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1 Introduction and main results

In the last few years, there has been a renewed interest in the topic of non-geometry and
non-geometric fluxes (for reviews see [2—4]). The non-geometric backgrounds of string
theory exhibit unusual behaviors, leading to new possibilities and opening still fairly un-
explored directions. Their study has been conducted from various angles, including world-
sheet and CFT approaches, target space constructions such as Double Field Theory (DFT)
and its U-duality extensions (for reviews see [5-7]), ten-dimensional supergravities and Gen-
eralized Geometry, and four-dimensional supergravities. We take in this paper the last two
points of view, and study the Bianchi identities for NSNS fluxes, the related NS-branes,
and properties of further ten-dimensional backgrounds with non-geometric fluxes.

Some four-dimensional gauged supergravities have as gaugings or components of the
embedding tensor the so-called non-geometric fluxes [8-10]. In the NSNS sector, those are
given by Q.% and R%‘. These Q- and R-fluxes give rise to specific terms in the four-
dimensional potential that are of phenomenological interest. They were shown in various
examples to help in stabilising moduli [11-13] or in obtaining de Sitter vacua [14-19].
Then, it is natural to ask whether such configurations with non-zero - and R-fluxes can
be obtained as backgrounds of string theory. To answer this question, we follow here
the approach of flux compactifications, that considers dimensional reductions from ten-
to four-dimensional supergravity on an internal compact manifold M. Traditionally, four-
dimensional vacua with @)- and R-fluxes are then rather believed to uplift to non-geometric
backgrounds, where M can be a non-geometry. In these backgrounds, stringy symmetries
such as T-duality are used instead of diffeomorphisms or gauge transformations [9, 20, 21]
(a more precise definition is given in section 4.2.1). This results mostly in non-standard
spaces for M, on which the compactification procedure cannot be applied. The relation
between these four- and ten-dimensional perspectives looks thus not well established.

Progress on these aspects have been made recently thanks to local reformulations of
standard supergravity into new ten-dimensional theories, in [1, 3, 22, 23] and [24-26]. This
is achieved in the NSNS sector, with the standard Lagrangian Lngng (2.4), by redefining
the metric gy, b-field b, and dilaton ¢ into a new set of fields §mn, 8™, gz~5, where f is
an antisymmetric bivector. As a consequence, the standard H-flux is traded for two new
fluxes, identified as the ten-dimensional (- and R-fluxes. Their definition depends on the



theory, and we follow here [-supergravity [1], where
Qe = 0:5" — 267 g, R =310V ,5", (1.1)

as in [23, 27, 28].1 The Lagrangian of the NSNS sector of S-supergravity is given by

Lg=e 2 <R(§) +4(09)% + 4(B 0 — T)? — %nabRaCdfbcd

1
— = NadMbeNer R R T 4 214 8%104Q% — 10aQa Q™

12
1 1
- §nchabCQbad - 477ad77be770anchdef) , (1.2)

as detailed in section 2.1. It looks very similar to the four-dimensional scalar potential
of gauged supergravities with Q- and R-fluxes. So (-supergravity appears to be a good
candidate to uplift four-dimensional gauged supergravities, as argued in [1]. A dimensional
reduction on a concrete background can only be performed though, if at least, the metric §
describes a standard manifold. Fortunately, this reformulation of standard supergravity not
only provides ten-dimensional non-geometric fluxes, but it also transforms in some examples
a non-geometry given by ¢ into a standard geometry described by g. The information on
the former non-geometry gets encoded in the new non-geometric fluxes. This reformulation
allows eventually to relate these backgrounds properly to the four-dimensional description.

Using [-supergravity, one can now study backgrounds with non-geometric fluxes di-
rectly in ten dimensions; this is the main purpose of this paper. In a first half, we focus
on Bianchi identities (BI) for the NSNS fluxes, and how they are corrected on specific
backgrounds corresponding to NS-branes. The corrections show that these branes actu-
ally source those fluxes. In a second half, we make a generic study of (the NSNS sector
of) geometric backgrounds of -supergravity, and try to determine whether those lead to
new physics.

While the BI bring constraints to be satisfied by the vacua, the equations of motion
should be verified in the first place. Those were derived in [1] in curved indices. We
rewrite them here in flat indices, so that %, and Q. appear: this simplifies the study of
solutions. We use two methods for this rewriting: a direct reformulation, and a Generalized
Geometry approach, following [29]. The non-trivial result is the S equation of motion given
in (2.24).

Bianchi identities and INS-branes. We study in section 3 a particular type of back-
grounds: the NS-branes. The NS5-brane is a codimension 4 brane and a known vacuum
of standard supergravity. Smearing it along one direction and T-dualising leads to the
Kaluza-Klein (KK) monopole, that can be viewed as a codimension 3 brane. The latter
is a solution of general relativity, and as such, it is a vacuum of both standard super-
gravity and [-supergravity. Smearing it once and T-dualising again leads finally to the
532-brane [30, 31] (the former two were denoted there 59 and 5}), that we prefer to call

Throughout the paper, a...l denote tangent space flat indices and m ...z curved space indices. The
structure constant or geometric flux f. is defined in (A.2) and we refer to appendix A for more conventions.



here the @-brane [32]. This brane is codimension 2. It appears in terms of standard su-
pergravity as a non-geometric background [30, 31], but a geometric description is restored
in [-supergravity [32, 33]. We verify in appendix D.1 that it satisfies the S-supergravity
equations of motion. More details on these branes, their smearing and T-duality relations,
are given in section 3.2.

The BI of supergravity fluxes can get corrected in presence of a brane: the latter
provides a source term. The resulting equation usually boils down to the Poisson equation
on a warp factor. Let us recall the standard case of the H-flux with an NS5-brane, before
presenting our extensions to the other NSNS fluxes and branes. The BI for the H-flux is
given by the four-form dH. In terms of its coefficient in flat indices, the BI, in presence of
an NS5-brane, is written

3 Cu
NSB—brane : a[aHde] — ife[abHcd]e = T

€4 Labea 0 (r4) . (1.3)
The right-hand side (r.h.s. ) localises the brane in its four transverse directions (as indicated
by the | ) at the radius r4 = 0. The factor Cy will be specified in the paper, and conventions
on the ¢4 are given in appendix A. With the fluxes of the NS5-brane background, (1.3)
becomes the Poisson equation on the warp factor fy (with a normalisation constant cgy)

Ayfg =cg W (ry), (1.4)

as we will verify explicitly. Another BI that the background should satisfy is given below
by equation (1.7). This condition is obtained either by considering d?> = 0 in flat indices
(more precisely d(de®) = 0), or from the Jacobi identity of the Lie bracket on Cartan
one-forms [34], or the first BI of the Riemann tensor. This BI (1.7) on the geometric flux
is automatically satisfied when expressing f in terms of vielbeins. The BI for the H-flux
without source behaves similarly: dH vanishes when replacing H by db. This property
holds if the fields have no singularity. A source is responsible for a singular point, hence
the r.h.s. in (1.3) and (1.4). These two equations still vanish locally at any point away
from the source. We will recover the same behaviour in what follows. Finally, the two BI
without a source verify another important property: they are recovered by setting to zero
the square of the “derivative” d — HA acting on a form A. We can as well introduce a
dilaton factor, and write

For DA =2¢?(d— HA)(e™®A), D?=0 & d>=0anddH =0. (1.5)

For constant Hg,. and f%,, their BI without source can also be obtained from the
Jacobi identities of some algebra. This algebra can be extended to the gauging algebra of
four-dimensional gauged supergravity: it then includes all NSNS fluxes

[Zav Zb] = Hachc + fcach (16)
[Zcu Xb} = _fbacXc + Qachc
[Xa,Xb] — Qcach _ Rachc ]



The Jacobi identities of (1.6), given in (3.6)—(3.10), were thus proposed as the BI for
constant NSNS fluxes (without source) [8]. For a vanishing H-flux, we propose here a
ten-dimensional generalization of those, for non-constant fluxes

Opfeay — fhepfeq) =0, (1.7)

NQa™ — B0 f¥leg — %Qeabfecd +2Q 1 g =0, (1.8)
04R™ — 35°99,0,2 + 3Rl F _ 30,€le, b — 0. (1.9)
gelag, gbed gRe[aercd] —0. (1.10)

It is worth stressing that for H = 0 and constant fluxes, our BI boil down to those of [8].
Such a generalization was already obtained in [34] from Jacobi identities of Lie brackets,
and at the level of DFT in [33]. We show in appendix C.1 that those match the simpler
expressions given by our BI (1.7)—(1.10). These equations are meaningful in S-supergravity,
where fluxes can be expressed in terms of vielbeins and . Interestingly, using these explicit
local expressions, the four Bl are then automatically satisfied, exactly as above for dH.
This is actually how these four conditions were discovered in [1] (see appendix C.3). These
BI are therefore natural candidates to have non-zero r.h.s. in the presence of NS-branes.
We propose indeed the following BI for the geometric flux f in presence of a KK-monopole
(see also [35])
C

KK—monopole : 0 f"q — [ eppf ca) = ?K €3.1bed €1l N7 0 (r3) (1.11)

where €7, is non-zero and equal to one for e being the direction along the brane, and the
factor Ck will be specified in the paper. All other BI should as well be satisfied with a
vanishing r.h.s. . In presence of a (-brane, we propose the following BI for the Q-flux

(QQ—brane : (1.12)

C

1
0.Qq™ — B0 f¥ cq — §Qeabfecd +2Q 1 g = TQ €21cd Ealfes 17T 6 (ry),

and all other BI should again be satisfied with a vanishing r.h.s. . We will verify that these
sourced BI boil down to Poisson equations on warp factors once evaluated on the brane
solutions

KK —monopole :  Asfx = cx 6@ (r3), Q—brane: Aofo=rcg 6P (ry) . (1.13)

Similarly to (1.5), a “derivative” Dy was built for constant fluxes [11, 36], such that

Dﬁ2 = 0 would be equivalent to the (sourceless) BI of the NSNS fluxes (3.6)—(3.10), i.e. the

Jacobi identities of the algebra (1.6), together with a further scalar condition [36] given

in (3.13). Here we generalize this idea for non-constant fluxes and H = 0: we introduce a
D such that

D?=0 < BI (1.7)-(1.10) + scalar condition . (1.14)



As explained in section 3.1, D is the Dirac operator associated to the Spin(D, D) x RT
covariant derivative D4 that can be built from the Generalized Geometry approach

1. 1.
DU =TAD LT = <FA8A + ZQABCFABC + 2QDDCFC>\II, (1.15)

where the T4 satisfy the Spin(D, D) Clifford algebra, and we represent them with forms
and contractions using a Clifford map. Similarly, ¥ is a spinor and can be viewed as a
polyform. Using the connection coefficients computed in [1], we recover (1.5) for standard
supergravity with b-field, and get for S-supergravity

DA =2e%(Vy & A=V 14+ TV +RV)(e ?A) . (1.16)

We recall that V, - €A = d, and understand the dot as acting only on the coefficient of
the form A; we denote by ¢, or V the contractions (see appendix A), and V% is a covariant
derivative containing the Q-flux (2.15). This D of (1.16) verifies (1.14). We also show that
Dy corresponds to the second term in the r.h.s. of (1.15), clarifying how our D generalizes
the constant flux situation. An explicit expression for D in terms of fluxes is given in (3.26),
while tensorial formulations of the BI are discussed around (3.5) and (3.39).

Geometric vacua of B-supergravity. In section 4, we study vacua of S-supergravity
more generally. S-supergravity is of particular interest with respect to standard supergrav-
ity when its solutions are geometric. As explained above, such backgrounds can provide
a ten-dimensional uplift to some four-dimensional solutions of gauged supergravities with
non-geometric fluxes. In addition, a geometric vacuum of S-supergravity is non-geometric
when expressed in standard supergravity, at least in the examples considered so far. A geo-
metric, target space, description of a non-geometric string background is therefore restored.
Those are the two main achievements of S-supergravity. So the first question we study is
to determine the conditions for a geometric vacuum of fS-supergravity. Two examples (or
at least their NSNS sector) are helpful: the @-brane mentioned previously, and the toroidal
example studied in details in [1, 3, 37]. For both, their standard supergravity description
is non-geometric, but also T-dual to a geometric one. From a four-dimensional point of
view, such backgrounds are then said to be on a geometric (T-duality) orbit. All theories
on an orbit are the same, up to a redefinition of the four-dimensional fields. So the theory
obtained from the toroidal example does not describe new physics, with respect to the
one from the T-dual configuration that is geometric in standard supergravity. The second
question is then whether geometric vacua of S-supergravity ever lead to new physics. To
address these questions, we pursue the following reasoning:

1. Consider a field configuration defined on a set of patches of a space. To form a valid
vacuum of a theory, these fields should at least glue from one patch to the other with
symmetries of that theory. This allows to describe the configuration on all patches
with only one theory (here one Lagrangian) [26].

2. A symmetry leaves a Lagrangian invariant up to a total derivative, and the two La-
grangians Lysns and [’,ﬂ only differ by a total derivative (see section 2.1), so they



share the same symmetries. These are diffeomorphisms and b-field gauge transforma-
tions, where the latter can be translated in terms of the fields of S-supergravity [1].
Field configurations gluing with such symmetries are geometric for standard super-
gravity.? They may as well, under some restrictions, be geometric in terms of (-
supergravity, but there is no need for such a description, since standard supergravity
already gives a proper one [1, 26].

3. Getting an interesting geometric background of [-supergravity therefore requires
other symmetries. This can be achieved by considering a modification, e.g. a re-
striction, of the theory, that would lead to a symmetry enhancement [1]. Here, the
restriction to be made is to consider the presence of N isometries. This provides a
further symmetry to Lngng and 55, that is T-duality. We prove this in appendix E.

4. One of the T-duality transformations that brings some novelty is the S-transform.
Expressing it in S-supergravity is simple: it results in a constant shift of § along
isometries. The Lagrangian Eﬂ is manifestly invariant under such a transformation,
as we show in details. In particular, the Q- and the R-flux are invariant under
this symmetry. Field configurations gluing with S-transforms and diffeomorphisms
are thus geometric for S-supergravity, and in most cases non-geometric for standard
supergravity: this defines a class of interesting geometric vacua of S-supergravity.
The two examples mentioned above are of this type.

5. We however show that such vacua (or at least their NSNS sector) are always T-dual to
geometric ones for standard supergravity, i.e. they are on a geometric orbit. So they
do not give new physics. The converse point of view remains interesting: we know
precisely when geometric backgrounds of standard supergravity have non-geometric
T-duals that can be described geometrically by S-supergravity. The latter then pro-
vides an uplift to some non-geometric points on the four-dimensional orbit. We still
list various possibilities beyond the setting just mentioned, that could circumvent the
result, and maybe lead to new physics.

The paper is structured as follows. [-supergravity is reviewed in section 2.1, with
conventions in appendix A. Equations of motion are rewritten in flat indices in section 2.2
and appendix B. We then turn to the sourceless BI in section 3.1 and appendix C, where
we review the literature and construct the Spin(D, D) x R covariant derivative and Dirac
operator D. We study NS-branes in section 3.2 and appendix D by showing their smearing
and T-duality relations, the source corrections to BI and the derivation of Poisson equa-
tions. Finally, we detail in section 4.1 and appendix E the symmetries of Lngng and 55,
including the T-duality for IV isometries. We study how using them leads to geometric or
non-geometric vacua in section 4.2. T-duals of some geometric vacua of S-supergravity are
analyzed in section 4.3. An outlook is eventually provided in section 5.

2Definitions of geometric and non-geometric field configurations are given in section 4.2.1.



2 [B-supergravity and its equations of motion

We gave in the Introduction several motivations to consider [-supergravity, a ten-
dimensional theory that contains non-geometric Q- and R-fluxes. In this section, we briefly
review this theory by providing the technical material needed in the rest of the paper. We
mostly follow [1]. Then, we turn to the rewriting of its equations of motion in flat indices.

2.1 Technical review of 3-supergravity

A local reformulation of the NSNS sector of standard supergravity was proposed in [3, 22,
23]. It is based on a field redefinition transforming the standard NSNS fields into a new

metric gmn, an antisymmetric bivector ™" and a new dilaton ¢

g =(g+b)lglg—b)"

! = (51 : 20 T3] — ,—2¢ _ _Qd’
Bz—(g+b)‘1b(g—b)‘1}®(g+) o eVl = eVl =

(2.1)
where we introduce the quantity d.  This field redefinition was read-off from a
reparametrization of the generalized metric H, that usually depends on g and b. This
is equivalent to choosing another generalized vielbein € instead of the usual &, where &
depends on the new fields

e 0 5 e e np 0O
E = £ = I= 2.2
<67 b 67) ’ <0 é7> ’ < 0 77_D1> ’ (2:2)

98 ) o (23)

where H is a 2D x 2D matrix for a D-dimensional space-time, np denotes the flat metric,
and the vielbeins e and € are associated to the metrics ¢ = e’npe and § = é"'npé. This
reparametrization was inspired from earlier Generalized Complex Geometry papers [27, 38,
39]. The field redefinition is then an O(D — 1,1) x O(1, D — 1) transformation [1].

The standard NSNS Lagrangian, where Hypnp = 30,by,y), is given by

1

Exsns =2l (Ria) + 4007 - 5112 (2.4

with conventions in appendix A. Building on the above, the field redefinition (2.1) per-
formed on Lngns lead in [1] to the Lagrangian 25 of the NSNS sector of S-supergravity

Lnsns(9,b,¢) = Ls(3,8,0) +(...), (2.5)



up to a total derivative J(...) detailed in section 4.1.1. In curved indices, /35 is given by
Lo =V (R@) + 4007 + 4305 - TP +RG) - 372 ) . (26)

with R = gmaR™", R™ = —BPI9, 7" + fm90,I0" + I3 — TImTen (2.7)
T = L (<70, — B 05"+ BT 0,5™) + Gy 0,5V — 0,67 (25)
TS U= 98 = 5 i = =y (V1) = 9, 29)

R = 3palmg, grel — 3galmyy, gl (2.10)

and conventions in appendix A. Note that R™P, T™ and R™" are tensors. This last
“Ricci tensor” is related to a new covariant derivative V™ built from ™", and the
connection fgm

V"V = =g, VP — TPV N, = =370, V, + TV, (2.11)
That derivative plays a crucial role, as we will see. Another useful tensor is I?t);”"
. . . 1
B = g™ 4 7T, Rof™ = S (V8" + V8™~ GV, L (212)

It allows to relate the covariant derivatives V and V, and then to rewrite the R-flux

VP = =BT, VP — Ty PV NV, = =BV, + Ly " Vi (2.13)

=

R™"P _ 3 BQ[quﬁnp} —

| o

vimgnel (2.14)

Imposing the condition ""0,- = 0 (as well as 9,8"" = 0), where the dot stands for any
field, reduces /35 to the Lagrangian obtained in [3]. One gets R™ = 0, 7™ = 0, and
R results only in a (0B)%. This subcase is useful in some examples, like the Q-brane: see
appendices B.3 and D.1.

We now turn to flat indices: this reveals the Q-flux given in (1.1), since it is not a
tensor. It rather plays an analogous role in V as f does in V with Levi-Civita connection [1]

é“mé"anVm = VbV“ = 8bV“ + wgCVC
1
= wgc = 5 (fabc + nadncefedb + nadnbefedc> (215)
e VWV, = VOV, = =820,V — woV,

1
& wol = 3 (Qab"’ + Nad“Qe™ + nadnbeQedC> :

where we introduced wq, (the opposite of) the spin connection associated to I'. This wQ
enjoys similar properties as those of (A.3)

nchQZc = _nacWQgcy Qabc = 2WQ([lbd ) ngd = Qaad7 TIbchZC = nadedb . (216)



From it, we can define a quantity R¢ analogous to the standard Ricci scalar R(g)

R(§) = 20" Oathe + 11" wiawhe — 0" Wiae (2.17)
= 00 fose 1 a0 (20 et a0 Fre )
Rq = 2B Oawy’ + ey Wy — Moy woy' (2.18)
= 205 0aQ" 1 Qu Q" — T (200aQu Q4 1 Q)

and R is related to R as follows
- 1
R = RQ - §Ra6dfbcd77ab . (219)

The Lagrangian £~5 (2.6) can then be rewritten as in (1.2), where the four terms in @
match Rq. Finally, let us give a few useful expressions, such as R in (D.8), and

2 Req = aafacd + 277abaafgb(cnd)g - 2acfbbd + faab (fbcd =+ 277bgfhg(cnd)h> (220)

1 ‘ .
— Pucf % — 1 nan f g f ba — §nah77bjnci77dgfljafghb ,

Rabc — 3/8d[aad6bc] - 35d[afbde,8de — 3/8d[anbc} + 3Bd[afbde/8de ,
1
T = — Q" + §5Cdfacd :

We rederived in [1] the Lagrangian /:'5 (1.2) and most of the structures just presented
(in particular V and wg) from the Generalized Geometry formalism, building on [29].
Choosing the generalized vielbein € in (2.2) plays a crucial role for this purpose. We recall
some results of this derivation in section 2.2, and use them in section 3.1.2 to compute
the Spin(D, D) x R covariant derivative. In addition, S-supergravity can be derived from
DFT [22, 23, 28, 33].

Finally, the equations of motion for the NSNS sector of [S-supergravity were de-

rived in [1]
1 (R@) 7@ - 57°)
= (09)" = V26 + (87 0r ) — T™)? + Gun V" (B" 0,6 — T") (221)
Rpg = Gm(planR™ + %ﬁpmﬁqnﬁrséuyRmmRnsv
= —2V,040 = 2 (pqyn V" (8" 0r ) — T") (2.22)
%émséménp (62“3?"‘(6‘2‘51%5“”) —2T mRSU”) (2.23)
- %~np§rq§/m62‘5vm(6‘2‘5%5"‘1) +20np R0

- 672¢vq(e2¢§n[pvr]ﬂnq) + 4§n[pvr] (/Bnqaqqg) .

Those are given in curved indices. We now turn to their rewriting in flat indices.



2.2 Equations of motion in flat indices and Generalized Geometry formalism

The equations of motion for the NSNS sector of S-supergravity, derived from Eﬂ (2.6)
in [1], have just been given: the one for the dilaton (2.21), the Einstein equation (2.22),
and the 8 equation of motion (2.23). They are in curved indices; in this section, we rewrite
them with flat indices: this allows to make the fluxes f%, and Q. appear, since those are
not tensors. Having an explicit dependence on the fluxes is more convenient when looking
for solutions. It will indeed be the case in appendix D.1 when verifying that the @)-brane
is a vacuum of B-supergravity. To perform this rewriting, we follow two methods: first, a
direct approach is detailed in appendix B.1, and secondly we use the Generalized Geometry
formalism, building on [29] and the results of [1]. This second method is presented below.

Since all terms in the above equations are tensors, going to flat indices is only a
multiplication by vielbeins. The difficulty is rather to make the fluxes appear explicitly. For
the dilaton and Einstein equations, this essentially amounts to give the expressions of the
Ricci scalars and tensors in terms of the fluxes: those can be found in (2.17), (2.18), (2.19)
for the scalars, and (2.20), (D.8) for the tensors. The equation of motion for § requires
more work. Both methods lead to the following result for this equation

1 - 1
- §nabncdnefvaRbdf + Qagffag[cne]f + iffhaQ[chane]f (224)

1 ) 1 )
- §Qaagflec779i + inefncdnnggfdfaak + nginaandgflb[enc]d

1 .
= —§Ugi59aaaflce - ﬂdfadfaa[cne]f + nf[eac}Qaaf

1 ~
— e e 0aQu’ + 2071V g T + Napeatte R (/9’“9 Dy — T“)

+ nabncd"?efvbﬂfd 8a§5 + 4ﬁab77a[cve] 8qu~5 + 2na[cve]ﬁab 31;@5 .

Although it looks at first complicated, many terms would drop out upon reasonable assump-
tions: we argued in [1] in favor of an ansatz with Vb, f%; =0, Q.,** =0, T =0, oo =0
that would make several terms vanish, e.g. the last row. Finally, let us mention that a com-
plete use of (2.24) would require to expand V*R¥ | but the procedure should be straight-
forward. The resulting terms would not mix with the others, given the number of .

Derivation using the generalized geometry formalism. We presented in [1] a useful
formulation of B-supergravity based on the formalism of Generalized Geometry, established
in [29] for standard type II supergravities. This formulation clarified the origin of the
various structures appearing in S-supergravity, including the fluxes, the covariant derivative
Ve, and 7. Tt also lead us to reobtain the Lagrangian /:'5 (1.2). Using these tools, we derive
here the three equations of motion in flat indices. This amounts to compute generalized
quantities analogous to a Ricci scalar and a Ricci tensor.

The starting point of Generalized Geometry is to consider a generalized bundle with
structure group O(D, D) x R*. Various objects, covariant with respect to this structure
group, can then be constructed. The crucial one is the generalized (flat) covariant derivative

DAVB = 8AVB + QABCVC , (2.25)
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that acts on a generalized vector component V5. To reproduce S-supergravity, we chose a
generalized frame related to the generalized vielbein & given in (2.2); standard supergravity
is rather obtained from £. Then, using metric compatibility, a constraint on the generalized
torsion and some further fixing, we showed in great details in [1] how to determine the
generalized connection coefficients QaBc (as well as 04). Those are essentially given in
terms of fluxes. This is analogous to the standard case of the spin connection for Levi-Civita
connection. We then restricted the structure group to O(D —1,1) x O(1,D — 1), leading
to covariant derivatives with respect to that subgroup. Going to the spinorial version
Spin(D — 1,1) x Spin(1, D — 1), we obtained as well derivatives on spinors, in particular

Y Dget = (7“% — Y02V + inadmenchdef yobe — ;’YCAc> e, (2.26)
Dget = <Va + TaaV? — %mnbenchEef 'ch) ¢ (2.27)
Daw® = Vaw® + @v%a — Agw®, (2.28)
Douw® = Vouwb — Uad@dwg - %%d@RdwwE, (2.29)

where in (2.26) and (2.27), V and V are the spinorial derivatives naturally defined
from (2.15). Conventions for -matrices are given in appendix A, and the unbarred-barred
notation refers to the two orthogonal groups. This notation disappears when choosing
aligned vielbeins [1]. These derivatives can be rewritten as in [1] using only the following

quantities
1 e de 1 de f
Xabe = ane Wae ™ NadWQ,. + 677(1(177ch , (230)
1
Xa = 5 <w(cila + nachgC - Aa) 5 (231)
1 = 1 =
Yabe = e (wf;c + Tadwqg” — STadnes R > , (2.32)
ZE = wg—a — %{JJQ%C - AE, (233)

Aa = )\a + nadfd ~ ~
I 28{1(257 ga = 2(5adad¢ - Ta) . (2‘34)
Ag = Ag — Taat?

From those derivatives, we calculated in [1] the scalar S, defined in [29] as

1 R
— 1St = (VQDabeb - nabDED5> et (2.35)

This quantity is related to the Lagrangian, and we reproduced from it Eﬂ (1.2).
We obtained

_ 1. 1
S = R(g) + RQ - iR dfbcdnab - §R2 (236)

— 4(09)? + 4V% — 4(B0d — T*)? — dnupy V(B0 — T°)
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In addition, it was shown in [29] to encode the dilaton equation of motion for standard
supergravity, by considering S = 0. Here, we get the analogous result: S = 0 reproduces
the dilaton equation of motion (2.21) in flat indices.

To derive the two other equations of motion, we calculate the generalized Ricci tensor

1
5RW%+ = [y*Dq, Dyle", (2.37)

that depends on the above derivatives.® For standard supergravity, it was shown in [29]
that setting the symmetric part to zero, R(4) = 0, corresponds to the Einstein equation,
while the antisymmetric part R = 0 yields the equation of motion for the b-field. In
analogy here we should obtain the equations of motion for g and 3 taking respectively the
symmetric or antisymmetric part of R,p. Using the quantities defined above, (2.37) becomes

1
*Ragf}/agr = <7a8a + ’Yanadﬁdcac + Xacd’YaCd + Xa’}/a) <& 77bg/8 + YE; h,_ygh)

2
- ’Y W (& chﬂ O+ Yz h'ygh)
+7 nadeb (& 77096 Oz + Y::gh'y )
1 dfc +
- 5’7 77ad77be <& 77696 Oz + Y'cgh')/ > (2.38)
_ (%_%Bﬁaé_i_ }%ghVQh) <’}’a8a +"Ya77ad/8dcac + Xacd’YaCd + Xa’)/a) et

We leave the computational details of the above expression to appendix B.2, and give here
the result. After aligning the vielbeins, and considering only the first order in ~-matrices,

%Rab’ya gives
1R 1 sge | 1 , ige pdfe
(2 b~ 5le(allb)g R+ Gllaetogligtea R (2.39)
+ ViVad = Te(allt)gV (V ) — Ne(allo)g VI T
+ inaenbgndf 04Q Y — *Ue[aab]Qd ‘- *ﬁgcacf “abTge + %590&:]’ < g1l
+ inbgnanChfdchheg - incthdcfhab
+ ifgch[adcnb]g + %ne[af 0a Qi “nenn™ + %ne[afhb}thec
— eV (VB) = 1o Vi) T + 0yp VIV 4 &

1 1 7~ _od
- §nae7]bg77fcRgfeTC + Z"]aenbgndeQ(bvd(e 2¢Rgfe)>,7a

The first order in v* will be enough to recover the equations of motion derived above, i.e.
the higher orders in v* should vanish, as they did for S [1].

3 Analogous quantities to S and R,; were considered before in [40-46]; their relations to the Lagrangian
and the equations of motion were as well studied. The DFT quantities were shown in [47] to match those
of (2.35) and (2.37) for standard supergravity.
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As explained above, setting R, = 0 and therefore the expression (2.39) to vanish, we
should obtain the equations of motion for § and 5. More precisely, setting the symmetric
part of (2.39) to vanish gives

1 1 | .
5 Rba = STe(all)gRY + ZMacTlog i e R RYe (2.40)

+VuVad = Ne@)g VI (VD) — Ne(alyygVIT =0,

that matches the Einstein equation (2.22). Similarly, the antisymmetric part of (2.39) gives

1 1 1 1
Enaenbgndfadeeg - 577e[aab]Qdd6 - */Bgcacfeabnge + §Bgcacfdd[a77b]g (2'41)

1 1
+Z"7bg7]ae776hfddc@heg - chthdcfhab

+7 fngQ nb + neaf b]sz nch'r] + neaf chheC
—Ue[aVbJ(V ¢) — ne[avbﬁ + VIV o &

1 1 T~ g, _od
_§nae77bg77fcRgfeTc + Znaenbgndfembvd(e 2¢Rgfe) =0.

This last result matches (2.24), the equation of motion for 3 in flat indices.?

3 Bianchi identities and NS-branes

3.1 NSNS Bianchi identities without sources

In this section, we first review the appearance of NSNS Bianchi identities (BI) through
the literature. As mentioned in the Introduction, the BI in the NSNS sector have been
treated in different ways. We recall approaches based on algebras with various brackets,
that eventually lead to the BI using their Jacobi identities. The BI have also been derived
from a nilpotency condition on generalizations of the standard exterior derivative, where
including the geometric and non-geometric fluxes plays an important role. We will then
make use of these ideas, and rederive the BI (1.7)—(1.10) by considering the square of a
Spin(D, D) x R* derivative.

3.1.1 Sourceless NSNS Bianchi identities through the literature

In the Introduction, we gave our BI for the NSNS fluxes in the absence of source (1.7)—
(1.10). We repeat them here for convenience

oS ca = fepfea =0, (3.1)

OeQa™ — B0 fPleq — %Qeabfecd +2Q . g, =0, (3.2)
04R™ — 35°99,0,2 + 3Rl pd . 30,cle, b — 0. (3.3)
gelag, gbed ;Re[aercd] _0. (3.4)

4To verify this, one should multiply the equation (2.41) by 2 and match its indices (a, b) with those (e, c)
of (2.24). In addition, one can use (2.13) and (2.12) on the term in VVé.
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Let us first make a few remarks on them. As mentioned in the Introduction, the condi-
tions (3.1)—(3.4) are actually identities: they hold automatically if one uses the definitions
of the fluxes, and this is how we obtained them in the first place in [1] (see appendix C.3).
Moreover, (3.1) corresponds to the first BI of the Riemann tensor, as can be seen in the
following equalities derived from the torsionless Cartan equations

1 1 1
iRa[bcd} = 8[cc“‘}gb] - iwg[bfecd] + w[ecdwg]e = § (a[cfadb} + fe[cdfab]e) ’ (35)

or using d(dé?®). Similarly, (3.3) should correspond to the BI for the Riemann tensor associ-
ated to R, given in (3.44) or (3.47) of [23]. Finally, (3.4) can be derived from VI™R"™4 =
obtained in [22, 23]. The case of (3.2) is discussed around (3.39). Let us now review the
appearance of NSNS BI in the literature and draw a connection to the above relations.

Algebraic interpretation. This approach is based on having an algebra where the ge-
ometric and non-geometric fluxes appear as structure constants; the NSNS BI are then
obtained by considering the Jacobi identities of the algebra. This idea first appeared for
standard geometric backgrounds: the algebra was that of the gaugings of four-dimensional
gauged supergravity, and the generators Z and X were understood as descending from ten-
dimensional ones, for diffeomorphisms and b-field gauge transformation respectively [48—
51]. For T-duality covariance in four dimensions, this algebra was extended towards the
famous one (1.6) to include non-geometric fluxes [8, 10].> A further extension was consid-
ered in [52] to include other sectors of supergravities. As mentioned already, the Jacobi
identities of the algebra (1.6) generate the following set of NSNS BI [§]

fllavHeqe =0 (3.6)

HepeQa* + fhepfeq) =0 (3.7)

S Hecd B = Qe o + 2@ g = 0 (33)
R fel e — Q' Q. = 0 (3.9)

Relab@ d = ¢ (3.10)

Setting the H-flux to vanish, one can see that these BI exactly match our relations (3.1)—
(3.4) for constant fluxes. Our BI can thus be thought of as a generalization when fluxes
are not constant.’

Such a generalization has already been obtained in [34].” There, a quasi-Poisson struc-
ture given by S is considered. Applying in ten dimensions the Lie bracket on the generators

®Qur conventions differ by a minus sign on the R-flux with those of [8].

61t was argued in [8] that the BI (3.6)—(3.10) could be obtained one from the other by applying T-duality
in four dimensions as described there. It would be interesting to study the behaviour of our (3.1)-(3.4)
under such a transformation.

"Relations similar to our (3.1)—(3.4) were also obtained in [53], although they do not match exactly, as
the Q-flux defined there is different, and there is no geometric flux turned on.
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Zy = Oq, X = %0, the algebra (1.6) for H = 0 is precisely reproduced, where the def-
inition of the fluxes there match ours (up to a sign on R). A further deformation allows
to include an H-flux. The Jacobi identities of that algebra then provide NSNS BI for
non-constant fluxes. These identities are given for H = 0 in (C.1)-(C.4), and we ver-
ify in appendix C.1 that they match with our (3.1)—(3.4). This explains in another way
why our BI hold automatically: they correspond to ten-dimensional identities derived from
Lie brackets.

Finally, other approaches made use of different brackets to obtain similar results. The
algebra (1.6), at least for H = 0, was derived from a Generalized Complex Geometry
perspective [27] by considering the Courant bracket acting on generalized O(D, D) frames.
The R-flux there however does not match our definition. The algebra (1.6) is obtained again
with the Courant bracket, acting this time on standard frames and co-frames (flat vectors
and one-forms) in [34]; similar results appear in [54] with an emphasis on the related Dirac
structures. The corresponding Jacobiators derived in [34] contain some terms encoding the
aforementioned BI (C.1)-(C.4). A Double Field Theory (DFT) extension of these ideas
can be found in [33], where the C-bracket [41, 55] is used: this DFT generalization of the
Courant bracket reduces to the latter upon the strong constraint d = 0. Acting this way
on generalized vielbeins, the algebra (1.6) is reproduced in an O(D, D) covariant manner.
The related Jacobi identity would be given by two terms, one of which is proportional
to a quantity Z4pcp that can be decomposed and reduced into the various BI (3.1)-
(3.4), as detailed in appendix C.1. Another generalization of the Courant bracket, called
the Roytenberg bracket, was also used in [56] to write the algebra (1.6). In Exceptional
Field Theory, a generalized Lie derivative is introduced [57] and its closure conditions,
that can be thought of as related to Jacobi identities of a bracket, are shown to generate
BI, including (3.1). Finally, in the CFT approach of [58], the algebra (1.6) is directly
reproduced from actions of (asymmetric) orbifolds.

Nilpotent derivative. Besides the algebraic approach to derive the BI by evaluating
Jacobi identities, there is a second proposal using a generalization of the standard exterior
derivative. Imposing a nilpotency condition on this derivative is equivalent to a set of
constraints that turn out to be the BI. The first simple illustration of that idea is given in
the Introduction, particularly in (1.5), with the square of the derivative d— HA on a p-form
A. In [11], a generalization of d — HA that includes all NSNS geometric and non-geometric
fluxes was proposed. It is given here in our conventions by

DywA =(—H A —f-—Q-+RV)A, (3.11)
1

3'1-2“1’C la Lp le,

£ :% Yo EENE N, Q= %Qc“” ENigty, RV=
where ¢, and V denote contractions on forms, and we refer to appendix A for more conven-
tions. More precisely, this derivative was given without the numerical coefficients that we
add here, and was rather specified on the component of the form A, i.e. without the contrac-
tions. This corresponds to a four-dimensional perspective, where fluxes and A only appear
through constant components after being integrated over an internal space. This explains
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the absence of a derivative on the component of A. It was then claimed that the nilpotency
= 0 would reproduce the NSNS BI for constant fluxes (3.6)—(3.10). This
claim was made more precise in [36] where the previous derivative was completed by two

o . 2
condition Dz,

more terms as

1 1 1
DA = ( — S Habce N NE N =i f % & NE Mg = S Q" E N 1y
1 1,1
+ gRabc Lg Lp Lo — §faab e A +§Qaab Lb>A . (3.12)

More precisely, we again rewrite a formula that was given on form components, namely
(B.3) of [36], using here forms and contractions; also, our conventions differ by a minus sign
on the H-flux. The two new terms given by the traces of f and @ will play an important
role, together with dilaton terms, when we define later on the Spin(D, D) x RT derivative.
They were already important in [36], where an explicit computation of the nilpotency
condition for the derivative (3.12) lead to

1 1
D; =0 < BI(3.6) — (3.10) and gHabcR&bC+5 fapQa® =0 . (3.13)

The nilpotency condition reproduces the NSNS BI (with constant fluxes) together with an
extra scalar constraint that includes the traces of f and Q. Note that particular indices
contractions of the BI also appear in this computation; the same will happen for our
derivative in section 3.1.2.

As mentioned already in [11] (see also [59]), the derivative d — HA enters the BI of the
RR fluxes for type II supergravities, given by (d — HA)F = 0 in the sourceless case. Here,
F is the polyform given by the sum of the RR fluxes (we set Fy = 0 for simplicity); one has
F = (d— HA)C for a polyform gauge potential C'. The polyforms F' and C' can actually be
interpreted as an O(D, D) spinor: this was pointed out in [60-64], and it could be guessed
from the SUSY conditions of [65]. This idea lead in [33, 66] to define at the level of DFT
F = DC, where D = I'*D4 denotes the Dirac operator associated to a Spin(D, D) x Rt
covariant derivative D4, and I'* are Spin(D, D) Clifford matrices. A related derivative
appeared already in [27, 67, 68].

So this spinorial derivative is somehow natural to consider, and we will do so in sec-
tion 3.1.2 at the level of standard supergravity and S-supergravity, using its generic Gen-
eralized Geometry definition; the one of [33] is then the DFT extension. The non-trivial
point we make in this paper is that the vanishing square of this spinorial derivative should
give the NSNS BI, in analogy to d — HA. In other words, as we will show using the Clifford
map on the [-matrices, this Spin(D, D) x R derivative reproduces and generalizes the
above Dy. Although this idea is not explicitly mentioned in [33], D? is already computed
there in (4.13) at a generic level, and it gives a hint on the results to be derived. Indeed,
this square depends on various quantities among which Z4pcp and Z. We show in ap-
pendix C.1 that the former reduces to our BI (3.1)—(3.4) while the latter contains the scalar
quantity appearing (3.13). So a nilpotency condition of this spinorial derivative does look
relevant; we now turn to it.
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3.1.2 The Spin(D, D) x Rt covariant derivative

We have just motivated the introduction of the Spin(D, D) x RT covariant derivative, that
we consider here at the level of the Generalized Geometry formalism. We first construct it
generically, as well as the corresponding Dirac operator, and further express it for different
generalized frames: the one with a b-field for standard supergravity, and the one with a
B for B-supergravity. To do so, we use conventions and results of [1], especially the value
of connection coefficients. We verify in a second part that the nilpotency condition on
this spinorial derivative for S-supergravity exactly reproduces our BI (3.1)—(3.4), together
with the scalar condition mentioned in (3.13). We also clarify the relation to the above
Dy of [36].

We start with the O(D, D) x RT generalized covariant derivative of (2.25). From it, the
corresponding spinorial derivative D4 (with generalized flat index) can be written down,®
as well as the Dirac operator D on a spinor ¥ € F(S(il/Q)) [29]

1 1
DU =T4D,0 =14 (aA + ZQABCFBC — 2AA>\I/ . (3.14)

The I'-matrices satisfy the Clifford algebra

1{01 01
4 1By = opAB == ) ) 3.15
{r4r°y =20, 9 5l10] " Lo (3.15)

Here n of coefficients nap denotes the O(D, D) metric. A particular representation of this
algebra is given by the Clifford map

A I = 2607 : ~a b ~a a
= r oo with {e%, e’} =0, {e" uw}=90, {ta,n}=0. (3.16)
a = 4la,

We will use it to express the Dirac operator with fluxes, forms and contractions, in a
generalization of the standard exterior derivative acting on a p-form A. The spinor ¥
should then be understood as polyform [65]. For now, we can simplify (3.14) using the

identity TATBC = 1ABC 4 pABTC _ pACTE that relates antisymmetrized products of I'-
matrices. Using the compatibility condition, we get
1 1
DY = FADA\IJ = (FAaA + ZQABC{‘ABC + §(QDDC — AC)FC> LY (3.17)

1. 1.
_ <FA8A + ZQABCFABC + QQDDCFC) o

E('Dl +D2+D3>‘I’ .

Let us point out that D3 denotes the trace part due to the extension of the O(D, D) by the
conformal factor R, that usually combines the determinant of the metric and the dilaton.

8In (3.14), the index p of the generalized connection coefficient has been lowered with the O(D, D)
metric.
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We now determine these three terms for different choices of generalized frames. Fol-
lowing [1], such a choice can fix 94, 480 and Ay4. For the T-matrices, we use the Clifford
map (3.16): forms and contractions act on the one-forms in A while a derivative 0, only
acts on the (flat indices) component of A. Details on the computation of Dy are given in
appendix C.2.

Standard supergravity. Using the generalized frames with b-field, we obtain

Dy =20, - ¢*A (3.18)
1

Dy = — fCap®A " A 1o — fe4.e°N —gHabcea/\ e’ A €N (3.19)

Dy = % e® A —20,¢ €A, (3.20)

that sums up to D given by
1 1 1
§DA = <8a - eCA —§fcabe“/\ A Le — éHabce“/\ N €N =0y e“/\) A (3.21)
=e®(d—HA) (e ?A) . (3.22)

B-supergravity. Using the generalized frames with 3, we obtain

Dy = 20, - €A +28%0) - 14 (3.23)
c ~aa =b d ~c bec~a dc 1 abc

Do = —fCabCNENAte — fCqe°N —Q " E*A Ly te + Qq Lc—i-gR La b Le (3.24)

D3 = [ & N —20,0 € N +Q0™ 1y — 2(80pd — T) ta - (3.25)

Adding up these various pieces, we find
D =20, 6N +2B%0 - 1q — FCap €N EA 1o — 20,6 E% A (3.26)
be ~a dc aba 7 a 1 abc
—Qa" "N tpLe +2Qq L672(/8 abQS*T)La‘FgR la thlc,

where the second row could be further simplified using the definition of 7%. We can rewrite
this result differently, using the following relations for a 2-form A (easily extendable to
higher forms)

1 - 1
5Lava(Abd)é” Net = ( — B0 A + Qu*Age — 2Qd“CA,w> e, (3.27)
1
Qabc YN Ly Le <2Aefée VAN éf) = —QaefAeféa ,
1
Q% <2Abdéb A éd> = Q. Agqe? . (3.28)

These relations are derived using the definitions and properties of V, @Q, and conventions
of appendix A. From them, we deduce, as given in (1.16)

%’DA = (Va8 A=V 10+ TV +RV) (e A), (3.20)
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where V- €A\ = d, as we act on forms. The second term gives an interesting counterpart
to the exterior derivative.

The resulting D for standard supergravity is a known spinorial derivative [65], and its
square gives the standard NSNS BI as mentioned in (1.5). We are now going to show the
analogous result for the S-supergravity derivative and our BI (3.1)—(3.4). A first hint is
given by the comparison to the above derivative Dy of [36] given in (3.12). For constant
forms and fluxes, we recognise that in both cases (8 or b vanishes), one has

1
Dy = 57)2 . (3.30)
The natural completion of Dy in the case of non-constant fluxes would have been by deriva-
tives, as given by D;. Interestingly, we will see that this is not enough to recover the BI:
the additional traces and dilaton terms of Dj are also needed. So we now turn to the study

of the nilpotency condition for the above derivative D of (3.26)
D2A=0. (3.31)

We compute in appendix C.2 this condition in details. It produces the following set of
seven equations

_%a[afdbc} + %fdg[afgbc] =0 (3.32)

SQ =0 (33

28O + B P =0 (339)

2 (0uQ" — B0, ) + (AT QT @) =0 (335)

S BBQu — LU0, ey — QI a4 Q=0 (336)
SR = 3510,0,) — L (- R fl, + QUQ ) =0 (337
—éﬁg[aagRbcdl - %Qg[“bRCd]g =0. (3.38)

It is remarkable that the dilaton terms completely cancel out. All of the above equations
are not independent. (3.34) is a contraction of (3.32) by /3, and similarly (3.36) is a contrac-
tion of (3.35). We are then left with a set of five independent identities. These are exactly
the four Bianchi identities listed before: (3.32) matches (3.1), (3.35) matches (3.2), (3.37)
matches (3.3), (3.38) matches (3.4). So the square of this spinorial derivative (3.26) pre-
cisely produces the BI. In addition we find the scalar condition derived in [36], and given
in (3.13), from the fully contracted terms (3.33).

Given this result, and the expression of D given in (3.29), we deduce on a two-form A

ebc

{va ALV = TV }A - —% (3 BLSL Agq + S Aab> & nel, (3.39)

where the quantities S are defined in section 3.2.3 and correspond to the Lh.s. of the BI (3.1)
and (3.2). This gives a tensorial form to (3.2), since such a form for (3.1) was already
mentioned around (3.5). The cases of (3.3) and (3.4) were discussed below the latter.
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3.2 T-dual NS-branes sourcing the Bianchi identities

As presented in the Introduction, the Bianchi identity (BI) for the H-flux gets modified
with a source term on its right-hand side (r.h.s. ) in the presence of an NS5-brane. We
show in this section that the BI (3.1)—(3.4) just studied get corrected similarly if other NS-
branes are present, namely for a Kaluza-Klein (KK) monopole or a @-brane. These are
vacua of standard supergravity and S-supergravity. Up to smearing, they are T-dual to the
NSbH-brane. We first present these solutions following the literature. We then focus on the
smearing procedure that allows T-dualities along isometry directions. This clarifies how
the different warp factors can be the appropriate Green functions in the Poisson equations
of each brane. We finally verify how the branes are related by T-duality. We further show
that the above BI on the brane vacua boil down to the Poisson equations, allowing the
emergence of the source term. This study establishes -supergravity as a nice framework
to describe Q-branes.

3.2.1 NS-branes solutions

We present here the various NS-branes, starting with the NS5-brane that sources the H-
flux. The NS5-brane solution was first given in the limit of zero size instanton in [69],
and presented in a broader context in [70] as corresponding to the case where the gauge
field vanishes. More generalizations and references can be found in [71, 72]. Smearing and
T-dualising it along one direction leads to the KK-monopole, which was first discovered
as a solution to pure five-dimensional general relativity (see [73, 74], and [35] for more
references); it sources the geometric flux. A further smearing and T-duality along another
direction leads to a new brane known as the 53-brane [30, 31] or Q-brane [32]. It is one of
the exotic branes [30-32, 75-78]: those recently received much attention, as being related
to standard branes by different U-dualities. )-branes are non-geometric vacua of standard
supergravity, but become geometric in S-supergravity [32, 33| and then source the Q-flux.

NS5-brane. The NS5-brane is physically a codimension 4 object, i.e. it is located in
four dimensions that are singled out as we will see below; it is the magnetic counterpart of
the fundamental string. The original solution takes the following form?

ds? = ds2 + fu d53,  Hump = —V/]94|€amnpqg™ 0 In frr,  €2® = fur  (3.40)
where df= Y ()2, d= 30 @MP, fu=eMn sl
m=1...4 m=1...4 4

and ds? is the Minkowski metric. d3? is the flat Euclidian metric, and gives the transverse
directions. The warp factor fg depends on the radius r4 and on two constants, the value
at oo of the dilaton ¢y, and ¢ that is related to the tension of the brane. The H-flux
is proportional to the volume form coefficient of the transverse four-dimensional space

9We have a factor of 2 difference for the H-flux with respect to the conventions of [70]. Note that the
warp factor given here is not considered in [33, 79], as only the KK-monopole and T-duals are used there.
In particular, only the smeared warp factor of the NS5-brane is present there.
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\/|94|€4mnpq (see appendix A for conventions). Given the transverse metric, we can simplify
the expression for the H-flux towards

Hmnp = _64mnpq6qranH . (341)

Kaluza-Klein monopole. The KK-monopole is considered here as a codimension 3
brane. This solution is given by

ds? = dsg + fx d&3 + f'(dz + ady)?, Hpmp =0, * =1 (3.42)

20 _ 9K

where d§§ = dp2 + ,02d<P2 + p2 sin? ® dy2 , fk=e P

The metric ds% is still that of Minkowski, and the metric d§§ is the flat space one. But
we prefer here to use spherical coordinates {p,,y} for the three transverse directions.
The radius p will sometimes be denoted 73 below. The warp factor fx depends on two
constants, ¢ denoted this way for convenience, and qx that we will relate to the above ¢ in
section 3.2.2.19 Finally, the important quantity in the solution is a. It is like a connection
one-form coefficient and is a priori not gauge invariant. Away from the singularity, one has

a(p) = qi cosp for p >0 . (3.44)

We will complete it towards
a(p,p) = cosp p*Ipfx (3.45)

for reasons to be detailed in section 3.2.3. From this we will deduce the corresponding
(geometric) flux; the latter will be a better defined quantity to consider. It will be given
by

oy = F20pfrc - (3.46)

Q-brane. The @-brane is a codimension 2 brane. This solution is better described in
terms of S-supergravity as

d5® = dsg + fo d85 + f5'(d2” +dy®), only B = —B¥" #£0, €™ =[5!
where d§3 = dp? + p2dy?, fo= e~2%Q _ golnp . (3.47)

Its expression in terms of standard supergravity is given below in (3.86). The metric ds3 is
again Minkowski, and d33 is the flat metric, given this time using polar coordinates {p, ¢}
for the transverse directions. The radius p will sometimes be denoted 72 below. The warp
factor fg depends on two constant, QEQ denoted this way for convenience, and g¢g that
we will relate to ¢ in section 3.2.2. QEQ may contain a cutoff when p — 0o, as mentioned

10A warp factor for the KK-monopole depending on 2 was considered in [80, 81], and related to world-
sheet instantons corrections [82] (see also [77]). One can verify that it matches ours far away from the brane

1 1 sinh p

R T S —— 3.43
g2  2pcoshp —cosx (343)

fK(p,it) =
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in [30, 31]; we will rediscuss this point in section 3.2.2. Finally, as for the KK-monopole and
a, the field f is here not a well-defined quantity. Still, we will consider (in curved indices)

B = —p pdyfo = B™ =qq ¢ forp > 0. (3.48)

The Q-flux is a better defined quantity. It will be given by (in flat indices)!!

Q™ =~ 15 Oy - (3.50)

We verify explicitly in appendix D.1 that the @-brane is a solution to the equations of
motion of S-supergravity. In [32], using a different method, this result is somehow obtained
away from the singularity.

3.2.2 Smearing warp factors and Poisson equations

The brane solutions that we have just presented are related by smearing and T-dualising
along transverse directions. We focus here on the different warp factors, and show how
smearing relates one warp factor to the other. This explains how each of those can satisfy
the appropriate Poisson equation. To get familiar with these ideas, we start with the
well-known case of p-branes solutions, before turning to NS-branes.

Warm-up: Djp-branes. A p-brane is a type II supergravity background that provides
an effective description of a D,-brane in some regime. This solution contains in particular
a dilaton that depends on the warp factor Z,(r), and the metric is given by

_1 1
ds® = Z, *dst + Z3 ds? (3.51)

where dsﬁ is the Minkowski space-time along the brane, d32L the flat Euclidian space
transverse to the brane, r the Euclidian radius for the latter, and

Zy(r) =1+ T% , for p < 6, (3.52)

with g, a constant related to the tension of the brane. The Ramond-Ramond (RR) flux F'
of this background verifies typically a BI of the form

dF =Q 8(x.) . (3.53)

11 As usual, the three fluxes are the same in flat indices, up to a sign on the structure constant. For the
H-flux, one can choose coordinates that isolate the coordinate r4. The corresponding metric element would
still only be given by a warp factor, so one would get

_3
Hmnp = -V ‘93|64mnp(r4)fH 2 8?“4 fH . (349)

The remaining volume factor is then removed when going to flat indices (see the conventions on € in the
appendix A). So the three fluxes are the same in flat indices, although one needs to take the same warp
factor. This only happens when there is smearing, i.e. in the case of T-duality, as we will show below. It is
definitely in that case that we expect the equality of the fluxes, as given in the T-duality chain of [8].
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12 and

The flux is sourced by the brane, localised by the § in its 9 — p transverse directions,
carrying a charge ). Using for instance the transverse Hodge star * , one can extract the
forms to leave only coefficients, in particular the density §¢7)(z,). The Bianchi identity

then typically boils down to the scalar equation (up to a proper normalisation)
Ay Z, = 5O0P(r), (3.55)

where Ag_, is the Laplacian of the unwarped metric dsi. The appearance of the latter
can be understood for ' = *dC with C the dual potential.'®> This scalar equation is a
Poisson equation; solving it means finding the Green function for the Laplacian given some
boundary conditions. The solutions to this problem are known: for two dimensions, one
has Inr, and for d; > 3, one has M%. For d; = 3, this is the well-known electrostatic
potential. The radial dependence in the transverse space directions d; = 9 — p coincides
precisely with that of Z, (3.52) as expected.

We now consider T-dualities on these branes. T-dualising along a transverse direction
is known to extend a D,-brane to a Dpi-brane. Can this be seen on the above solutions?
The standard “radius inversion” of T-duality inverts a warp factor in the metric, so the
correct powers of warp factor are obtained by applying the Buscher rules. However, the
warp factor itself should also be changed from Z, to Z,1, as well as the radius of the
transverse directions, from rg_, to r9_(p41). This is rather obtained from the smearing
required by T-duality, as explained in [85]: a transverse direction of coordinate z, along
which we want to T-dualise, is a priori not an isometry, since Z,, depends on x. To allow
the T-duality, we first make it an isometry by smearing, that amounts to averaging in
this direction

Zp-‘rl (T9—(p+1)) ~ /daj Zp(r9—p)’ rg—p = 332 + Tg—(p—l—l) . (3'56)

The smeared p-brane is then T-dual to the (p + 1)-brane. Interestingly, the Poisson equa-
tions are also consistent under this procedure

DNg—pZp = ((82)* + Do_(py1)) Zp = 8P (rg ) (3.57)
= / dz ((05)* + Dg_(p11)) Zp = / dz 607 (rg_,) (3.58)
& <o + Ag_(pr1) / dz ) Zy =60 (rg (1)) (3.59)
& DNy (pr1)Zpr1 = 00" (e (). (3.60)

In the last but one line, we use conditions on the warp factor and its derivatives that will
be verified in the examples below. In this derivation, we actually only need the warp factor

2The (9 — p)-form §(x1) of (3.53) can also be viewed as a current, and defined through

/H Apir = /1 Ay £Ba) (3.54)

for any (p+ 1)-form A,;1 (see for instance [83, 84]).
13The BI and resulting scalar equation are sometimes more complicated, depending on what exactly is
F. For example, an additional constant next to the § can be obtained, see for instance [85].
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without its pure constant part, since only its derivatives are involved. So that is what we
meant in (3.56), and what will be used in the following.

The NS-branes share many features with the p-brane solutions. They both have warp
factors that determine the transverse directions. The constants in the warp factors are
related to the tension of the brane, although they scale differently in e?° = g,. Finally, these
warp factors take analogous forms, corresponding to the various Green functions in different
(co)dimensions. As we will see, the NS-branes satisfy as well Poisson equations. They
actually follow the same logic as the D,-branes: up to smearing, they are T-dual. Their
(co)dimension, metric and warp factors given above match all the criteria just discussed
for that to hold. We will verify explicitly the T-duality relations and derive the Poisson
equations from the Bianchi identities in section 3.2.3. Before doing so, let us first relate
their different warp factors by smearing as just explained for the p-branes.

NS5-brane. The Bianchi identity for the H-flux of the NS5-brane is given by dH, pro-
portional to ()

8[manq] = —8[m64npq}r(5rsasf}[ X e4mnm5’"58r85fH, (361)
where we used the expression of the H-flux (3.41). One therefore gets that

dH o voly Aufu, Au= Y (0m)?, (3.62)
m=1...4

with the four-dimensional volume form voly. The Bianchi identity in presence of a source
is given by dH o voly 6™ (ry), so the warp factor has to solve the Poisson equation

Aufr =i W (ry), (3.63)

with a constant cy. In other words, fy/cy should be a Green function for the four-
dimensional Laplacian Ay. A known Green function for this problem is %, so fpg given
in (3.40) certainly solves the Poisson equation. A crosscheck of this result is that away from
the singularity r4 = 0, the Poisson equation boils down to the Laplace equation, meaning

A4fH =0forry >0. (3.64)
One can verify that this holds for fg of (3.40).

Kaluza-Klein monopole. We turn to the KK-monopole. We follow the procedure
explained above, by smearing the NS5-brane along one direction x. First, we introduce
the new three-dimensional radius r2 = 77 — 22, Then, we smear the warp factor without

its constant fr — e??H to get the new one fx up to its constant e??% | as follows

teo q N
frc(r3) — K = / dz (fu(ry) — €291 = [ arctan <>} ==—. (3.65)
— 00 T3 T3 oo T3
This new warp factor matches the one given in (3.42) with ¢x = —mq. In addition, it is a

known solution to the three-dimensional Poisson equation

Asfr = cx 63 (rs), (3.66)
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the well-known electrostatic potential. One can straightforwardly verify that
Asfg =0forr3 >0 . (3.67)

This result was expected from the discussion around (3.57)—(3.60). One condition for this

procedure to work is that the derivative of the warp factor vanishes on the boundary. Here

this holds, as O fg = —quifm ~oo —(IZT‘]);%. The same will be true for the further warp
4

factors (the power of 2™ in the denominator decreases by one at each step).

Q-brane. We should now obtain the warp factor fgp of the @-brane by smearing the
previous one along a further direction y. We introduce the two-dimensional radius r3 =
r§ — 92, and the boundary constant e=2?2. We introduce further € that will be sent to oo,

and the function arsinhz = In(z + /(22 4+ 1)). Then

€ +€
fatrs) — ¥ = [y trs) - ) = n lln (y e )] (3.68)

—€
—€

(o)

The function arsinhz is odd, from which we get the property

1n<—y+ (y2+7'%)>:—ln<y+ (y2+7°§)>+21nr2.

We deduce

fo(ra) — e200 = 2qmIn <€ +1/(e2 + T%)) —2qmlnry .

This diverges when taking the limit ¢ — oco. We therefore need a cutoff, as argued in [31],
to remove this divergence.!* Up to a redefinition of the constant ¢q to absorb it, one
obtains

fo(ra) = e"2%Q — 2¢rInry . (3.69)

This warp factor matches the solution (3.47) with ¢g = 2m¢. In addition, it is a known
solution to the two-dimensional Poisson equation

Aafo =cq 6@ (ry) . (3.70)
One can straightforwardly verify that

Asfg=0forry >0. (3.71)

147t would be interesting to study whether the divergence is related to the non-geometry, and thus whether
the field redefinition could avoid it, by for instance including volume factors in the integral relation (3.56).
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R-brane? It is tempting to go one step further: we smear along the direction z to get
the warp factor fr of a hypothetical R-brane, with constant e2?®. We introduce the one-
dimensional radius that depends on the left-over coordinate w: r? = r3 — 22 = w?. We
introduce again an e that will be sent to co. Then

- +e - te
fr(r)) — *%r = / dz (fo(re) — e 2%Q) = —q7r/ dz In(2% + %) (3.72)
¢ te 2z
= —qr [zln(z2 + )] 4 gn / dz e (3.73)
+e€ r2
= _2q7r61n(62+r$)+2q7r/ dz <1 — 2> (3.74)
—e z4+r]

z\1"
= —2qr (eln(e® + 1) — 2¢) — 2q7r; [arctan (r)} . (3.75)

1/ ] e

As for the @-brane, the first term diverges. We consider again a cutoff and absorb it in a
redefinition of the constant. We are then left with the second term, that gives for e — oo

fr(r1) = 2R _ 2qmPry = e2Pr _ 2qm|w| . (3.76)
The absolute value is known to be a solution of the one-dimensional Poisson equation
Aifr=cr 6P (), (3.77)
and one can again verify that away from the singularity,
Aifp=0"forr; >0. (3.78)

Although smearing the warp factor seems to work and to yield a consistent result,
performing a T-duality along z is more challenging. It would require to smear as well the
b-field or the 3, for which there is no clear procedure. Maybe one could rather consider a
direct T-duality transformation of the flux, as proposed in [86], since the flux is a better
defined quantity that does not depend on z. We hope to come back to this possible R-brane
solution in a future work. Note that it should be different than the one proposed in [32],
that rather involves a dual coordinate.

3.2.3 Smeared branes, T-duality and sourced Bianchi identities

We have just shown how the warp factors of the different branes are related by smearing,
and how this allowed them to solve the various Poisson equations. We have now all the
tools necessary to T-dualise the (smeared) NS-branes into one another, and then verify
that the Bianchi identities (3.1)—(3.4) for their fluxes lead to the Poisson equations. We
start with the QQ-brane, as it involves most of the ingredients needed for the others.

Q-brane. We are going to obtain the (-brane by T-dualising the NS5-brane along two
directions. To do so, we should first smear the latter. This amounts to consider the
smeared warp factor fg of (3.47) instead of the standard fg of (3.40), and to use cylindrical
coordinates: p = ry and ¢ for polar coordinates, and z,y cartesian for the two smeared
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directions. Those coordinates are the most appropriate, not only because of the two-
dimensional radius in fg, but also for T-duality. Unless one uses a procedure as the one
of [86], T-duality requires to have a b-field. Given the expression of the H-flux in (3.41)
and the relation Hynpp = 30),byyp), it is much simpler to obtain a b-field that respects the
isometries using those coordinates. So starting with (3.40), the (twice) smeared NS5-brane
is given by

ds®* = ds2 + f ds3,  Hpmp = —p €ammppOpf, €2 =f (3.79)
where ds; = dp? + p?de? + da? +dy?, f = fo, (3.80)

in curved cylindrical indices. Fixing €4ppry = +1 (see conventions in appendix A), one
computes away from the singularity the only non-trivial component of the H-flux

Hypy = qg for p> 0, (3.81)
in curved indices. We then choose the following gauge for the b-field
bpy = —bye = qg ¢ for p >0, (3.82)
so that it respects the isometries. To include the singularity, it is tempting to define

brn = €4pomn a(p, @), with a = —¢ pO,f, (3.83)

that gives the correct expression when acting with d,. But it leads to undesired H-flux

components at the singularity when acting with d,. This same ambiguity will appear below

for the KK-monopole and the -brane. So it is important to keep it in mind: we consider

this completed but ambiguous b-field, and the trick to get the good fluxes is to set d,a = 0.
We now T-dualise along x. Applying the Buscher rules,'® we get no b-field and

ds? = dsZ + f ds3 + f1(dz + ady)?, Hpmp =0, e =1 (3.84)
where d§2 = dp? + p*de?® + dy? . (3.85)

This corresponds to the KK-monopole (3.42) smeared along y, as can be seen from the
warp factor and the coordinates. The smeared a present here can only be understood
through this T-duality procedure though. Finally, we T-dualise along y and get

2\ —1
ds® =dsi + f d&3 + f! (1 + ;2) (dz? + dy?),
a2\ !
bay = —b = —as (14 ) (3.56)
a2\ !
e? = 1 (1 + fz> , where dé% = dp? + p?dy?,

51n [37] are given Buscher rules in terms of g and b that are equivalent to the transformation (4.11). We

use those, with a minus sign difference on the b-field, due to conventions.
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which has been argued in [30] to be non-geometric. Using the field redefinition (2.1), we
get precisely the @Q-brane solution (3.47)

A% = ds2 + f d&2+ f1(da? + dy?), B = —B¥* —a, 2 = §1 (3.87)

where ds2 = dp? + p?de? . (3.88)

Going around the singularity (i.e. moving along ¢ at p > 0), 5 gets shifted by a constant
along the isometry directions: the gluing is then done by a S-transform, and this solution
is part of the class studied in sections 4.2 and 4.3. The T-dual background given by the
smeared NS5-brane also has a linear b-field. As described in those sections, such a situation
leads typically to a non-geometry, as in (3.86).

Let us now determine the fluxes of this solution. The vielbein is given by

3
: (3.89)

[N

IS
from which we deduce the non-zero structure constants or geometric flux (A.2)

1

SFR0f ) e =", (3.90)

1, 3 1
fsap@:_if 20,f = f73p7 ", fxpm:fypyZQ

where with some abuse of notation we denote on the lL.h.s. the flat indices with the cor-
responding curved space coordinate, and on the r.h.s. the derivative has a curved index.
We now compute the Q-flux. It is worth noticing that the Q-brane solution verifies the
condition 8™"9,- = 0, as pointed out in [32]; this holds even at the singularity. Then,

one has
B9, -=0

Q. = 0,8 —2pdaftl y ——= &P 6%,,8%,0,8™" , (3.91)
as can be seen from (4.22), while R*¢ = 0. Recalling the ambiguity of the b-field and

a in the NS5-brane discussed around (3.83), one gets the only non-trivial component of
the Q-flux

Qe™ = —f38,f, (3.92)

where we mean again flat indices, and the derivative has a curved index. This result
matches precisely the smeared NS5 H-flux in flat indices, which confirms the validity of
our procedure.

Finally, we turn to the BI. Given the fluxes just determined and using some antisym-
metry arguments, one can see that (3.1), (3.3) and (3.4) are satisfied. Let us rather focus
on (3.2), and the quantity

1
Sid = 0Qa)™ = 0" e — 5Qe f ca +2Q1 e - (3.93)
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The second term vanishes here. We fix (c,d, a,b) to be (p, p,x,y): this is the only non-
trivial choice, up to antisymmetries. One gets

1 1 1
Spp = §f_§ pQe™ — §Q<ny(f¢ps0 — Yoy — o) (3.94)
= S F 2B+ 700) = 5] (3.95)

where A, is the two-dimensional Laplacian obtained here in polar coordinates, since f does
not depend on ¢. As argued in (3.70), f is here the Green function for Ay up to a constant
cg- So we propose the following correction of the BI (3.2) due to the source

a ¢ — ea
Sa = —EQf 2 ea1ed €alles 170" 6P (p), (3.96)

where we took into account the constraints on the indices. This results in the BI (1.12),
and we have just shown that the QQ-brane solves it.

Let us mention that a BI with a @-brane source term was proposed in [87]. We
comment on it in appendix D.2 and conclude on a mismatch with our proposal (1.12).

KK-monopole. We follow a similar procedure to show that the KK-monopole is ob-
tained by T-dualising the NS5-brane along one direction. We first smear the NS5-brane
along z. Doing so amounts to choose the smeared warp factor fx of (3.42) instead of fx,
and to use the better suited spherical coordinates p = r3, ¢, y. Then the (once) smeared
NS5-brane is given by

ds® = ds% +f déi, Hpnp = —p?sing E4mnppOpf 20 = f (3.97)
where déi =dp? + p?de? + p?sin® ¢ dy? + d2?,  f = fk.
Similarly to the discussion for the Q-brane, we introduce (in curved indices)
b = €4pomn a(p, ), Wwith a=cosg p28pf, (3.98)
bey = qrcosp, Hepy =—qgsing, for p>0. (3.99)
We can then perform the T-duality along x. It is formally the same as above, giving
ds® = dsZ + f d&3 + fY(dz + ady)?, Hypmp =0, €29 =1 (3.100)
where d33 = dp? + p2de?® + p?sin? ¢ dy?, (3.101)

where now f and a are precisely those of the KK-monopole (3.42), that is thus recovered.
To proceed further, we consider the following vielbein and its inverse (in the ba-

sis (p, ¢, 4, x))

f3 3
1 1 _
= fzp ) el — fzpt )
frpsing N freptsinte )
e g —ftapsin g £
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from which we compute the following non-trivial structure constants (A.2)

1
Fop= oy =p0,(f72p71),
[ pr = fﬁlapf% ’ floy = f7%p71 sin ¢ &p(sinfl ©),
Fooy=—f2p2sin 0 d0 = [20,f e =—fa - (3.102)

As above, we mean flat indices on the lLh.s., and the derivatives carry curved indices
on the r.h.s. . Due to the ambiguity of the b-field of the NS5-brane and of a discussed
around (3.83), we do not consider an f*,,, that would have been non-zero at the singularity.
This way, for all T-dual branes, the important component of the flux has the (flat) indices
(p,z,y) and is due to the potential, being here a. The value of these components even
matches, up to a sign. The other f present here are mostly artefacts of the metric and
do not play the same role. Finally, the absence of b-field for the KK-monopole makes the
other type of fluxes vanish.

We finally turn to BI: (3.2)—(3.4) are trivially satisfied, while (3.1) involves the quantity

Sl()lcd = a[bfacd] - fae[bfecd] . (3103)
By antisymmetry, S;’;d = 0. In addition, one can verify

1

Sty = 3 (f_§ o fY oy + fwa(ppso) =0. (3.104)

Therefore, the only non-zero Sj, ; is given by

1 1
Spoy = 3 (f_E oS oy = [Ty ([ap + Yoy + fwmp)) (3.105)
= —% sin™! gof_2p_23p(9@a (3.106)
1 2 1,
= gf 2 <3§f + papf) = gf *Asf, (3.107)

where Ag is the three-dimensional Laplacian, here in spherical coordinates, since f only
depends on p. We mentioned that f is the Green function for A3 up to a constant cx (3.66).
So we propose the following correction of the BI (3.1) due to the source

c - ea
Shed = ?Kf 2 e31bea €1))e 1° 6 (p) (3.108)

where the constraints on the indices were taken into account, and €y, is only non-zero and
equal to one if e is the direction along the brane. This results in the BI (1.11), and we
have just shown that the KK-monopole solves it.

NS5-brane. For completeness, let us come back to the Bl of the H-flux for the NS5-
brane. We showed below (3.61) how this BI in curved indices would lead to the Poisson
equation. Going to flat indices amounts to multiplying by vielbeins since dH is a tensor.
One gets the quantity

M sn_ sp 5 3 e
Sabed = €€ bepceqda[manq} = a[a]irbcd] - §f [abHcd}e : (3109)
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In cartesian coordinates, the vielbeins are just given by f 3. So from (3.61), (3.63), and the
above, we propose the following contribution of the source

C
Sabed = —ZHJPQ €aLabed 0 (r4) (3.110)

where only the numerical factor should be verified, and the convention for €4 is in ap-
pendix A. This results in the BI (1.3), and we have shown that the NS5-brane solves it.!0

4 Geometric vacua of 3-supergravity

In this section, we study the conditions for a vacuum of S-supergravity to be geometric,
while its formulation in standard supergravity would be non-geometric. As explained in
the Introduction, such backgrounds are those for which S-supergravity description is truly
useful. In the context of compactification, those backgrounds allow a dimensional reduction
to four-dimensional gauged supergravities with non-geometric fluxes; the latter would not
have a ten-dimensional uplift otherwise. Whether a background is of this type is related
to the symmetries used to glue its fields from one patch to another, as mentioned in the
Introduction. We mostly follow the reasoning presented there, and clarify on the way
several concepts such as geometry and non-geometry, that is a theory dependent notion.
We end this section by studying the properties of some of these backgrounds, namely those
that use S-transforms, determining in particular whether they eventually lead to new four-
dimensional physics.

4.1 Symmetries of the NSNS sector

We consider a field configuration in a theory (possibly a vacuum), in a target space picture,
as given by a set of fields defined locally on several patches of the space, and gluing from one
to the other by some transformations. In order for this field configuration to be described
by a single theory, as it should be to have a good description of the physics, or in other
words, in order to use only one Lagrangian over the whole space, the gluing transformations
should be symmetries of that theory [26]. It is therefore important to first identify these
symmetries, as we now turn to. In section 4.2, we will then look at what type of background
the symmetries lead to when used as gluing transformation.

4.1.1 General case

We will be mostly interested in the NSNS sector of standard supergravity given by the
Lagrangian Lnsns (2.4) and the NSNS sector of S-supergravity given by the Lagrangian
iﬁ (2.6). Up to the field redefinition, they differ as explained in section 2.1 by a total
derivative. In [1], we had

LNSNS — Om, (e_2d (gmngpqangpq - gmngpqangpq + an(gmn - gmn))> (4'1)
~ e_2d - - _ M ~
= Lo+ 0m (|§|8” (gpqﬂpmﬁqn‘g‘) —de=2pP gquq) .

15For the three branes, we obtained a factor f~2 next to the § in the source contributions to the BI. It
would be better to have a generic formula that reproduces this factor, for instance with volumes or vielbeins,
but we did not find any.
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The total derivative can be simplified by noticing as in [3, 23] that g"™"—g¢™" = —§,e S’ BI".
Using in addition that 0y, In|g| = gP40,,g,¢, one obtains

LNsNs + Om <e2d (anan ln:g: + 4Bpm§pq7-q)> = ‘CNB . (4.2)

The field redefinition also gives that |g| = |g|~!|g~! + 8|72, from which we get
LxsNs + Om <e_2d( —2¢9™" 0, In 1 + gp| + 45Pm§pq7q)) =Ly . (4.3)

The fact they differ only by a total derivative has two crucial consequences: first the
equations of motion are then the same, up to the field redefinition, so a vacuum of one
theory is then, at least locally, a vacuum of the other theory. Secondly, a symmetry
of a theory usually leaves its Lagrangian invariant up to a total derivative (the case of
supersymmetry for instance), so here, a symmetry of one theory will be a symmetry of the
other one.

The symmetries of both theories are well known and were studied in details in [1]. The
Lagrangians are invariant under diffeomorphisms: this is manifest in their expressions (2.4)
and (2.6). In addition, Lnxgns is invariant under the b-field gauge transformation. This can
be translated as a transformation on the (S-supergravity fields, and was called a 8 gauge
transformation [1]. /jg is then invariant under it up to a total derivative.

A field configuration that uses diffeomorphisms or b-field gauge transformations to glue
is certainly geometric in standard supergravity (see the definition in section 4.2.1). As we
will see, it may or may not be geometric in terms of S-supergravity, but in any case, such
a description is not really necessary, as standard supergravity is then appropriate [1, 26].
Therefore, it would be interesting for S-supergravity to have more symmetries at hand. To
reach such a situation, we necessarily have to modify the theories in some manner: we will
consider a further constraint, or restriction, or subcase, that will generate an enhancement
of symmetries, as suggested in [1]. Let us motivate the restriction to be considered by a
new symmetry that appears manifestly in Eg.

4.1.2 A new symmetry of S-supergravity

We present here a new symmetry of S-supergravity (under some conditions), that we will
later relate to the S-transforms of T-duality. The Lagrangian 55, given in curved indices
in (2.6), only contains § through either 9,,3P? or BP"9,-, where the dot stands for any of
the three fields or their derivatives. Therefore, the following holds

BPI —s BP9 4 P4 R
_ is a symmetry of Lg . (4.4)
with V m, p,q, @P"0.- =0, OpwP? =0

In others words, a constant shift of 5 by (an antisymmetric) w?? satisfying w?” 0, = 0
leaves Lg invariant. Can the two requirements on w in (4.4) be relaxed to a more general
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one, which would, for instance, not require w to be constant? It does not seem possible,'”
and the relation we will establish to T-duality suggests that there is no such generalization.
So we stick to this form (4.4) of the symmetry. It is now important to understand the two
conditions on tw in (4.4), i.e. how can this symmetry be concretely realised. To that end,
let us consider the following equivalence, given a field configuration and an integer N > 1

Any constant w??, that is only non-zero
< | along a specific N x N (diagonal) block,
satisfies w?"0,.- = 0.

3 N isometries generated by IV independent
constant Killing vectors V,, ¢ € {1...N}.

(4.7)
We provide a rigorous proof of this equivalence in appendix E. As shown in that proof,
the left-hand side of (4.7) can be translated as (E.2), i.e. as the independence of the
fields (and their derivatives, by commutation) on N coordinates. In addition, the right-
hand side of (4.7) gives conditions on the w that are precisely those needed to realise the
symmetry (4.4), up to the restriction of having a non-zero block. So this equivalence can

be translated in particular into the implication'®

The shift P9 — P14 wP4, for any constant wP?
that is non-zero only along the N x N block, (4.8)
is a symmetry of Eﬁ .

The fields are independent
of N coordinates.

The symmetry can thus be realised provided the fields are independent of N (> 1) coor-
dinates; the allowed shifts are then those along these isometry directions, and constant.
The new symmetry (4.4) is therefore tied to having isometries: it is not a symmetry of
general (B-supergravity, but requires to focus on the subcase (in particular, on the set of
backgrounds) that have isometries. In this sense, it is reminiscent of T-duality for string
theory; we will see that the two are actually related.

As this symmetry of £~5 is only present in a subcase, one may wonder under what
conditions it can also be a symmetry of Lnsns. The field redefinition relating only the
fields among themselves, the independence on the coordinates of one set of fields translates
in that of the other set. So the conditions for the symmetry to be realised is the same
on both sides: given the discussion made below (4.3), we deduce that in this subcase, this
symmetry of £~/3 is also a symmetry of Lngng, up to a total derivative. We can actually
be more precise on this last point: in the total derivative (4.3), 5 appears again through
OmPP? and BP"0,-, but also through a determinant. The variation of this determinant does
not seem to vanish, so Lngns would be invariant under (4.4) only up to a non-vanishing

171t is tempting to consider the conditions

v m,p,q, @03 +§" 0w =0, (4.5)
w0, + BP0, =0 .

(4.5) implies the invariance of I'J" under the shift, and so of 7™ = I't™. In addition, (4.6) makes the
linear terms in w in the variation of the R-flux vanish. One could then hope for a more general symmetry.
However, using the (anti)symmetry of m,q in (4.5), one obtains that this condition and (4.6) are actually
equivalent to the two of (4.4), at least for g and § instead of the dot.

8The reverse can only be formulated with the w?"d,- = 0 condition, because it is not clearly the same
as the constant shift being a symmetry.
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total derivative. The same may happen reverse wise with constant b-shifts, although one
should rewrite the total derivative in terms of g and b to verify this.

4.1.3 Elements of the T-duality symmetry

We now turn to T-duality. When the target-space fields are independent of N coordinates in
a D-dimensional space-time, the bosonic string sigma-model gets an additional symmetry,
that is T-duality (see the reviews [88-90] and references therein). This symmetry translates
in the NSNS sector into the action of a constant O(N, N) group on the fields. Therefore,
if the latter are independent of N coordinates, the target-space theory, namely Lnsns,
should inherit this symmetry: L£ngng is then invariant under the O(N, N) transformation
(up to a total derivative).!? This invariance is not often mentioned, as one usually considers
a full supergravity, for instance type IIA/B, that also contains a RR sector. The latter
is on the contrary not always preserved by T-duality, so T-duality is generically not a
symmetry of type II supergravities, but only a transformation. Here, we only focus on
the NSNS sector, and we recall in appendix E two approaches to show the invariance of
Lngns under this transformation, up to a total derivative. The first one is the work by
Maharana and Schwarz [91] that considers a compactification along the isometries, and the
second one is the relation between Lngng and the Double Field Theory Lagrangian, which is
invariant under the bigger group O(D, D). We conclude that this O(N, N) transformation
is a symmetry of Lnsns (up to a total derivative) when the fields are independent of N
coordinates. As discussed above, the same then holds for Eﬂ and its fields.

Let us now present in more details the action of the T-duality group O(N,N). Its
action on the fields is better characterised by considering the 2D x 2D matrix H, the
generalized metric that depends on the metric g and b-field, and the quantity d related to
the dilaton, that we introduced in section 2.1. In addition, one should consider O(D, D)
elements O in their fundamental representation: they preserve the 2D x 2D matrix

1(01 T
_ = —n. 4.
n 2<]10),0770 n (4.9)

The T-duality transformations then consist in taking a trivial embedding of O(N, N) into
O(D, D), and acting with the corresponding elements on #; the transformed dilaton is
defined so that d remains invariant

a &
a c Ip_n Op-n
€ O(N,N), 0= eO(D,D), 4.10
<f h) (N. ) ; - (D.D),  (410)
Op—n I1p_n
H =0THO, e 2M=c2/|g=e|g]. (4.11)

Only the components along the N directions are then transformed. A particu-
lar example is the Buscher transformation [92, 93] along all N directions given by
a=h=0y,c=f=1n.

191ts regime of validity as an effective theory might however be changed accordingly to the transformation.
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Let us now present the content of this O(N, N) group. For string theory, any element
of O(N, N,Z) can be generated by the following three types of elements [88, 89]:

e the GL(N,Z) subgroup: for a € GL(N,Z), one considers?’

O, = ( “ OjVT> € O(N,N,Z) . (4.12)
On a

e the b-transforms: for w an N x N antisymmetric integer matrix, one considers

Iy 0
O = < v N> € O(N,N,Z) . (4.13)
w 1y
e the Buscher transformations [92, 93]: for ¢; the N x N matrix with only one non-zero
entry, equal to 1 and placed in the (i,7) position, one considers

0, = (ﬂN_ci “ ) € O(N,N,Z) . (4.14)
C; ]lN — C;

Let us introduce yet another set of elements

e the f-transforms: for an integer N x N antisymmetric matrix w, one considers

1y @ On Ix) [1n Ox )\ (On 1y .
— —0T0,0;, 4.15
(()N ]1N> (]1N 0N> (w ]1N> (nN 0N> t t (4.15)

where we denote by O; the Buscher transformation along all N directions

Oy 1

At the level of supergravity, the stringy T-duality group just discussed is extended to
O(N,N,R). We then consider the natural extensions of the above elements towards the
GL(N,R) subgroup, the real b- and S-transforms, where a and w are now real. Those three
sets form three independent subgroups of SO(N, N,R) (they only contain elements that
have a determinant equal to 1). So they do not generate the whole O(NN, N, R), in particular
no combination can reproduce an Oy, as det Oy, = —1. There might even be some elements
of O(N, N,R) that are not generated by a simple extension from O(N, N, Z). Nevertheless,
we will mainly focus in the following on these three subgroups of SO(N, N,R), but we can
keep in mind the possibility of further T-duality transformations.

We now look at the action of these three subgroups on the NSNS fields. We explained
above that when fields are independent of N coordinates, the O(N, N) T-duality group is
a symmetry of the Lagrangians (up to a total derivative). So each of these three trans-
formations should then correspond to a symmetry. The action of the three subgroups of

20This subgroup can be further decomposed into generators, see e.g. [88] and references therein.
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interest can be read from (4.10) and (4.11), but also from the corresponding action on a
generalized vielbein & (up to Lorentz transformations)

£=£0. (4.17)

By considering respectively & and & of (2.2), one gets simple expressions for the b-
transforms, resp. S-transforms: they just consist in shifting the b-field, resp. 3

b-transform: € =e, V' =b+ (w 0 ) ; (4.18)
D-N

B-transform: & =¢, B ' =B+ <w ODN) , (4.19)

along the N directions. In addition, we read the GL(NN,R) action on either set of fields as

T
O,: € =e (a ) , V= (a ) b (a ) , (4.20)
1p_n I1p_nN Ip_n
~1 -7
o ~fa , [a a
c=e ( ]lDN>  F= < ]1DN> B ( ]1DN> '

Let us now identify the corresponding symmetries. The b-transforms (4.18) are an obvious
symmetry of Lngns: first, constant shifts of b certainly leave the Lagrangian invariant, as
the latter only depends on 0b; second, this shift symmetry is a subcase of the known b-field
gauge symmetry, since a constant shift can be brought to the form of a dA. The GL(N)
subgroup is also clearly a symmetry: its action (4.20) on the fields is a particular example
(in matrix notations) of diffecomorphisms, that are known to be a gauge symmetry of both
Lnsns and ﬁg. Let us verify this point. A diffeomorphism generically transforms the b-field

as by (2') = bpq(x)% aag,i. Having the O, transformation as a diffeomorphism amounts

at first to satisfy the following set of differential equations

p
a oxP

This can easily be achieved since a is constant. Additionally, of the coordinates obtained

from this resolution, the field only depends on those not along the N directions: thanks to

the &%, those can easily be chosen as 2’ = z. For that reason, by (z') = byq(z) 2 227

can be realised by the action of O,.

Finally, the S-transforms (4.19) should also be a symmetry when fields are independent
of N coordinates. This may look surprising from the Lngng point of view, as it does not
seem to match a known symmetry (in particular, translated on the standard supergravity
fields, this transformation acts both on b and g).2! However, in view of (4.8), 3-transforms

2 The two other subgroups of the T-duality group have been shown to correspond to subcases of gauge
transformations, so one may wonder whether the same could happen for the S-transforms. This is related to
the footnote 17, and it looks unlikely. It may still be doable in the broader set-up of DFT, when considering
d#0.
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clearly correspond to the new symmetry of ﬁg discussed in section 4.1.2: constant shifts of
B along coordinate directions on which no field depends. It is then a symmetry of LnsNg
up to a total derivative. We now understand that the new symmetry of section 4.1.2 can
be viewed as the S-transforms, a subgroup of the T-duality group.

We conclude this section on the symmetries of Lnsng and 55 by recalling our main
idea: by considering a restriction, we enhance the symmetries of the theories, and the
new symmetries can be used to build interesting geometric vacua of (the constrained) (-
supergravity. We considered here the subcase when fields are independent of N coordinates:
among various new symmetries from the T-duality group, we obtained the subgroup of (-
transforms, that is a manifest symmetry of Eg. Those will play a crucial role in geometric
vacua of S-supergravity.

4.2 To be or not to be geometric

We discussed above the different symmetries of Lygng and £~5, in general but also when
restricting to the presence of some isometries. We now study the effect of using these
various symmetries to glue fields of these theories from one patch to the other: after
proposing a precise definition of geometry and non-geometry, we discuss whether using a
given symmetry leads to a geometric or non-geometric field configuration. To illustrate
this discussion, we then provide an example for which we prove the non-geometry.

4.2.1 Symmetries and (non)-geometry

The original idea of non-geometry [9, 20, 21| went as follows: a field configuration (string
coordinates, supergravity fields...) is non-geometric for string theory if its fields can be
defined on a set of patches (in target space), but the transformations needed to glue them
from one to the other are not among the standard symmetries of a (differential) geometric
configuration, meaning diffeomorphisms and gauge transformations. Still, these transfor-
mations are symmetries of string theory. As mentioned in the Introduction, it is important
that these transformations correspond indeed to symmetries of a given theory [26]: this
allows the field configuration to be described by a single theory on all patches, which is
crucial for physics. Keeping this idea in mind, we extend here the notion of geometric or
non-geometric field configuration to our target space theories: the transformations used to
glue the fields should then be symmetries of the latter, and not only of string theory. Then,
to distinguish between a geometry and a non-geometry requires to specify the symmetries
used. We thus reformulate and generalize the original idea stated above into the following
proposed definitions

Definitions of geometric and non-geometric field configurations.

e A field configuration is geometric if the fields are globally defined on the manifold
considered so do not need to be glued, or if the transformations used to glue them
from one patch to the other are symmetries of the theory, and the metric, dilaton
and fluxes glue at most with diffeomorphisms.
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Symmetry used as gluing transformation LNSNS £~5 Example
nothing or diffeo. G G twisted torus
b-field gauge transfo. (and diffeo.) G NG (or x) | T? + constant H
B-transform (and diffeo.) NG (or x) G toroidal example
b-field gauge transfo. and S-transform (and diffeo.) | NG (or x) | NG (or x)
Buscher transformation NG NG radial inversion
more combinations ? ?

Table 1. Geometric (G) or non-geometric (NG) field configuration, according to the symmetry
used to glue its fields, and to the theory.

e A field configuration is non-geometric if the transformations used to glue the fields
from one patch to the other are symmetries of the theory, and if the metric, dilaton
or fluxes glue with something else than diffeomorphisms.

It is important to notice that the notion is theory dependent. In particular, since the metric
describing the manifold may change from one theory to the other (as it is the case for us
with Lxsns and L), the notion of (non-)geometry changes accordingly. This is precisely
the interest in changing theory to describe a background: it can be non-geometric for one
theory, but the geometry can be restored in another theory; this is what happens for the
toroidal example as we will see in details in section 4.2.2, and for the ()-brane as discussed
below (3.86). These definitions also involve the notion of fluxes. In Lnsns, respectively £~5,
the H-flux, resp. the R-flux, are tensors, so their transformation under diffeomorphisms is
clear. But one also faces the structure constant or geometric flux, and the Q-flux, which
are not tensors. Their transformation under diffeomorphisms can still be considered, as
they correspond to building blocks of the spin connections w and wg, and those evolve on
a manifold. For a geometric configuration, it is important that the flux remains invariant
under the other symmetries: the H-flux is invariant under the b-field gauge transformations,
and the - and R-flux are invariant under the S-transform discussed above. The latter is
obvious for the R-flux given its definition, and for the Q)-flux when rewritten as

Qcab = éqcéamébn (8(1/an + 2édqﬁp[m8pén}d) . (422)

These definitions therefore emphasise the role of the symmetries of a theory. We
identified above the symmetries of Eﬁ and LngNns; we explained they share the same ones
up to a total derivative. Those are diffeomorphisms and b-field/f gauge transformations.
In the case where the fields are independent of N coordinates (this will be implicit from
now), one gets an enhancement of the symmetries to include the T-duality group O(N, N).
One of its subgroups, the S-transforms, is of particular interest; /35 is manifestly invariant
under it. Considering these various symmetries to glue the fields, let us now study whether,
according to the above definitions, a field configuration is geometric (G) or non-geometric
(NG) in the different theories. We give the results in table 1.

We denote by a x in table 1 a (tiny) possibility for a field configuration to be geometric,
discussed in [1]. The b-field gauge transformation, translated after field redefinition into a
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B gauge transformation, also acts on the new metric §; this is due to the non-linearity of
the field redefinition. Depending on the transformation and the background, the transfor-
mation of § could happen to correspond to a diffeomorphism [1]. In that case, the field
configuration would be geometric, provided the fluxes also transform properly. Such a
situation is rather unlikely, but cannot be fully excluded. A similar reasoning can hold for
the g-transform, that would act not only on the b-field but also on the metric g, as can be
seen with the field redefinition; one should determine whether this transformation could
be viewed as a diffeomorphism. To study such situations properly, an analysis as the one
to be performed in section 4.2.2 would be necessary.

We mentioned in section 4.1.3 the possibility of other elements of the T-duality group
O(N, N) that we have not considered. These could be built for instance by further com-
binations of the elements already studied here. The effect of such a generic element is not
easy to guess, so we cannot conclude in full generality: this is the meaning of the last line
of table 1.

To conclude this study, we refer to the reasoning detailed in the Introduction, and one
can see that the results of table 1 are in good agreement with it. In particular, it is worth
considering a subcase that gives rise to more symmetries, and allows to go beyond the
situations of the first two lines of table 1. Considering the independence on N coordinates
gives the new symmetry of S-transforms. The latter allows, as indicated in the third line,
to get field configurations that are geometric for fg while being non-geometric for Lnsns-
In that case, it is worth changing theory: this is the important outcome of this study. We
have given a well-defined class of backgrounds for which S-supergravity provides a better
description than standard supergravity.

4.2.2 A proof of non-geometry

We now illustrate the above discussion with an example of a field configuration that is
geometric for /35 and non-geometric for Lnysns. Being sure of the latter requires to show
explicitly that some gluing transformations cannot be realised by diffeomorphisms, which
is not so simple to prove. Such a proof should nevertheless be established to conclude on
a non-geometry, but it is rarely worked-out in the literature. We hope here to fill this gap,
at least for one example. We consider the toroidal example that was discussed in details
in [1, 3, 37]. In this field configuration, one has three directions, labelled by m = 1,2, 3.
The third one is a circle, parameterized by the angle coordinate z. It serves as a base to a
fiber where the non-geometry occurs. The fields are given as follows

1 Hz
w00 0~ 0
= 0 7 O b= 1z 4.23
g_fo(z) R% 9 —fo(Z) R2R2 0 O 9 ( . )
s 0 0 0
0 0 Tol2)
o\ —1
—2¢ —2¢' P2 p2 £—1 . Hz
e P =e " RiR; f, (2), with fo(z) = [ 1+ , (4.24)
R Ry

where H and the R,, are constants, and ¢’ is a given well-defined scalar field. Let us
consider the base circle along z. An atlas of a circle needs at least two charts (U;, ¢;),
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i = 1,2, where U; is an open set of points of the circle (or patch), and ¢; maps them to
a local coordinate in R. The points of the circle can be uniquely denoted in a plane by
(cos z,sin z), and one can then take ;' : R — U;, z + (cosz,sinz) (see the Example 5.2
in [94]). The two coordinates z; 2 associated to the two open sets Uy  are enough to cover
the full circle: z; €] — m, 7], 22 €]0,27]. The maps between the coordinates ¥;; = gpl-cpj*l
are then defined on the (image of the) intersection of the patches: this “overlap” splits into
two pieces, on which Wq5 is defined as follows

29 21 = 29, for z9 €]0, 7]
Uio (4.25)
zo v 21 = 29 — 27, for z9 €|m, 27|

Uy, is its inverse, and both are C*°. For the field configuration (4.23) to be geometric, one
needs at least the metric to glue with diffeomorphisms on the overlap. As the metric only
depends on z here, it should then satisfy

oxP Ox1? 3
9mn(22) = gpq(zl)WW, $3 = Z1, 2" = 22, (4-26)

on both pieces of the overlap. Let us verify this. For m = n = 3, one can develop on both

021 2 1 [0zM\? 1 [0z2\?
2 _ p2 — — [ == . 4.2
R3 R3 <822> +f0<21) (R% <822> +R% (822) ( 7)

The map P19 in (4.25) gives on both pieces of the overlap 3—2 = 1. One deduces

sides and gets

orl  0x2

so that the diffeomorphism gluing is verified for m = n = 3. For m = 1,n = 3, one gets

o 2 821 821

1 Oz 0zt 1 0x? 0z
0= — — = 4.29
39T 92y fo(z1) (Rf 9l 05 2 9ut 822> (4.29)
Using that on both pieces of the overlap 2—2 =1 and (4.28) holds, one deduces
82’1
Considering m = 2,n = 3, one obtains similarly 68;,12 = 0. We now turn to m =n =1 (the
case m = n = 2 is completely identical). One gets a priori

1 o [ 021 \° 1 (0a'\° 1 (022’

that simplifies, thanks to the above, to

folz) _ (0z'\®  R2 (02%\"
f0(21)<6x’1> +R§<3x/1> ’ (4.32)
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that should hold on both pieces of the overlap. There, one has by definition z; = ¥;9(22),
so the left-hand side (Lh.s. ) of (4.32) is a function of 2. However, because of (4.28),
z! and 72 do not depend on 23, so neither does the right-hand side (r.h.s. ) of (4.32).
Therefore, one must have

Jo(z2)
Jo(¥12(22))

On the piece z2 €]0, 7|, this certainly holds, but it is not the case on zy €], 27[, where

H(z2—2m) 2
folza) _ L (MRR?) . (4.34)

foz1) 44 ( Hz )2

Ri1Rs>

= constant . (4.33)

On z9 €]m, 27|, because Wia(2z2) = 22 — 27, the condition (4.33) can be viewed as requiring
fo to be periodic, up to a rescaling. In other words, the diffeomorphism gluing of the
metric (4.23) fails because of fp, which is not periodic in z. The metric being diagonal,
its chances of being globally defined boil down to simply being periodic, which is not
the case. The b-field would also have required a diffeomorphism (together with a gauge
transformation), that similarly fails due to fy. Following the definitions of section 4.2.1,
we conclude that the field configuration is not geometric; the fact that it is non-geometric
requires a little more.

This field configuration is independent of N = 2 coordinates, corresponding to the
fiber directions. As argued in section 4.1.3, the theories considered here then enjoy an
enhancement of the symmetry group by the T-duality group O(2,2), which is also a stringy
symmetry. Gluing this field configuration by such a symmetry, knowing that it is not
geometric, would make it non-geometric (from the standard supergravity point of view).
It is indeed the case: more precisely, according to (4.11), one should have on both pieces
of the overlap

H(z) = OTH(21)O, (4.35)
and we get that O is a S-transform. This is more easily seen using the new fields, given by
= 00 0 Hz0 )
g=|0 L% o0|,8=|-Hz 00|, e =e?RIR3, (4.36)
2
0 0 R2 0 00

and their associated generalized vielbein E. For z9 €]0, [, z1 = 22 so one can take O = 1.
The non-trivial gluing is for z9 €|m, 27[, where z1 = 29 — 27. The constant shift along the
fiber directions between (z1) and 3(z2) can be compensated by the following S-transform

1. Q 0 27HO
0:(031>,Q= —2rH 0 0] . (4.37)
3 0 0 0

We conclude that the field configuration (4.23) is indeed non-geometric for standard su-
pergravity (with isometries). According to the discussion of section 4.2.1, in particular
the definitions and the table 1, we conclude as well that this field configuration, described
as (4.36), is geometric for S-supergravity (with isometries).
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Theories Zﬁ Lnsns
- - field redef.
g, B, ¢ () =55 g, b, ¢ (NG)
T-duality frames T-d. // N dir.
g, v, ¢ (G)

Table 2. Different descriptions of a geometric background of £~/3

4.3 Geometric backgrounds of B-supergravity and T-duality orbits

As explained in the Introduction, backgrounds that are geometric for 25 and non-geometric
for Lnxsng are the most interesting ones for [-supergravity. We have just established
that one way to realise such backgrounds is to consider the restriction of having fields
independent of N coordinates, and to have the gluing transformations of the fields to
be [-transforms, possibly with additional diffeomorphisms (see for instance table 1). We
focus in this section on such a situation. The restriction implies that the background is
on a T-duality orbit, i.e. the presence of the isometries allows to perform T-dualities on
the background. We study this orbit and its consequences, first in general and then in a
compact case.

4.3.1 Always on a geometric orbit?

We consider a background of the type just described. It is given in terms of the fields
G, B, ¢, thanks to which it is geometric (G) for 55. Through the field redefinition, it is
expressed with g, b, ¢ and is then non-geometric (NG) for Lygns.2? As it is independent
of N coordinates, one can further T-dualise along these directions. Doing so, along all N
directions, with Buscher T-duality on g, b, ¢ gives the T-dual fields ¢’, ¥/, ¢, as depicted
in table 2.

Let us now show that ¢’, t/, ¢’ provide a geometric background of Lnsns. The fields
G, B, & glue with a B-transform and possibly a diffeomorphism A. These transformations
can be decomposed into their blocks along the NV directions and the others: we introduce
A as in (4.38) with a the N x N block. Using notations of section 4.2.2, we denote by z?
the D — N coordinates on which the fields depend and by 3" the N coordinates on which

22Despite its similarity with a Buscher T-duality along all D directions, let us stress that the field
redefinition (2.1) is not such a transformation. The indices of §~* + 8 are up, while those of a T-dual
metric and b-field are down; in particular T-duality relates a b-field to a b-field, there is no notion of
bivector appearing. Another way to see this is by considering the subcase b = 8 = 0, giving g = g, while
a T-duality along all directions would invert the metric. This difference is crucial for the large volume
limit (see a related discussion in [1]). Additionally, in supergravity, a T-duality along all directions would
require the fields to be constant, while the field redefinition can be performed without restriction. In DFT,
such a T-duality would replace the coordinates =" by Z,,, but the field redefinition does not change the
coordinate dependence.
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they don’t. Then, a generic diffeomorphism A™,, = gg—,"; becomes here

(1) (@)-Cy ) =

The independence of the fields on N coordinates y” leads here to a constraint on the
possible diffeomorphisms to be used: the z and 2’ should mix at most among themselves,

i.e. should not involve any y or y’ dependence. This implies that % =0, i.e. 7, = 0.

As a cross-check, one should have -2k, = -2.92° — (. As A is a diffeomorphism, this
dy q oy'" 0z

2 . . . . . .
equals az‘?qigz,r = %#’T, that indeed vanishes for i = 0. So A is restricted as follows??

: -T
aj _T a 0
A= (() k) , AT = (—ijTaT kT> . (4.39)

We now consider the gluing of the fields g, 8, ¢: using again notations of section 4.2.2, it
is expressed with the generalized metric as

H(ZQ) = OTH(Zl)O, (4.40)
]lN w a Vi ON
1p_ Op— k Op—
O — D-N D-N - D-N (4.41)
On In On a
Op—nN Ip_n Op-n|—k~TjTa ™ k=T
with w! = —w giving the S-transform. As already mentioned, the field redefinition does

not change H, so the gluing of the fields g, b, ¢ is expressed in the same manner. Let us
now perform the Buscher T-duality along the N directions. Following (4.10) and (4.11),
we use again H to get the T-dual H' as

H =TTHT, (4.42)

where T is given below (4.11). By T-dualising H on (the image of) each patch, i.e. on both
sides of (4.40), we deduce the gluing of H'

H' (22) = (TOT)TH'(z1)TOT, (4.43)
where we used that 77 = T~! = T. This gluing is therefore given by
1y On a T On
TOT = ]l_DjV Op—n~ k Op—n (4.44)
w ]k) ]lN ON a
—(EkHT on Ip-n Op—n k=T

23The restriction on the dependence on coordinates enforces ¢ = 0, and this will allow us to obtain a
geometric T-dual. This is a crucial point, as i # 0 would have lead to a non-trivial S-transform block
after the T-duality, which would have implied a non-geometric T-dual. Another take on this is to consider
the Maurer-Cartan one-forms that are globally defined: é*(z’) = é*(z). This provides the diffeomorphism
matrix, as dz” = ", (x)é*»(z")dz’™. Considering a multiple step fibration, such as the nilmanifold n 3.14,
one may think that it is possible to find a vielbein leading to ¢ # 0. But this involves a dependence on
coordinates that are not well-defined, namely those corresponding to fibered directions. These, in addition,
make the fields depend on the wrong coordinates after gluing. Considering a correct coordinate dependence
restores ¢ = 0.
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We recognise the combination of a b-shift and a diffeomorphism, where the former is due
to the initial S-transform and the off-diagonal piece j of the diffeomorphism. We conclude
that the fields ¢’, ¥/, ¢’ form a geometric background for Lnsns.

We have shown that the backgrounds that glue with S-transform and diffeomorphism,
i.e. geometric for 55 and non-geometric for Lngng, are T-dual to geometric ones for LngNs.-
So these geometric backgrounds of EN/g are in a sense not new, or do not reveal new physics.
One way of phrasing this is from a four-dimensional gauged supergravity point of view:
these backgrounds are always on a geometric (T-duality) orbit. The converse claim may still
be of interest. Consider a geometric background of four-dimensional gauged supergravity.
On its T-duality orbit, there are geometric and possibly non-geometric backgrounds. If
one geometric point on this orbit can be lifted to a ten-dimensional background that glues
as in (4.44), then we know that there exists on that orbit a non-geometric one that can be
lifted and described by [-supergravity.

It is disappointing that the backgrounds of S-supergravity considered above do not lead
to new physics. Here is a list of ways to circumvent a similar result for other backgrounds

e As indicated in table 1, there might be other T-duality elements that could be used
to glue fields. They may, as for the S-transform, allow geometric backgrounds for
ﬁﬁ and non-geometric for Lnygng. Then, if a study as the above on the T-duals does
not give rise to any geometric point, then the corresponding backgrounds would be
fully new.

e We only studied the NSNS sector. Considering backgrounds involving other sectors,
such as RR, may alter the above conclusion.

e One may find another restriction than the independence of coordinates, that would
as well enhance the symmetries. The new symmetries could then be used again for
gluing fields, possibly in the desired way. In particular, if there is no assumption on
the coordinate dependence anymore, then the T-duality can a priori not be performed,
preventing from the above conclusion.

e There is a discrete symmetry of Lngns that we have not mentioned so far: the Zs
transforming b — —b. This also gives a sign to the H-flux and could therefore lead to
a non-geometric field configuration, following the definitions of section 4.2.1. This Zs
translates for Eﬁ into a sign on B only. The effect on the fluxes is a sign on the Q-flux,
but not on the R-flux. Then, with a vanishing Q-flux, such a field configuration would
be geometric for ﬁg: would that be another restriction to consider on S-supergravity?
Although very simple, this situation could be worth being studied more.

e The notion of geometry used above is close to that of standard differential geometry
and smooth manifolds. If singularities are present, the conclusions may be altered.
Nevertheless, in the case of the @Q-brane and NS5-brane, the previous reasonings can
be applied everywhere away from the singularity, and the latter is treated in the same
way for both §, 3, ¢ and ¢, ¥/, ¢ (therefore if the singularity is acceptable on one
side, it is as well on the other one).
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4.3.2 On compact purely NSNS vacua

We discussed in [1] the possibility of getting purely NSNS solutions of S-supergravity, that
would be of interest for compactification. Such vacua would be geometric for 2/3 and take
the form of a given compactification ansatz. Interestingly, that ansatz was shown to be
not too restrictive: the equations of motion indicated the possibility of getting non-trivial
solutions. This is not the case for Lnsns, for which the ansatz only leads to trivial solutions,
hence the interest in getting such vacua of ENB. In the above, we worked-out a well-defined
class of backgrounds that are geometric for ﬁg, and could thus serve as candidates for the
vacua we are now interested in. However, we have also shown that these backgrounds are
T-dual to geometric ones of Lngns, as described by the chain of relations in table 2. Let us
now study how the compactification ansatz evolves through that chain: this will constrain
further the possibility of getting geometric vacua of £~5 that are suited for compactification.
We recall that due to Eg and Lysns differing only by a total derivative, and to the
T-duality being a symmetry of the equations of motion, a vacua of /35 given by §, 3, ¢
leads to g, b, ¢ and ¢, ¥/, ¢’ of table 2 being as well vacua of Lysns. Let us now look
at the compactification ansatz. The metric g has to be block diagonal in between the
four-dimensional space-time and the internal six-dimensional manifold. We consider as
well a separation of the corresponding coordinate dependence; in particular there is no
warp factor. B has the same structure, but is in addition purely internal. This structure
certainly goes through the field redefinition and the T-duality: ¢’ and &’ have the same
block structure and coordinate dependence. Finally, our ansatz sets ¢ = constant. Is
that also the case of ¢’? Let us recall that the dilaton goes through the following chain

of equalities
e 26

9] =e*Vlgl =" V]g| . (4.45)

Having ¢’ constant would put a severe constraint on the possibility of getting g, 3, ¢
as the type of vacua we are interested in. Indeed, one can show that a constant ¢’ only
leads to a trivial solution of Lngns, namely a flat space-time and manifold (vanishing Ricci
tensor), and a vanishing H-flux. The corresponding background in terms of g, S, b is
then most likely trivial as well: consider for instance constant ¢’, b, ¢’ or even a pure
gauge b, that do not give much freedom to get interesting g, 3, ¢. So ¢’ should better be
non-constant. Is that compatible with ¢ being constant? This requires the ratio

Vgl
NE (4.46)

to be non-constant. Note that g and ¢’ being part of geometric backgrounds, they are

globally well-defined. For ¢ being constant, we deduce that ¢’ is also globally well-defined.?4

24We also note that g is part of a non-geometric background. Because of the equalities (4.45), if |g|
is ill-defined, then so is ¢. A good supergravity limit is then lost in the non-geometric background, but
[B-supergravity can restore it, as argued in [1]. In addition, an ill-defined ¢ is likely to be non-constant, so
the compactification ansatz cannot be used for this set of fields. Then, g, b, ¢ does not allow to conclude
on the (non-)existence of solutions of £z, on the contrary here to ¢’, b', ¢'.
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Getting it non-constant looks then like a difficult constraint.?®

The ratio (4.46) can in principle be computed in terms of one or the other set of fields,
since we know how the fields are related in table 2. A difficulty however comes from the fact
that the field redefinition involves the whole fields while the T-duality only acts on certain
blocks. That makes a generic computation not possible, as the inverse and the determinant
of a matrix divided in blocks cannot generically be expressed in terms of those blocks. So
we consider the following subcase (and basis)

§=<§N~ >76=<’8N ) (4.47)
gp—-N Bp-N

where these fields do not have off-diagonal components. One then computes g, b and ¢/, V.
Using some freedom of sign in the field redefinition [3], ¢’ can be simplified to

g = in'
(Gpn + Bo—N)"'Gptn(Gp N — Bo—n)

This result can easily be understood. The field redefinition is similar to a T-duality in

(4.48)

all directions, although the indices are placed differently; this last point is an important
distinction between the two, in particular for the large volume limit [1]. This similarity
still explains why the block along the N directions is barely changed by the combination
of the field redefinition and the T-duality, while the other block only goes through the field
redefinition. Interestingly, Sy does not contribute. From this result, we deduce

VI3l

N = |gn| X [Ip-N + gp-NBD-N] - (4.49)
g

Although not impossible, having this quantity non-constant is rather unlikely, at least in
usual set-ups where we look for solutions. First, Sp_y is likely to be constant, as it does
not transform under gluing. Secondly, the metric gp_n is usually constant (for instance,
that of a base circle). This makes the second factor constant. The metric gy can certainly
be non-constant: for twisted tori, it goes through a non-trivial gluing. Its determinant is
however usually constant, giving for instance a constant internal volume.?® This implies
that the above ratio is constant.

We conclude that, even though we made some assumptions such as (4.47), it looks
unlikely to get a non-constant ¢’. As explained above, purely NSNS solutions of (-
supergravity that are geometric, non-trivial, and satisfy the compactification ansatz, are
thus out of reach, at least in the usual set-ups. This holds despite the apparent possibil-
ity offered by the equations of motion of ﬁg. It would be interesting to reach the same
conclusion using only those equations.

250ne could also deviate from the compactification ansatz by considering warp factors and a non-constant
dilaton: compact NSNS solutions with these features exist, such as wrapped NS-branes, or non-Kéhler
backgrounds of heterotic string. The supergravity limit of those is nevertheless more delicate.

260ne may wonder whether a constant internal volume can be thought of as unimodularity, f®.» = 0,
related to the compactness of the internal manifold. One has 9y, In |e| = —€%,0m€" 4, which is f%4, up to a
term in 9p€P. In our context, the only non-trivial 9, are those along the D — N directions. However, the
inverse vielbein €, along those is most likely constant, as is gp—n. So 8m|e\ = 0 (constant volume) and
f%ab = 0 would be equivalent.

— 46 —



5 Outlook

The main results of this paper have been summarized in the Introduction; let us now
make a few comments beyond the scope of this work. A first set of backgrounds that
has been studied here are the NS-branes. We gave a detailed account on the NS5-brane,
the KK-monopole and the @-brane in section 3.2. This description has been done at the
level of supergravity. It would be interesting to go beyond and study them as stringy (or
M-theory) objects. As the S-dual of the Ds-brane, many properties of the NS5-brane are
already known. In particular, D;-branes should end on it. We actually expect this to hold
as well for the other NS-branes, because they are related in the same manner as the D,-
branes are: via smearing and T-duality. This could give a hint on the world-volume action
of these NS-branes. The case of the NS5-brane is certainly studied (see e.g. [95, 96] and
references therein), but more could be learnt for the Q-brane. Proposals have been made
in [87] for the latter. A mismatch with our results is however discussed in appendix D.2.
From the world-volume action, one could deduce source contributions to the equations of
motion and the BI. The work done here within S-supergravity should help on this point,
since we obtained such contributions not only in the BI but also in the dilaton equation
of motion (D.4) and the Einstein equation (D.15)—(D.18). Interestingly, there was no such
modification for the 8 equation of motion: this is usually expected, as long as the Bl gets a
source term. Finally, let us recall that the ()-brane is a codimension 2 object, and is in that
respect similar to the Dr-brane. The latter is known to have a non-perturbative description
within F-theory, and one may wonder if such a construction could as well be considered for
the @-brane [31]. The cut-off needed for its warp factor, mentioned in section 3.2.2, could
be better understood in such a context.

We also discussed in section 3.2.2 the possibility of an R-brane. Although the name
was already used in [32], the object proposed here is different. It would be a codimension 1
NS-brane, which is equivalent to having its warp factor given by an absolute value (3.76).
The BI (1.9) is a natural candidate to be corrected by such a brane, which would then
source the R-flux. Constructing this object by performing a standard T-duality is how-
ever problematic: the lack of isometry would force us to smear the ()-brane fields in an
unusual way. But the derivation of this warp factor and the BI (1.9) still suggest the
possibility for such a brane. On a similar tone, the last BI (1.10) might be related to the
existence of a codimension 0 NS-brane. But smearing the R-brane warp factor fr, as we
did for the other branes, does not bring any valuable information on the warp factor of
this hypothetical object.

In the absence of branes, our study of BI has put forward the Spin(D, D) xR™ covariant
derivative and its Dirac operator D. We showed that the nilpotency of the latter gives back
the NSNS BI. So this object is an important tool to characterise vacua; understanding its
cohomology should for instance be helpful. The formalism of Generalized Geometry or
DFT would certainly help to study this operator. The specific Generalized Geometry with
Spin(D, D) x RT structure group worked-out in [97] could also be related. In addition, this
object D should appear and characterise supersymmetric vacua, in the context of SU(3) x
SU(3) structures. In the future work [98], we expect to obtain it in S-supergravity Killing
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spinor equations, similarly to [65], and consequently in the superpotential (a discussion and
references on the latter can be found in [3]). The D given in (1.16) should then provide
a characterisation of internal manifolds analogous to the standard twisted Generalized
Calabi-Yau [99, 100]. Its cohomology could thus again play a role, this time in dimensional
reductions on those manifolds, or maybe on the generalized parallelizable spaces of [101].

In the last part of the paper, we studied the symmetries of standard and S-supergravity,
and how those could be used to construct geometric backgrounds. In the presence of
isometries, the symmetries were shown to be enhanced by the T-duality group. One of
its elements, the g-transforms, turned out to be a manifest symmetry of S-supergravity,
and played an important role in our analysis. Using those as gluing transformations would
always lead to geometric backgrounds of S-supergravity. The restriction of having isome-
tries and the use of S-transforms could then help in constructing the generalized cotangent
bundle Ep+, introduced in [1, 27]. This counterpart of the generalized tangent bundle Ep
was argued in [1] to be the correct Generalized Geometry bundle for the generalized frames
built with £(3) (2.2). It would be interesting to have one concrete construction of Ep«.
This point could be related to the behaviour of the Courant bracket under S-transforms,
provided the isometries: this could be worth being studied as well.

Our analysis lead us to determine a class of geometric backgrounds of g-supergravity,
while clarifying some related notions. These vacua were however shown to be on a geometric
T-duality orbit, preventing them from leading to new physics. Similar results were obtained
in [102] when considering reductions from DFT to some supergravities in seven dimensions
or higher. Although we rather have in mind here physics of four-dimensional supergravities,
these results might be related. We proposed in section 4.3 various possibilities to circumvent
this result, at the level of ten-dimensional supergravity. It was suggested in [102] that
truly new vacua and new physics would rather be accessible beyond that level, and similar
proposals have been made in [54, 58, 103, 104]. The extension of our formalism to the
Ramond-Ramond sector or to include the gauge fluxes of heterotic string, as discussed in [1],
would in any case bring a more complete picture of the properties of these backgrounds
with non-geometric fluxes.

Even if we do not get new physics from [-supergravity, as in the case studied here,
this reformulation of standard supergravity may offer a better description of some back-
grounds. It is for instance the case of the Q)-brane, that is T-dual to the smeared NS5-
brane: its brane picture is much clearer in terms of S-supergravity fields, and the BI are
then nicely formulated with non-geometric fluxes. We expect to find other examples of
(non-compact) backgrounds better described by [-supergravity in the AdS/CFEFT context,
where p-transforms already play a role.
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A Conventions

We give in this appendix various conventions used throughout the paper. The space-time is
D-dimensional. The flat (tangent space) indices are a ...l and the curved ones are m. .. z.
|g| denotes the absolute value of the determinant of the metric g, and R(g) denotes its
Ricci scalar, for a Levi-Civita connection. The squares introduced are defined as

(09)? = g"" O Ond,

1 1 -
H? = aHmanqugmqgm"gps’ R2 = aRmnqursgmqgnrgp57 (Al)
(09)* = §""0nd 9o, (B 0p® — T™)? = Grun (87 0pp — T (B0 — T") -

Going to flat indices, we use the vielbein €%, and its inverse é";, associated to the
metric gmn, = é“mébnnab, with 7, the components of the flat metric np. Tensors with
flat indices are obtained after multiplication by the appropriate (inverse) vielbein(s), e.g.
pb = ga,.eb, 8™ and we also denote 9, = €"40m. The structure constant or geometric
flux f%,. is defined from the vielbeins as

e = Qéama[bémc] = —2ém[06b]é“m, 201,05 = fCapOe - (A.2)
The spin connection coefficient, given for Levi-Civita connection by (2.15), satisfies
ndcwl()lc = _nacwl()ic7 fabc = QWEZC] ) faab = ng . (A3)

A p-form A is given by

1 1
A = ]?Amy..mpdxml VANPIRAN dxmp = ];Aal...apéal ARERNA éap : <A4)

We deduce for a p-form A and a ¢-form B the coefficient

(p+q)!
(A A B)Hl---ﬂzﬂrq = WA[NL“/LPBH%HWN;D-&-!;] : <A5)

The contraction of a vector V.= V™9,, = V%9, on A is defined by

VVA= V™ Ay dz™ A A dz™ (A.6)

(p—1)!

It is also denoted by ¢, = €™y, that satisfies the following commutation relations
VVA=V%A, {e%w}=9¢6, {tewr=0, (A.7)

and a contraction on scalar vanishes. In the case of multiple contractions, such as Q. tqtp,
one should be careful with their order, that may generate signs when acting on a form.
Finally, we introduce the totally antisymmetric quantity €, given by €, ..m, = +1/—1 for
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(m1 ...my) being an even/odd permutation of (1...n), and 0 otherwise. The one with flat
indices €4, .. 4, has the same value, i.e. € is not a tensor. This can be seen by preserving the
volume form. We also consider (constant) matrices %, satisfying the Clifford algebra

(v 7"y =20, %" = 29 with yt ezt = ylayz el (A-8)

and further useful properties listed in the appendix of [1].

B Derivation of the equations of motion in flat indices

In this appendix, we give details on the rewriting of the equations of motion (2.21), (2.22)
and (2.23) in flat indices, following section 2.2. This is achieved with two methods: first
a direct approach, and secondly using the Generalized Geometry formalism. As a side
remark, let us mention that it would be interesting to apply a Palatini formalism to the
[B-supergravity objects to rederive these equations. They should also be obtainable from
the DFT ones of [33].

B.1 Direct approach

As explained in section 2.2, the 8 equation of motion requires more work than the other
two; we only focus on this one here. We start by multiplying the equation in curved
indices (2.23) by the appropriate vielbeins to get it in flat indices. We then separate the
terms in ¢ and T from the others, as they may vanish upon standard assumptions when
looking for solutions [1]. We obtain

1 . 1
- inabncdnefvaRbdf + 277f[eRc}d5fd + §ncdnef77abvavb6fd -V, (nf[evc]ﬁfa> (B'l)

= NapNedes R*Y (ﬁag Dy — Ta) + 0 Neanter VB 9
+ 4/8ab77a[cve} 817& + 277a[cve]/8ab 81,(;3 :

We now focus on the Lh.s. of (B.1). A key ingredient is V3: it can be written in terms of
fluxes as

VB = QI + M My, + 20 BT9 £ (B-2)

Using this expression and the definitions of the fluxes, a tedious computation gives a lengthy
expression for V,V,3/%. From the latter, we get two terms of (B.1). We first deduce an
expression for V,V.3/%, and obtain further

nfevavcﬁfa = nfeaanfa + nfeﬁh[faafa}ch (B'3)
1 . ) 1 . )
+ 577fe77ha5fg (ngiaafzhc + nciaaflhg) + §Bga (ngiaafzec + nciaafleg)
1 1
+ nfefaathfh + 577feffchQaah + infeffathha

1 . . 1 . .
+ iQaag (ncifzge + ngifzce) + chga (naifzeg + ngiflea)
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1 1
+ 505 <2f“hcffagﬁgh + fngf a4 [ anfeqB + fahcf%gﬁgf)

1 1 . . 1 ) )
+ 577[0 <2flkafkejﬂa] + flegfgajﬁaj> + ingiflecfgajﬂa]

+ %fgac (nijfieg/@aj + Mg feiBY + ngjfaekﬁjk)
+%nﬁf%afﬂﬁjQ@J2h+nmfﬁm)+inﬁﬂmjﬁwwm“ﬂw
+ inlcflkafiegnijngkﬁaj + ifihcflaenglnijnhaﬂgj
+ %nlcnfe <flhgfaajngj/8hf + ;ffhgflakngkﬁha>

1 ) )
+ Z77[077fe77ijnahngkflakflhgﬁf] :

Secondly, we contract V,V,5/% with a metric to get

1V B7 = 00, QuT + 0B B f Ny + 0BT (500 fir + 0ufhg)  (BA)
+ Qo %k 4+ 2Qu 1 (0 g vt + f )
4 1B W g+ g (0509 4 ain 50
+ fak <?79k5h[ffd]gh + "B (0 g + fkhj)>
+ 0 g f9 o f ™ BT+ g B9 fpp e f 11,
+ %nabnhgnijfihbﬁj[dff] ag
+ iy flkpai <;77abfakgfbhj + njlf“hgflak>
+ %n“bnhdnf *Nginii B79 f kaf o -

We finally sum the two terms of (B.1) just obtained, together with a third one involving
Rcq that we get using (2.20). Many simplifications occur to eventually give

201 RaaB + %ncdnefnabvavbﬁfd —Vq (Uf[evc]ﬁfa) (B.5)
= e Qe+ (@)
+28M 00 f uieners — B"“Ouf? nicnels + %ngiﬁgaaafice — 287410 f*ad
+ Qa f ypeneyy + %ffhaQ[chane}f + £ an Qi ey + Qa™ L ieney s
+ %Qaagfiecngi + %nefncdnnggfdfaak + 1™ Q0™ e
280 [k i B g Y agemeyy + 5% e P
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We now rewrite this expression in a more convenient manner. To do so, one can first show
the following identity using (1.7)

2/Bhf8afah[cne]f - Qﬁfdnf[eac]faad + Q/ijfaakfkj[cne]f = 2Bdfadfaa[cne]f . (B6)
Secondly, thanks to definitions, including the one of 7% given in (2.20), one can derive
_277f[evc]Tf = 277f[eac]Qaaf - /Bhinf[eac]ffhi (B7)

. . . 1 ..
- nf[ch]hszhi + nngaagfdec + QBthfhiij[cne]f - Qﬁhlfghifdecngd .

Thirdly, one can show that

- Bhaaaffhc = 6haaaffhc - 3Bh(la[m}”chc] + /Bhaacffah ) (B'S)
where the r.h.s. can be further rewritten with (1.7). Then, using
B"0uf he = =28 0uf e — 0 f" e (B.9)

together with (1.8) on the r.h.s. of (B.9), one gets an expression for 3729, f/}.. The latter
should be inserted in the r.h.s. of (B.8). The resulting expression, antisymmetrized with
Nef, can be rewritten using (B.7) into

—B"0uf hene s = = 2051V g T + 8100 aeners — 0s1e0gQa"l — 0.Q ey (B.10)
B IanF gemag + 5B s e
— [agQ e — Qa™ (ffg[cﬁe]f + fdecﬁgd) -
Using (B.6) and (B.10), we rewrite (B.5) as follows
2051 R’ + %name Va8 = Vo (17,9987 (B.11)
= =27 VT’ + %ngiﬁgaaafice + BY 0y f apenerf — 1510 Qa™
b e nean™ 0@+ Qu f g+ 5 Qg — Qa0 eony

1 .
+ inefncdnnggfdfaak + nginaandngb[enc]d .

From this (B.11), we finally rewrite the 5 equation of motion from (B.1) to

1 - 1
- inabncdnefvaRbdf + Qagffag[cne]f + §ffhaQ[chane]f (B12)

1 : 1 )
= 5Qa" frectigi + §nef77cd779ngfdfaak + 1gin"" Qa™ fly(eMea

1 .
=21V T! - 3918 Oaf'ce — BYOGf* aeery + Mp1e0g Qa™
1 ~ -
- inefncdnabaaQbfd + nabncdnebedf (Bagagqs - Ta) =+ nabncdnefvbﬁfd 8a¢
+ 46ab77a[cve] 8(,(5 + 2na[cve} 6ab ab(g )

as given in (2.24).
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B.2 Using the generalized geometry formalism

We explain in section 2.2 the main procedure to derive the equations of motion in flat
indices from the Generalized Geometry formalism. Here, we give some details on the
computation of the generalized Ricci tensor (2.37). We start from its expression (2.38).
We observe that all derivatives acting on the spinor e should vanish, since the generalized
Ricci tensor only acts on the spinor via a multiplication by a «-matrix. One can therefore
verify that

(P)/aaaab - Va%aaﬁg?aé - Va%Bg?aaaé + ’Yaﬁ)/ghY-Eghaa (B'l?’)

+ 7 NaaB%0c0y — Y NadTTog B 087D — 7 Nadllog 8% 0c 57 DeDe + 7" 7" Vi N B O
+ Xach(wdai - Xacd'YQCdTbgﬁg?&e + 'VaXaaE - 'YGXanTJgﬁ‘(Te&e

— w0z + 1w Teg B0z + Y Naaw@t Oz — Y Nadw Qs Teg S0z

1 | o
- §v“nadnbedf O + §'Ya77ad77bedf “Tog B9z

— 7“8;8(1 — ")/a77adagﬁdcac - ’Yanad/BdCagac - VGCanCdaE - fYaX‘lag
g 5700 + 3 a7 03D + 7 aalig 57 B0
+ ’yaCanCd%ﬁg?&e + 7 a%ﬁg?aé - 'VQh'VaYEghaa - VghVanghnadﬁdC@c) e"=0.

We are then left with y-matrices acting on e*. Using several identities on ~-matrices listed
in the appendix of [1], we obtain

1

5 Ryt = <(,yagh + 277‘1[9,}/h])8a}/59h + (v 4 2219~ Bdcacyggh (B.14)
+ 1%, 4 XacaYp, + 1% 7" Xa Yy,

79 4+ 2 M)W Vo + (79 + 200 ) naaw @ Vg,

—(
1 P
— 5"+ 219" ) 1o R Vg,

- "YaCda;Xacd - 7a65Xa + VaCd%ﬁg?agXacd + ’Yanbg/@geaEXa> €+

Similarly to the calculation of the scalar S in [1], we should then distinguish the different
orders in ~y-matrices. Here, we only consider the lowest order in v*, and assume that all
higher orders vanish: this would be analogous to the computation of S, where the BI (3.1)—
(3.4) played an important role; we expect the same here. In addition, the lowest order will
be enough to obtain the equations of motion. Then at first order in ¢, %R 3" gives

1 1 R | R 1 . i
<2Rba — inae%,}zge + gnae%mf@RchRdfe — Zﬁae%€2¢vd(e 2¢Rgde) (B15)

+ nga& — naenTgvg(Vqu) — naenTgnge
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1_ . 1 - 1 — 1
+ angaangd + Znaenbgadeegndf + ZnaenbgadQ?edngf - 5"7(1683@61[18

1 - 1
- 777(1@5 9¢ cfebg - */Bgcacfeabnge - Zﬁgcacfeagnbe + §nbgﬁgcaéfdda

+ %UTgf dcQa%° + %naef de@Qp + i%naeﬁChf 40cQn?

- inaeQddcf e — idechc Pe — i%h@ddcf 5

b 7@ + o Qa4 ST 0

a1 Q4 e 52+ S 5, Qi

+ %Uae%ﬁTff gchfeC + énaenchﬁf ha Q5 + énaef EgcQﬁec
;naef Q5™ naeﬁbgﬁ " FeeaQnI — énae%nﬁf “2a Q7
— e foar Q" fm,gf QT — T e Qi
;ncef Q7™ — *?717977 "o FCadQn7° — gﬁTngaderd

— 14eV5(VED) — 00 V5T + g VIV 4
T 1
— §naenbgnfcRgf T + Znaenbgndf‘32¢vd(e 20 ot 8)) v

By considering aligned vielbeins, the previous expression reduces to
1 1 < 1 , 1 - -
<2Rba - inaenbgRge + gnaenbgnifncdegCRdfe - Znaenbg€2¢vd(e 2¢Rgde) (B16)

+ vaaé - naenbgvg(ve&) - Uaeﬁbgnge
1 1 1

+ 5940 ¥ eyg + Znaenbgndf 04Q s — 577a65dede
7Bgca f abnge+ ﬁgcacf (a"b)e + nbgﬁg acf da

+*f Qgc +1 ch eg - dc pe _1 dc rh
9 dc'<(a” Tb)g 477bg77ae77 f dcQr™ + QQd / c(alb)e 4770th T ab

1
57ela fhb]cCQheC

1 1 4
+ ngch[adcnb}g + 5776[@fhb]dC?iecnchndz + 2

- naevb(?e&) - naevbTe + nbgvgvaé
1 1 o _od
- inaenbgnfcRgfeTc + Znaenbgndfe2¢vd(e 2¢Rgfe)> ’7(1 .

We can further simplify the above using the following identities. First, one can show

3§ _ . § 1 By
ng(avgvb)¢ - ng(avb) (Vg¢) =0, *ne[anb]gvg(ve(ﬁ) = §ne[anb]gRgedvd¢’ (B17)

where the second one cancels the term coming from —%naenbge&z’vd(e_%;]%gde). In addition,
three terms antisymmetric in (a,b) at second order in 3 vanish thanks to the following
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identity using (1.8) and (1.9)"

1 - - 1
- §ne[anb}gRge - ne[anb]gnge - Znaenbgvngde =0, (B18)
and the seven terms symmetric in (a, b) at linear order in 8 cancel using (1.7) and (1.8)
1 1 1 1
EadQ(ang]b)g - ine(aab)Qdde + iﬁgcaCfeg(anb)e + §Bgcacfdd(a77b)g (Blg)

1 1
— Ne(a V)T + ifdch(agcnb)g + iQddcfec(anb)e =0.

Using all those, we are finally left with the following expression for %Raw“ at first order

in y-matrices, that we give also in (2.39)

1 1 S ge 1 igc e
<2Rba - ine(anb)gRg + gnaenbgnifncdR g Rdf (B2O)

+ vbva(g - ne(anb)gvg(veé) B n@(anb)gnge

1 1 1 1
+ inaenbgndfadeeg - §ne[aab]Qdd6 - Zﬁgcacfeabnge + §Bgcacfdd[a77b]g

1 1
+ lnbg"]aen(:hfddc@heg - chthdcfhab
1 1 |
+ ngch[adcnb]g + 57753[(1fhb]dC?ieCnchndz + §ne[afhb}thec

- ne[avb] (ved;) - ne[avb} TC+ ng[bvgva](g)

1 1 A
—~ inaenbgnfcRgf °TC 4 inaenbgndfe%vd(e 20 pof e))’y“

B.3 Relation to the subcase with simplifying assumption

A simplifying assumption was considered in [3], given by the conditions f™"d,- = 0,
where the dot stands for any field, and 0,8™ = 0. This provided a simple Lagrangian,
corresponding to a subcase of B-supergravity: one can reduce £~5 to the former upon the
assumption. Let us study here the simplification of the equations of motion. First, the
assumption leads to R%¢ = 0 and 7@ = 0. In addition, the Q-flux gets reduced as in (3.91),
implying that Q,* = 0 and Q."*f?,, = 0. The dilaton equation of motion (2.21) and the
Einstein equation (2.22), rewritten in flat indices, boil down to

L (R@) +R(@) — (09)° + V2 =0, (B.21)

Rap — nc(anb)d']éCd + 2vangZ; =0, (B22)
where R and R can be further simplified using (2.19) and (D.8). The § equation of
motion in flat indices (2.24) becomes

1 .
Qagffag[cne]f + §n6fncdnnggfdfaak + nginaandgflb[enc}d (B23)

1 ~ ~
= _inefncdnabaaQbfd + nabncdnefvbﬁfd 0a® + 2ﬂab77a[cve] O,

2"One also has the identity 2R = -~V R [23], related to (1.9).
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where the last term does not vanish due to the connection terms. Using for the penultimate
term (B.2) and for the last term the different definitions, one can show that all explicit
dependence on (8 vanishes with the assumption, leaving the 8 equation of motion as

Tlefncdnnggfdfaak + 27]gi77aandgfib[e77c}d + €2¢776f770d77abaa (eizd)@bfd) (B‘24)
+ 2Qagffag[cne}f =0.

The last term can be simplified further by the assumption towards 2Q 9% e mn 0 €™ g-
It is interesting to compare this equation (B.24) to the one obtained in [3]:

O (€211 57 GpgiirsOnB?) =0 . (B.25)

This comparison was initiated in curved indices in [3]. Here, we turn (B.25) into flat indices
and get, using the assumption,

NesNeat” Qg f2ar + 20gin™ Qa™ flriena + € e fnean da(e Q! %) (B.26)
+ 2Qagf77gd77ab édmnf[eac]émb =0.

We see that (B.24) and (B.26) do not match: they differ by their second rows, i.e. their
last term. This fact can be understood as follows: applying the simplifying assumption to
the Lagrangian and deriving the 8 equation of motion do not commute. This can be seen
for instance on a Lagrangian term like 5"0,,GP90,Gmp, that would contribute to (B.24)
but not to (B.26). This problem does not affect the other equations of motion (one can
verify directly the matching) because the assumption does not involve the other fields.
So to conclude, the correct 8 equation of motion for field configurations satisfying the
simplifying assumption of [3] is (B.24) and not (B.25). Note though that for the toroidal
example and the @Q-brane, the two differing terms vanish.

C On sourceless NSNS Bianchi identities

C.1 Relations to other Bianchi identities in the literature

Our Bianchi identities (BI) (3.1)—(3.4) provide a generalization to non-constant fluxes of
the BI (3.6)—(3.10), for H = 0. As mentioned in the Introduction and in section 3.1.1,
such generalizations have already been proposed in two other approaches. We show in
this appendix that the BI obtained there can be reduced and matched with the simpler
expressions given by our (3.1)—(3.4).

In [34] are introduced some straight and some curly fluxes. They are identical once
one sets the H-flux to vanish, and then match the definition of our fluxes, up to a minus
sign on the R-flux. Four BI are derived there, as described in section 3.1.1, and are given
in our conventions by

0= 0uf %y — faufbp (C.1)
0= BY9,f¢ur +200Q % — Qo™ [Tar +4Qu 1 5, (C.2)

+ 8% (25[af 19 = 3 nio haf]) ;
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0= — 0B +28M0,Q,"" +3Q, Q4" — 3R 1,4 (C3)
5 (2800 M0t = 0uQu™ + Qe fFaa = 4Qu T )
0= Bg[aagRbc}d + 2Rg[danbc] + Bed (_/Bf[aanebc] o f[afeRbc]f + Qf[aerc}f) ) (04)

The set of conditions (C.1)—(C.4) turns out to match our (3.1)—(3.4). This can be verified
using the identities

28[afdf]9 = 38[afdfg] - 8gfdaf ) (C.5)
28%99,Q,"" = 35199,Q,"" — BH0,Qu" , (C.6)
389109, P = 4909, RV 4 p9dg, Rabe (C.7)

To start with, (C.1) matches (3.1). Using the latter and (C.5), one shows that (C.2)
matches (3.2). Then, using the latter and (C.6), one shows that (C.3) matches (3.3).
Eventually, using the latter and (C.7), one verifies that (C.4) matches (3.4).

At the level of Double Field Theory (DFT) were obtained in [33] some generalized BI.
One of them, given by a quantity denoted Z4pcp, was further decomposed into its various
O(D, D) components to get a set of DFT conditions. If we set again H = 0 and use the
strong constraint ™ = 0, we can show that these conditions match precisely (3.1)—(3.4).
Indeed, the notations there then become D, = 9,, D* = Y0y, T* = f%., and the
fluxes are the same as ours, up to a minus sign on the R-flux; this allows to verify the
matching. As a confirmation, the conditions of [33] were mentioned to reproduce those
of [34], namely (C.1)—(C.4), that we have just shown to match our BI (3.1)—(3.4).

C.2 Derivation of BI from the Spin(D, D) x RT covariant derivative

In section 3.1.2, we introduced a Spin(D, D) x RT derivative and its associated Dirac
operator in (3.17). Before studying its nilpotency condition (3.31), let us first give some
details on how to compute a piece of it, namely Dy. This piece is given by

1 1
Dy = ZQABCFABC = ZQ[ABC]FAFBFC’ (C.8)
where the index p is lowered by an O(D, D) metric. To compute this antisymmetry, we use

QupcT? = QaPc nppl? = (QAbCFb + QAbCTb> . (C.9)

N =

One then gets for instance

(Qac — Qacp)TATETC = TAQ 4 0T + QU%T e + Q400 — Q44°T,), (C.10)

— 57 —



using the antisymmetry properties of the connection coefficient [1]. The six terms from
QaBc) can be grouped two by two to use the above formula, and further combinations give

8

Dy = —
27 o4

(32 A 1 & (©11)
+ 200, 8NN 1y BN +29° 8 N A L + 29 Myyta BN EN
+ 200,90, A 1 + 20,1, 1 8N 420060 1y,
+ 3Qlebd, Lc> ,

where we also set some connection coefficients to zero following [1], and the I'-matrices have
been rewritten with the Clifford map of section 3.1.2. Using the commutation properties
of forms and contractions, and the value of the connection coefficients derived in [1], one
obtains eventually the two Dy given in section 3.1.2.

We now turn to the derivation of the BI using the nilpotency condition (3.31) on the
Dirac operator D (3.17). We focus only on the S-supergravity case, and use the expressions
for the three parts D1, Do and Dj3 given in section 3.1.2. We start with Dy, that we showed
to be related to the derivative Dy of [36]. As mentioned in (3.13), the vanishing square of
this last derivative is known to reproduce the Bianchi identities for constant fluxes, together
with an additional constraint. So this piece should be a good starting point. That square,
acting on a p-form A, was computed explicitly in [36] and can be translated here as follows
(we use conventions of appendix A)

1 1
ZD%A =DjA=+ 1 F95af e NEPA A (C.12)

1

+ §fdgaf9bcé“ AEYAEEA LA
1

+ ngngadaA

FPeaQa + faQa®™ + f2uaQcc)E A 1y A

—~

+
RN RN ==
/N N

4fcgangd + fgangCd> E¥ N A LetgA

1 1
facdRcdb + 5Jc-ccdeab + chchdab) LaLbA

(fdgaRgbc + ngcQagd> €Y N tptetgA

— ZanbRngLaLbLCLdA .

Let us now add to Dy the derivative part D;
1

1 1
; (Df DDy + D2D1>A = — S0uf 0" N NA = SOuf e N NENA (C3)

1
5 (B ada = B2 gad. + Qu™ Oy — B0 4a) A

1 sa
(= %0 aa + 5(0aQu™ + B0 ) )2 A 1A
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(020" = B0, )& N & A 1ctaA

+ < 36%0.Qa" +360.Qa™ )1ty A

=N e NN

+ = ((%Rde — 3ﬁebﬁeQa0d) €Y N tptetgA

D

1
— gﬂgaagRdeaaabbcbdA .

Bringing indices in the right order and writing out antisymmetries, we obtain a set of
identities by adding the above to %D%. Among those are already present our four BI (3.1)—
(3.4). However the additional identities are independent and non-trivial; they contain in
particular derivatives acting on A. To get rid of those, the missing part D3 of the Dirac
operator is then necessary. Note that this last part contains terms that include the dilaton.
So the additional terms to the square are

1

; (Dl'Dg 4 DyDy + DoDs + D3Ds + D§)A (C.14)

1 1 ~ 1 -
= ( - nggdfdab + §fCab3c<Z5 + §aafddb — 3a3b¢> ENEPNA
1 1 ~ 1 ~ ~ -
+ <4Qdd“fgga = 5 aa (8000 = T*) = 5Qa™0a6 + 0ad(B" 00> — T°)

1 1
+ iQddaaa + Taaa + iﬁacacfdda

5T ~ 00,6+ 5 506~ )~ Q0,0 4
+ (50,0 = 00806 - T) = 1 50us " ~ 0,016
P06~ T + Qo063 ad Q™ = 37700 )&% Ao
+3 (ﬁ“ac@ddb = 280c(8*'0a0 — T")
+ %fgngabd . Rabdad(g . %Qdanggd + Qdab(ﬂdcacgg . Td)) LaLbA )
All these contributions add-up to the following identities

1 1 1 1 ~ 1 -
ia[afdb]d + nggdfdab - nggdfdab + §fcabac¢ - ia[afdb}d — OuOp9 =0
(C.15)

1 1
_58[afdbc} + ifdg[afgbc] =0
(C.16)

1 1 1

Q(ﬂacfdcaad - /Bdefggdae + Qddbab - ﬁdeaefggd) + zfgngada + ZQddafgga
1 . 1 S . 1

_§fdda(/3ab8b¢ - Ta> - §Qddaaa¢ + 8a¢(5abab¢ - Ta) + iQddaaa + Taaa

1 1 ~ 1 ~ 1 ~
+58°0cf o+ 55 [aae + B*0cOatd + 5 [75a(B*0cd — T*) = 5 Q™" 0add = 0
(C.17)
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1
- §(fbchaCd =+ fcchadb + fbdanCd)
5000 (505~ T') = L B0f a0 — 0,000
~ ~ 1 1
+fbda(ﬁdcac¢ - Td) + Qabcac¢ + ifbanggd - ifggcQabc =0
(C.18)

1 1
_5(8[an]de - /Bg[dagfe]ac) + 1(_4f[dg[an]€]g + fgacdie) =0
(C.19)

1 1 1 1
6(_3/Bdcachab + 360[(186@(11)]6[) . §(f[acde]cd + 5fccdeab + chCdeab)

1
*Bdeaefbda + §(aandb + Bbeaefdda)

1 ~
+5(87°0cQu™ — 28 0c(8"0ad — T*)
1 -1 -
5 10RO = RM0,6 — 2Q4™Qy" + Qa (8406 — Th) = 0
(C.20)
1 1
6(8(1Rb6d o 355[baeQacd]) - 5(_Rg[bcfda]g + Qag[ngbc}) -0
(C.21)
1 a C 1 ab pe
_éﬁg[ 9, R — ZQg[ bredd — ) .
(C.22)

Using in particular the expression of 7% in terms of the other fluxes, (C.17), (C.18)
and (C.20) can be simplified respectively to

1
—5Qd" 90 =0 (C.23)
3 3
_5/8d68[efbda] + iﬁdefbh[afhed] =0 (024)
1 1 1
—5B8%0cQa™ — 5B B0y P e — FQIN fag + 75%Qy™ fea = 0 . (C.25)

In addition, (C.15) simply vanishes. We are then left with seven identities,
namely (C.16), (C.23), (C.24), (C.19), (C.25), (C.21) and (C.22), that we respectively
give in (3.32)(3.38). As we show there, only five of those are independent and give our
four BI (3.1)—(3.4) together with the expected scalar condition.

D The Q-brane background and the related Bianchi identity

D.1 The Q-brane is a vacuum of (B-supergravity

The NS5-brane and the KK-monopole are known vacua of standard supergravity. We verify
explicitly in this appendix that the Q)-brane, given in sections 3.2.1 and 3.2.3, satisfies the
equations of motion of S-supergravity. We recall that this makes the Q-brane a vacuum
of standard supergravity as well. As discussed in section 2.1 and appendix B.3, for a
field configuration satisfying 3™"0,- = 0 and 0,5"" = 0, B-supergravity gets simplified
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to the theory worked out in [3]. These two conditions turn out to be verified by the Q-
brane, even at the singularity. Using this property, the Q-brane was verified in [32] to
solve the simple equations of motion of [3]. We show however in appendix B.3 that the g
equation of motion of [3] is a priori not correct. In addition, the warp factor was considered
in [32] to be harmonic, which only holds away from the singularity. Here we will get some
new information at the singularity. So we start with the full equations of motion of (-
supergravity, obtained in this paper in flat indices. Using the two above conditions, the
three equations of motion have been simplified towards (B.21), (B.22), and (B.24).

For the @-brane, given the non-zero components of the fluxes, each term of the
equation of motion (B.24) simply vanishes because of the indices contractions: it is trivially
satisfied. So let us turn to the dilaton equation of motion (B.21). One computes

R= 2 30,0+ [ R= 310 (D.1)

(05 = 11 @pF) V2= 0,0~ 5 *haf . (D2)

Note that in these expressions and the following ones, the L.h.s. is given in flat indices,
whereas the r.h.s. involves derivatives in curved indices. One way to compute V2¢ is to
use
ab _ ab cd rb
n VoV = n 0V +n f beVa - (D.3)

This leads to

L (R +R(@) — (00 + V2 =~ [ Aof | (D.4)

So away from the singularity, (B.21) is satisfied, since Ay f = 0 for p > 0. At the singularity,
we get a §, which is expected. Indeed, one should in principle add a source action to the
bulk action, and the former would contribute to the equations of motion by a § within the
energy-momentum tensor. This is what we obtain here.

Finally, we focus on the simplified Einstein equation (B.22). The only non-zero com-
ponents of the Ricci tensor in flat indices are

Ruw = Ryy = ~f2(0pf)? + 51 2AF (D.5)
Ryp =~ 80,0 + L 120 — 512070, (D.6)
Rep = [ 2(0,f)? - %f_gagf + %f_zp_lapf : (D.7)

The other curvature tensor takes the form

db

c

(D.8)

< 1
Rab — ﬁcdadegb _ Badadecb + szwacdlc _ Wanngb _ §Radcfbdc ~ _WQZan

C

where the last equality is obtained thanks to the aforementioned simplifications verified by
the @-brane. The non-zero components are

RIT _ YUY _%(Q‘pyw)Z — _%f*?’(apf)Q (D.9)

RPY = % F30,)%, RP=0. (D.10)
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In addition the dilaton terms in flat indices yield

VaVad =l [ 30,0 = 1f 0,0 (D.11)
VyVid =~ 30,0 = 100 (D.12)
VoVob = A0 30,8) = 5SRO, 20, 1) = S0, — 3SR (D)
VeVob =l f 30,5 = 10— L0 (D.14)

from which we eventually deduce

Rew = R 42V, V.6 = [ ?Af (D.15)
Ryy — RY +2V,V, 6 = % f2Af (D.16)
Rpp — R +2V,V, ¢ = —% f2Af (D.17)
Rypp — R¥? 4+ 2V, Vo = —%f—%f : (D.18)

As explained for the dilaton equation of motion (D.4), the above equations vanish away
from the singularity as (B.22), and receive at the singularity an energy-momentum tensor
contribution in the form of a #, due to the Q-brane action to be added.

D.2 The Bianchi identity with Q-brane source term

We comment here on a BI with a @)-brane source term obtained in (5.24) of [87], and
compare it to our proposal (1.12). It is given by

d (OmB™ Gnudpedz™ A du A dv) = constant voly 64 (D.19)

where the r.h.s. contains a constant times a four-dimensional volume form, and the Lh.s.
involves two specific directions u and v. This BI looks similar to the one for the H-flux, in
presence of an NS5-brane, since it is a four-form and the source is localised in four dimen-
sions by the 8@. This last point looks however unexpected, since the Q-brane is only a
codimension 2 object. One can still wonder whether, upon smearing two dimensions, (D.19)
reduces to our proposal (1.12) that contains a 6(?). The two BI are given in rather differ-
ent fashions, so to ease the comparison, let us rewrite (D.19), partially evaluated on the
@-brane solution given in section 3.2.

In this background, the metric is diagonal and S has only one non-trivial component.
Therefore we can replace u and v by generic directions: on the @-brane solution, the two
expressions have the same value up to a factor 2. Using (3.91), we then rewrite (D.19) on
this background as

xy d (Qabc ModefE” N et A éf> = constant’ 5 , (D.20)

1
& e (agQabC??bdncf — 5/ " 00 Qn  Mhaier + Qg™ f hadﬁbhncf> — constant” ), (D.21)
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the indices of € being lifted with . With the non-zero fluxes of the ()-brane solution, we get
2ePPrY (f_%apmey — Q" ([P pp + fYpy + fxpx)) — constant” 5@ . (D.22)

This expression is close to ours for S,3 in (3.94), but is still different: the signs in
front of fY,,, f* s differ. Another way to see this mismatch is through the related term
ngc FP adbnne ¢ that is generically different from the one in our BI (3.2), although it is again
only a matter of sign when evaluated on the solution. We believe that smearing would not
change this sign.

So the two proposals (D.19) and (1.12) differ, at least when evaluated on the Q-
brane solution, which would have been a minimal requirement. As consequence, we doubt
that (D.19) could reduce to the two-dimensional Poisson equation, even when smeared.
We actually believe that an explicit tensorial expression for a Bl with a ()-brane source
term is not given by a four-form, but rather involves contractions, e.g. V- 14, as indicated
by (3.39).

E Proofs about symmetries

In this appendix, we prove various statements that appeared in our study of symmetries
in section 4.1.

E.1 Proof of the equivalence (4.7)

Having isometries generated by Killing vectors translates into Killing equations on each of
our fields. Those are given in terms of the Lie derivative Ly, . For constant Killing vectors,
it boils down to the conditions

Vee {1...N},p,q,  V0nfpg =0,  V™MIpr =0, V™dp=0. (E.1)

Let us first prove the implication =. The N Killing vectors are constant and indepen-
dent. So they form a basis of an N-dimensional vector space. Using constant rotations, one
can thus bring them to a form where V™ = 6, v,y (no sum on ¢), v(,) # 0. As the rotations
are constant, they can be performed on the coordinates as well, and on the 9,,. So without
changing notation, we now consider to have such Killing vectors. The conditions (E.1)
now become

Vi€ {1 T N}7p7 q, 8Lgpq =0, 0,87 =0, aL& =0. (EQ)

As the vectors are constant and independent, N cannot be bigger than the dimension of
the space-time. Let us now consider any constant antisymmetric bivector of coefficient
wP? that is non-zero only along these N directions, i.e. Vp € {1...N}, 3¢ / wP? # 0 and
Vp ¢ {1...N}, @wP?! = 0. Thanks to the antisymmetry of P9, this means that only the
diagonal block along (1...N) x (1...N) is non-zero. Note that this requires N > 1, as
assumed. Because of this block structure, one has w?"0, = Zf\il wP*0,. This operator
applied on any of the three fields vanishes, thanks to (E.2). In addition, it also vanishes on

any of their derivatives, by commuting the derivatives. So we eventually obtain @w?"9,.- = 0.
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Let us now prove the reverse implication <. We start with a constant antisymmetric
bivector wP? non-zero along a diagonal N x N block. Up to relabeling the directions, having
this block translates into Vp € {1...N}, 3¢ / @wP!# 0 and Vp ¢ {1... N}, wP? = 0. Let
us now assume that N is even. We then consider a particular @wP? such that the block only
has one non-zero entry on each line, i.e. Vp € {1... N}, 3lpy / @wPP° # 0. Thanks to the
antisymmetry, this means that each column of the block also has only one non-zero entry.
So it is clear that {po} spans {1...N}. Let us provide an example of such a block of w
(viewed as a matrix), to show that it can exist®®

01
~10
(E.3)
0 1
~10

In addition, one has by assumption Vp, wP"0,.- = 0. The peculiar structure of the block
just considered then implies that Vp € {1...N}, wPP09,,- = 0 (without sum on py).
We then define N vectors V,, ¢+ € {1...N}, of components V" = §" v(,) (no sum on
t) with Vpy) = @PP? # 0. Given these components, the N vectors are constant and
independent. One can verify that they satisfy Ve € {1... N}, V"0, = 0. So they satisfy
the condition (E.1), and they are Killing vectors.

Let us now look at the case where N is odd. As N > 1, we deduce N > 3. We then
consider a w having a non-zero diagonal N x N block that splits into two diagonal blocks
of size (N —3) x (N —3) and 3 x 3. The first block is of even size; from that one we
can construct as above N — 3 constant and independent Killing vectors, along directions
that do not mix with the remaining 3. We will now construct a similar set of 3 vectors
along these last directions, and overall, the NV Killing vectors will then be independent. To
construct two of the three missing Killing vectors, one can consider a block of the form

010
~100], (E.4)
000

possibly with coefficients different than 1. Either by proceeding as above on the 2 x 2
non-zero sub-block, or by diagonalising this block, one can get two more constant and
independent Killing vectors. However, with this w, we cannot get a Killing vector along
the last direction; we need to consider a different tw. We only change the 3 x 3 block towards

000
001}, (E.5)
0-10

and proceed similarly. By linear combinations, we can then get one new constant Killing
vector along the last direction, which is independent from all others.

28Quch @ are only possible for an even N, that we assumed; indeed, for N being odd, the determinant of
the block would be zero (a property of antisymmetric matrices), which would prevent to get from it (alone)
N independent vectors, as we will see.
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E.2 T-duality is a symmetry for the NSNS sector

We show here the invariance of Lngns, up to a total derivative, under the T-duality trans-
formation O(N, N) given in (4.11), when the fields are independent of N coordinates. To
do so, we recall two approaches in the literature.

e Maharana-Schwarz [91] and the compactification along the isometries

We consider that the NSNS fields are independent of N coordinates, in a D-
dimensional space-time. One can then develop the Lagrangian Lnysng by separating
the components of the fields that are along these N directions and those that are not.
The latter do not transform under the O(N, N), while the former do. One can then
look at how the various terms in the Lagrangian transform. This was precisely done
in [91]: the resulting rewritten Lagrangian was shown to be O(N, N) invariant.

The corresponding action can also be viewed as the compactified one. Because of the
independence on N coordinates, the corresponding volume factor can be factorized
out (it is set to 1 in [91]), leaving the action to be D — N dimensional. It is actually
a well-known fact that the reduced action has this O(N, N) symmetry. It is however
only a matter of volume factor to make it a D-dimensional action, and it then still
has the symmetry.

e Double Field Theory
The Double Field Theory (DFT) Lagrangian can be formulated as follows [42]

1 1
LprT = 6_2d<8HMNaMHPQaNHPQ — 57‘[MN8N’HPQ3Q/HMP (E.6)
—28MdamHMN¥+4HMNaM&%@>.

The fields H and d can be defined in terms of g, b, ¢ as in section 2.1 (HM¥N
is the component of H~!). However, they depend here on 2D coordinates XM =
(Zm, z™); the latter also define the derivative djs accordingly. An interesting property
of this Lagrangian is that it reproduces the standard NSNS Lagrangian up to a total
derivative if one enforces the strong constraint, that we take here to be d=0

Lprr|5_9 = Lnsns +O(...) . (E.7)

Another property of this Lagrangian is its invariance under constant O(D, D)
transformations. Those are given by the same action as in (4.11) for a generic
O € O(D, D), together with a transformation of the coordinates and of the derivatives

X'=0"1Xx,0=00. (E.8)

Because of the contraction of indices and the invariance of d, it is straightforward to
see that these constant O(D, D) transformations are a symmetry of the Lagrangian,
i.e. Lppr is invariant under them.
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Let us now consider an independence on N standard coordinates =™, together with
the strong constraint d = 0. This implies that the only non-trivial derivatives are the
Op, where 2P is not one of the N coordinates. Similarly, the fields in LppT then only
depend on such aP. Let us now consider Oy, one of the O(N, N) transformations
discussed in (4.10) and (4.11). Because of its O(D, D) invariance, Lppr is invariant
under this O(N, N) subgroup. Let us now look at the action of such an Oy on
the derivatives and coordinates (E.8): on the a2 that are the coordinates on which
the Lagrangian depends, the action is trivial (it is the 1p_p). The same holds for
the derivatives 0,. Therefore, when the fields are independent of N coordinates =™
and the strong constraint d = 0 is enforced, the effective transformation on the
coordinates and derivatives in the Lagrangian under Oy is

X' =X, =0, (E.9)

i.e. they do not transform. The action of this O(N, N) subgroup then boils down
to that of the T-duality group: indeed, the latter does not change the coordinates
nor the derivatives, but only acts on H and d as in (4.11). As mentioned above, this
O(N, N) leaves Lppr invariant. Therefore, thanks to (E.7), we deduce that Lxgns is
invariant under the T-duality group transformations, up to a total derivative, when
fields are independent of N coordinates.
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