3.6)–(3.10) could be obtained one from the other by applying T-duality

in four dimensions as described there. It would be interesting to study the behaviour of our (3.1)–(3.4)

under such a transformation.
7Relations similar to our (3.1)–(3.4) were also obtained in [53], although they do not match exactly, as

the Q-flux defined there is different, and there is no geometric flux turned on.
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Za = ∂a, X
a = βab∂b, the algebra (1.6) for H = 0 is precisely reproduced, where the def-

inition of the fluxes there match ours (up to a sign on R). A further deformation allows

to include an H-flux. The Jacobi identities of that algebra then provide NSNS BI for

non-constant fluxes. These identities are given for H = 0 in (C.1)–(C.4), and we ver-

ify in appendix C.1 that they match with our (3.1)–(3.4). This explains in another way

why our BI hold automatically: they correspond to ten-dimensional identities derived from

Lie brackets.

Finally, other approaches made use of different brackets to obtain similar results. The

algebra (1.6), at least for H = 0, was derived from a Generalized Complex Geometry

perspective [27] by considering the Courant bracket acting on generalized O(D,D) frames.

The R-flux there however does not match our definition. The algebra (1.6) is obtained again

with the Courant bracket, acting this time on standard frames and co-frames (flat vectors

and one-forms) in [34]; similar results appear in [54] with an emphasis on the related Dirac

structures. The corresponding Jacobiators derived in [34] contain some terms encoding the

aforementioned BI (C.1)–(C.4). A Double Field Theory (DFT) extension of these ideas

can be found in [33], where the C-bracket [41, 55] is used: this DFT generalization of the

Courant bracket reduces to the latter upon the strong constraint ∂̃ = 0. Acting this way

on generalized vielbeins, the algebra (1.6) is reproduced in an O(D,D) covariant manner.

The related Jacobi identity would be given by two terms, one of which is proportional

to a quantity ZABCD that can be decomposed and reduced into the various BI (3.1)–

(3.4), as detailed in appendix C.1. Another generalization of the Courant bracket, called

the Roytenberg bracket, was also used in [56] to write the algebra (1.6). In Exceptional

Field Theory, a generalized Lie derivative is introduced [57] and its closure conditions,

that can be thought of as related to Jacobi identities of a bracket, are shown to generate

BI, including (3.1). Finally, in the CFT approach of [58], the algebra (1.6) is directly

reproduced from actions of (asymmetric) orbifolds.

Nilpotent derivative. Besides the algebraic approach to derive the BI by evaluating

Jacobi identities, there is a second proposal using a generalization of the standard exterior

derivative. Imposing a nilpotency condition on this derivative is equivalent to a set of

constraints that turn out to be the BI. The first simple illustration of that idea is given in

the Introduction, particularly in (1.5), with the square of the derivative d−H∧ on a p-form

A. In [11], a generalization of d−H∧ that includes all NSNS geometric and non-geometric

fluxes was proposed. It is given here in our conventions by

DstwA =(−H ∧ −f · −Q ·+R∨)A , (3.11)

f · = 1

2!
fabc ẽ

b ∧ ẽc ∧ ιa , Q· = 1

2!
Qc

ab ẽc ∧ ιa ιb , R∨ =
1

3!
Rabc ιa ιb ιc ,

where ιa and ∨ denote contractions on forms, and we refer to appendix A for more conven-

tions. More precisely, this derivative was given without the numerical coefficients that we

add here, and was rather specified on the component of the form A, i.e. without the contrac-

tions. This corresponds to a four-dimensional perspective, where fluxes and A only appear

through constant components after being integrated over an internal space. This explains
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the absence of a derivative on the component of A. It was then claimed that the nilpotency

condition D2
stw = 0 would reproduce the NSNS BI for constant fluxes (3.6)–(3.10). This

claim was made more precise in [36] where the previous derivative was completed by two

more terms as

D]A =
(
− 1

3!
Habcẽ

a ∧ ẽb ∧ ẽc ∧ − 1

2!
fabc ẽ

b ∧ ẽc ∧ ιa −
1

2!
Qc

ab ẽc ∧ ιa ιb

+
1

3!
Rabc ιa ιb ιc −

1

2
faab ẽ

b ∧+
1

2
Qa

ab ιb

)
A . (3.12)

More precisely, we again rewrite a formula that was given on form components, namely

(B.3) of [36], using here forms and contractions; also, our conventions differ by a minus sign

on the H-flux. The two new terms given by the traces of f and Q will play an important

role, together with dilaton terms, when we define later on the Spin(D,D)×R+ derivative.

They were already important in [36], where an explicit computation of the nilpotency

condition for the derivative (3.12) lead to

D2
] = 0 ⇔ BI (3.6)− (3.10) and

1

3
HabcR

abc +
1

2
faabQa

ab = 0 . (3.13)

The nilpotency condition reproduces the NSNS BI (with constant fluxes) together with an

extra scalar constraint that includes the traces of f and Q. Note that particular indices

contractions of the BI also appear in this computation; the same will happen for our

derivative in section 3.1.2.

As mentioned already in [11] (see also [59]), the derivative d−H∧ enters the BI of the

RR fluxes for type II supergravities, given by (d−H∧)F = 0 in the sourceless case. Here,

F is the polyform given by the sum of the RR fluxes (we set F0 = 0 for simplicity); one has

F = (d−H∧)C for a polyform gauge potential C. The polyforms F and C can actually be

interpreted as an O(D,D) spinor: this was pointed out in [60–64], and it could be guessed

from the SUSY conditions of [65]. This idea lead in [33, 66] to define at the level of DFT

F = DC, where D = ΓADA denotes the Dirac operator associated to a Spin(D,D) × R+

covariant derivative DA, and ΓA are Spin(D,D) Clifford matrices. A related derivative

appeared already in [27, 67, 68].

So this spinorial derivative is somehow natural to consider, and we will do so in sec-

tion 3.1.2 at the level of standard supergravity and β-supergravity, using its generic Gen-

eralized Geometry definition; the one of [33] is then the DFT extension. The non-trivial

point we make in this paper is that the vanishing square of this spinorial derivative should

give the NSNS BI, in analogy to d−H∧. In other words, as we will show using the Clifford

map on the Γ-matrices, this Spin(D,D) × R+ derivative reproduces and generalizes the

above D]. Although this idea is not explicitly mentioned in [33], D2 is already computed

there in (4.13) at a generic level, and it gives a hint on the results to be derived. Indeed,

this square depends on various quantities among which ZABCD and Z. We show in ap-

pendix C.1 that the former reduces to our BI (3.1)–(3.4) while the latter contains the scalar

quantity appearing (3.13). So a nilpotency condition of this spinorial derivative does look

relevant; we now turn to it.

– 16 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
9

3.1.2 The Spin(D,D) × R+ covariant derivative

We have just motivated the introduction of the Spin(D,D)×R+ covariant derivative, that

we consider here at the level of the Generalized Geometry formalism. We first construct it

generically, as well as the corresponding Dirac operator, and further express it for different

generalized frames: the one with a b-field for standard supergravity, and the one with a

β for β-supergravity. To do so, we use conventions and results of [1], especially the value

of connection coefficients. We verify in a second part that the nilpotency condition on

this spinorial derivative for β-supergravity exactly reproduces our BI (3.1)–(3.4), together

with the scalar condition mentioned in (3.13). We also clarify the relation to the above

D] of [36].

We start with the O(D,D)×R+ generalized covariant derivative of (2.25). From it, the

corresponding spinorial derivative DA (with generalized flat index) can be written down,8

as well as the Dirac operator D on a spinor Ψ ∈ Γ(S±(1/2)) [29]

DΨ = ΓADAΨ = ΓA
(
∂A +

1

4
ΩABCΓBC − 1

2
ΛA

)
Ψ . (3.14)

The Γ-matrices satisfy the Clifford algebra

{ΓA,ΓB} = 2ηAB, η =
1

2

(
0 1

1 0

)
, η−1 = 2

(
0 1

1 0

)
. (3.15)

Here η of coefficients ηAB denotes the O(D,D) metric. A particular representation of this

algebra is given by the Clifford map

ΓA =

{
Γa = 2ẽa ,

Γa = 2ιa ,
with {ẽa, ẽb} = 0 , {ẽa, ιb} = δab , {ιa, ιb} = 0 . (3.16)

We will use it to express the Dirac operator with fluxes, forms and contractions, in a

generalization of the standard exterior derivative acting on a p-form A. The spinor Ψ

should then be understood as polyform [65]. For now, we can simplify (3.14) using the

identity ΓAΓBC = ΓABC + ηABΓC − ηACΓB that relates antisymmetrized products of Γ-

matrices. Using the compatibility condition, we get

DΨ = ΓADAΨ =

(
ΓA∂A +

1

4
ΩABCΓABC +

1

2
(ΩD

D
C − ΛC)ΓC

)
Ψ (3.17)

=

(
ΓA∂A +

1

4
Ω̂ABCΓABC +

1

2
Ω̂D

D
CΓC

)
Ψ

≡
(
D1 +D2 +D3

)
Ψ .

Let us point out that D3 denotes the trace part due to the extension of the O(D,D) by the

conformal factor R+, that usually combines the determinant of the metric and the dilaton.

8In (3.14), the index B of the generalized connection coefficient has been lowered with the O(D,D)

metric.
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We now determine these three terms for different choices of generalized frames. Fol-

lowing [1], such a choice can fix ∂A, ΩA
B
C and ΛA. For the Γ-matrices, we use the Clifford

map (3.16): forms and contractions act on the one-forms in A while a derivative ∂a· only

acts on the (flat indices) component of A. Details on the computation of D2 are given in

appendix C.2.

Standard supergravity. Using the generalized frames with b-field, we obtain

D1 = 2∂a · ea∧ (3.18)

D2 = −f cabea∧ eb∧ ιc − fddcec∧ −
1

3
Habce

a∧ eb∧ ec∧ (3.19)

D3 = faab e
b ∧ −2∂aφ e

a∧ , (3.20)

that sums up to D given by

1

2
DA =

(
∂a · ea∧ −

1

2
f cabe

a∧ eb∧ ιc −
1

6
Habce

a∧ eb∧ ec∧ −∂aφ ea∧
)
A (3.21)

= eφ (d−H∧) (e−φA) . (3.22)

β-supergravity. Using the generalized frames with β, we obtain

D1 = 2∂a · ẽa∧+2βab∂b · ιa (3.23)

D2 = −f cabẽa∧ ẽb∧ ιc − fddcẽc∧ −Qabcẽa∧ ιb ιc +Qd
dcιc +

1

3
Rabcιa ιb ιc (3.24)

D3 = faab ẽ
b ∧ −2∂aφ̃ ẽ

a ∧+Qa
ab ιb − 2(βab∂bφ̃− T a) ιa . (3.25)

Adding up these various pieces, we find

D = 2∂a · ẽa∧+2βab∂b · ιa − f cab ẽa∧ ẽb∧ ιc − 2∂aφ̃ ẽ
a ∧ (3.26)

−Qabc ẽa∧ ιb ιc + 2Qd
dc ιc − 2(βab∂bφ̃− T a) ιa +

1

3
Rabc ιa ιb ιc ,

where the second row could be further simplified using the definition of T a. We can rewrite

this result differently, using the following relations for a 2-form A (easily extendable to

higher forms)

1

2
ιa∇̌a(Abd)ẽb ∧ ẽd =

(
− βac∂cAad +Qa

acAdc −
1

2
Qd

acAac

)
ẽd , (3.27)

Qa
bc ẽa∧ ιb ιc

(
1

2
Aef ẽ

e ∧ ẽf
)

= −QaefAef ẽa ,

Qc
caιa

(
1

2
Abdẽ

b ∧ ẽd
)

= Qc
caAadẽ

d . (3.28)

These relations are derived using the definitions and properties of ∇̌, Q, and conventions

of appendix A. From them, we deduce, as given in (1.16)

1

2
DA = eφ̃(∇a · ẽa ∧ −∇̌a · ιa + T ∨+R∨)(e−φ̃A) , (3.29)
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where ∇a · ẽa∧ = d, as we act on forms. The second term gives an interesting counterpart

to the exterior derivative.

The resulting D for standard supergravity is a known spinorial derivative [65], and its

square gives the standard NSNS BI as mentioned in (1.5). We are now going to show the

analogous result for the β-supergravity derivative and our BI (3.1)–(3.4). A first hint is

given by the comparison to the above derivative D] of [36] given in (3.12). For constant

forms and fluxes, we recognise that in both cases (β or b vanishes), one has

D] =
1

2
D2 . (3.30)

The natural completion of D] in the case of non-constant fluxes would have been by deriva-

tives, as given by D1. Interestingly, we will see that this is not enough to recover the BI:

the additional traces and dilaton terms of D3 are also needed. So we now turn to the study

of the nilpotency condition for the above derivative D of (3.26)

D2A = 0 . (3.31)

We compute in appendix C.2 this condition in details. It produces the following set of

seven equations

−1

2
∂[af

d
bc] +

1

2
fdg[af

g
bc] = 0 (3.32)

−1

2
Qd

dafgga = 0 (3.33)

−3

2
βde∂[ef

b
da] +

3

2
βdef bh[af

h
ed] = 0 (3.34)

−1

2
(∂[aQc]

de − βg[d∂gfe]ac) +
1

4
(−4f [dg[aQc]

e]g + fgacQg
de) = 0 (3.35)

−1

2
βdc∂cQd

ab − 1

2
βcdβg[a∂gf

b]
cd − βdcQcg[af b]dg +

1

4
βdcQg

abfgcd = 0 (3.36)

1

6
(∂aR

bcd − 3βe[b∂eQa
cd])− 1

2
(−Rg[bcfda]g +Qa

g[dQg
bc]) = 0 (3.37)

−1

6
βg[a∂gR

bcd] − 1

4
Qg

[abRcd]g = 0 . (3.38)

It is remarkable that the dilaton terms completely cancel out. All of the above equations

are not independent. (3.34) is a contraction of (3.32) by β, and similarly (3.36) is a contrac-

tion of (3.35). We are then left with a set of five independent identities. These are exactly

the four Bianchi identities listed before: (3.32) matches (3.1), (3.35) matches (3.2), (3.37)

matches (3.3), (3.38) matches (3.4). So the square of this spinorial derivative (3.26) pre-

cisely produces the BI. In addition we find the scalar condition derived in [36], and given

in (3.13), from the fully contracted terms (3.33).

Given this result, and the expression of D given in (3.29), we deduce on a two-form A{
∇a · ẽa∧ , ∇̌b · ιb − T ∨

}
A = −1

2

(
3 βebSaebc Aad + Sabcd Aab

)
ẽc ∧ ẽd , (3.39)

where the quantities S are defined in section 3.2.3 and correspond to the l.h.s. of the BI (3.1)

and (3.2). This gives a tensorial form to (3.2), since such a form for (3.1) was already

mentioned around (3.5). The cases of (3.3) and (3.4) were discussed below the latter.
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3.2 T-dual NS-branes sourcing the Bianchi identities

As presented in the Introduction, the Bianchi identity (BI) for the H-flux gets modified

with a source term on its right-hand side (r.h.s. ) in the presence of an NS5-brane. We

show in this section that the BI (3.1)–(3.4) just studied get corrected similarly if other NS-

branes are present, namely for a Kaluza-Klein (KK) monopole or a Q-brane. These are

vacua of standard supergravity and β-supergravity. Up to smearing, they are T-dual to the

NS5-brane. We first present these solutions following the literature. We then focus on the

smearing procedure that allows T-dualities along isometry directions. This clarifies how

the different warp factors can be the appropriate Green functions in the Poisson equations

of each brane. We finally verify how the branes are related by T-duality. We further show

that the above BI on the brane vacua boil down to the Poisson equations, allowing the

emergence of the source term. This study establishes β-supergravity as a nice framework

to describe Q-branes.

3.2.1 NS-branes solutions

We present here the various NS-branes, starting with the NS5-brane that sources the H-

flux. The NS5-brane solution was first given in the limit of zero size instanton in [69],

and presented in a broader context in [70] as corresponding to the case where the gauge

field vanishes. More generalizations and references can be found in [71, 72]. Smearing and

T-dualising it along one direction leads to the KK-monopole, which was first discovered

as a solution to pure five-dimensional general relativity (see [73, 74], and [35] for more

references); it sources the geometric flux. A further smearing and T-duality along another

direction leads to a new brane known as the 522-brane [30, 31] or Q-brane [32]. It is one of

the exotic branes [30–32, 75–78]: those recently received much attention, as being related

to standard branes by different U-dualities. Q-branes are non-geometric vacua of standard

supergravity, but become geometric in β-supergravity [32, 33] and then source the Q-flux.

NS5-brane. The NS5-brane is physically a codimension 4 object, i.e. it is located in

four dimensions that are singled out as we will see below; it is the magnetic counterpart of

the fundamental string. The original solution takes the following form9

ds2 = ds26 + fH dŝ24 , Hmnp = −
√
|g4|ε4mnpqgqr∂r ln fH , e2φ = fH (3.40)

where dŝ24 =
∑

m=1...4

(dxm)2 , r24 =
∑

m=1...4

(xm)2 , fH = e2φH +
q

r24
,

and ds26 is the Minkowski metric. dŝ24 is the flat Euclidian metric, and gives the transverse

directions. The warp factor fH depends on the radius r4 and on two constants, the value

at ∞ of the dilaton φH , and q that is related to the tension of the brane. The H-flux

is proportional to the volume form coefficient of the transverse four-dimensional space

9We have a factor of 2 difference for the H-flux with respect to the conventions of [70]. Note that the

warp factor given here is not considered in [33, 79], as only the KK-monopole and T-duals are used there.

In particular, only the smeared warp factor of the NS5-brane is present there.
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√
|g4|ε4mnpq (see appendix A for conventions). Given the transverse metric, we can simplify

the expression for the H-flux towards

Hmnp = −ε4mnpqδqr∂rfH . (3.41)

Kaluza-Klein monopole. The KK-monopole is considered here as a codimension 3

brane. This solution is given by

ds2 = ds26 + fK dŝ23 + f−1K (dx+ ady)2 , Hmnp = 0 , e2φ = 1 (3.42)

where dŝ23 = dρ2 + ρ2dϕ2 + ρ2 sin2 ϕ dy2 , fK = e2φK − qK
ρ
.

The metric ds26 is still that of Minkowski, and the metric dŝ23 is the flat space one. But

we prefer here to use spherical coordinates {ρ, ϕ, y} for the three transverse directions.

The radius ρ will sometimes be denoted r3 below. The warp factor fK depends on two

constants, φK denoted this way for convenience, and qK that we will relate to the above q in

section 3.2.2.10 Finally, the important quantity in the solution is a. It is like a connection

one-form coefficient and is a priori not gauge invariant. Away from the singularity, one has

a(ϕ) = qK cosϕ for ρ > 0 . (3.44)

We will complete it towards

a(ρ, ϕ) = cosϕ ρ2∂ρfK , (3.45)

for reasons to be detailed in section 3.2.3. From this we will deduce the corresponding

(geometric) flux; the latter will be a better defined quantity to consider. It will be given

by

fxϕy = f
− 3

2
K ∂ρfK . (3.46)

Q-brane. The Q-brane is a codimension 2 brane. This solution is better described in

terms of β-supergravity as

ds̃2 = ds26 + fQ dŝ22 + f−1Q (dx2 + dy2) , only βxy = −βyx 6= 0 , e2φ̃ = f−1Q

where dŝ22 = dρ2 + ρ2dϕ2 , fQ = e−2φ̃Q − qQ ln ρ . (3.47)

Its expression in terms of standard supergravity is given below in (3.86). The metric ds26 is

again Minkowski, and dŝ22 is the flat metric, given this time using polar coordinates {ρ, ϕ}
for the transverse directions. The radius ρ will sometimes be denoted r2 below. The warp

factor fQ depends on two constant, φ̃Q denoted this way for convenience, and qQ that

we will relate to q in section 3.2.2. φ̃Q may contain a cutoff when ρ → ∞, as mentioned

10A warp factor for the KK-monopole depending on x was considered in [80, 81], and related to world-

sheet instantons corrections [82] (see also [77]). One can verify that it matches ours far away from the brane

fK(ρ, x) =
1

g2
+

1

2ρ

sinh ρ

cosh ρ− cosx
. (3.43)
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in [30, 31]; we will rediscuss this point in section 3.2.2. Finally, as for the KK-monopole and

a, the field β is here not a well-defined quantity. Still, we will consider (in curved indices)

βxy = −ϕ ρ∂ρfQ ⇒ βxy = qQ ϕ forρ > 0 . (3.48)

The Q-flux is a better defined quantity. It will be given by (in flat indices)11

Qϕ
xy = −f−

3
2

Q ∂ρfQ . (3.50)

We verify explicitly in appendix D.1 that the Q-brane is a solution to the equations of

motion of β-supergravity. In [32], using a different method, this result is somehow obtained

away from the singularity.

3.2.2 Smearing warp factors and Poisson equations

The brane solutions that we have just presented are related by smearing and T-dualising

along transverse directions. We focus here on the different warp factors, and show how

smearing relates one warp factor to the other. This explains how each of those can satisfy

the appropriate Poisson equation. To get familiar with these ideas, we start with the

well-known case of p-branes solutions, before turning to NS-branes.

Warm-up: Dp-branes. A p-brane is a type II supergravity background that provides

an effective description of a Dp-brane in some regime. This solution contains in particular

a dilaton that depends on the warp factor Zp(r), and the metric is given by

ds2 = Z
− 1

2
p ds2|| + Z

1
2
p ds2⊥ , (3.51)

where ds2|| is the Minkowski space-time along the brane, ds2⊥ the flat Euclidian space

transverse to the brane, r the Euclidian radius for the latter, and

Zp(r) = 1 +
qp
r7−p

, for p ≤ 6 , (3.52)

with qp a constant related to the tension of the brane. The Ramond-Ramond (RR) flux F

of this background verifies typically a BI of the form

dF = Q δ(x⊥) . (3.53)

11As usual, the three fluxes are the same in flat indices, up to a sign on the structure constant. For the

H-flux, one can choose coordinates that isolate the coordinate r4. The corresponding metric element would

still only be given by a warp factor, so one would get

Hmnp = −
√
|g3|ε4mnp(r4)f

− 3
2

H ∂r4fH . (3.49)

The remaining volume factor is then removed when going to flat indices (see the conventions on ε in the

appendix A). So the three fluxes are the same in flat indices, although one needs to take the same warp

factor. This only happens when there is smearing, i.e. in the case of T-duality, as we will show below. It is

definitely in that case that we expect the equality of the fluxes, as given in the T-duality chain of [8].
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The flux is sourced by the brane, localised by the δ in its 9− p transverse directions,12 and

carrying a charge Q. Using for instance the transverse Hodge star ∗⊥, one can extract the

forms to leave only coefficients, in particular the density δ(9−p)(x⊥). The Bianchi identity

then typically boils down to the scalar equation (up to a proper normalisation)

∆9−pZp = δ(9−p)(r) , (3.55)

where ∆9−p is the Laplacian of the unwarped metric ds2⊥. The appearance of the latter

can be understood for F = ∗dC with C the dual potential.13 This scalar equation is a

Poisson equation; solving it means finding the Green function for the Laplacian given some

boundary conditions. The solutions to this problem are known: for two dimensions, one

has ln r, and for d⊥ ≥ 3, one has 1
rd⊥−2 . For d⊥ = 3, this is the well-known electrostatic

potential. The radial dependence in the transverse space directions d⊥ = 9 − p coincides

precisely with that of Zp (3.52) as expected.

We now consider T-dualities on these branes. T-dualising along a transverse direction

is known to extend a Dp-brane to a Dp+1-brane. Can this be seen on the above solutions?

The standard “radius inversion” of T-duality inverts a warp factor in the metric, so the

correct powers of warp factor are obtained by applying the Buscher rules. However, the

warp factor itself should also be changed from Zp to Zp+1, as well as the radius of the

transverse directions, from r9−p to r9−(p+1). This is rather obtained from the smearing

required by T-duality, as explained in [85]: a transverse direction of coordinate x, along

which we want to T-dualise, is a priori not an isometry, since Zp depends on x. To allow

the T-duality, we first make it an isometry by smearing, that amounts to averaging in

this direction

Zp+1(r9−(p+1)) ∼
∫

dx Zp(r9−p) , r29−p = x2 + r29−(p+1) . (3.56)

The smeared p-brane is then T-dual to the (p+ 1)-brane. Interestingly, the Poisson equa-

tions are also consistent under this procedure

∆9−pZp =
(
(∂x)2 + ∆9−(p+1)

)
Zp = δ(9−p)(r9−p) (3.57)

⇒
∫

dx
(
(∂x)2 + ∆9−(p+1)

)
Zp =

∫
dx δ(9−p)(r9−p) (3.58)

⇔
(

0 + ∆9−(p+1)

∫
dx

)
Zp = δ(9−(p+1))(r9−(p+1)) (3.59)

⇔ ∆9−(p+1)Zp+1 = δ(9−(p+1))(r9−(p+1)) . (3.60)

In the last but one line, we use conditions on the warp factor and its derivatives that will

be verified in the examples below. In this derivation, we actually only need the warp factor

12The (9− p)-form δ(x⊥) of (3.53) can also be viewed as a current, and defined through∫
||
Ap+1 =

∫
10

Ap+1 ∧ δ(x⊥) (3.54)

for any (p+ 1)-form Ap+1 (see for instance [83, 84]).
13The BI and resulting scalar equation are sometimes more complicated, depending on what exactly is

F . For example, an additional constant next to the δ can be obtained, see for instance [85].
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without its pure constant part, since only its derivatives are involved. So that is what we

meant in (3.56), and what will be used in the following.

The NS-branes share many features with the p-brane solutions. They both have warp

factors that determine the transverse directions. The constants in the warp factors are

related to the tension of the brane, although they scale differently in eφ0 = gs. Finally, these

warp factors take analogous forms, corresponding to the various Green functions in different

(co)dimensions. As we will see, the NS-branes satisfy as well Poisson equations. They

actually follow the same logic as the Dp-branes: up to smearing, they are T-dual. Their

(co)dimension, metric and warp factors given above match all the criteria just discussed

for that to hold. We will verify explicitly the T-duality relations and derive the Poisson

equations from the Bianchi identities in section 3.2.3. Before doing so, let us first relate

their different warp factors by smearing as just explained for the p-branes.

NS5-brane. The Bianchi identity for the H-flux of the NS5-brane is given by dH, pro-

portional to (∝)

∂[mHnpq] = −∂[mε4npq]rδrs∂sfH ∝ ε4mnpqδ
rs∂r∂sfH , (3.61)

where we used the expression of the H-flux (3.41). One therefore gets that

dH ∝ v̂ol4 ∆4fH , ∆4 =
∑

m=1...4

(∂m)2 , (3.62)

with the four-dimensional volume form v̂ol4. The Bianchi identity in presence of a source

is given by dH ∝ v̂ol4 δ
(4)(r4), so the warp factor has to solve the Poisson equation

∆4fH = cH δ(4)(r4) , (3.63)

with a constant cH . In other words, fH/cH should be a Green function for the four-

dimensional Laplacian ∆4. A known Green function for this problem is 1
r24

, so fH given

in (3.40) certainly solves the Poisson equation. A crosscheck of this result is that away from

the singularity r4 = 0, the Poisson equation boils down to the Laplace equation, meaning

∆4fH = 0 for r4 > 0 . (3.64)

One can verify that this holds for fH of (3.40).

Kaluza-Klein monopole. We turn to the KK-monopole. We follow the procedure

explained above, by smearing the NS5-brane along one direction x. First, we introduce

the new three-dimensional radius r23 = r24 − x2. Then, we smear the warp factor without

its constant fH − e2φH to get the new one fK up to its constant e2φK , as follows

fK(r3)− e2φK =

∫ +∞

−∞
dx (fH(r4)− e2φH ) =

[
q

r3
arctan

(
x

r3

)]+∞
−∞

=
qπ

r3
. (3.65)

This new warp factor matches the one given in (3.42) with qK = −πq. In addition, it is a

known solution to the three-dimensional Poisson equation

∆3fK = cK δ(3)(r3) , (3.66)
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the well-known electrostatic potential. One can straightforwardly verify that

∆3fK = 0 for r3 > 0 . (3.67)

This result was expected from the discussion around (3.57)–(3.60). One condition for this

procedure to work is that the derivative of the warp factor vanishes on the boundary. Here

this holds, as ∂mfH = −2q xm

r44
∼∞ − 2q

(xm)3
. The same will be true for the further warp

factors (the power of xm in the denominator decreases by one at each step).

Q-brane. We should now obtain the warp factor fQ of the Q-brane by smearing the

previous one along a further direction y. We introduce the two-dimensional radius r22 =

r23 − y2, and the boundary constant e−2φ̃Q . We introduce further ε that will be sent to ∞,

and the function arsinhx = ln(x+
√

(x2 + 1)). Then

fQ(r2)− e−2φ̃Q =

∫ +ε

−ε
dy (fK(r3)− e2φK ) = qπ

[
ln

(
y +

√
(y2 + r22)

r2

)]+ε
−ε

(3.68)

= qπ

[
ln

(
y +

√
(y2 + r22)

)]+ε
−ε

.

The function arsinhx is odd, from which we get the property

ln

(
−y +

√
(y2 + r22)

)
= − ln

(
y +

√
(y2 + r22)

)
+ 2 ln r2 .

We deduce

fQ(r2)− e−2φ̃Q = 2qπ ln

(
ε+

√
(ε2 + r22)

)
− 2qπ ln r2 .

This diverges when taking the limit ε→∞. We therefore need a cutoff, as argued in [31],

to remove this divergence.14 Up to a redefinition of the constant φ̃Q to absorb it, one

obtains

fQ(r2) = e−2φ̃Q − 2qπ ln r2 . (3.69)

This warp factor matches the solution (3.47) with qQ = 2πq. In addition, it is a known

solution to the two-dimensional Poisson equation

∆2fQ = cQ δ(2)(r2) . (3.70)

One can straightforwardly verify that

∆2fQ = 0 for r2 > 0 . (3.71)

14It would be interesting to study whether the divergence is related to the non-geometry, and thus whether

the field redefinition could avoid it, by for instance including volume factors in the integral relation (3.56).
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R-brane? It is tempting to go one step further: we smear along the direction z to get

the warp factor fR of a hypothetical R-brane, with constant e2φ̃R . We introduce the one-

dimensional radius that depends on the left-over coordinate w: r21 = r22 − z2 = w2. We

introduce again an ε that will be sent to ∞. Then

fR(r1)− e2φ̃R =

∫ +ε

−ε
dz (fQ(r2)− e−2φ̃Q) = −qπ

∫ +ε

−ε
dz ln(z2 + r21) (3.72)

= −qπ
[
z ln(z2 + r21)

]+ε
−ε + qπ

∫ +ε

−ε
dz z

2z

z2 + r21
(3.73)

= −2qπε ln(ε2 + r21) + 2qπ

∫ +ε

−ε
dz

(
1− r21

z2 + r21

)
(3.74)

= −2qπ
(
ε ln(ε2 + r21)− 2ε

)
− 2qπr1

[
arctan

(
z

r1

)]+ε
−ε

. (3.75)

As for the Q-brane, the first term diverges. We consider again a cutoff and absorb it in a

redefinition of the constant. We are then left with the second term, that gives for ε→∞

fR(r1) = e2φ̃R − 2qπ2r1 = e2φ̃R − 2qπ2|w| . (3.76)

The absolute value is known to be a solution of the one-dimensional Poisson equation

∆1fR = cR δ(1)(r1) , (3.77)

and one can again verify that away from the singularity,

∆1fR = 0 for r1 > 0 . (3.78)

Although smearing the warp factor seems to work and to yield a consistent result,

performing a T-duality along z is more challenging. It would require to smear as well the

b-field or the β, for which there is no clear procedure. Maybe one could rather consider a

direct T-duality transformation of the flux, as proposed in [86], since the flux is a better

defined quantity that does not depend on z. We hope to come back to this possible R-brane

solution in a future work. Note that it should be different than the one proposed in [32],

that rather involves a dual coordinate.

3.2.3 Smeared branes, T-duality and sourced Bianchi identities

We have just shown how the warp factors of the different branes are related by smearing,

and how this allowed them to solve the various Poisson equations. We have now all the

tools necessary to T-dualise the (smeared) NS-branes into one another, and then verify

that the Bianchi identities (3.1)–(3.4) for their fluxes lead to the Poisson equations. We

start with the Q-brane, as it involves most of the ingredients needed for the others.

Q-brane. We are going to obtain the Q-brane by T-dualising the NS5-brane along two

directions. To do so, we should first smear the latter. This amounts to consider the

smeared warp factor fQ of (3.47) instead of the standard fH of (3.40), and to use cylindrical

coordinates: ρ = r2 and ϕ for polar coordinates, and x, y cartesian for the two smeared
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directions. Those coordinates are the most appropriate, not only because of the two-

dimensional radius in fQ, but also for T-duality. Unless one uses a procedure as the one

of [86], T-duality requires to have a b-field. Given the expression of the H-flux in (3.41)

and the relation Hmnp = 3∂[mbnp], it is much simpler to obtain a b-field that respects the

isometries using those coordinates. So starting with (3.40), the (twice) smeared NS5-brane

is given by

ds2 = ds26 + f dŝ24 , Hmnp = −ρ ε4mnpρ∂ρf , e2φ = f (3.79)

where dŝ24 = dρ2 + ρ2dϕ2 + dx2 + dy2 , f = fQ , (3.80)

in curved cylindrical indices. Fixing ε4ρϕxy = +1 (see conventions in appendix A), one

computes away from the singularity the only non-trivial component of the H-flux

Hϕxy = qQ for ρ > 0 , (3.81)

in curved indices. We then choose the following gauge for the b-field

bxy = −byx = qQ ϕ for ρ > 0 , (3.82)

so that it respects the isometries. To include the singularity, it is tempting to define

bmn = ε4ρϕmn a(ρ, ϕ) , with a = −ϕ ρ∂ρf , (3.83)

that gives the correct expression when acting with ∂ϕ. But it leads to undesired H-flux

components at the singularity when acting with ∂ρ. This same ambiguity will appear below

for the KK-monopole and the Q-brane. So it is important to keep it in mind: we consider

this completed but ambiguous b-field, and the trick to get the good fluxes is to set ∂ρa = 0.

We now T-dualise along x. Applying the Buscher rules,15 we get no b-field and

ds2 = ds26 + f dŝ23 + f−1(dx+ ady)2 , Hmnp = 0 , e2φ = 1 (3.84)

where dŝ23 = dρ2 + ρ2dϕ2 + dy2 . (3.85)

This corresponds to the KK-monopole (3.42) smeared along y, as can be seen from the

warp factor and the coordinates. The smeared a present here can only be understood

through this T-duality procedure though. Finally, we T-dualise along y and get

ds2 = ds26 + f dŝ22 + f−1
(

1 +
a2

f2

)−1
(dx2 + dy2) ,

bxy = −byx = −af−2
(

1 +
a2

f2

)−1
, (3.86)

e2φ = f−1
(

1 +
a2

f2

)−1
, where dŝ22 = dρ2 + ρ2dϕ2 ,

15In [37] are given Buscher rules in terms of g and b that are equivalent to the transformation (4.11). We

use those, with a minus sign difference on the b-field, due to conventions.
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which has been argued in [30] to be non-geometric. Using the field redefinition (2.1), we

get precisely the Q-brane solution (3.47)

ds̃2 = ds26 + f dŝ22 + f−1(dx2 + dy2) , βxy = −βyx = a , e2φ̃ = f−1 (3.87)

where dŝ22 = dρ2 + ρ2dϕ2 . (3.88)

Going around the singularity (i.e. moving along ϕ at ρ > 0), β gets shifted by a constant

along the isometry directions: the gluing is then done by a β-transform, and this solution

is part of the class studied in sections 4.2 and 4.3. The T-dual background given by the

smeared NS5-brane also has a linear b-field. As described in those sections, such a situation

leads typically to a non-geometry, as in (3.86).

Let us now determine the fluxes of this solution. The vielbein is given by

ẽ =


f

1
2

f
1
2 ρ

f−
1
2

f−
1
2

 , (3.89)

from which we deduce the non-zero structure constants or geometric flux (A.2)

fϕρϕ = −1

2
f−

3
2∂ρf − f−

1
2 ρ−1 , fxρx = fyρy =

1

2
f−

3
2∂ρf , f

a
bc = −facb , (3.90)

where with some abuse of notation we denote on the l.h.s. the flat indices with the cor-

responding curved space coordinate, and on the r.h.s. the derivative has a curved index.

We now compute the Q-flux. It is worth noticing that the Q-brane solution verifies the

condition βmn∂n· = 0, as pointed out in [32]; this holds even at the singularity. Then,

one has

Qc
ab ≡ ∂cβab − 2βd[af b]cd

βmn∂n·=0
ẽpcẽ

a
mẽ

b
n∂pβ

mn , (3.91)

as can be seen from (4.22), while Rabc = 0. Recalling the ambiguity of the b-field and

a in the NS5-brane discussed around (3.83), one gets the only non-trivial component of

the Q-flux

Qϕ
xy = −f−

3
2∂ρf , (3.92)

where we mean again flat indices, and the derivative has a curved index. This result

matches precisely the smeared NS5 H-flux in flat indices, which confirms the validity of

our procedure.

Finally, we turn to the BI. Given the fluxes just determined and using some antisym-

metry arguments, one can see that (3.1), (3.3) and (3.4) are satisfied. Let us rather focus

on (3.2), and the quantity

Sabcd = ∂[cQd]
ab − βe[a∂ef b]cd −

1

2
Qe

abfecd + 2Q[c
e[af b]d]e . (3.93)
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The second term vanishes here. We fix (c, d, a, b) to be (ρ, ϕ, x, y): this is the only non-

trivial choice, up to antisymmetries. One gets

Sxyρϕ =
1

2
f−

1
2∂ρQϕ

xy − 1

2
Qϕ

xy(fϕρϕ − fyρy − fxρx) (3.94)

= −1

2
f−2

(
∂2ρf + ρ−1∂ρf

)
= −1

2
f−2∆2f , (3.95)

where ∆2 is the two-dimensional Laplacian obtained here in polar coordinates, since f does

not depend on ϕ. As argued in (3.70), f is here the Green function for ∆2 up to a constant

cQ. So we propose the following correction of the BI (3.2) due to the source

Sabcd = −
cQ
2
f−2 ε2⊥cd ε2||ef η

eaηfb δ(2)(ρ) , (3.96)

where we took into account the constraints on the indices. This results in the BI (1.12),

and we have just shown that the Q-brane solves it.

Let us mention that a BI with a Q-brane source term was proposed in [87]. We

comment on it in appendix D.2 and conclude on a mismatch with our proposal (1.12).

KK-monopole. We follow a similar procedure to show that the KK-monopole is ob-

tained by T-dualising the NS5-brane along one direction. We first smear the NS5-brane

along x. Doing so amounts to choose the smeared warp factor fK of (3.42) instead of fH ,

and to use the better suited spherical coordinates ρ = r3, ϕ, y. Then the (once) smeared

NS5-brane is given by

ds2 = ds26 + f dŝ24 , Hmnp = −ρ2 sinϕ ε4mnpρ∂ρf , e2φ = f (3.97)

where dŝ24 = dρ2 + ρ2dϕ2 + ρ2 sin2 ϕ dy2 + dx2 , f = fK .

Similarly to the discussion for the Q-brane, we introduce (in curved indices)

bmn = ε4ρϕmn a(ρ, ϕ) , with a = cosϕ ρ2∂ρf , (3.98)

bxy = qK cosϕ , Hϕxy = −qK sinϕ , for ρ > 0 . (3.99)

We can then perform the T-duality along x. It is formally the same as above, giving

ds2 = ds26 + f dŝ23 + f−1(dx+ ady)2 , Hmnp = 0 , e2φ = 1 (3.100)

where dŝ23 = dρ2 + ρ2dϕ2 + ρ2 sin2 ϕ dy2 , (3.101)

where now f and a are precisely those of the KK-monopole (3.42), that is thus recovered.

To proceed further, we consider the following vielbein and its inverse (in the ba-

sis (ρ, ϕ, y, x))

ẽ =


f

1
2

f
1
2 ρ

f
1
2 ρ sinϕ

f−
1
2a f−

1
2

 , ẽ−1 =


f−

1
2

f−
1
2 ρ−1

f−
1
2 ρ−1 sin−1 ϕ

−f−
1
2aρ−1 sin−1 ϕ f

1
2

 ,
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from which we compute the following non-trivial structure constants (A.2)

fϕρϕ = fyρy = ρ ∂ρ(f
− 1

2 ρ−1) ,

fxρx = f−1∂ρf
1
2 , fyϕy = f−

1
2 ρ−1 sinϕ ∂ϕ(sin−1 ϕ) ,

fxϕy = −f−
3
2 ρ−2 sin−1 ϕ ∂ϕa = f−

3
2∂ρf , fabc = −facb . (3.102)

As above, we mean flat indices on the l.h.s. , and the derivatives carry curved indices

on the r.h.s. . Due to the ambiguity of the b-field of the NS5-brane and of a discussed

around (3.83), we do not consider an fxρy, that would have been non-zero at the singularity.

This way, for all T-dual branes, the important component of the flux has the (flat) indices

(ϕ, x, y) and is due to the potential, being here a. The value of these components even

matches, up to a sign. The other f present here are mostly artefacts of the metric and

do not play the same role. Finally, the absence of b-field for the KK-monopole makes the

other type of fluxes vanish.

We finally turn to BI: (3.2)–(3.4) are trivially satisfied, while (3.1) involves the quantity

Sabcd = ∂[bf
a
cd] − fae[bfecd] . (3.103)

By antisymmetry, Sϕbcd = 0. In addition, one can verify

Syρϕy =
1

3

(
f−

1
2∂ρf

y
ϕy + fyyϕf

ϕ
ρϕ

)
= 0 . (3.104)

Therefore, the only non-zero Sabcd is given by

Sxρϕy =
1

3

(
f−

1
2∂ρf

x
ϕy − fxϕy (fxxρ + fyρy + fϕρϕ)

)
(3.105)

= −1

3
sin−1 ϕf−2ρ−2∂ρ∂ϕa (3.106)

=
1

3
f−2

(
∂2ρf +

2

ρ
∂ρf

)
=

1

3
f−2∆3f , (3.107)

where ∆3 is the three-dimensional Laplacian, here in spherical coordinates, since f only

depends on ρ. We mentioned that f is the Green function for ∆3 up to a constant cK (3.66).

So we propose the following correction of the BI (3.1) due to the source

Sabcd =
cK
3
f−2 ε3⊥bcd ε1||e η

ea δ(3)(ρ) , (3.108)

where the constraints on the indices were taken into account, and ε1||e is only non-zero and

equal to one if e is the direction along the brane. This results in the BI (1.11), and we

have just shown that the KK-monopole solves it.

NS5-brane. For completeness, let us come back to the BI of the H-flux for the NS5-

brane. We showed below (3.61) how this BI in curved indices would lead to the Poisson

equation. Going to flat indices amounts to multiplying by vielbeins since dH is a tensor.

One gets the quantity

Sabcd = ẽmaẽ
n
bẽ
p
cẽ
q
d∂[mHnpq] = ∂[aHbcd] −

3

2
fe[abHcd]e . (3.109)
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In cartesian coordinates, the vielbeins are just given by f
1
2 . So from (3.61), (3.63), and the

above, we propose the following contribution of the source

Sabcd = −cH
4
f−2 ε4⊥abcd δ

(4)(r4) , (3.110)

where only the numerical factor should be verified, and the convention for ε4 is in ap-

pendix A. This results in the BI (1.3), and we have shown that the NS5-brane solves it.16

4 Geometric vacua of β-supergravity

In this section, we study the conditions for a vacuum of β-supergravity to be geometric,

while its formulation in standard supergravity would be non-geometric. As explained in

the Introduction, such backgrounds are those for which β-supergravity description is truly

useful. In the context of compactification, those backgrounds allow a dimensional reduction

to four-dimensional gauged supergravities with non-geometric fluxes; the latter would not

have a ten-dimensional uplift otherwise. Whether a background is of this type is related

to the symmetries used to glue its fields from one patch to another, as mentioned in the

Introduction. We mostly follow the reasoning presented there, and clarify on the way

several concepts such as geometry and non-geometry, that is a theory dependent notion.

We end this section by studying the properties of some of these backgrounds, namely those

that use β-transforms, determining in particular whether they eventually lead to new four-

dimensional physics.

4.1 Symmetries of the NSNS sector

We consider a field configuration in a theory (possibly a vacuum), in a target space picture,

as given by a set of fields defined locally on several patches of the space, and gluing from one

to the other by some transformations. In order for this field configuration to be described

by a single theory, as it should be to have a good description of the physics, or in other

words, in order to use only one Lagrangian over the whole space, the gluing transformations

should be symmetries of that theory [26]. It is therefore important to first identify these

symmetries, as we now turn to. In section 4.2, we will then look at what type of background

the symmetries lead to when used as gluing transformation.

4.1.1 General case

We will be mostly interested in the NSNS sector of standard supergravity given by the

Lagrangian LNSNS (2.4) and the NSNS sector of β-supergravity given by the Lagrangian

L̃β (2.6). Up to the field redefinition, they differ as explained in section 2.1 by a total

derivative. In [1], we had

LNSNS − ∂m
(
e−2d

(
g̃mng̃pq∂ng̃pq − gmngpq∂ngpq + ∂n(g̃mn − gmn)

))
(4.1)

= L̃β + ∂m

(
e−2d

|g̃|
∂n
(
g̃pqβ

pmβqn|g̃|
)
− 4e−2dβpmg̃pqT q

)
.

16For the three branes, we obtained a factor f−2 next to the δ in the source contributions to the BI. It

would be better to have a generic formula that reproduces this factor, for instance with volumes or vielbeins,

but we did not find any.
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The total derivative can be simplified by noticing as in [3, 23] that g̃mn−gmn = −g̃pqβpmβqn.

Using in addition that ∂n ln |g̃| = g̃pq∂ng̃pq, one obtains

LNSNS + ∂m

(
e−2d

(
gmn∂n ln

|g|
|g̃|

+ 4βpmg̃pqT q)
)

= L̃β . (4.2)

The field redefinition also gives that |g| = |g̃|−1|g̃−1 + β|−2, from which we get

LNSNS + ∂m

(
e−2d

(
− 2gmn∂n ln |1 + g̃β|+ 4βpmg̃pqT q)

)
= L̃β . (4.3)

The fact they differ only by a total derivative has two crucial consequences: first the

equations of motion are then the same, up to the field redefinition, so a vacuum of one

theory is then, at least locally, a vacuum of the other theory. Secondly, a symmetry

of a theory usually leaves its Lagrangian invariant up to a total derivative (the case of

supersymmetry for instance), so here, a symmetry of one theory will be a symmetry of the

other one.

The symmetries of both theories are well known and were studied in details in [1]. The

Lagrangians are invariant under diffeomorphisms: this is manifest in their expressions (2.4)

and (2.6). In addition, LNSNS is invariant under the b-field gauge transformation. This can

be translated as a transformation on the β-supergravity fields, and was called a β gauge

transformation [1]. L̃β is then invariant under it up to a total derivative.

A field configuration that uses diffeomorphisms or b-field gauge transformations to glue

is certainly geometric in standard supergravity (see the definition in section 4.2.1). As we

will see, it may or may not be geometric in terms of β-supergravity, but in any case, such

a description is not really necessary, as standard supergravity is then appropriate [1, 26].

Therefore, it would be interesting for β-supergravity to have more symmetries at hand. To

reach such a situation, we necessarily have to modify the theories in some manner: we will

consider a further constraint, or restriction, or subcase, that will generate an enhancement

of symmetries, as suggested in [1]. Let us motivate the restriction to be considered by a

new symmetry that appears manifestly in L̃β.

4.1.2 A new symmetry of β-supergravity

We present here a new symmetry of β-supergravity (under some conditions), that we will

later relate to the β-transforms of T-duality. The Lagrangian L̃β, given in curved indices

in (2.6), only contains β through either ∂mβ
pq or βpr∂r·, where the dot stands for any of

the three fields or their derivatives. Therefore, the following holds

βpq → βpq +$pq

with ∀ m, p, q, $pr∂r· = 0 , ∂m$
pq = 0

is a symmetry of L̃β . (4.4)

In others words, a constant shift of β by (an antisymmetric) $pq satisfying $pr∂r· = 0

leaves L̃β invariant. Can the two requirements on $ in (4.4) be relaxed to a more general

– 32 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
9

one, which would, for instance, not require $ to be constant? It does not seem possible,17

and the relation we will establish to T-duality suggests that there is no such generalization.

So we stick to this form (4.4) of the symmetry. It is now important to understand the two

conditions on $ in (4.4), i.e. how can this symmetry be concretely realised. To that end,

let us consider the following equivalence, given a field configuration and an integer N > 1

∃ N isometries generated by N independent

constant Killing vectors Vι, ι ∈ {1 . . . N}.
⇔

Any constant $pq, that is only non-zero

along a specific N ×N (diagonal) block,

satisfies $pr∂r· = 0.

(4.7)

We provide a rigorous proof of this equivalence in appendix E. As shown in that proof,

the left-hand side of (4.7) can be translated as (E.2), i.e. as the independence of the

fields (and their derivatives, by commutation) on N coordinates. In addition, the right-

hand side of (4.7) gives conditions on the $ that are precisely those needed to realise the

symmetry (4.4), up to the restriction of having a non-zero block. So this equivalence can

be translated in particular into the implication18

The fields are independent

of N coordinates.
⇒

The shift βpq → βpq +$pq, for any constant $pq

that is non-zero only along the N ×N block,

is a symmetry of L̃β .
(4.8)

The symmetry can thus be realised provided the fields are independent of N (> 1) coor-

dinates; the allowed shifts are then those along these isometry directions, and constant.

The new symmetry (4.4) is therefore tied to having isometries: it is not a symmetry of

general β-supergravity, but requires to focus on the subcase (in particular, on the set of

backgrounds) that have isometries. In this sense, it is reminiscent of T-duality for string

theory; we will see that the two are actually related.

As this symmetry of L̃β is only present in a subcase, one may wonder under what

conditions it can also be a symmetry of LNSNS. The field redefinition relating only the

fields among themselves, the independence on the coordinates of one set of fields translates

in that of the other set. So the conditions for the symmetry to be realised is the same

on both sides: given the discussion made below (4.3), we deduce that in this subcase, this

symmetry of L̃β is also a symmetry of LNSNS, up to a total derivative. We can actually

be more precise on this last point: in the total derivative (4.3), β appears again through

∂mβ
pq and βpr∂r·, but also through a determinant. The variation of this determinant does

not seem to vanish, so LNSNS would be invariant under (4.4) only up to a non-vanishing

17It is tempting to consider the conditions

∀ m, p, q, $pr∂r g̃
mq + g̃pr∂r$

mq = 0 , (4.5)

$pr∂rβ
mq + βpr∂r$

mq = 0 . (4.6)

(4.5) implies the invariance of Γ̌mnp under the shift, and so of T n = Γ̌pnp . In addition, (4.6) makes the

linear terms in $ in the variation of the R-flux vanish. One could then hope for a more general symmetry.

However, using the (anti)symmetry of m, q in (4.5), one obtains that this condition and (4.6) are actually

equivalent to the two of (4.4), at least for g̃ and β instead of the dot.
18The reverse can only be formulated with the $pr∂r· = 0 condition, because it is not clearly the same

as the constant shift being a symmetry.
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total derivative. The same may happen reverse wise with constant b-shifts, although one

should rewrite the total derivative in terms of g and b to verify this.

4.1.3 Elements of the T-duality symmetry

We now turn to T-duality. When the target-space fields are independent ofN coordinates in

a D-dimensional space-time, the bosonic string sigma-model gets an additional symmetry,

that is T-duality (see the reviews [88–90] and references therein). This symmetry translates

in the NSNS sector into the action of a constant O(N,N) group on the fields. Therefore,

if the latter are independent of N coordinates, the target-space theory, namely LNSNS,

should inherit this symmetry: LNSNS is then invariant under the O(N,N) transformation

(up to a total derivative).19 This invariance is not often mentioned, as one usually considers

a full supergravity, for instance type IIA/B, that also contains a RR sector. The latter

is on the contrary not always preserved by T-duality, so T-duality is generically not a

symmetry of type II supergravities, but only a transformation. Here, we only focus on

the NSNS sector, and we recall in appendix E two approaches to show the invariance of

LNSNS under this transformation, up to a total derivative. The first one is the work by

Maharana and Schwarz [91] that considers a compactification along the isometries, and the

second one is the relation between LNSNS and the Double Field Theory Lagrangian, which is

invariant under the bigger group O(D,D). We conclude that this O(N,N) transformation

is a symmetry of LNSNS (up to a total derivative) when the fields are independent of N

coordinates. As discussed above, the same then holds for L̃β and its fields.

Let us now present in more details the action of the T-duality group O(N,N). Its

action on the fields is better characterised by considering the 2D × 2D matrix H, the

generalized metric that depends on the metric g and b-field, and the quantity d related to

the dilaton, that we introduced in section 2.1. In addition, one should consider O(D,D)

elements O in their fundamental representation: they preserve the 2D × 2D matrix

η =
1

2

(
0 1

1 0

)
, OT ηO = η . (4.9)

The T-duality transformations then consist in taking a trivial embedding of O(N,N) into

O(D,D), and acting with the corresponding elements on H; the transformed dilaton is

defined so that d remains invariant

(
a c

f h

)
∈ O(N,N) , O =


a c

1D−N 0D−N
f h

0D−N 1D−N

 ∈ O(D,D) , (4.10)

H′ = OTHO , e−2d = e−2φ
√
|g| = e−2φ

′√|g′| . (4.11)

Only the components along the N directions are then transformed. A particu-

lar example is the Buscher transformation [92, 93] along all N directions given by

a = h = 0N , c = f = 1N .

19Its regime of validity as an effective theory might however be changed accordingly to the transformation.
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Let us now present the content of this O(N,N) group. For string theory, any element

of O(N,N,Z) can be generated by the following three types of elements [88, 89]:

• the GL(N,Z) subgroup: for a ∈ GL(N,Z), one considers20

Oa =

(
a 0N

0N a−T

)
∈ O(N,N,Z) . (4.12)

• the b-transforms: for $ an N ×N antisymmetric integer matrix, one considers

O$ =

(
1N 0N
$ 1N

)
∈ O(N,N,Z) . (4.13)

• the Buscher transformations [92, 93]: for ci the N×N matrix with only one non-zero

entry, equal to 1 and placed in the (i, i) position, one considers

Oti =

(
1N − ci ci
ci 1N − ci

)
∈ O(N,N,Z) . (4.14)

Let us introduce yet another set of elements

• the β-transforms: for an integer N ×N antisymmetric matrix $, one considers(
1N $

0N 1N

)
=

(
0N 1N

1N 0N

)(
1N 0N
$ 1N

)(
0N 1N

1N 0N

)
= OTt O$Ot , (4.15)

where we denote by Ot the Buscher transformation along all N directions

Ot = Ot1 . . . OtN =

(
0N 1N

1N 0N

)
. (4.16)

At the level of supergravity, the stringy T-duality group just discussed is extended to

O(N,N,R). We then consider the natural extensions of the above elements towards the

GL(N,R) subgroup, the real b- and β-transforms, where a and $ are now real. Those three

sets form three independent subgroups of SO(N,N,R) (they only contain elements that

have a determinant equal to 1). So they do not generate the whole O(N,N,R), in particular

no combination can reproduce an Oti as detOti = −1. There might even be some elements

of O(N,N,R) that are not generated by a simple extension from O(N,N,Z). Nevertheless,

we will mainly focus in the following on these three subgroups of SO(N,N,R), but we can

keep in mind the possibility of further T-duality transformations.

We now look at the action of these three subgroups on the NSNS fields. We explained

above that when fields are independent of N coordinates, the O(N,N) T-duality group is

a symmetry of the Lagrangians (up to a total derivative). So each of these three trans-

formations should then correspond to a symmetry. The action of the three subgroups of

20This subgroup can be further decomposed into generators, see e.g. [88] and references therein.
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interest can be read from (4.10) and (4.11), but also from the corresponding action on a

generalized vielbein E̊ (up to Lorentz transformations)

E̊ ′ = E̊O . (4.17)

By considering respectively E and Ẽ of (2.2), one gets simple expressions for the b-

transforms, resp. β-transforms: they just consist in shifting the b-field, resp. β

b-transform: e′ = e, b′ = b+

(
$

0D−N

)
, (4.18)

β-transform: ẽ′ = ẽ, β′ = β +

(
$

0D−N

)
, (4.19)

along the N directions. In addition, we read the GL(N,R) action on either set of fields as

Oa : e′ = e

(
a

1D−N

)
, b′ =

(
a

1D−N

)T
b

(
a

1D−N

)
, (4.20)

ẽ′ = ẽ

(
a

1D−N

)
, β′ =

(
a

1D−N

)−1
β

(
a

1D−N

)−T
.

Let us now identify the corresponding symmetries. The b-transforms (4.18) are an obvious

symmetry of LNSNS: first, constant shifts of b certainly leave the Lagrangian invariant, as

the latter only depends on ∂b; second, this shift symmetry is a subcase of the known b-field

gauge symmetry, since a constant shift can be brought to the form of a dΛ. The GL(N)

subgroup is also clearly a symmetry: its action (4.20) on the fields is a particular example

(in matrix notations) of diffeomorphisms, that are known to be a gauge symmetry of both

LNSNS and L̃β. Let us verify this point. A diffeomorphism generically transforms the b-field

as bmn(x′) = bpq(x) ∂xp

∂x′m
∂xq

∂x′n . Having the Oa transformation as a diffeomorphism amounts

at first to satisfy the following set of differential equations(
a

1D−N

)p
m

=
∂xp

∂x′m
. (4.21)

This can easily be achieved since a is constant. Additionally, of the coordinates obtained

from this resolution, the field only depends on those not along the N directions: thanks to

the δpm, those can easily be chosen as x′ = x. For that reason, bmn(x′) = bpq(x) ∂xp

∂x′m
∂xq

∂x′n

can be realised by the action of Oa.

Finally, the β-transforms (4.19) should also be a symmetry when fields are independent

of N coordinates. This may look surprising from the LNSNS point of view, as it does not

seem to match a known symmetry (in particular, translated on the standard supergravity

fields, this transformation acts both on b and g).21 However, in view of (4.8), β-transforms

21The two other subgroups of the T-duality group have been shown to correspond to subcases of gauge

transformations, so one may wonder whether the same could happen for the β-transforms. This is related to

the footnote 17, and it looks unlikely. It may still be doable in the broader set-up of DFT, when considering

∂̃ 6= 0.
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clearly correspond to the new symmetry of L̃β discussed in section 4.1.2: constant shifts of

β along coordinate directions on which no field depends. It is then a symmetry of LNSNS

up to a total derivative. We now understand that the new symmetry of section 4.1.2 can

be viewed as the β-transforms, a subgroup of the T-duality group.

We conclude this section on the symmetries of LNSNS and L̃β by recalling our main

idea: by considering a restriction, we enhance the symmetries of the theories, and the

new symmetries can be used to build interesting geometric vacua of (the constrained) β-

supergravity. We considered here the subcase when fields are independent of N coordinates:

among various new symmetries from the T-duality group, we obtained the subgroup of β-

transforms, that is a manifest symmetry of L̃β. Those will play a crucial role in geometric

vacua of β-supergravity.

4.2 To be or not to be geometric

We discussed above the different symmetries of LNSNS and L̃β, in general but also when

restricting to the presence of some isometries. We now study the effect of using these

various symmetries to glue fields of these theories from one patch to the other: after

proposing a precise definition of geometry and non-geometry, we discuss whether using a

given symmetry leads to a geometric or non-geometric field configuration. To illustrate

this discussion, we then provide an example for which we prove the non-geometry.

4.2.1 Symmetries and (non)-geometry

The original idea of non-geometry [9, 20, 21] went as follows: a field configuration (string

coordinates, supergravity fields. . . ) is non-geometric for string theory if its fields can be

defined on a set of patches (in target space), but the transformations needed to glue them

from one to the other are not among the standard symmetries of a (differential) geometric

configuration, meaning diffeomorphisms and gauge transformations. Still, these transfor-

mations are symmetries of string theory. As mentioned in the Introduction, it is important

that these transformations correspond indeed to symmetries of a given theory [26]: this

allows the field configuration to be described by a single theory on all patches, which is

crucial for physics. Keeping this idea in mind, we extend here the notion of geometric or

non-geometric field configuration to our target space theories: the transformations used to

glue the fields should then be symmetries of the latter, and not only of string theory. Then,

to distinguish between a geometry and a non-geometry requires to specify the symmetries

used. We thus reformulate and generalize the original idea stated above into the following

proposed definitions

Definitions of geometric and non-geometric field configurations.

• A field configuration is geometric if the fields are globally defined on the manifold

considered so do not need to be glued, or if the transformations used to glue them

from one patch to the other are symmetries of the theory, and the metric, dilaton

and fluxes glue at most with diffeomorphisms.
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Symmetry used as gluing transformation LNSNS L̃β Example

nothing or diffeo. G G twisted torus

b-field gauge transfo. (and diffeo.) G NG (or ×) T 3 + constant H

β-transform (and diffeo.) NG (or ×) G toroidal example

b-field gauge transfo. and β-transform (and diffeo.) NG (or ×) NG (or ×)

Buscher transformation NG NG radial inversion

more combinations ? ?

Table 1. Geometric (G) or non-geometric (NG) field configuration, according to the symmetry

used to glue its fields, and to the theory.

• A field configuration is non-geometric if the transformations used to glue the fields

from one patch to the other are symmetries of the theory, and if the metric, dilaton

or fluxes glue with something else than diffeomorphisms.

It is important to notice that the notion is theory dependent. In particular, since the metric

describing the manifold may change from one theory to the other (as it is the case for us

with LNSNS and L̃β), the notion of (non-)geometry changes accordingly. This is precisely

the interest in changing theory to describe a background: it can be non-geometric for one

theory, but the geometry can be restored in another theory; this is what happens for the

toroidal example as we will see in details in section 4.2.2, and for the Q-brane as discussed

below (3.86). These definitions also involve the notion of fluxes. In LNSNS, respectively L̃β,

the H-flux, resp. the R-flux, are tensors, so their transformation under diffeomorphisms is

clear. But one also faces the structure constant or geometric flux, and the Q-flux, which

are not tensors. Their transformation under diffeomorphisms can still be considered, as

they correspond to building blocks of the spin connections ω and ωQ, and those evolve on

a manifold. For a geometric configuration, it is important that the flux remains invariant

under the other symmetries: the H-flux is invariant under the b-field gauge transformations,

and the Q- and R-flux are invariant under the β-transform discussed above. The latter is

obvious for the R-flux given its definition, and for the Q-flux when rewritten as

Qc
ab = ẽqcẽ

a
mẽ

b
n

(
∂qβ

mn + 2ẽdqβ
p[m∂pẽ

n]
d

)
. (4.22)

These definitions therefore emphasise the role of the symmetries of a theory. We

identified above the symmetries of L̃β and LNSNS; we explained they share the same ones

up to a total derivative. Those are diffeomorphisms and b-field/β gauge transformations.

In the case where the fields are independent of N coordinates (this will be implicit from

now), one gets an enhancement of the symmetries to include the T-duality group O(N,N).

One of its subgroups, the β-transforms, is of particular interest; L̃β is manifestly invariant

under it. Considering these various symmetries to glue the fields, let us now study whether,

according to the above definitions, a field configuration is geometric (G) or non-geometric

(NG) in the different theories. We give the results in table 1.

We denote by a × in table 1 a (tiny) possibility for a field configuration to be geometric,

discussed in [1]. The b-field gauge transformation, translated after field redefinition into a
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β gauge transformation, also acts on the new metric g̃; this is due to the non-linearity of

the field redefinition. Depending on the transformation and the background, the transfor-

mation of g̃ could happen to correspond to a diffeomorphism [1]. In that case, the field

configuration would be geometric, provided the fluxes also transform properly. Such a

situation is rather unlikely, but cannot be fully excluded. A similar reasoning can hold for

the β-transform, that would act not only on the b-field but also on the metric g, as can be

seen with the field redefinition; one should determine whether this transformation could

be viewed as a diffeomorphism. To study such situations properly, an analysis as the one

to be performed in section 4.2.2 would be necessary.

We mentioned in section 4.1.3 the possibility of other elements of the T-duality group

O(N,N) that we have not considered. These could be built for instance by further com-

binations of the elements already studied here. The effect of such a generic element is not

easy to guess, so we cannot conclude in full generality: this is the meaning of the last line

of table 1.

To conclude this study, we refer to the reasoning detailed in the Introduction, and one

can see that the results of table 1 are in good agreement with it. In particular, it is worth

considering a subcase that gives rise to more symmetries, and allows to go beyond the

situations of the first two lines of table 1. Considering the independence on N coordinates

gives the new symmetry of β-transforms. The latter allows, as indicated in the third line,

to get field configurations that are geometric for L̃β while being non-geometric for LNSNS.

In that case, it is worth changing theory: this is the important outcome of this study. We

have given a well-defined class of backgrounds for which β-supergravity provides a better

description than standard supergravity.

4.2.2 A proof of non-geometry

We now illustrate the above discussion with an example of a field configuration that is

geometric for L̃β and non-geometric for LNSNS. Being sure of the latter requires to show

explicitly that some gluing transformations cannot be realised by diffeomorphisms, which

is not so simple to prove. Such a proof should nevertheless be established to conclude on

a non-geometry, but it is rarely worked-out in the literature. We hope here to fill this gap,

at least for one example. We consider the toroidal example that was discussed in details

in [1, 3, 37]. In this field configuration, one has three directions, labelled by m = 1, 2, 3.

The third one is a circle, parameterized by the angle coordinate z. It serves as a base to a

fiber where the non-geometry occurs. The fields are given as follows

g = f0(z)


1
R2

1
0 0

0 1
R2

2
0

0 0
R2

3
f0(z)

 , b = f0(z)

 0 − Hz
R2

1R
2
2

0
Hz
R2

1R
2
2

0 0

0 0 0

 , (4.23)

e−2φ = e−2φ
′
R2

1R
2
2 f
−1
0 (z) , with f0(z) =

(
1 +

(
Hz

R1R2

)2
)−1

, (4.24)

where H and the Rm are constants, and φ′ is a given well-defined scalar field. Let us

consider the base circle along z. An atlas of a circle needs at least two charts (Ui, ϕi),
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i = 1, 2, where Ui is an open set of points of the circle (or patch), and ϕi maps them to

a local coordinate in R. The points of the circle can be uniquely denoted in a plane by

(cos z, sin z), and one can then take ϕ−1i : R→ Ui , z 7→ (cos z, sin z) (see the Example 5.2

in [94]). The two coordinates z1,2 associated to the two open sets U1,2 are enough to cover

the full circle: z1 ∈] − π, π[, z2 ∈]0, 2π[. The maps between the coordinates Ψij = ϕiϕ
−1
j

are then defined on the (image of the) intersection of the patches: this “overlap” splits into

two pieces, on which Ψ12 is defined as follows

Ψ12

z2 7→ z1 = z2 , for z2 ∈]0, π[

z2 7→ z1 = z2 − 2π , for z2 ∈]π, 2π[
(4.25)

Ψ21 is its inverse, and both are C∞. For the field configuration (4.23) to be geometric, one

needs at least the metric to glue with diffeomorphisms on the overlap. As the metric only

depends on z here, it should then satisfy

gmn(z2) = gpq(z1)
∂xp

∂x′m
∂xq

∂x′n
, x3 = z1, x

′3 = z2 , (4.26)

on both pieces of the overlap. Let us verify this. For m = n = 3, one can develop on both

sides and gets

R2
3 = R2

3

(
∂z1
∂z2

)2

+ f0(z1)

(
1

R2
1

(
∂x1

∂z2

)2

+
1

R2
2

(
∂x2

∂z2

)2
)
. (4.27)

The map Ψ12 in (4.25) gives on both pieces of the overlap ∂z1
∂z2

= 1. One deduces

∂x1

∂z2
=
∂x2

∂z2
= 0 , (4.28)

so that the diffeomorphism gluing is verified for m = n = 3. For m = 1, n = 3, one gets

0 = R2
3

∂z1

∂x′1
∂z1
∂z2

+ f0(z1)

(
1

R2
1

∂x1

∂x′1
∂x1

∂z2
+

1

R2
2

∂x2

∂x′1
∂x2

∂z2

)
. (4.29)

Using that on both pieces of the overlap ∂z1
∂z2

= 1 and (4.28) holds, one deduces

∂z1

∂x′1
= 0 . (4.30)

Considering m = 2, n = 3, one obtains similarly ∂z1
∂x′2

= 0. We now turn to m = n = 1 (the

case m = n = 2 is completely identical). One gets a priori

f0(z2)
1

R2
1

= R2
3

(
∂z1

∂x′1

)2

+ f0(z1)

(
1

R2
1

(
∂x1

∂x′1

)2

+
1

R2
2

(
∂x2

∂x′1

)2
)
, (4.31)

that simplifies, thanks to the above, to

f0(z2)

f0(z1)
=

(
∂x1

∂x′1

)2

+
R2

1

R2
2

(
∂x2

∂x′1

)2

, (4.32)
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that should hold on both pieces of the overlap. There, one has by definition z1 = Ψ12(z2),

so the left-hand side (l.h.s. ) of (4.32) is a function of z2. However, because of (4.28),

x1 and x2 do not depend on z2, so neither does the right-hand side (r.h.s. ) of (4.32).

Therefore, one must have
f0(z2)

f0(Ψ12(z2))
= constant . (4.33)

On the piece z2 ∈]0, π[, this certainly holds, but it is not the case on z2 ∈]π, 2π[, where

f0(z2)

f0(z1)
=

1 +
(
H(z2−2π)
R1R2

)2
1 +

(
Hz2
R1R2

)2 . (4.34)

On z2 ∈]π, 2π[, because Ψ12(z2) = z2− 2π, the condition (4.33) can be viewed as requiring

f0 to be periodic, up to a rescaling. In other words, the diffeomorphism gluing of the

metric (4.23) fails because of f0, which is not periodic in z. The metric being diagonal,

its chances of being globally defined boil down to simply being periodic, which is not

the case. The b-field would also have required a diffeomorphism (together with a gauge

transformation), that similarly fails due to f0. Following the definitions of section 4.2.1,

we conclude that the field configuration is not geometric; the fact that it is non-geometric

requires a little more.

This field configuration is independent of N = 2 coordinates, corresponding to the

fiber directions. As argued in section 4.1.3, the theories considered here then enjoy an

enhancement of the symmetry group by the T-duality group O(2, 2), which is also a stringy

symmetry. Gluing this field configuration by such a symmetry, knowing that it is not

geometric, would make it non-geometric (from the standard supergravity point of view).

It is indeed the case: more precisely, according to (4.11), one should have on both pieces

of the overlap

H(z2) = OTH(z1)O , (4.35)

and we get that O is a β-transform. This is more easily seen using the new fields, given by

g̃ =


1
R2

1
0 0

0 1
R2

2
0

0 0 R2
3

 , β =

 0 Hz 0

−Hz 0 0

0 0 0

 , e−2φ̃ = e−2φ
′
R2

1R
2
2 , (4.36)

and their associated generalized vielbein Ẽ . For z2 ∈]0, π[, z1 = z2 so one can take O = 16.

The non-trivial gluing is for z2 ∈]π, 2π[, where z1 = z2 − 2π. The constant shift along the

fiber directions between β(z1) and β(z2) can be compensated by the following β-transform

O =

(
13 Ω

0 13

)
, Ω =

 0 2πH 0

−2πH 0 0

0 0 0

 . (4.37)

We conclude that the field configuration (4.23) is indeed non-geometric for standard su-

pergravity (with isometries). According to the discussion of section 4.2.1, in particular

the definitions and the table 1, we conclude as well that this field configuration, described

as (4.36), is geometric for β-supergravity (with isometries).
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Theories L̃β LNSNS

T-duality frames

g̃, β, φ̃ (G) oo field redef. // g, b, φ (NG)
OO

T-d. // N dir.

��
g′, b′, φ′ (G)

Table 2. Different descriptions of a geometric background of L̃β

4.3 Geometric backgrounds of β-supergravity and T-duality orbits

As explained in the Introduction, backgrounds that are geometric for L̃β and non-geometric

for LNSNS are the most interesting ones for β-supergravity. We have just established

that one way to realise such backgrounds is to consider the restriction of having fields

independent of N coordinates, and to have the gluing transformations of the fields to

be β-transforms, possibly with additional diffeomorphisms (see for instance table 1). We

focus in this section on such a situation. The restriction implies that the background is

on a T-duality orbit, i.e. the presence of the isometries allows to perform T-dualities on

the background. We study this orbit and its consequences, first in general and then in a

compact case.

4.3.1 Always on a geometric orbit?

We consider a background of the type just described. It is given in terms of the fields

g̃, β, φ̃, thanks to which it is geometric (G) for L̃β. Through the field redefinition, it is

expressed with g, b, φ and is then non-geometric (NG) for LNSNS.22 As it is independent

of N coordinates, one can further T-dualise along these directions. Doing so, along all N

directions, with Buscher T-duality on g, b, φ gives the T-dual fields g′, b′, φ′, as depicted

in table 2.

Let us now show that g′, b′, φ′ provide a geometric background of LNSNS. The fields

g̃, β, φ̃ glue with a β-transform and possibly a diffeomorphism A. These transformations

can be decomposed into their blocks along the N directions and the others: we introduce

A as in (4.38) with a the N ×N block. Using notations of section 4.2.2, we denote by zp

the D −N coordinates on which the fields depend and by yr the N coordinates on which

22Despite its similarity with a Buscher T-duality along all D directions, let us stress that the field

redefinition (2.1) is not such a transformation. The indices of g̃−1 + β are up, while those of a T-dual

metric and b-field are down; in particular T-duality relates a b-field to a b-field, there is no notion of

bivector appearing. Another way to see this is by considering the subcase b = β = 0, giving g = g̃, while

a T-duality along all directions would invert the metric. This difference is crucial for the large volume

limit (see a related discussion in [1]). Additionally, in supergravity, a T-duality along all directions would

require the fields to be constant, while the field redefinition can be performed without restriction. In DFT,

such a T-duality would replace the coordinates xm by x̃m, but the field redefinition does not change the

coordinate dependence.
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they don’t. Then, a generic diffeomorphism Amn = ∂xm

∂x′n becomes here

A =

(
a j

i k

)
,

(
dy

dz

)
=

(
a j

i k

)(
dy′

dz′

)
. (4.38)

The independence of the fields on N coordinates yr leads here to a constraint on the

possible diffeomorphisms to be used: the z and z′ should mix at most among themselves,

i.e. should not involve any y or y′ dependence. This implies that ∂zp

∂y′r = 0, i.e. ipr = 0.

As a cross-check, one should have ∂
∂y′r k

p
q = ∂

∂y′r
∂zp

∂z′q = 0. As A is a diffeomorphism, this

equals ∂2zp

∂z′q∂y′r = ∂
∂z′q i

p
r, that indeed vanishes for i = 0. So A is restricted as follows23

A =

(
a j

0 k

)
, A−T =

(
a−T 0

−k−T jTa−T k−T

)
. (4.39)

We now consider the gluing of the fields g̃, β, φ̃: using again notations of section 4.2.2, it

is expressed with the generalized metric as

H(z2) = OTH(z1)O , (4.40)

O =


1N $

1D−N 0D−N
0N 1N

0D−N 1D−N




a j 0N
k 0D−N

0N a−T

0D−N −k−T jTa−T k−T

 (4.41)

with $T = −$ giving the β-transform. As already mentioned, the field redefinition does

not change H, so the gluing of the fields g, b, φ is expressed in the same manner. Let us

now perform the Buscher T-duality along the N directions. Following (4.10) and (4.11),

we use again H to get the T-dual H′ as

H′ = T THT , (4.42)

where T is given below (4.11). By T-dualising H on (the image of) each patch, i.e. on both

sides of (4.40), we deduce the gluing of H′

H′(z2) = (TOT )TH′(z1)TOT , (4.43)

where we used that T T = T−1 = T . This gluing is therefore given by

TOT =


1N 0N

1D−N 0D−N
$ jk−1 1N

−(jk−1)T 0N 1D−N



a−T 0N

k 0D−N
0N a

0D−N k−T

 . (4.44)

23The restriction on the dependence on coordinates enforces i = 0, and this will allow us to obtain a

geometric T-dual. This is a crucial point, as i 6= 0 would have lead to a non-trivial β-transform block

after the T-duality, which would have implied a non-geometric T-dual. Another take on this is to consider

the Maurer-Cartan one-forms that are globally defined: ẽa(x′) = ẽa(x). This provides the diffeomorphism

matrix, as dxn = ẽna(x)ẽam(x′)dx′
m

. Considering a multiple step fibration, such as the nilmanifold n 3.14,

one may think that it is possible to find a vielbein leading to i 6= 0. But this involves a dependence on

coordinates that are not well-defined, namely those corresponding to fibered directions. These, in addition,

make the fields depend on the wrong coordinates after gluing. Considering a correct coordinate dependence

restores i = 0.
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We recognise the combination of a b-shift and a diffeomorphism, where the former is due

to the initial β-transform and the off-diagonal piece j of the diffeomorphism. We conclude

that the fields g′, b′, φ′ form a geometric background for LNSNS.

We have shown that the backgrounds that glue with β-transform and diffeomorphism,

i.e. geometric for L̃β and non-geometric for LNSNS, are T-dual to geometric ones for LNSNS.

So these geometric backgrounds of L̃β are in a sense not new, or do not reveal new physics.

One way of phrasing this is from a four-dimensional gauged supergravity point of view:

these backgrounds are always on a geometric (T-duality) orbit. The converse claim may still

be of interest. Consider a geometric background of four-dimensional gauged supergravity.

On its T-duality orbit, there are geometric and possibly non-geometric backgrounds. If

one geometric point on this orbit can be lifted to a ten-dimensional background that glues

as in (4.44), then we know that there exists on that orbit a non-geometric one that can be

lifted and described by β-supergravity.

It is disappointing that the backgrounds of β-supergravity considered above do not lead

to new physics. Here is a list of ways to circumvent a similar result for other backgrounds

• As indicated in table 1, there might be other T-duality elements that could be used

to glue fields. They may, as for the β-transform, allow geometric backgrounds for

L̃β and non-geometric for LNSNS. Then, if a study as the above on the T-duals does

not give rise to any geometric point, then the corresponding backgrounds would be

fully new.

• We only studied the NSNS sector. Considering backgrounds involving other sectors,

such as RR, may alter the above conclusion.

• One may find another restriction than the independence of coordinates, that would

as well enhance the symmetries. The new symmetries could then be used again for

gluing fields, possibly in the desired way. In particular, if there is no assumption on

the coordinate dependence anymore, then the T-duality can a priori not be performed,

preventing from the above conclusion.

• There is a discrete symmetry of LNSNS that we have not mentioned so far: the Z2

transforming b→ −b. This also gives a sign to the H-flux and could therefore lead to

a non-geometric field configuration, following the definitions of section 4.2.1. This Z2

translates for L̃β into a sign on β only. The effect on the fluxes is a sign on the Q-flux,

but not on the R-flux. Then, with a vanishing Q-flux, such a field configuration would

be geometric for L̃β: would that be another restriction to consider on β-supergravity?

Although very simple, this situation could be worth being studied more.

• The notion of geometry used above is close to that of standard differential geometry

and smooth manifolds. If singularities are present, the conclusions may be altered.

Nevertheless, in the case of the Q-brane and NS5-brane, the previous reasonings can

be applied everywhere away from the singularity, and the latter is treated in the same

way for both g̃, β, φ̃ and g′, b′, φ′ (therefore if the singularity is acceptable on one

side, it is as well on the other one).
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4.3.2 On compact purely NSNS vacua

We discussed in [1] the possibility of getting purely NSNS solutions of β-supergravity, that

would be of interest for compactification. Such vacua would be geometric for L̃β and take

the form of a given compactification ansatz. Interestingly, that ansatz was shown to be

not too restrictive: the equations of motion indicated the possibility of getting non-trivial

solutions. This is not the case for LNSNS, for which the ansatz only leads to trivial solutions,

hence the interest in getting such vacua of L̃β. In the above, we worked-out a well-defined

class of backgrounds that are geometric for L̃β, and could thus serve as candidates for the

vacua we are now interested in. However, we have also shown that these backgrounds are

T-dual to geometric ones of LNSNS, as described by the chain of relations in table 2. Let us

now study how the compactification ansatz evolves through that chain: this will constrain

further the possibility of getting geometric vacua of L̃β that are suited for compactification.

We recall that due to L̃β and LNSNS differing only by a total derivative, and to the

T-duality being a symmetry of the equations of motion, a vacua of L̃β given by g̃, β, φ̃

leads to g, b, φ and g′, b′, φ′ of table 2 being as well vacua of LNSNS. Let us now look

at the compactification ansatz. The metric g̃ has to be block diagonal in between the

four-dimensional space-time and the internal six-dimensional manifold. We consider as

well a separation of the corresponding coordinate dependence; in particular there is no

warp factor. β has the same structure, but is in addition purely internal. This structure

certainly goes through the field redefinition and the T-duality: g′ and b′ have the same

block structure and coordinate dependence. Finally, our ansatz sets φ̃ = constant. Is

that also the case of φ′? Let us recall that the dilaton goes through the following chain

of equalities

e−2φ̃
√
|g̃| = e−2φ

√
|g| = e−2φ

′√|g′| . (4.45)

Having φ′ constant would put a severe constraint on the possibility of getting g̃, β, φ̃

as the type of vacua we are interested in. Indeed, one can show that a constant φ′ only

leads to a trivial solution of LNSNS, namely a flat space-time and manifold (vanishing Ricci

tensor), and a vanishing H-flux. The corresponding background in terms of g̃, β, φ̃ is

then most likely trivial as well: consider for instance constant g′, b′, φ′ or even a pure

gauge b′, that do not give much freedom to get interesting g̃, β, φ̃. So φ′ should better be

non-constant. Is that compatible with φ̃ being constant? This requires the ratio√
|g̃|√
|g′|

(4.46)

to be non-constant. Note that g̃ and g′ being part of geometric backgrounds, they are

globally well-defined. For φ̃ being constant, we deduce that φ′ is also globally well-defined.24

24We also note that g is part of a non-geometric background. Because of the equalities (4.45), if |g|
is ill-defined, then so is φ. A good supergravity limit is then lost in the non-geometric background, but

β-supergravity can restore it, as argued in [1]. In addition, an ill-defined φ is likely to be non-constant, so

the compactification ansatz cannot be used for this set of fields. Then, g, b, φ does not allow to conclude

on the (non-)existence of solutions of L̃β , on the contrary here to g′, b′, φ′.
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Getting it non-constant looks then like a difficult constraint.25

The ratio (4.46) can in principle be computed in terms of one or the other set of fields,

since we know how the fields are related in table 2. A difficulty however comes from the fact

that the field redefinition involves the whole fields while the T-duality only acts on certain

blocks. That makes a generic computation not possible, as the inverse and the determinant

of a matrix divided in blocks cannot generically be expressed in terms of those blocks. So

we consider the following subcase (and basis)

g̃ =

(
g̃N

g̃D−N

)
, β =

(
βN

βD−N

)
, (4.47)

where these fields do not have off-diagonal components. One then computes g, b and g′, b′.

Using some freedom of sign in the field redefinition [3], g′ can be simplified to

g′ =

(
g̃−1N

(g̃−1D−N + βD−N )−1g̃−1D−N (g̃−1D−N − βD−N )−1

)
. (4.48)

This result can easily be understood. The field redefinition is similar to a T-duality in

all directions, although the indices are placed differently; this last point is an important

distinction between the two, in particular for the large volume limit [1]. This similarity

still explains why the block along the N directions is barely changed by the combination

of the field redefinition and the T-duality, while the other block only goes through the field

redefinition. Interestingly, βN does not contribute. From this result, we deduce√
|g̃|√
|g′|

= |g̃N | × |1D−N + g̃D−NβD−N | . (4.49)

Although not impossible, having this quantity non-constant is rather unlikely, at least in

usual set-ups where we look for solutions. First, βD−N is likely to be constant, as it does

not transform under gluing. Secondly, the metric g̃D−N is usually constant (for instance,

that of a base circle). This makes the second factor constant. The metric g̃N can certainly

be non-constant: for twisted tori, it goes through a non-trivial gluing. Its determinant is

however usually constant, giving for instance a constant internal volume.26 This implies

that the above ratio is constant.

We conclude that, even though we made some assumptions such as (4.47), it looks

unlikely to get a non-constant φ′. As explained above, purely NSNS solutions of β-

supergravity that are geometric, non-trivial, and satisfy the compactification ansatz, are

thus out of reach, at least in the usual set-ups. This holds despite the apparent possibil-

ity offered by the equations of motion of L̃β. It would be interesting to reach the same

conclusion using only those equations.

25One could also deviate from the compactification ansatz by considering warp factors and a non-constant

dilaton: compact NSNS solutions with these features exist, such as wrapped NS-branes, or non-Kähler

backgrounds of heterotic string. The supergravity limit of those is nevertheless more delicate.
26One may wonder whether a constant internal volume can be thought of as unimodularity, faab = 0,

related to the compactness of the internal manifold. One has ∂m ln |e| = −ẽan∂mẽna, which is faab up to a

term in ∂pẽ
p
b. In our context, the only non-trivial ∂p are those along the D −N directions. However, the

inverse vielbein ẽpb along those is most likely constant, as is g̃D−N . So ∂m|e| = 0 (constant volume) and

faab = 0 would be equivalent.
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5 Outlook

The main results of this paper have been summarized in the Introduction; let us now

make a few comments beyond the scope of this work. A first set of backgrounds that

has been studied here are the NS-branes. We gave a detailed account on the NS5-brane,

the KK-monopole and the Q-brane in section 3.2. This description has been done at the

level of supergravity. It would be interesting to go beyond and study them as stringy (or

M-theory) objects. As the S-dual of the D5-brane, many properties of the NS5-brane are

already known. In particular, D1-branes should end on it. We actually expect this to hold

as well for the other NS-branes, because they are related in the same manner as the Dp-

branes are: via smearing and T-duality. This could give a hint on the world-volume action

of these NS-branes. The case of the NS5-brane is certainly studied (see e.g. [95, 96] and

references therein), but more could be learnt for the Q-brane. Proposals have been made

in [87] for the latter. A mismatch with our results is however discussed in appendix D.2.

From the world-volume action, one could deduce source contributions to the equations of

motion and the BI. The work done here within β-supergravity should help on this point,

since we obtained such contributions not only in the BI but also in the dilaton equation

of motion (D.4) and the Einstein equation (D.15)–(D.18). Interestingly, there was no such

modification for the β equation of motion: this is usually expected, as long as the BI gets a

source term. Finally, let us recall that the Q-brane is a codimension 2 object, and is in that

respect similar to the D7-brane. The latter is known to have a non-perturbative description

within F-theory, and one may wonder if such a construction could as well be considered for

the Q-brane [31]. The cut-off needed for its warp factor, mentioned in section 3.2.2, could

be better understood in such a context.

We also discussed in section 3.2.2 the possibility of an R-brane. Although the name

was already used in [32], the object proposed here is different. It would be a codimension 1

NS-brane, which is equivalent to having its warp factor given by an absolute value (3.76).

The BI (1.9) is a natural candidate to be corrected by such a brane, which would then

source the R-flux. Constructing this object by performing a standard T-duality is how-

ever problematic: the lack of isometry would force us to smear the Q-brane fields in an

unusual way. But the derivation of this warp factor and the BI (1.9) still suggest the

possibility for such a brane. On a similar tone, the last BI (1.10) might be related to the

existence of a codimension 0 NS-brane. But smearing the R-brane warp factor fR, as we

did for the other branes, does not bring any valuable information on the warp factor of

this hypothetical object.

In the absence of branes, our study of BI has put forward the Spin(D,D)×R+ covariant

derivative and its Dirac operator D. We showed that the nilpotency of the latter gives back

the NSNS BI. So this object is an important tool to characterise vacua; understanding its

cohomology should for instance be helpful. The formalism of Generalized Geometry or

DFT would certainly help to study this operator. The specific Generalized Geometry with

Spin(D,D)×R+ structure group worked-out in [97] could also be related. In addition, this

object D should appear and characterise supersymmetric vacua, in the context of SU(3)×
SU(3) structures. In the future work [98], we expect to obtain it in β-supergravity Killing
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spinor equations, similarly to [65], and consequently in the superpotential (a discussion and

references on the latter can be found in [3]). The D given in (1.16) should then provide

a characterisation of internal manifolds analogous to the standard twisted Generalized

Calabi-Yau [99, 100]. Its cohomology could thus again play a role, this time in dimensional

reductions on those manifolds, or maybe on the generalized parallelizable spaces of [101].

In the last part of the paper, we studied the symmetries of standard and β-supergravity,

and how those could be used to construct geometric backgrounds. In the presence of

isometries, the symmetries were shown to be enhanced by the T-duality group. One of

its elements, the β-transforms, turned out to be a manifest symmetry of β-supergravity,

and played an important role in our analysis. Using those as gluing transformations would

always lead to geometric backgrounds of β-supergravity. The restriction of having isome-

tries and the use of β-transforms could then help in constructing the generalized cotangent

bundle ET ∗ , introduced in [1, 27]. This counterpart of the generalized tangent bundle ET
was argued in [1] to be the correct Generalized Geometry bundle for the generalized frames

built with Ẽ(β) (2.2). It would be interesting to have one concrete construction of ET ∗ .

This point could be related to the behaviour of the Courant bracket under β-transforms,

provided the isometries: this could be worth being studied as well.

Our analysis lead us to determine a class of geometric backgrounds of β-supergravity,

while clarifying some related notions. These vacua were however shown to be on a geometric

T-duality orbit, preventing them from leading to new physics. Similar results were obtained

in [102] when considering reductions from DFT to some supergravities in seven dimensions

or higher. Although we rather have in mind here physics of four-dimensional supergravities,

these results might be related. We proposed in section 4.3 various possibilities to circumvent

this result, at the level of ten-dimensional supergravity. It was suggested in [102] that

truly new vacua and new physics would rather be accessible beyond that level, and similar

proposals have been made in [54, 58, 103, 104]. The extension of our formalism to the

Ramond-Ramond sector or to include the gauge fluxes of heterotic string, as discussed in [1],

would in any case bring a more complete picture of the properties of these backgrounds

with non-geometric fluxes.

Even if we do not get new physics from β-supergravity, as in the case studied here,

this reformulation of standard supergravity may offer a better description of some back-

grounds. It is for instance the case of the Q-brane, that is T-dual to the smeared NS5-

brane: its brane picture is much clearer in terms of β-supergravity fields, and the BI are

then nicely formulated with non-geometric fluxes. We expect to find other examples of

(non-compact) backgrounds better described by β-supergravity in the AdS/CFT context,

where β-transforms already play a role.
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A Conventions

We give in this appendix various conventions used throughout the paper. The space-time is

D-dimensional. The flat (tangent space) indices are a . . . l and the curved ones are m. . . z.

|g̃| denotes the absolute value of the determinant of the metric g̃, and R(g̃) denotes its

Ricci scalar, for a Levi-Civita connection. The squares introduced are defined as

(∂φ)2 ≡ gmn∂mφ ∂nφ ,

H2 ≡ 1

3!
HmnpHqrsg

mqgnrgps , R2 ≡ 1

3!
RmnpRqrsg̃mq g̃nrg̃ps , (A.1)

(∂φ̃)2 ≡ g̃mn∂mφ̃ ∂nφ̃ , (βmp∂pφ̃− T m)2 ≡ g̃mn(βmp∂pφ̃− T m)(βnq∂qφ̃− T n) .

Going to flat indices, we use the vielbein ẽam and its inverse ẽnb, associated to the

metric g̃mn = ẽamẽ
b
nηab, with ηab the components of the flat metric ηD. Tensors with

flat indices are obtained after multiplication by the appropriate (inverse) vielbein(s), e.g.

βab = ẽamẽ
b
nβ

mn, and we also denote ∂a = ẽma∂m. The structure constant or geometric

flux fabc is defined from the vielbeins as

fabc = 2ẽam∂[bẽ
m
c] = −2ẽm[c∂b]ẽ

a
m , 2∂[a∂b] = f cab∂c . (A.2)

The spin connection coefficient, given for Levi-Civita connection by (2.15), satisfies

ηdcωabc = −ηacωdbc , fabc = 2ωa[bc] , f
a
ab = ωaab . (A.3)

A p-form A is given by

A =
1

p!
Am1...mpdx

m1 ∧ . . . ∧ dxmp =
1

p!
Aa1...ap ẽ

a1 ∧ . . . ∧ ẽap . (A.4)

We deduce for a p-form A and a q-form B the coefficient

(A ∧B)µ1...µp+q =
(p+ q)!

p!q!
A[µ1...µpBµp+1...µp+q ] . (A.5)

The contraction of a vector V = V m∂m = V a∂a on A is defined by

V ∨A =
1

(p− 1)!
V m1Am1...mpdx

m2 ∧ . . . ∧ dxmp . (A.6)

It is also denoted by ιa = ẽmaιm, that satisfies the following commutation relations

V ∨A = V aιaA , {ẽa, ιb} = δab , {ιa, ιb} = 0 , (A.7)

and a contraction on scalar vanishes. In the case of multiple contractions, such as Qc
abιaιb,

one should be careful with their order, that may generate signs when acting on a form.

Finally, we introduce the totally antisymmetric quantity ε, given by εm1...mn = +1/− 1 for
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(m1 . . .mn) being an even/odd permutation of (1 . . . n), and 0 otherwise. The one with flat

indices εa1...an has the same value, i.e. ε is not a tensor. This can be seen by preserving the

volume form. We also consider (constant) matrices γa, satisfying the Clifford algebra

{γa, γb} = 2ηab , [γa, γb] = 2γab with γa1a2...ap ≡ γ[a1γa2 . . . γap] , (A.8)

and further useful properties listed in the appendix of [1].

B Derivation of the equations of motion in flat indices

In this appendix, we give details on the rewriting of the equations of motion (2.21), (2.22)

and (2.23) in flat indices, following section 2.2. This is achieved with two methods: first

a direct approach, and secondly using the Generalized Geometry formalism. As a side

remark, let us mention that it would be interesting to apply a Palatini formalism to the

β-supergravity objects to rederive these equations. They should also be obtainable from

the DFT ones of [33].

B.1 Direct approach

As explained in section 2.2, the β equation of motion requires more work than the other

two; we only focus on this one here. We start by multiplying the equation in curved

indices (2.23) by the appropriate vielbeins to get it in flat indices. We then separate the

terms in ∂φ̃ and T from the others, as they may vanish upon standard assumptions when

looking for solutions [1]. We obtain

− 1

2
ηabηcdηef ∇̌aRbdf + 2ηf [eRc]dβfd +

1

2
ηcdηefη

ab∇a∇bβfd −∇a
(
ηf [e∇c]βfa

)
(B.1)

= ηabηcdηefR
bdf
(
βag∂gφ̃− T a

)
+ ηabηcdηef∇bβfd ∂aφ̃

+ 4βabηa[c∇e]∂bφ̃+ 2ηa[c∇e]βab ∂bφ̃ .

We now focus on the l.h.s. of (B.1). A key ingredient is ∇β: it can be written in terms of

fluxes as

∇bβfd = Qb
fd + βh[ffd]bh + 2ηh[dβf ]gf ih(bηg)i . (B.2)

Using this expression and the definitions of the fluxes, a tedious computation gives a lengthy

expression for ∇a∇bβfd. From the latter, we get two terms of (B.1). We first deduce an

expression for ∇a∇cβfa, and obtain further

ηfe∇a∇cβfa = ηfe∂aQc
fa + ηfeβ

h[f∂af
a]
ch (B.3)

+
1

2
ηfeη

haβfg
(
ηgi∂af

i
hc + ηci∂af

i
hg

)
+

1

2
βga

(
ηgi∂af

i
ec + ηci∂af

i
eg

)
+ ηfef

a
ahQc

fh +
1

2
ηfef

f
chQa

ah +
1

2
ηfef

f
ahQc

ha

+
1

2
Qa

ag
(
ηcif

i
ge + ηgif

i
ce

)
+

1

2
Qc

ga
(
ηaif

i
eg + ηgif

i
ea

)
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+
1

2
ηfe

(
1

2
fahcf

f
agβ

gh + fahgf
f
caβ

gh + faahf
h
cgβ

gf + fahcf
h
agβ

gf

)
+

1

2
ηlc

(
1

2
f lkaf

k
ejβ

aj + f legf
g
ajβ

aj

)
+

1

2
ηgif

i
ecf

g
ajβ

aj

+
1

4
fgac

(
ηijf

i
egβ

aj + ηigf
i
ejβ

aj + ηgjf
a
ekβ

jk
)

+
1

2
ηfef

g
acη

haβfj
(
ηgif

i
jh + ηgjf

k
kh

)
+

1

4
ηfef

i
hcf

f
ajηgiη

hjβga

+
1

4
ηlcf

l
kaf

i
egηijη

gkβaj +
1

4
f ihcf

l
aeηglηijη

haβgj

+
1

2
ηlcηfe

(
f lhgf

a
ajη

gjβhf +
1

2
ff hgf

l
akη

gkβha
)

+
1

4
ηlcηfeηijη

ahηgkf lakf
i
hgβ

fj .

Secondly, we contract ∇a∇bβfd with a metric to get

ηab∇a∇bβfd = ηab∂aQb
fd + ηabβh[f∂af

d]
bh + ηh[dβf ]g

(
ηabηgi∂af

i
hb + ∂af

a
hg

)
(B.4)

+Qb
fdηgkfaak + 2Qa

g[dηf ]h
(
ηabηgif

i
hb + fahg

)
+

1

2
ηabβghf [f agf

d]
bh + fahg

(
ηh[dff ]jaβ

jg + fgakη
k[fβd]h

)
+ faak

(
ηgkβh[ffd]gh + ηh[dβf ]j(ηgkηijf

i
hg + fkhj)

)
+ ηabηgif

g
jaf

i
hbη

h[dβf ]j + ηabηgiβ
gjf ihbη

h[dff ]aj

+
1

2
ηabηhgηijf

i
hbβ

j[dff ]ag

+ ηh[dηf ]kβgj
(

1

2
ηabf

a
kgf

b
hj + ηjlf

a
hgf

l
ak

)
+

1

2
ηabηhdηfkηglηijβ

jgf lkaf
i
bh .

We finally sum the two terms of (B.1) just obtained, together with a third one involving

Rcd that we get using (2.20). Many simplifications occur to eventually give

2ηf [eRc]dβfd +
1

2
ηcdηefη

ab∇a∇bβfd −∇a
(
ηf [e∇c]βfa

)
(B.5)

=
1

2
ηefηcdη

ab∂aQb
fd + ∂a(ηf [eQc]

af )

+ 2βhf∂af
a
h[cηe]f − βha∂aff h[cηe]f +

1

2
ηgiβ

ga∂af
i
ce − 2βfdηf [e∂c]f

a
ad

+Qa
gffag[cηe]f +

1

2
ff haQ[c

haηe]f + faahQ[c
hfηe]f +Qa

ahff h[cηe]f

+
1

2
Qa

agf iecηgi +
1

2
ηefηcdη

gkQg
fdfaak + ηgiη

abQa
dgf ib[eηc]d

+ 2βjffaakf
k
j[cηe]f + βghfahgf

f
a[cηe]f +

1

2
βajf icef

g
ajηgi .
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We now rewrite this expression in a more convenient manner. To do so, one can first show

the following identity using (1.7)

2βhf∂af
a
h[cηe]f − 2βfdηf [e∂c]f

a
ad + 2βjffaakf

k
j[cηe]f = 2βdf∂df

a
a[cηe]f . (B.6)

Secondly, thanks to definitions, including the one of T a given in (2.20), one can derive

−2ηf [e∇c]T f = 2ηf [e∂c]Qa
af − βhiηf [e∂c]ff hi (B.7)

− ηf [eQc]hiff hi + ηgdQa
agfdec + 2βjhff hif

i
j[cηe]f −

1

2
βhifghif

d
ecηgd .

Thirdly, one can show that

− βha∂aff hc = βha∂af
f
hc − 3βha∂[af

f
hc] + βha∂cf

f
ah , (B.8)

where the r.h.s. can be further rewritten with (1.7). Then, using

βha∂af
f
hc = −2βa[h∂af

f ]
hc − βaf∂afhhc , (B.9)

together with (1.8) on the r.h.s. of (B.9), one gets an expression for βha∂af
f
hc. The latter

should be inserted in the r.h.s. of (B.8). The resulting expression, antisymmetrized with

ηef , can be rewritten using (B.7) into

−βha∂aff h[cηe]f = − 2ηf [e∇c]T f + βfd∂df
a
a[cηe]f − ηf [e∂c]Qaaf − ∂aQ[c

afηe]f (B.10)

+ βahfgahf
f
g[cηe]f +

1

2
βhifghif

d
ecηgd

− faagQ[c
gfηe]f −Qaag

(
ff g[cηe]f + fdecηgd

)
.

Using (B.6) and (B.10), we rewrite (B.5) as follows

2ηf [eRc]dβfd +
1

2
ηcdηefη

ab∇a∇bβfd −∇a
(
ηf [e∇c]βfa

)
(B.11)

= −2ηf [e∇c]T f +
1

2
ηgiβ

ga∂af
i
ce + βdf∂df

a
a[cηe]f − ηf [e∂c]Qaaf

+
1

2
ηefηcdη

ab∂aQb
fd +Qa

gffag[cηe]f +
1

2
ff haQ[c

haηe]f −
1

2
Qa

agf iecηgi

+
1

2
ηefηcdη

gkQg
fdfaak + ηgiη

abQa
dgf ib[eηc]d .

From this (B.11), we finally rewrite the β equation of motion from (B.1) to

− 1

2
ηabηcdηef ∇̌aRbdf +Qa

gffag[cηe]f +
1

2
ff haQ[c

haηe]f (B.12)

− 1

2
Qa

agf iecηgi +
1

2
ηefηcdη

gkQg
fdfaak + ηgiη

abQa
dgf ib[eηc]d

= 2ηf [e∇c]T f −
1

2
ηgiβ

ga∂af
i
ce − βdf∂dfaa[cηe]f + ηf [e∂c]Qa

af

− 1

2
ηefηcdη

ab∂aQb
fd + ηabηcdηefR

bdf
(
βag∂gφ̃− T a

)
+ ηabηcdηef∇bβfd ∂aφ̃

+ 4βabηa[c∇e]∂bφ̃+ 2ηa[c∇e]βab ∂bφ̃ ,

as given in (2.24).
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B.2 Using the generalized geometry formalism

We explain in section 2.2 the main procedure to derive the equations of motion in flat

indices from the Generalized Geometry formalism. Here, we give some details on the

computation of the generalized Ricci tensor (2.37). We start from its expression (2.38).

We observe that all derivatives acting on the spinor ε+ should vanish, since the generalized

Ricci tensor only acts on the spinor via a multiplication by a γ-matrix. One can therefore

verify that(
γa∂a∂b − γaηbg∂aβge∂e − γaηbgβge∂a∂e + γaγghYbgh∂a (B.13)

+ γaηadβ
dc∂c∂b − γ

aηadηbgβ
dc∂cβ

ge∂e − γaηadηbgβdc∂cβge∂c∂e + γaγghYbghηadβ
dc∂c

+Xacdγ
acd∂b −Xacdγ

acdηbgβ
ge∂e + γaXa∂b − γ

aXaηbgβ
ge∂e

− γaωc
ab
∂c + γaωc

ab
ηcgβ

ge∂e + γaηadωQ
dc
b
∂c − γaηadωQdcb ηcgβ

ge∂e

− 1

2
γaηadηbfR

dfc∂c +
1

2
γaηadηbfR

dfcηcgβ
ge∂e

− γa∂b∂a − γ
aηad∂bβ

dc∂c − γaηadβdc∂b∂c − γ
acdXacd∂b − γ

aXa∂b

+ γaηbgβ
ge∂e∂a + γaηadηbgβ

ge∂eβ
dc∂c + γaηadηbgβ

geβdc∂e∂c

+ γacdXacdηbgβ
ge∂e + γaXaηbgβ

ge∂e − γghγaYbgh∂a − γ
ghγaYbghηadβ

dc∂c

)
ε+ = 0 .

We are then left with γ-matrices acting on ε+. Using several identities on γ-matrices listed

in the appendix of [1], we obtain

1

2
Rabγ

aε+ =

(
(γagh + 2ηa[gγh])∂aYbgh + (γagh + 2ηa[gγh])ηadβ

dc∂cYbgh (B.14)

+ [γacd, γgh]XacdYbgh + [γa, γgh]XaYbgh

− (γagh + 2ηa[gγh])ωc
ab
Ycgh + (γagh + 2ηa[gγh])ηadωQ

dc
b
Ycgh

− 1

2
(γagh + 2ηa[gγh])ηadηbfR

dfcYcgh

− γacd∂bXacd − γa∂bXa + γacdηbgβ
ge∂eXacd + γaηbgβ

ge∂eXa

)
ε+

Similarly to the calculation of the scalar S in [1], we should then distinguish the different

orders in γ-matrices. Here, we only consider the lowest order in γa, and assume that all

higher orders vanish: this would be analogous to the computation of S, where the BI (3.1)–

(3.4) played an important role; we expect the same here. In addition, the lowest order will

be enough to obtain the equations of motion. Then at first order in γa, 1
2Rabγ

a gives(
1

2
Rba −

1

2
ηaeηbgŘge +

1

8
ηaeηbgηifηcdR

igcRdfe − 1

4
ηaeηbge

2φ̃∇d(e−2φ̃Rgde) (B.15)

+∇b∇aφ̃− ηaeηbg∇̌
g(∇̌eφ̃)− ηaeηbg∇̌gT e

– 53 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
9

+
1

4
ηbg∂dQa

gd +
1

4
ηaeηbg∂dQf

egηdf +
1

4
ηaeηbg∂dQf

edηgf − 1

2
ηae∂bQd

de

− 1

4
ηaeβ

gc∂cf
e
bg −

1

4
βgc∂cf

e
abηge −

1

4
βgc∂cf

e
agηbe +

1

2
ηbgβ

gc∂cf
d
da

+
1

4
ηbgf

d
dcQa

gc +
1

4
ηaef

d
dcQb

ec +
1

4
ηbgηaeη

chfddcQh
eg

− 1

4
ηaeQd

dcfebc −
1

4
ηbhQd

dcfhac −
1

4
ηchQd

dcfhab

+
1

8
ηbgf

g
cdQa

dc +
1

8
ηchf

h
bdQa

dc +
1

8
ηdhf

h
bcQa

dc

+
1

8
ηaeηbgη

cffgcdQf
ed +

1

8
ηaef

h
gdQh

ed +
1

8
ηaeηdhη

cifhbcQi
ed

+
1

8
ηaeηbgηdff

g
cdQf

ec +
1

8
ηaeηchηdif

h
bdQi

ec +
1

8
ηaef

h
bcQh

ec

− 1

8
ηaef

e
cdQb

dc − 1

8
ηaeηbgη

dhfecdQh
gc − 1

8
ηaeηbgηchf

e
cdQh

gd

− 1

8
ηdef

e
acQb

dc − 1

8
ηbgf

e
acQe

gc − 1

8
ηbgηchηdef

e
acQh

gd

− 1

8
ηcef

e
adQb

dc − 1

8
ηbgη

dhηcef
e
adQh

gc − 1

8
ηbgf

e
adQe

gd

− ηae∇b(∇̌
eφ̃)− ηae∇bT

e + ηbg∇̌g∇aφ̃

− 1

2
ηaeηbgηfcR

gfeT c +
1

4
ηaeηbgηdfe

2φ̃∇̌d(e−2φ̃Rgfe)
)
γa .

By considering aligned vielbeins, the previous expression reduces to(
1

2
Rba −

1

2
ηaeηbgŘge +

1

8
ηaeηbgηifηcdR

igcRdfe − 1

4
ηaeηbge

2φ̃∇d(e−2φ̃Rgde) (B.16)

+∇b∇aφ̃− ηaeηbg∇̌g(∇̌eφ̃)− ηaeηbg∇̌gT e

+
1

2
∂dQ(a

gdηb)g +
1

4
ηaeηbgη

df∂dQf
eg − 1

2
ηae∂bQd

de

− 1

4
βgc∂cf

e
abηge +

1

2
βgc∂cf

e
g(aηb)e +

1

2
ηbgβ

gc∂cf
d
da

+
1

2
fddcQ(a

gcηb)g +
1

4
ηbgηaeη

chfddcQh
eg +

1

2
Qd

dcfec(aηb)e −
1

4
ηchQd

dcfhab

+
1

4
fgcdQ[a

dcηb]g +
1

2
ηe[af

h
b]dQi

ecηchη
di +

1

2
ηe[af

h
b]cQh

ec

− ηae∇b(∇̌eφ̃)− ηae∇bT e + ηbg∇̌g∇aφ̃

− 1

2
ηaeηbgηfcR

gfeT c +
1

4
ηaeηbgηdfe

2φ̃∇̌d(e−2φ̃Rgfe)
)
γa .

We can further simplify the above using the following identities. First, one can show

ηg(a∇̌g∇b)φ̃− ηg(a∇b)(∇̌gφ̃) = 0 , −ηe[aηb]g∇̌g(∇̌eφ̃) =
1

2
ηe[aηb]gR

ged∇dφ̃ , (B.17)

where the second one cancels the term coming from −1
4ηaeηbge

2φ̃∇d(e−2φ̃Rgde). In addition,

three terms antisymmetric in (a, b) at second order in β vanish thanks to the following
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identity using (1.8) and (1.9)27

− 1

2
ηe[aηb]gŘge − ηe[aηb]g∇̌gT e −

1

4
ηaeηbg∇dRgde = 0 , (B.18)

and the seven terms symmetric in (a, b) at linear order in β cancel using (1.7) and (1.8)

1

2
∂dQ(a

gdηb)g −
1

2
ηe(a∂b)Qd

de +
1

2
βgc∂cf

e
g(aηb)e +

1

2
βgc∂cf

d
d(aηb)g (B.19)

− ηe(a∇b)T e +
1

2
fddcQ(a

gcηb)g +
1

2
Qd

dcfec(aηb)e = 0 .

Using all those, we are finally left with the following expression for 1
2Rabγ

a at first order

in γ-matrices, that we give also in (2.39)(
1

2
Rba −

1

2
ηe(aηb)gŘge +

1

8
ηaeηbgηifηcdR

igcRdfe (B.20)

+∇b∇aφ̃− ηe(aηb)g∇̌g(∇̌eφ̃)− ηe(aηb)g∇̌gT e

+
1

4
ηaeηbgη

df∂dQf
eg − 1

2
ηe[a∂b]Qd

de − 1

4
βgc∂cf

e
abηge +

1

2
βgc∂cf

d
d[aηb]g

+
1

4
ηbgηaeη

chfddcQh
eg − 1

4
ηchQd

dcfhab

+
1

4
fgcdQ[a

dcηb]g +
1

2
ηe[af

h
b]dQi

ecηchη
di +

1

2
ηe[af

h
b]cQh

ec

− ηe[a∇b](∇̌eφ̃)− ηe[a∇b]T e + ηg[b∇̌g∇a]φ̃

− 1

2
ηaeηbgηfcR

gfeT c +
1

4
ηaeηbgηdfe

2φ̃∇̌d(e−2φ̃Rgfe)
)
γa .

B.3 Relation to the subcase with simplifying assumption

A simplifying assumption was considered in [3], given by the conditions βmn∂n· = 0,

where the dot stands for any field, and ∂pβ
np = 0. This provided a simple Lagrangian,

corresponding to a subcase of β-supergravity: one can reduce L̃β to the former upon the

assumption. Let us study here the simplification of the equations of motion. First, the

assumption leads to Rabc = 0 and T a = 0. In addition, the Q-flux gets reduced as in (3.91),

implying that Qa
ab = 0 and Qc

haf bha = 0. The dilaton equation of motion (2.21) and the

Einstein equation (2.22), rewritten in flat indices, boil down to

1

4

(
R(g̃) + Ř(g̃)

)
− (∂φ̃)2 +∇2φ̃ = 0 , (B.21)

Rab − ηc(aηb)dŘcd + 2∇a∇bφ̃ = 0 , (B.22)

where Ř and Řab can be further simplified using (2.19) and (D.8). The β equation of

motion in flat indices (2.24) becomes

Qa
gffag[cηe]f +

1

2
ηefηcdη

gkQg
fdfaak + ηgiη

abQa
dgf ib[eηc]d (B.23)

= −1

2
ηefηcdη

ab∂aQb
fd + ηabηcdηef∇bβfd ∂aφ̃+ 2βabηa[c∇e]∂bφ̃ ,

27One also has the identity 2Ř[ab] = −∇cRcab [23], related to (1.9).
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where the last term does not vanish due to the connection terms. Using for the penultimate

term (B.2) and for the last term the different definitions, one can show that all explicit

dependence on β vanishes with the assumption, leaving the β equation of motion as

ηefηcdη
gkQg

fdfaak + 2ηgiη
abQa

dgf ib[eηc]d + e2φ̃ηefηcdη
ab∂a(e

−2φ̃Qb
fd) (B.24)

+ 2Qa
gffag[cηe]f = 0 .

The last term can be simplified further by the assumption towards 2Qa
gf ẽamηf [c∂e]ẽ

m
g.

It is interesting to compare this equation (B.24) to the one obtained in [3]:

∂m(e−2φ̃
√
|g̃| g̃mng̃pq g̃rs∂nβqs) = 0 . (B.25)

This comparison was initiated in curved indices in [3]. Here, we turn (B.25) into flat indices

and get, using the assumption,

ηefηcdη
gkQg

fdfaak + 2ηgiη
abQa

dgf ib[eηc]d + e2φ̃ηefηcdη
ab∂a(e

−2φ̃Qb
fd) (B.26)

+ 2Qa
gfηgdη

ab ẽdmηf [e∂c]ẽ
m
b = 0 .

We see that (B.24) and (B.26) do not match: they differ by their second rows, i.e. their

last term. This fact can be understood as follows: applying the simplifying assumption to

the Lagrangian and deriving the β equation of motion do not commute. This can be seen

for instance on a Lagrangian term like βmn∂ng̃
pq∂q g̃mp, that would contribute to (B.24)

but not to (B.26). This problem does not affect the other equations of motion (one can

verify directly the matching) because the assumption does not involve the other fields.

So to conclude, the correct β equation of motion for field configurations satisfying the

simplifying assumption of [3] is (B.24) and not (B.25). Note though that for the toroidal

example and the Q-brane, the two differing terms vanish.

C On sourceless NSNS Bianchi identities

C.1 Relations to other Bianchi identities in the literature

Our Bianchi identities (BI) (3.1)–(3.4) provide a generalization to non-constant fluxes of

the BI (3.6)–(3.10), for H = 0. As mentioned in the Introduction and in section 3.1.1,

such generalizations have already been proposed in two other approaches. We show in

this appendix that the BI obtained there can be reduced and matched with the simpler

expressions given by our (3.1)–(3.4).

In [34] are introduced some straight and some curly fluxes. They are identical once

one sets the H-flux to vanish, and then match the definition of our fluxes, up to a minus

sign on the R-flux. Four BI are derived there, as described in section 3.1.1, and are given

in our conventions by

0 = ∂[af
e
bf ] − fed[afdbf ] , (C.1)

0 = βdg∂gf
e
af + 2∂[aQf ]

de −Qgdefgaf + 4Q[a
g[dfe]f ]g (C.2)

+ βeg
(

2∂[af
d
f ]g − 3fdh[gf

h
af ]

)
,
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0 = − ∂aRghi + 2βd[g∂dQa
h]i + 3Qa

d[gQd
hi] − 3Rd[ghf i]ad (C.3)

+ βid
(

2βe[g∂ef
h]
ad − ∂aQdgh +Qe

ghfead − 4Q[a
e[gfh]d]e

)
,

0 = βg[a∂gR
bc]d + 2Rg[daQg

bc] + βed
(
−βf [a∂fQebc] − f [afeRbc]f +Qf

[abQe
c]f
)
. (C.4)

The set of conditions (C.1)–(C.4) turns out to match our (3.1)–(3.4). This can be verified

using the identities

2∂[af
d
f ]g = 3∂[af

d
fg] − ∂gfdaf , (C.5)

2βd[g∂dQa
h]i = 3βd[g∂dQa

hi] − βdi∂dQagh , (C.6)

3βg[a∂gR
bc]d = 4βg[a∂gR

bcd] + βgd∂gR
abc . (C.7)

To start with, (C.1) matches (3.1). Using the latter and (C.5), one shows that (C.2)

matches (3.2). Then, using the latter and (C.6), one shows that (C.3) matches (3.3).

Eventually, using the latter and (C.7), one verifies that (C.4) matches (3.4).

At the level of Double Field Theory (DFT) were obtained in [33] some generalized BI.

One of them, given by a quantity denoted ZABCD, was further decomposed into its various

O(D,D) components to get a set of DFT conditions. If we set again H = 0 and use the

strong constraint ∂̃m = 0, we can show that these conditions match precisely (3.1)–(3.4).

Indeed, the notations there then become Da = ∂a , Da = βab∂b , τbc
a = fabc, and the

fluxes are the same as ours, up to a minus sign on the R-flux; this allows to verify the

matching. As a confirmation, the conditions of [33] were mentioned to reproduce those

of [34], namely (C.1)–(C.4), that we have just shown to match our BI (3.1)–(3.4).

C.2 Derivation of BI from the Spin(D,D) × R+ covariant derivative

In section 3.1.2, we introduced a Spin(D,D) × R+ derivative and its associated Dirac

operator in (3.17). Before studying its nilpotency condition (3.31), let us first give some

details on how to compute a piece of it, namely D2. This piece is given by

D2 =
1

4
ΩABCΓABC =

1

4
Ω[ABC]Γ

AΓBΓC , (C.8)

where the index B is lowered by an O(D,D) metric. To compute this antisymmetry, we use

ΩABCΓB ≡ ΩA
D
C ηDBΓB =

1

2

(
ΩA

b
CΓb + ΩAbCΓb

)
. (C.9)

One then gets for instance

(ΩABC − ΩACB)ΓAΓBΓC = ΓA(ΩAbcΓ
bΓc + ΩA

bcΓbΓc + ΩA
b
cΓbΓ

c − ΩA
c
bΓ
bΓc) , (C.10)
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using the antisymmetry properties of the connection coefficient [1]. The six terms from

Ω[ABC] can be grouped two by two to use the above formula, and further combinations give

D2 =
8

24

(
3Ω[abc]ẽ

a∧ ẽb∧ ẽc∧ (C.11)

+ 2Ω[a
b
c]ẽ

a∧ ιb ẽc∧+2Ω[b
c
a]ẽ

a∧ ẽb∧ ιc + 2Ω[c
a
b]ιa ẽ

b∧ ẽc∧

+ 2Ω[a
b
c]ιa ẽ

b∧ ιc + 2Ω[b
c
a]ιa ιb ẽ

c∧+2Ω[c
a
b]ẽa∧ ιb ιc

+ 3Ω[abc]ιa ιb ιc

)
,

where we also set some connection coefficients to zero following [1], and the Γ-matrices have

been rewritten with the Clifford map of section 3.1.2. Using the commutation properties

of forms and contractions, and the value of the connection coefficients derived in [1], one

obtains eventually the two D2 given in section 3.1.2.

We now turn to the derivation of the BI using the nilpotency condition (3.31) on the

Dirac operator D (3.17). We focus only on the β-supergravity case, and use the expressions

for the three parts D1, D2 and D3 given in section 3.1.2. We start with D2, that we showed

to be related to the derivative D] of [36]. As mentioned in (3.13), the vanishing square of

this last derivative is known to reproduce the Bianchi identities for constant fluxes, together

with an additional constraint. So this piece should be a good starting point. That square,

acting on a p-form A, was computed explicitly in [36] and can be translated here as follows

(we use conventions of appendix A)

1

4
D2

2A = D2
]A = +

1

4
fggdf

d
abẽ

a ∧ ẽb ∧A (C.12)

+
1

2
fdgaf

g
bcẽ

a ∧ ẽb ∧ ẽc ∧ ιdA

+
1

4
fggdQa

daA

− 1

2
(f bcdQa

cd + f ccdQa
db + f bdaQc

cd)ẽa ∧ ιbA

+
1

4

(
4f cgaQb

gd + fgabQg
cd
)
ẽa ∧ ẽb ∧ ιcιdA

− 1

2

(
facdR

cdb +
1

2
f ccdR

dab +
1

2
Qc

cdQd
ab
)
ιaιbA

− 1

2

(
fdgaR

gbc +Qg
bcQa

gd
)
ẽa ∧ ιbιcιdA

− 1

4
Qg

abRgcdιaιbιcιdA .

Let us now add to D2 the derivative part D1

1

4

(
D2

1 +D1D2 +D2D1

)
A =− 1

2
∂af

d
dbẽ

a ∧ ẽb ∧A− 1

2
∂af

d
bcẽ

a ∧ ẽb ∧ ẽc ∧ ιdA (C.13)

+
1

2

(
βacfdca∂d − βdefggd∂e +Qd

db∂b − βde∂efggd
)
A

+
(
− βde∂ef bda +

1

2
(∂aQd

db + βbe∂ef
d
da)
)
ẽa ∧ ιbA
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− 1

2

(
∂aQb

cd − βgc∂gfdab
)
ẽa ∧ ẽb ∧ ιcιdA

+
1

6

(
− 3βdc∂cQd

ab + 3βac∂cQd
db
)
ιaιbA

+
1

6

(
∂aR

bcd − 3βeb∂eQa
cd
)
ẽa ∧ ιbιcιdA

− 1

6
βga∂gR

bcdιaιbιcιdA .

Bringing indices in the right order and writing out antisymmetries, we obtain a set of

identities by adding the above to 1
4D

2
2. Among those are already present our four BI (3.1)–

(3.4). However the additional identities are independent and non-trivial; they contain in

particular derivatives acting on A. To get rid of those, the missing part D3 of the Dirac

operator is then necessary. Note that this last part contains terms that include the dilaton.

So the additional terms to the square are

1

4

(
D1D3 +D3D1 +D2D3 +D3D2 +D2

3

)
A (C.14)

=

(
− 1

4
fggdf

d
ab +

1

2
f cab∂cφ̃+

1

2
∂af

d
db − ∂a∂bφ̃

)
ẽa ∧ ẽb ∧A

+

(
1

4
Qd

dafgga −
1

2
fdda(β

ab∂bφ̃− T a)−
1

2
Qd

da∂aφ̃+ ∂aφ̃(βab∂bφ̃− T a)

+
1

2
Qd

da∂a + T a∂a +
1

2
βac∂cf

d
da

+
1

2
βacfdda∂c − βac∂c∂aφ̃+

1

2
fggd(β

dc∂cφ̃− T d)−
1

2
Qd

da∂aφ̃

)
A

+

(
1

2
∂aQd

db − ∂a(βbc∂cφ̃− T b)−
1

2
βbc∂cf

d
da − βbc∂c∂aφ̃

+ f bda(β
dc∂cφ̃− T d) +Qa

bc∂cφ̃+
1

2
f badQg

gd − 1

2
fggcQa

bc

)
ẽa ∧ ιbA

+
1

2

(
βac∂cQd

db − 2βac∂c(β
bd∂dφ̃− T b)

+
1

2
fggdR

abd −Rabd∂dφ̃−
1

2
Qd

abQg
gd +Qd

ab(βdc∂cφ̃− T d)
)
ιaιbA .

All these contributions add-up to the following identities

1

2
∂[af

d
b]d +

1

4
fggdf

d
ab −

1

4
fggdf

d
ab +

1

2
f cab∂cφ̃−

1

2
∂[af

d
b]d − ∂[a∂b]φ̃ = 0

(C.15)

−1

2
∂[af

d
bc] +

1

2
fdg[af

g
bc] = 0

(C.16)

1

2
(βacfdca∂d − βdefggd∂e +Qd

db∂b − βde∂efggd) +
1

4
fggdQa

da +
1

4
Qd

dafgga

−1

2
fdda(β

ab∂bφ̃− T a)−
1

2
Qd

da∂aφ̃+ ∂aφ̃(βab∂bφ̃− T a) +
1

2
Qd

da∂a + T a∂a

+
1

2
βac∂cf

d
da +

1

2
βacfdda∂c + βac∂c∂aφ̃+

1

2
fggd(β

dc∂cφ̃− T d)−
1

2
Qd

da∂aφ̃ = 0

(C.17)
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−βde∂ef bda +
1

2
(∂aQd

db + βbe∂ef
d
da)−

1

2
(f bcdQa

cd + f ccdQa
db + f bdaQc

cd)

+
1

2
∂aQd

db − ∂a(βbc∂cφ̃− T b)−
1

2
βbc∂cf

d
da − βbc∂c∂aφ̃

+f bda(β
dc∂cφ̃− T d) +Qa

bc∂cφ̃+
1

2
f badQg

gd − 1

2
fggcQa

bc = 0

(C.18)

−1

2
(∂[aQc]

de − βg[d∂gfe]ac) +
1

4
(−4f [dg[aQc]

e]g + fgacQg
de) = 0

(C.19)

1

6
(−3βdc∂cQd

ab + 3βc[a∂cQd
b]d)− 1

2
(f [acdR

b]cd +
1

2
f ccdR

dab +
1

2
Qc

cdQd
ab)

+
1

2
(βac∂cQd

db − 2βac∂c(β
bd∂dφ̃− T b)

+
1

2
fggdR

abd −Rabd∂dφ̃−
1

2
Qd

abQg
gd +Qd

ab(βdc∂cφ̃− T d)) = 0

(C.20)

1

6
(∂aR

bcd − 3βe[b∂eQa
cd])− 1

2
(−Rg[bcfda]g +Qa

g[dQg
bc]) = 0

(C.21)

−1

6
βg[a∂gR

bcd] − 1

4
Qg

[abRcd]g = 0 .

(C.22)

Using in particular the expression of T a in terms of the other fluxes, (C.17), (C.18)

and (C.20) can be simplified respectively to

−1

2
Qd

dafgga = 0 (C.23)

−3

2
βde∂[ef

b
da] +

3

2
βdef bh[af

h
ed] = 0 (C.24)

−1

2
βdc∂cQd

ab − 1

2
βcdβg[a∂gf

b]
cd − βdcQcg[af b]dg +

1

4
βdcQg

abfgcd = 0 . (C.25)

In addition, (C.15) simply vanishes. We are then left with seven identities,

namely (C.16), (C.23), (C.24), (C.19), (C.25), (C.21) and (C.22), that we respectively

give in (3.32)–(3.38). As we show there, only five of those are independent and give our

four BI (3.1)–(3.4) together with the expected scalar condition.

D The Q-brane background and the related Bianchi identity

D.1 The Q-brane is a vacuum of β-supergravity

TheNS5-brane and theKK-monopole are known vacua of standard supergravity. We verify

explicitly in this appendix that the Q-brane, given in sections 3.2.1 and 3.2.3, satisfies the

equations of motion of β-supergravity. We recall that this makes the Q-brane a vacuum

of standard supergravity as well. As discussed in section 2.1 and appendix B.3, for a

field configuration satisfying βmn∂n· = 0 and ∂pβ
np = 0, β-supergravity gets simplified
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to the theory worked out in [3]. These two conditions turn out to be verified by the Q-

brane, even at the singularity. Using this property, the Q-brane was verified in [32] to

solve the simple equations of motion of [3]. We show however in appendix B.3 that the β

equation of motion of [3] is a priori not correct. In addition, the warp factor was considered

in [32] to be harmonic, which only holds away from the singularity. Here we will get some

new information at the singularity. So we start with the full equations of motion of β-

supergravity, obtained in this paper in flat indices. Using the two above conditions, the

three equations of motion have been simplified towards (B.21), (B.22), and (B.24).

For the Q-brane, given the non-zero components of the fluxes, each term of the β

equation of motion (B.24) simply vanishes because of the indices contractions: it is trivially

satisfied. So let us turn to the dilaton equation of motion (B.21). One computes

R = −5

2
f−3(∂ρf)2 + f−2∆2f , Ř = −1

2
f−3(∂ρf)2 , (D.1)

(∂φ̃)2 =
1

4
f−3(∂ρf)2 , ∇2φ̃ = f−3(∂ρf)2 − 1

2
f−2∆2f . (D.2)

Note that in these expressions and the following ones, the l.h.s. is given in flat indices,

whereas the r.h.s. involves derivatives in curved indices. One way to compute ∇2φ̃ is to

use

ηab∇aVb = ηab∂aVb + ηcdf bbcVd . (D.3)

This leads to
1

4

(
R(g̃) + Ř(g̃)

)
− (∂φ̃)2 +∇2φ̃ = −1

4
f−2∆2f . (D.4)

So away from the singularity, (B.21) is satisfied, since ∆2f = 0 for ρ > 0. At the singularity,

we get a δ, which is expected. Indeed, one should in principle add a source action to the

bulk action, and the former would contribute to the equations of motion by a δ within the

energy-momentum tensor. This is what we obtain here.

Finally, we focus on the simplified Einstein equation (B.22). The only non-zero com-

ponents of the Ricci tensor in flat indices are

Rxx = Ryy = −f−3(∂ρf)2 +
1

2
f−2∆f (D.5)

Rρρ = −3

2
f−3(∂ρf)2 +

1

2
f−2∂2ρf −

1

2
f−2ρ−1∂ρf (D.6)

Rϕϕ = f−3(∂ρf)2 − 1

2
f−2∂2ρf +

1

2
f−2ρ−1∂ρf . (D.7)

The other curvature tensor takes the form

Řab = βcd∂dωQ
ab
c − β

ad∂dωQ
cb
c + ωQ

ab
c ωQ

dc
d − ωQ

ca
d ωQ

db
c −

1

2
Radcf bdc ' −ωQcad ωQ

db
c ,

(D.8)

where the last equality is obtained thanks to the aforementioned simplifications verified by

the Q-brane. The non-zero components are

Řxx = Řyy = −1

2
(Qϕ

yx)2 = −1

2
f−3(∂ρf)2 (D.9)

Řϕϕ =
1

2
f−3(∂ρf)2 , Řρρ = 0 . (D.10)
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In addition the dilaton terms in flat indices yield

∇x∇xφ̃ = −ωρxxf−
1
2∂ρφ̃ =

1

4
f−3(∂ρf)2 (D.11)

∇y∇yφ̃ = −ωρyyf−
1
2∂ρφ̃ =

1

4
f−3(∂ρf)2 (D.12)

∇ρ∇ρφ̃ = f−
1
2∂ρ(f

− 1
2∂ρφ̃) = −1

2
f−

1
2∂ρ(f

− 3
2∂ρf) =

3

4
f−3(∂ρf)2 − 1

2
f−2∂2ρf (D.13)

∇ϕ∇ϕφ̃ = −ωρϕϕf−
1
2∂ρφ̃ = −1

4
f−3(∂ρf)2 − 1

2
f−2ρ−1∂ρf , (D.14)

from which we eventually deduce

Rxx − Řxx + 2∇x∇xφ̃ =
1

2
f−2∆f (D.15)

Ryy − Řyy + 2∇y∇yφ̃ =
1

2
f−2∆f (D.16)

Rρρ − Řρρ + 2∇ρ∇ρφ̃ = −1

2
f−2∆f (D.17)

Rϕϕ − Řϕϕ + 2∇ϕ∇ϕφ̃ = −1

2
f−2∆f . (D.18)

As explained for the dilaton equation of motion (D.4), the above equations vanish away

from the singularity as (B.22), and receive at the singularity an energy-momentum tensor

contribution in the form of a δ, due to the Q-brane action to be added.

D.2 The Bianchi identity with Q-brane source term

We comment here on a BI with a Q-brane source term obtained in (5.24) of [87], and

compare it to our proposal (1.12). It is given by

d (∂mβ
np g̃nug̃pvdx

m ∧ du ∧ dv) = constant vol4 δ
(4) , (D.19)

where the r.h.s. contains a constant times a four-dimensional volume form, and the l.h.s.

involves two specific directions u and v. This BI looks similar to the one for the H-flux, in

presence of an NS5-brane, since it is a four-form and the source is localised in four dimen-

sions by the δ(4). This last point looks however unexpected, since the Q-brane is only a

codimension 2 object. One can still wonder whether, upon smearing two dimensions, (D.19)

reduces to our proposal (1.12) that contains a δ(2). The two BI are given in rather differ-

ent fashions, so to ease the comparison, let us rewrite (D.19), partially evaluated on the

Q-brane solution given in section 3.2.

In this background, the metric is diagonal and β has only one non-trivial component.

Therefore we can replace u and v by generic directions: on the Q-brane solution, the two

expressions have the same value up to a factor 2. Using (3.91), we then rewrite (D.19) on

this background as

∗4 d
(
Qa

bc ηbdηcf ẽ
a ∧ ẽd ∧ ẽf

)
= constant′ δ(4) , (D.20)

⇔ εgadf
(
∂gQa

bcηbdηcf −
1

2
fhgaQh

bcηbdηcf +Qg
bcfhadηbhηcf

)
= constant′′ δ(4) , (D.21)
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the indices of ε being lifted with η. With the non-zero fluxes of the Q-brane solution, we get

2ερϕxy
(
f−

1
2∂ρQϕ

xy −Qϕxy(fϕρϕ + fyρy + fxρx)
)

= constant′′ δ(4) . (D.22)

This expression is close to ours for Sxyρϕ in (3.94), but is still different: the signs in

front of fyρy, f
x
ρx differ. Another way to see this mismatch is through the related term

Qg
bcfhadηbhηcf that is generically different from the one in our BI (3.2), although it is again

only a matter of sign when evaluated on the solution. We believe that smearing would not

change this sign.

So the two proposals (D.19) and (1.12) differ, at least when evaluated on the Q-

brane solution, which would have been a minimal requirement. As consequence, we doubt

that (D.19) could reduce to the two-dimensional Poisson equation, even when smeared.

We actually believe that an explicit tensorial expression for a BI with a Q-brane source

term is not given by a four-form, but rather involves contractions, e.g. ∇̌a · ιa, as indicated

by (3.39).

E Proofs about symmetries

In this appendix, we prove various statements that appeared in our study of symmetries

in section 4.1.

E.1 Proof of the equivalence (4.7)

Having isometries generated by Killing vectors translates into Killing equations on each of

our fields. Those are given in terms of the Lie derivative LVι . For constant Killing vectors,

it boils down to the conditions

∀ι ∈ {1 . . . N}, p, q, V m
ι ∂mg̃pq = 0 , V m

ι ∂mβ
pq = 0 , V m

ι ∂mφ̃ = 0 . (E.1)

Let us first prove the implication⇒. The N Killing vectors are constant and indepen-

dent. So they form a basis of an N -dimensional vector space. Using constant rotations, one

can thus bring them to a form where V m
ι = δmι v(ι) (no sum on ι), v(ι) 6= 0. As the rotations

are constant, they can be performed on the coordinates as well, and on the ∂m. So without

changing notation, we now consider to have such Killing vectors. The conditions (E.1)

now become

∀ι ∈ {1 . . . N}, p, q, ∂ιg̃pq = 0 , ∂ιβ
pq = 0 , ∂ιφ̃ = 0 . (E.2)

As the vectors are constant and independent, N cannot be bigger than the dimension of

the space-time. Let us now consider any constant antisymmetric bivector of coefficient

$pq that is non-zero only along these N directions, i.e. ∀p ∈ {1 . . . N}, ∃q / $pq 6= 0 and

∀p /∈ {1 . . . N}, $pq = 0. Thanks to the antisymmetry of $pq, this means that only the

diagonal block along (1 . . . N) × (1 . . . N) is non-zero. Note that this requires N > 1, as

assumed. Because of this block structure, one has $pr∂r =
∑N

ι=1$
pι∂ι. This operator

applied on any of the three fields vanishes, thanks to (E.2). In addition, it also vanishes on

any of their derivatives, by commuting the derivatives. So we eventually obtain $pr∂r· = 0.
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Let us now prove the reverse implication ⇐. We start with a constant antisymmetric

bivector $pq non-zero along a diagonal N×N block. Up to relabeling the directions, having

this block translates into ∀p ∈ {1 . . . N}, ∃q / $pq 6= 0 and ∀p /∈ {1 . . . N}, $pq = 0. Let

us now assume that N is even. We then consider a particular $pq such that the block only

has one non-zero entry on each line, i.e. ∀p ∈ {1 . . . N}, ∃!p0 / $pp0 6= 0. Thanks to the

antisymmetry, this means that each column of the block also has only one non-zero entry.

So it is clear that {p0} spans {1 . . . N}. Let us provide an example of such a block of $

(viewed as a matrix), to show that it can exist28
0 1

−1 0
. . .

0 1

−1 0

 . (E.3)

In addition, one has by assumption ∀p, $pr∂r· = 0. The peculiar structure of the block

just considered then implies that ∀p ∈ {1 . . . N}, $pp0∂p0 · = 0 (without sum on p0).

We then define N vectors Vι, ι ∈ {1 . . . N}, of components V m
ι = δmι v(ι) (no sum on

ι) with v(p0) ≡ $pp0 6= 0. Given these components, the N vectors are constant and

independent. One can verify that they satisfy ∀ι ∈ {1 . . . N}, V m
ι ∂m· = 0. So they satisfy

the condition (E.1), and they are Killing vectors.

Let us now look at the case where N is odd. As N > 1, we deduce N ≥ 3. We then

consider a $ having a non-zero diagonal N ×N block that splits into two diagonal blocks

of size (N − 3) × (N − 3) and 3 × 3. The first block is of even size; from that one we

can construct as above N − 3 constant and independent Killing vectors, along directions

that do not mix with the remaining 3. We will now construct a similar set of 3 vectors

along these last directions, and overall, the N Killing vectors will then be independent. To

construct two of the three missing Killing vectors, one can consider a block of the form 0 1 0

−1 0 0

0 0 0

 , (E.4)

possibly with coefficients different than 1. Either by proceeding as above on the 2 × 2

non-zero sub-block, or by diagonalising this block, one can get two more constant and

independent Killing vectors. However, with this $, we cannot get a Killing vector along

the last direction; we need to consider a different $. We only change the 3×3 block towards0 0 0

0 0 1

0 −1 0

 , (E.5)

and proceed similarly. By linear combinations, we can then get one new constant Killing

vector along the last direction, which is independent from all others.

28Such $ are only possible for an even N , that we assumed; indeed, for N being odd, the determinant of

the block would be zero (a property of antisymmetric matrices), which would prevent to get from it (alone)

N independent vectors, as we will see.
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E.2 T-duality is a symmetry for the NSNS sector

We show here the invariance of LNSNS, up to a total derivative, under the T-duality trans-

formation O(N,N) given in (4.11), when the fields are independent of N coordinates. To

do so, we recall two approaches in the literature.

• Maharana-Schwarz [91] and the compactification along the isometries

We consider that the NSNS fields are independent of N coordinates, in a D-

dimensional space-time. One can then develop the Lagrangian LNSNS by separating

the components of the fields that are along these N directions and those that are not.

The latter do not transform under the O(N,N), while the former do. One can then

look at how the various terms in the Lagrangian transform. This was precisely done

in [91]: the resulting rewritten Lagrangian was shown to be O(N,N) invariant.

The corresponding action can also be viewed as the compactified one. Because of the

independence on N coordinates, the corresponding volume factor can be factorized

out (it is set to 1 in [91]), leaving the action to be D−N dimensional. It is actually

a well-known fact that the reduced action has this O(N,N) symmetry. It is however

only a matter of volume factor to make it a D-dimensional action, and it then still

has the symmetry.

• Double Field Theory

The Double Field Theory (DFT) Lagrangian can be formulated as follows [42]

LDFT = e−2d
(

1

8
HMN∂MHPQ∂NHPQ −

1

2
HMN∂NHPQ∂QHMP (E.6)

− 2∂Md∂NHMN + 4HMN∂Md∂Nd

)
.

The fields H and d can be defined in terms of g, b, φ as in section 2.1 (HMN

is the component of H−1). However, they depend here on 2D coordinates XM =

(x̃m, x
m); the latter also define the derivative ∂M accordingly. An interesting property

of this Lagrangian is that it reproduces the standard NSNS Lagrangian up to a total

derivative if one enforces the strong constraint, that we take here to be ∂̃ = 0

LDFT|∂̃=0 = LNSNS + ∂(. . . ) . (E.7)

Another property of this Lagrangian is its invariance under constant O(D,D)

transformations. Those are given by the same action as in (4.11) for a generic

O ∈ O(D,D), together with a transformation of the coordinates and of the derivatives

X ′ = O−1X , ∂′ = O ∂ . (E.8)

Because of the contraction of indices and the invariance of d, it is straightforward to

see that these constant O(D,D) transformations are a symmetry of the Lagrangian,

i.e. LDFT is invariant under them.
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Let us now consider an independence on N standard coordinates xm, together with

the strong constraint ∂̃ = 0. This implies that the only non-trivial derivatives are the

∂p, where xp is not one of the N coordinates. Similarly, the fields in LDFT then only

depend on such xp. Let us now consider ON , one of the O(N,N) transformations

discussed in (4.10) and (4.11). Because of its O(D,D) invariance, LDFT is invariant

under this O(N,N) subgroup. Let us now look at the action of such an ON on

the derivatives and coordinates (E.8): on the xp that are the coordinates on which

the Lagrangian depends, the action is trivial (it is the 1D−N ). The same holds for

the derivatives ∂p. Therefore, when the fields are independent of N coordinates xm

and the strong constraint ∂̃ = 0 is enforced, the effective transformation on the

coordinates and derivatives in the Lagrangian under ON is

X ′ = X , ∂′ = ∂ , (E.9)

i.e. they do not transform. The action of this O(N,N) subgroup then boils down

to that of the T-duality group: indeed, the latter does not change the coordinates

nor the derivatives, but only acts on H and d as in (4.11). As mentioned above, this

O(N,N) leaves LDFT invariant. Therefore, thanks to (E.7), we deduce that LNSNS is

invariant under the T-duality group transformations, up to a total derivative, when

fields are independent of N coordinates.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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of geometry in double field theory, JHEP 04 (2014) 141 [arXiv:1312.0719] [INSPIRE].
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