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Zusammenfassung

Das Flüssig-Mosaik-Modell, einst von Seymour Jonathan Singer und Garth Ni-

colson im Jahre 1972 entworfen, wird mit der Erweiterung der lateralen Selbst-

organization in Form von Mikrodomänen dem eigentlichen Zellverhalten näher

gebracht. Durch die Verankerung von Actinfilamenten durch eine Vielzahl von

Membranproteinen an die Innenseite der Plasmamembran, wurde die Membran-

organisation teilweise dem Actincortex zugeschrieben.

Um den aktiven Einfluss eines dynamischen Actincortexes auf die Membran-

organisation genauer zu studieren, wurde im Rahmen dieser Masterarbeit ein

Minimalsystem, bestehend aus Aktomyosin und einer phasenseparierten Mem-

bran (3:3:1 DOPC/PSM/Cholesterol), entwickelt. FRAP Experimente zeigten eine

langsame Bewegung des biotinylierten Lipids DSPE über die Grenzlinie der ma-

kroskopischen flüssig-geordneten und flüssig-ungeordneten Domänen. Durch die

Anlagerung der Actinfilamente an die Membran mit Hilfe von DSPE, haben wir

Grund zu der Annahme, dass das langsame Diffusionverhalten dieser Verankerun-

gen Einfluss auf das Kontraktionsverhalten und der Membranorganisation nimmt.

Wie wir mit Interner Totalreflexionsfluoreszenzmikroskopie beobachten konnten,

wurde die Kontraktion des Actinnetzwerkes durch ATP-konsumierende Myosin-

Filamente an den Phasengrenzlinien gehindert. Die gehinderte Bewegung führte

zur Domänenverformung und zur gerichteten Bewegung der Actinfilamente ent-

lang der Phasengrenzlinien. Für den Fall, dass flüssig-geordnete Domänen nahe

aneinander lagen, führte die Verformung zur Verschmelzung. Weiter konnten wir

zeigen, dass verformte Domänen zurück in ihre Ausgangsposition relaxierten so-

bald sich F-Actin von der Phasengrenzlinie entfernte.

Die Domänenverformung wurde quantitative mit di-4-ANEPPDHQ und einem

vereinfachten aktiven Kontur-Algorithmus analysiert. Während der Domänenver-

formung konnte keine Änderung der Packungsordnung mit di-4-ANEPPDHQ, je-

doch ein Flächenzuwachs der flüssig-geordneten Domänen mit dem aktiven Kontur-

Algorithmus gezeigt werden.



Diese Ergebnisse können entscheidend für das Verständnis zellulärer Prozes-

se, sowohl im Bereich der Signaltransduktion wie auch der Zellmorphogenese,

genutzt werden.
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Chapter 1

Introduction

1.1 Membranes & Actin Cortex

The self-organization of living membranes by lipid-lipid, lipid-protein and protein-

protein interactions extends the former model of the fluid-mosaic membrane model

introduced by Seymour Jonathan Singer and Garth Nicolson in the year 1972. Ac-

tive regulation of membrane associated events in temporal and spatial space is

further provided by the highly conserved protein actin. The rearrangement of

membrane bound actin filaments - the actin cortex - is known to lead to the reor-

ganization of membrane proteins, which are either directly attached or associated

as for instance small G proteins:

Several studies showed that filamentous actin (F-actin) is regulating the clus-

tering of small G proteins in the membrane by interacting with lipid rafts. This

family of signalling proteins is not only responsible for cell morphogenesis, but

also for numerous developmental and survival programs [2].

Both cell components - the actin cortex and membrane organization - overlap

frequently in appearance when it comes to signal regulation or cell morphogene-

sis. Numerous studies have been published for each of them, but only few were

concerned about their mutual importance. Within the scope of this study we were

trying to reveal the underlying connections of the actively rearranging actin cortex

1
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and the membrane organization, known as lipid rafts, in vitro.

1.1.1 Membrane Organization

Introduction to Lipid Rafts

The spatial integrity of living cells is maintained by the plasma membrane, which

separates intracellular from extracellular space. Further partitioning into subcom-

partiments, named organelles, by lipid bilayers within the cell confine and con-

centrate biochemical reactions. All those hurdles need to be controlled in order to

communicate for the bigger good of cell adaption and life in the natural environ-

ment. About one-third of all proteins encoded by the genome spend therefore part

of their lifetime at the membrane [19]. The lateral organization of the densely

packed bilayer is argued to be controlled by a physical and chemical membrane

heterogeneity in form of lipid rafts. The size (20-100 nm [10]) and lifetime of

rafts are with the order of nanometers and microseconds at the limit of what can

be resolved by standard microscopy techniques. Their functional role in vivo is

therefore one of the most controversial subjects in biological science nowadays.

Activated, clustered lipid rafts are supposed to consist primarily of three dif-

ferent lipid classes. Sterol as one of them being present in all higher organisms

and in mammals specifically in the form of cholesterol. Sphingolipid as the sec-

ond member is based on ceramide and is found mostly as sphingomyelin or gly-

cosphingolipid. The third component is suggested to be membrane-associated

proteins, which upon activation by biochemical signals may form highly ordered

networks. Rafts in their active state are thought to subcompartmentalize the bio-

logical membrane by coalescing proteins and lipids according to their preferences

for membrane order and chemical interactions [19].

Further accumulation to large lipid raft clusters is however argued to be hin-

dered by a myriad of factors one of them being the dynamic actin cortex. By

changing the diffusion behavior of lipids and proteins, the cortex prevents the

global phase separation as observed in equilibrated artificial membranes [9][6].
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Figure 1.1: Illustration of freely diffusing membrane proteins for the case of a homo-

geneous membrane in the resting state. Active rafts are obtained by clustering proteins

through activation, which may lead to conformational changes, binding to raft associated

sphingomyelins or cross-linkage. Spatial organization of proteins is provided by internal

scaffolding proteins. The accumulation of various raft proteins results in large clusters

capable of signal regulation [19].
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It has been reported that under specific circumstances membrane proteins in bio-

logical systems recruit lipids from the vicinity, “leading to the formation of greater,

stabilized rafts with lifetimes longer than several min [11]”. Those long living

raft clusters are assumed to be key players in signal propagation. By regulating

the lateral organization of membrane signaling proteins, the cell is able to either

diminish or promote signals passing the membrane in spatial and temporal space.

Figure 1.2: Artificial lipid bilayers are used frequently

for mimicking lipid rafts in biological systems. Gi-

ant unilamellar vesicles with coexisting macroscopic

liquid ordered and disordered phases form various

shapes. Lo domains were labelled with perylene

(blue) and Ld phase with rho-DPPE (red). Scale bar,

5µm. Image taken from [3].

The lateral heterogeneity in

biological membranes is how-

ever not only assumed to be in-

volved in signal regulation, but

also in shape remodeling. As

single lipids deviate from cylin-

drical shapes and aggregate, a

initially plane membrane be-

comes positively or negatively

curved. The membrane defor-

mation may induce a starting

point for budding and fission

with the help of osmotic pres-

sure or shape-inducing exter-

nal proteins as several studies

suggest [10].

Evidence for a functional

role of lipid rafts in cell mor-

phogenesis was also found

experimentally in the fission

yeast Schizosaccharomyces pombe.

Relocalisation of rafts from cell poles to the fission site during mitosis was observed

with the help of the polyene antibiotic filipin. The fluorescent probe forms specific

complexes with cholesterol which is claimed to be associated with liquid ordered

membrane domains [16].
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Introduction to Phase Separated Membranes

The phase separation of ternary lipid mixtures has been used for several years as

a minimal system of membrane organization. Even though phase separation in ar-

tificial systems is difficult to compare with the lateral organization of membranes

in living organisms, it has still validity due to its ease and straight forward ap-

proach to measure otherwise non accessible parameters. Artificial lipid mixtures

below the melting temperature and within a relative concentration range show a

demixing tendency into coexisting macroscopic lipid phases.

Figure 1.3: Schematic illustration of the three main

lipid packing orders. Lipids below the melting tem-

perature form highly ordered bilayer and undergo a

transition from gel to liquid disordered state if they

exceed Tm. The liquid ordered state is reached by flu-

idizing the gel phase through intercalating cholesterol

[13].

As several studies dealt

with the theoretical founda-

tion of phase separation in

lipid mixtures, it is now known

that the jump and transition

(Lo → Ld and vice versa) prob-

ability of single lipid molecules

under thermodynamic pres-

sure result in the global sep-

aration of lipid molecules at

specific temperature and pres-

sure levels [6]. Physical differ-

ences, e.g. melting tempera-

ture, acyl chain saturation de-

gree and chain length of lipid species in the system describe parameters for the

tendency of phase separation.

These phases are categorized under three main packing states: liquid ordered

(Lo), liquid disordered (Ld) and solid ordered (So or gel) phase. Lipids undergo

a transition from solid ordered to disordered packing states as the characteristic

melting temperature is passed. The gel phase is described by a highly ordered

lipid phase where acyl chains form elongated and compact structures resulting

in a thicker membrane compared to liquid lipids. The intermediate state of both

is described by the term liquid ordered and may be formed by the presence of
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intercalating cholesterol [13].

1.1.2 Actincortex in Cells

Bound to the inner side of the plasma membrane by a variety of membrane pro-

teins, the thin actin network maintains the physical integrity of eukaryotic cells.

The cortex as mechanical scaffold consists of actin filaments, myosin motors and

actin-binding proteins. Rearranging the complex cortical actin mesh during dy-

namic cell processes in the time range of seconds is achieved by constant poly-

merization and depolymerization. Monomeric actin (G-Actin) becomes for these

purposes filamentous forming a isotropic superstructure with mesh sizes from 20

to 250 nm beneath the plasma membrane. Most of the proteins orchestrating

the steady-state properties of the actin cortex still operate in the shadow. The only

class extensively studied is the actin-binding protein group - the filamins. Genomic

deletion leads to the loss of shape control and organization of membrane domains

[21].

The mechanical properties of the cortex are similar to a elastic solid on a macro-

scopic level. On a molecular level, actin filaments can be described as semi flexible

polymers (persistence length1 of 10-15 µm) which break under a certain amount

of compressive stress as recently published [23]. The dynamic structure of cells,

which is needed for cell adaption, locomotion or growth, is maintained by con-

tinuos turnover of actin cortex components. The limiting bottleneck of cortex

remodeling pose the turnover rate of crosslinks as observed with the overexpres-

sion of the crosslinking protein α-actinin [17].

The importance of the ATP-dependent motor protein myosin for actin, one of

its most numerous cited partner in scientific publications beside the terms “ani-

mals”, “muscles” and “proteins” [1], is indisputable. Single myosin proteins wan-

1

〈t̂(s) · t̂(0)〉 = e−s/P (1.1)

t̂ = unit tangent vector to chain at position s, P = persistence length
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der along actin filaments by tilting and wobbling its two actin-binding heads. The

hydrolization of ATP initiates rebinding to actin after stroking, beginning the next

biochemical reaction cycle [4]. The unidirectional motion as caused by polar actin

filaments is used for cargo transportation between the inner cell space and the

plasma membrane as it happens during e.g. exocytosis. Due to the intrinsic heli-

cal structure of F-actin, the step size of myosin heads, which differs significantly

among myosin family members, is argued to be important for linear movement.

Spanning the helical repeat of actin, myosin would wander straight. Otherwise,

rotational mobility has to be taken into account [24].

Figure 1.4: Myofilament with sliding filamentous

actin on single myosin heads. Myosin II is ar-

ranged in a antiparallel fashion connected by a

bare zone (crosshatched area). Fast and slow mo-

tion of actin depends on relative orientation of

myosin heads and actin polymers [18].

For the specific case of unipo-

lar and nonprocessive myosin II

proteins, it is known that tail do-

mains promote the accumulation

to a highly processive bipolar com-

plex named myofilament as seen

in figure 1.4. Multiple non-muscle

myofilaments account for the con-

tractility of the actin cortex during

shape remodeling or of the mitotic

ring during cytokinesis. The struc-

ture consists of two antiparallel lo-

comotive parts at the filament ends

connected via a bare zone [18].

While wandering along a single actin filament hydrolyzing ATP, both ends are

described by their different mobility as leading and trailing end. The relative mo-

tion of the myofilament poles bound to two parallel aligned actin filaments results

therefore in a net dragging force generated by the leading end. The contraction on

single F-actin polymers in contrast was recently introduced as a global mechanism

for actin turnover. The study argued that single myofilaments have the ability to

bend and break membrane-bound actin filaments at low ATP levels maintaining

the monomeric actin pool [23].
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1.2 Project Aims

The published work of Liu et al. [12] describe the influence of branched actin

networks on the phase separation in giant unilamellar vesicles. The formation of

localized actin networks by the Arp2/3 protein on PIP2-containing vesicles was

shown to act as switch for spatial and temporal membrane organization. The re-

versible process of phase aggregation was observed by changing the temperature

upon actin network growth. The influence of actively rearranging actin networks

by myosin motors on the organization of membranes has however not been yet

investigated. The combination of phase separated membranes and a contractile

actin cortex both reconstituted in vitro, provides a minimal system in order to

reveal the active role of dynamic actomyosin remodeling for membrane organiza-

tion.

The dragging of anchor proteins over the boundary of lipid phases by rearrang-

ing actin may excite force to the bilayer under the premise of a diffusive energetic

barrier between lipid rafts and the bulk phase. The impact factor would most

likely depend on the hopping properties of the actin-bound membrane protein be-

tween liquid ordered and disordered phases as well as on the dynamics of actin

rearrangement.



Chapter 2

Materials and Methods

2.1 Chemicals

Solutions were made with chemicals purchased from Sigma-Aldrich (St. Louis,

USA), Merck (Darmstadt, Germany) or VWR (Radnor, PA, USA) and dissolved in

water purified with a MilliQTM (Millipore, Bedford, USA) system. All solutions

were filtered with 0.22 µm MilliporeTM filter before usage.

2.2 Proteins

2.2.1 Actin Labeling and Polymerization

60 µl of Alexa Fluor R© 488 Phalloidin or Alexa Fluor R© 647 Phalloidin (Molecular

Probes) were separated into 9 clean 1.5 ml Eppendorf tubes and dried in SpeedVac

for approximately 30 min. The reddish pellet was then dissolved in 5 µl methanol

and diluted with 85 µl labeling buffer (10 mM MOPS (pH 7.0), 0.1 mM EGTA, 3

mM NaN3).

Meanwhile, a 39.6 µM actin solution (Actin/Actin-Biotin ratio of 5:1) was

prepared by mixing rabbit skeletal actin monomers (32 µl, 2 mg/ml, Molecu-

lar Probes) with biotinylated rabbit actin monomers (1.6 µl, 10 mg/ml, tebu-

bio/Cytoskeleton Inc., Denver, USA). The polymerization was intialized by adding

1 mM DTT, 1 mM ATP, 10 mM Tris-HCl (7.4), 2 mM MgCl2 and 50 mM KCl in the

9
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exact order specified to the actin mixture. The polymerization starts immediately

after salt is added. A total volume of 48 µl was obtained and incubated at room

temperature. After 1 hour of incubation time, 46 µl of labeling buffer was added

to obtain a final actin concentration of 20 µM.

In order to stabilize the actin polymers, 10 µl were incubated with 90 µl of

prepared Phalloidin solution for ∼5 hours at RT and stored at 4 ◦C.

2.2.2 Rabbit Muscle Myosin II Purification

Vertebrate smooth muscle myosin II was purified from rabbit muscle tissue accord-

ing to ref. [20].

2.2.3 Dialysis of Myofilaments for Length Determination

20 µl of 15 µM Myosin II monomers were dialyzed (MWCO 12-14 kDA D-TubeTM

Dialyzer Mini, Novagen) in ∼25 ml equilibration buffer with various KCl concen-

trations (50/75/100/150/200 mM KCl, 2 mM MgCl2, 1 mM DTT, 10 mM Tris-HCl

(pH 7.2)) for 1.5 days at 4 ◦C. The equilibration buffer was exchanged 3 times

after every ∼6 hours and stirred by magnetic stirrer during the entire process. The

myosin II solution was then diluted with corresponding equilibration buffer to 1

µM. As a final step, 5 µl of diluted myosin II was added to 500 µl equilibration

buffer (20 µl in 480 µl for 150 and 200 mM KCL due to significant volume increase

during dialysis) to transfer the probe onto the plasma-cleaned AFM cover slip.

2.3 Minimal Actin Cortex Assembly

Lipids were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). The lipid

stock solutions should be warmed to RT before usage in order to prevent water

condensation and subsequent volume increase. Mica plates were purchased from

Shree GR exports PVT. LTD. (Kolkata, India).

A final lipid amount of 1 mg with 0.02% (mol/mol) DiD or 0.1% (mol/mol)

di-4-ANEPPDHQ and either 1%, 0.1% or 0.01% (mol/mol) DSPE-PEG2000-Biotin
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was used for all lipid mixtures. The mixture used for dynamical and domain de-

formation studies consisted of a 3:3:1 ratio of DOPC (1,2-dioleoyl-sn-glycero-3-

phosphocholine), PSM (N-palmitoyl-D-erythro-sphingosylphosphorylcholine) and

cholesterol with 0.1% (mol/mol) DSPE-PEG2000-Biotin. All lipids used within this

study are found in many higher cell types and therefore strengthen the biological

applicability of its results. Sphingomyelin for example is appreciated as partner

for hydrogen bonding with the 3-OH group of cholesterol via its ester linkage. The

intermolecular bonding is argued to promote lipid raft formation [22].

The solution was mixed within a 5 ml vial. The vial was then held almost hor-

izontally and rotated during solvent evaporation under nitrogen flux in order to

maximize the lipid pellet’s surface. The vial was placed for another 15 min un-

der nitrogen flux followed by vacuum for ∼1 hour with aluminium foil covered to

prevent bleaching the fluorescent dye. The lipids were rehydrated in 200 µl SLB

buffer (150 mM KCl, 25 mM Tris-HCl (pH 7.5)) by vigorous vortexing for several

minutes. The solution of liposomes was then sonicated for approximately 30 min-

utes, divided into 10 aliquots (20 µl/aliquot) and kept at -28 ◦C.

Cover glasses (22×22 mm, #1.5, Menzel Gläser, Thermo Fisher, Braunschweig,

Germany) were intensively cleaned by sonication in Helmanex III (Hellma GmbH,

Müllheim, Germany) for >1 h followed by 70% ethanol for another hour. Cover

glasses were treated with MilliQ water and blow-dried before experiments were

conducted. In order to use the assembled lipid bilayer with TIRF, one has to fixate

freshly cleaved mica plates with immersion oil on the cover slide. A cut 1.2 ml

Eppendorf tube was then glued with UV sensitive glue on the mica. Additional

glue has to be placed from the outside at the boundary between glass and plastic

due to a high temperature gradient during bilayer assembly (different expansion

coefficients). The glue is hardened with 356 nm light for 20 min.

Meanwhile 20 µl of frozen liposomes (5 mg/ml) were diluted in 130 µl buffer

A (50 mM KCl, 2 mM MgCl2, 1 mM DTT and 10 mM Tris-HCl buffer (pH 7.5)) and

sonicated until the solution turned clear (∼30 min).
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Both the self-assembled chamber and small unilamellar vesicles (SUV) solu-

tion were placed on heater (Dri-Block R©, Bibby Scientific Ltd., Staffordshire, UK)

and slowly warmed above the demixing temperature (55 - 60 ◦C). 75 µl of SUVs

were gently added on mica after the temperature was stable at the set-point and

incubated for >45 min with 1 mM CaCl2 in order to promote vesicle fusion. The

lipid bilayer was washed with approximately 2 ml of warmed buffer A and gentle

pipetting. The chamber with heating block was then removed from heating source

and slowly cooled down to room temperature.

Figure 2.1: Illustration of assembled minimal actin

cortex on lipid bilayer without support. The biotiny-

lated actin filament is attached to the bilayer via the

adaptor protein neutravidin and the biotinylated lipid

DSPE-PEG2000-Biotin. Image adapted from ref. [9].

2 µl of unlabeled or Oregon-

Green labeled NeutrAvidin R©

(1 mg/ml, Molecular Probes)

were diluted in 200 µl buffer

A and added to the supported

lipid bilayer. The reaction

buffer was washed after 10

minutes with >2 ml buffer A to

remove unbound protein. 20

µl of 2 µM stabilized Alexa-

488-phalloidin labeled biotiny-

lated actin was then added and

again incubated for >45 min

at RT. The solution was gently

washed with 400 µl buffer A

to remove unbound actin poly-

mers.

The sample was placed on the TIRF microscope and contraction was initial-

ized with the addition of 200 µl of equilibrated myofilaments (4 µl Myosin II

monomers, 0.5 mM ATP, 50 mM KCl, 2 mM MgCl2, 1 mM DTT and 10 mM Tris-

HCl buffer (pH 7.5)) after first frames were acquired.
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2.4 Microscopy

2.4.1 Atomic Force Microscopy

Atomic force microscopy was performed using a NanoWizard R© AFM system (JPK

Instruments, Berlin, Germany). The AFM head was mounted on top of a stable

cast-iron microscope stage. Soft, rectangular silicon cantilevers (CSC38/noAl, Mi-

cromash, Tallin, Estonia) with a nominal spring constant of 0.03 N/m were used.

The cantilever sensitivity in V/m was determined before each measurement.

Clean, circular glass cover slips (d = 24 mm, #1.5, Menzel Gläser, Thermo

Fisher, Braunschweig, Germany) were hydrophilized by air plasma cleaning (

MiniFlecto R©, plasma technology, HR, Germany). The assembled AFM fluid cell

was filled with 500 µl of protein solution. Residual non-adherent filaments were

removed after 15 min by washing with equilibration buffer. AFM imaging was

performed in contact mode with a scan rate of 1 Hz. The imaging forces were kept

very low (<0.5 nN) by continuously adjusting the deflection setpoint and using

optimized feedback gains. Raw AFM images were processed by using JPK Data

Processing Software.

2.4.2 Total Internal Reflection Microscopy

TIRF microscopy was performed with components purchased from Zeiss (Axio

Observer D1 Body and TIRF Slider), Cairo-Research (OptoSplit II Beam Splitter),

Acal BFI (Laser Box) and assembled on a vibration-free optical table. A plan-

apochromat Zeiss 100x/NA 1.46 objective and immersion oil with n=1.518 (23
◦C) was used. The Andor iXon Ultra camera (Belfast, UK) with a resolution of

512x512 pixels and a pixel size of 16x16 µm was used throughout all experiments

(100 ms exposure time, 300 electron gain). Experiments were performed with

491 nm (50 mW Colbolt Calypso) and 640 nm (140 mW omikron LuxX 642-140)

diode lasers. Emission spectra was collected and splitted using a beam splitter

(AHF Analysentechnik AG, Tübingen, Germany) which reflects from 450 - 620 nm

(>= 90 %) and transmits from 645 - 900 nm (>= 90 %).
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Images were acquired with „Andor Solis for Imaging“ (Andor Solis, Belfast,

UK) every 2.5 sec in interleaved mode using custom-written LabView software

(National Instruments, Austin, TX). Laser intensity was optimized for every sample

individually.

2.4.3 Laser Scanning Microscopy

FRAP experiments were conducted with a commercial LSM 510 Zeiss confocal mi-

croscope. A water-immersion LD C-Apochromat Zeiss 40x/1.1 W Korr UV-Vis-IR

objective was used with 488 nm and 633 nm laser and 5.0% intensity. A beamsplit-

ter HFT 488/633 and NFT 635 VIS was used in order to split emission spectrum.

The emission was further filtered with LP 655 for DiD and BP 505-610 IR for

Oregon-Green NeutrAvidin. Two APD sensors with optimized settings were used

for image acquisition.

Image stacks were acquired after bleaching both dyes with 100% laser intensity

(488 nm and 633 nm simultaneously) with an interval of 2 seconds for a total

number of 25 frames. Data was processed with Zen 2009 software (Carl Zeiss,

Jena, Germany).

2.5 Data Analysis

2.5.1 Software

Fiji software was used for analyzing and processing the acquired image series.

Double color image stacks were aligned on beads (0.1 µm TetraSpeckTM micro-

spheres, Invitrogen) with Fiji’s plugin Descriptor-based series registration [7].

Matlab (The MathWorks Inc.) and Origin Pro 9.0.0G (OriginLab Corporation,

Northampton, USA) were used for data analysis.
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2.5.2 Analysis of di-4-ANEPPDHQ data

The emission spectrum of the fluorescent dye di-4-ANEPPDHQ is known to be

different in liquid ordered and disordered phases of lipid membranes. In order

to visualize possible lipid packing changes within phases during actomyosin con-

traction, image stacks acquired with TIRFM were processed with custom-written

scripts using Fiji software. The generalized polarization (GP) value was calculated

according to equation 2.1 adapted from ref. [14].

GP = I450−620nm − I645−900nm

I450−620nm + I645−900nm

(2.1)

Actomyosin activity was imaged by TIRFM in interleaved mode exciting 647-

Phalloidin labeled F-actin with 640 nm and di-4-ANEPPDHQ with 488 nm. Signals

were collected at 450-620 nm and 645-900 nm for di-4-ANEPPDHQ and at 645-

900 nm for 647-Phalloidin labeled F-actin.

2.5.3 FRAP Analysis

In order to take the different physical properties within the liquid ordered and

liquid disordered phases into account, we bleached areas predominantly occupied

with the respective liquid state. The quantitative interpretation of FRAP curves

is clearly limited due to the lack of an accurately defined system (domain shape,

phase population). Nonetheless, insightful qualitative conclusions can be drawn

for its dynamic behavior.

The intensity was averaged over the bleaching area and a area in the vicinity

as reference. Data was normalized with equation 2.2 with the minimum at 0%

recovery.

Inorm = Ibleach − Inonbleach

max(Ibleach − Inonbleach)−min(Ibleach − Inonbleach) (2.2)
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2.5.4 Simplified Active Contour Algorithm

The region of interest was isolated and automatically thresholded according to

Otsu’s algorithm implemented in the open-source software Fiji. The binary image

stack was then read into a custom-written MATLAB script to record the defor-

mation of liquid ordered phases. The area and boundary are obtained with the

commands regionprops and bwboundaries for every frame in the image stack.

A simplified active contour or snake algorithm was further implemented in

order to obtain the boundary displacement during actomyosin contraction. The

initial boundary was therefore used as the reference contour and interpolated with

the command spline. Contours are divided into a user-defined amount of points

(snaxel points, n=40) with the command linspace and propagated to the boundary

of the next frame along its normal vectors. The propagation was performed under

specified conditions defined by

E = 1
2(α‖dv

ds
(s)‖2 + β‖d

2v
ds2 (s)‖2). (2.3)

The first term of equation 2.3 minimizes the distance between snaxel points

during propagation and intuitively introduces a spring force between all contour

points. The second term applies a force to every point in order to maintain a

smooth curvature along the contour. Their individual weights are controlled by

the user-defined coefficients α (0.002) and β (0.1). An existing algorithm was

implemented to obtain the intrinsic snake properties [5].

The euclidean distance was calculated for every contour point and tracked from

the initial to final boundary.
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Results

3.1 Minimal Actin Cortex Assembly on Phase Sepa-

rated Membrane

A ternary lipid mixture of 3:3:1 cholesterol, 1,2-dioleoyl-sn-glycero-3-phospho-

choline (DOPC) and N-palmitoyl-D-erythro-sphingosylphosphorylcholine (PSM)

was assembled on solid support for this study in order to observe the behavior

of a contractile minimal actin cortex on a liquid ordered and liquid disordered

phase separated membrane [22].

Actin filaments are bound to the lipid membrane mimicking the complex actin

cortex attached to the inner plasma membrane of all eukaryotic cells. The in

vitro polymerization of actin is performed with a ratio of 5:1 monomeric actin

and monomeric biotinylated actin. Partially biotinylated actin filaments are at-

tached via neutravidin to biotinylated lipids incorporated into the phase separated

lipid membrane1. The density of the minimal actin cortex is directly controlled by

changing the concentration of biotinylated lipids, which subsequently reduces or

increases the actin binding sites at the membrane. In order to obtain a medium

dense actin cortex, DSPE-PEG2000-Biotin was added to the lipid mixture at a 0.1%

(mol/mol) concentration.

1The avidin-derived protein neutravidin is uniquely suited as an adaptor because of its superior

affinity for biotin (Kd = 10−15 M, 4 biotin-binding sites)

17
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Figure 3.1: b) Contraction of medium dense actin cortex on a phase separated membrane

(3:3:1 DOPC:PSM:Cholesterol, 0.1% DSPE-PEG2000-Biotin) was induced by the addition of

myofilaments and 0.5 mM ATP. Observed by TIRFM with a) Alexa-488 Phalloidin labeled

actin filaments (left) and 0.02% DiD labeled membrane (right). Scale bar, 10 µm.

Contraction of the minimal actin cortex is induced by the addition of 0.5 mM

ATP and myofilaments with a characteristic length of 500-600 nm, which equals

30 interacting myosin heads per myofilament in average [23]. The medium dense

actin cortex bound to the phase separated membrane is shown before and after in-

duction in figure 3.1. Actin filaments were evenly distributed over liquid ordered

and disordered phases whereas DiD was located exclusively in liquid disordered

phases (figure 3.1 a). Similar contraction rates in comparison with the original

actomyosin study, which used Egg PC for lipid bilayer formation [23], were ob-

tained. The contraction of filamentous actin was observed to lead to the formation

of aster-like complexes at the boundary of liquid ordered and disordered phases

within the time range of minutes (figure 3.1 b).

Theoretical studies concerned about the dynamic behavior of myofilaments on



CHAPTER 3. RESULTS 19

F-actin showed that the mean fraction of myosin heads attached to actin during

one reaction cycle (duty ratio) is inversely proportional to the concentration of

ATP, which means that the processivity of myofilaments at high ATP is less [23].

The contractile speed can therefore be regulated by the concentration of ATP as

one of a myriad of possible parameters.

3.2 Length Distribution of Equilibrated Myofilaments

In order to titrate the locomotive activity of myofilaments with ATP in a future

study, we determined the characteristic length distribution of myofilaments at dif-

ferent KCl concentrations. We used atomic force microscopy in order to character-

ize the length distribution alias myosin heads per filament.

Figure 3.2: a) Length distribution of myofilaments which were equilibrated in various

KCl concentrations and measured with atomic force microscopy. Images of myofilaments

at (b) 50 mM KCl and (c) 150 mM KCl. (∗) Filaments at 200 mM KCl were not sufficient

resolvable for length determination. Scale bar, 5 µm

As the concentration of potassium chloride increases, the median length and

distribution spread decreases in a non-linear fashion. Median length values of
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1.81±1.15 µm for 50 mM KCl, 1.14±0.47 µm for 75 mM KCl, 0.88±0.35 µm for

100 mM KCl and 0.57±0.25 µm for 150 mM KCl were obtained. Length deter-

mination at 200 mM KCl could not be conducted because the smaller and more

fragile myofilaments were either destroyed or not sufficient resolved during AFM

imaging.

It is important to note that different water influx rates across the semiper-

meable membrane during equilibration have to be taken into account for further

analysis. The osmotic pressure leads to a significant volume increase at higher salt

concentrations which effects the myosin concentration and presumably the accu-

mulation to myofilaments. Knowing the plain length distribution was however

sufficient for our purposes.

3.3 Dynamic Behavior of the Biotinylated Lipid DSPE

The biotinylated lipid DSPE as actin’s connection to the lipid bilayer, pose the crit-

ical element for actin cortex and membrane interactions. We investigated for that

reason the diffusion behavior of the biotinylated lipid DSPE on the phase separated

membrane consisting of 3:3:1 DOPC:PSM:Cholesterol and 0.02% (mol/mol) DiD

by FRAP experiments. Biotinylated lipids were added to the lipid mixture at a

0.1% (mol/mol) concentration and labeled with Oregon-Green neutravidin.

As seen in figure 3.3 b), the hydrophobic membrane dye DiD recovers with

the same speed for both phases. Membrane defects are therefore excluded across

FRAP experiments. Figure 3.3 a) shows the difference of DSPE-PEG2000-Biotin-

Neutravidin recovery in Lo and Ld phase. The diffusion into liquid ordered phases

was observed to be much slower than the recovery rate in liquid disordered phases.

The recovery rate was however superimposed by the diffusion behavior in both

phases because of the circular bleaching area exceeding the actual Lo domain in

the membrane. We further believe that the steady-state for Lo domain recovery

was not reached after a time of 180 sec which would indicate a initial diffusion

to the phase boundary and a much slower hopping rate across the boundary. The

dynamic behavior of the biotinylated lipid could therefore be described by at least
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Figure 3.3: Fluorescence recovery after photobleaching analysis was performed on a 3:3:1

DOPC:PSM:Cholesterol membrane with 0.1% (mol/mol) biotinylated lipid. The bleach-

ing area was chosen by following criteria: large Lo domain for FRAP in Lo phases (c-left

column) and sparsely populated with small Lo domains for FRAP in Ld phases (c-right

column). Normalized intensity curves of (a) the lipid anchor DSPE-PEG2000-Biotin with

neutravidin and (b) the hydrophobic membrane dye DiD are showing the relative recov-

ery over time in liquid ordered (�) and liquid disordered (�) phases.

three kinetic components, one being the diffusion of DSPE in the liquid disordered

phase, the second one being the slow hopping rate between Ld and Lo phase and

the third one being the diffusion rate within the liquid ordered domain.
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3.4 Deformation of Phase Boundaries by the Con-

tractile Actomyosin Network

Knowing the dynamic behavior of Oregon-Green labeled anchor lipids qualita-

tively from FRAP experiments, we then studied the contractile behavior of Alexa-

488 Phalloidin labeled F-actin on phase separated membranes (0.1% DSPE-PEG2000-

Biotin, 3:3:1 DOPC:PSM:Cholesterol, 0.02% DiD) with TIRFM. Due to the differ-

ence in motion of slow hopping biotinylated lipids and the faster actomyosin con-

traction, we believed that both, the contractile behavior of actomyosin as well as

the lipid phases, are influenced by each other at phase boundaries.

Figure 3.4: a) DiD labeled 3:3:1 DOPC:PSM:Cholesterol membrane, b) Alexa-488 Phal-

loidin labeled actin filaments, c) Composed images of a) and b). Image sequence of con-

tracting F-actin asters via actin bond (arrowhead in b and c at 18 min). Asters were

forming at the interface of liquid ordered and disordered phases (arrowhead in c at 6

min) which constrained their movement along the boundary (arrowhead in c at 15 min).
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As seen in figure 3.4, F-actin polymers accumulated at the boundary of liquid

ordered and disordered phases during actomyosin contraction. F-actin asters were

further contracted by myosin motors via the connection indicated by the arrow-

head in 3.4 b) at 18 min. Actin polymer displacement appeared to be constrained

by phase boundaries as indicated by the arrowheads at 15 min. The hindered

movement of F-actin bound to the biotinylated lipid further suggested a slower

hopping rate of DSPE over the boundary of Lo and Ld phases. This finding consists

with what we observed with FRAP experiments.

Figure 3.5: Probability tree of observed deformation events during actomyosin contrac-

tion on phase separated membrane. A total number of 29 deformation events were

counted which were divided into two subsets, named extrusion (deformation direction

from liquid ordered into disordered phases) and indentation (liquid ordered domains were

pushed in by contractile actomyosin network). Subsequent events were further catego-

rized into fusion (with other liquid ordered domains) and relaxation events (relaxation of

deformed phase boundary to initial position). Extrusion events were observed frequently

with a occurrence rate of 90% of all deformation events. If liquid ordered domains were

located in the vicinity of deformation events, the extrusion eventually led to fusion events

(61 %).

While imaging the actomyosin contraction on membranes, we observed in few

cases bright balloon-like shapes emerging from the membrane and pushing F-actin

during growth. The 3-dimensional structure had however minor effects on acto-

myosin contraction and phase deformation.
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The probability tree shown in figure 3.5 visualizes the rate and order of oc-

currence of deformation events observed during actomyosin contraction on the

phase separated membrane. Deformation events were divided into extrusion (liq-

uid ordered phases were pulled out) and indentation (liquid ordered phases were

pushed in) which were further subdivided into fusion with other liquid ordered

phases and relaxation events. 90% of deformation events led to the extrusion of

liquid ordered domains. In the case that Lo domains were present in the vicinity

of deformation events, 61% of extrusion events resulted in fusion events. Inden-

tation events were on the other hand rarely observed (10% of all deformation

events).

The relaxation of displaced boundaries to their initial position appeared to be

initialized after F-actin dissociated from the boundary. But only few cases were

observed as seen in figure 3.5.

Figure 3.6: Example for extrusion event for liquid ordered phases. Image sequence of a

contractile b) Alexa-488 Phalloidin labeled actin cortex on a) DiD labeled phase separated

membrane; c) Composed images of a) and b). Aster was pulled by upper aster over the L0

phase which resulted in fusion (lower arrowhead at 12 and 16 min) and extrusion (upper

arrowhead at 33 min) of boundary.
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One example for the frequently observed extrusion and subsequent fusion

events is shown in figure 3.6. The large aster was pulling accumulated F-actin

over a liquid disordered phase bridging two liquid ordered domains at 16 min

by the initial extrusion. The upper domain was further extruded at 33 min (blue

arrow). Extrusion of liquid ordered domains led to a increase in area and van-

ishing of smaller Lo domains in the closer vicinity during boundary deformation.

It is however difficult to assign this vanishing effect to thermal fluctuations while

imaging or to fusion events.

Figure 3.7: Example for indentation events of liquid ordered phases. The attraction of

two actin asters bound to a) DiD labeled phase separated membrane led to the indentation

of a L0 domain (red arrowhead in column a at 13 min); b) Alexa-488 Phalloidin labeled

actin filaments, c) Composed images of a) and b). Stabilized large aster pulled lower

F-actin aster across the concave profile of smaller domain. The phase boundary relaxed

back to the initial position shortly after actin filaments passed the lower phase boundary.
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Furthermore, figure 3.7 illustrates one example for the less often observed do-

main indentation (10% of all noted deformation events) from Ld to Lo phases. The

lower actin pole was pulled across the convex profile of a Lo phase leading to the

indentation at 13 min (red arrowhead). The domain relaxed back to its initial

position shortly after F-actin dissociated from the boundary.

Deformed phase boundaries with a higher curvature and boundary length ap-

peared to relax back to their initial properties shortly after F-actin dissociated from

the phase boundary. Minimizing the boundary length between different phases in-

dicates dynamic rearrangement of lipids due to line tension [8]. As seen in figure

3.8, three liquid-ordered domains were fused and extruded during <12 minutes.

The smaller domain (blue arrow) relaxed back at 24 minutes in order to minimize

boundary length. The dynamic adaptation to changes in the system further ex-

cluded the possible disintegration of lipid bilayers during actomyosin contraction.

Figure 3.8: Sequential b) Alexa-488 Phalloidin labeled actin cortex contraction by my-

ofilaments on a) DiD labeled phase separated membrane; c) Composed images of a) and

b). Small aster (arrowhead in column b at 9 min) was pulled by aster (lower left corner)

across three domains which fuse (9,12 min), deform (12 min) and relax (24 min) in order

to minimize the boundary length due to line tension.
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It is important to note that membranes, which had minor defects most likely

originated from the assembly process, were disintegrated during actomyosin con-

traction after several hours. Scavengers were able to minimized phototoxic reac-

tions repressing the disintegration of membranes. Disintegration of membranes

started at membrane defects (holes) and spread over the entire field of view ra-

dial symmetrically. The deformation of phases due to actomyosin contraction was

however highly asymmetric and concentrated at phase boundaries which suggests

that disintegration and deformation are easily distinguished.

3.5 Quantitative Analysis of Phase Deformation

The quantification of phase deformation was performed with the proposed simpli-

fied active contour algorithm and the fluorescent dye di-4-ANEPPDHQ.

Figure 3.9: Contraction of medium dense 647-Phalloidin labeled actin cortex (b) by

myofilaments on 0.1% (mol/mol) di-4-ANEPPDHQ labeled 3:3:1 DOPC:PSM:Cholesterol

membrane. Images were acquired in interleaved mode exciting di-4-ANEPPDHQ with

488 nm laser (collecting signals from 450-620 nm and 645-900 nm) and 647-Phalloidin

labeled F-actin with 640 nm. GP value of di-4-ANEPPDHQ signal (a) was calculated ac-

cording to ref. [14]. c) Composed image sequence of both channels.

Di-4-ANEPPDHQ, which is described to be a specific probe for lipid packing

order [14], is known to emit at approximately 560 nm for ordered phases and
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with a broad distribution around 620 nm for liquid disordered membrane phases.

The generalized polarization (GP) value, the emission ratio between the range

of 450-620 nm and 645-900 nm, was obtained according to ref. [14]. General-

ized polarization values are shown in figure 3.9 a) ranging from -1 (black, liquid

disordered) to +1 (white, liquid ordered).

Analyzing the GP value during actoymosin contraction with the solvatochromic

fluorescent dye di-4-ANEPPDHQ showed no conclusive results for a lipid packing

change within phases. The emission signal was however not optimized due to

missing filter sets for the TIRF setup.

Figure 3.10: Proposed simplified active contour algorithm was applied to L0 phase defor-

mations. After automatically thresholding the image sequence of 488-Phalloidin labeled

actin (b) on DiD labeled 3:3:1 DOPC:PSM:Cholesterol membrane (b) according to Outsu’s

method (d), the active contour algorithm was applied to the binary image stack (e). Liq-

uid ordered domain area growth and maximal snaxel point displacement as indicated by

the black dot in e) were tracked over time and plotted in f) and g). Local plateau in g) of

snaxel point displacement at approximately 14 min correlates with temporally non-moving

actomyosin.
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The simplified active contour algorithm was used for the quantification of de-

formation events at liquid ordered phases. The contour points were divided by a

discrete set of anchor points (snaxel points) in order to maintain a smooth cur-

vature during the boundary propagation in subpixel space. Outward propagation

was handled as positive displacement and inward propagation as negative.

As seen in figure 3.10, domain deformation by actomyosin contraction led to

a relative area increase of around 20% obtained by MATLAB’s built-in commands

regionprops and bwboundaries. The maximum contour displacement is shown in

3.10 g) and highlighted by the black dot in e). The local plateaus, which indicate

no boundary displacement, correlate with temporally non-moving actomyosin.

The smaller kinks in pixel displacement (g) are difficult to interpret because of

Outsu’s thresholding method and the interpolation mechanism applied during the

active contour algorithm. It is tempting to interpret that actin filaments with a

biotinylated ratio of 5:1 exhibit a discrete dragging of single or clustered DSPE

lipids over the phase boundary by actomyosin resulting in a step-like acceleration

of boundary displacement.

Since F-actin asters and domains were interacting during the entire image se-

quence, no relaxation could be analyzed with the proposed algorithm. Due to

resolution limitations of TIRF microscopy, we were also not able to discriminate

single actin filaments if bundled during contraction. Correlating the motion of

actomyosin filaments during domain deformation with the total contour’s pixel

displacement on a molecular level was for that reason not possible.
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Conclusion and Future Prospects

4.1 Length Distribution of Equilibrated Myofilaments

The length distribution of myofilaments was shown to decrease with a higher con-

centration of KCl in a non-linear fashion by AFM imaging. It is important to note

that the length deviation is higher for low concentrations of KCl which should be

considered for the titration of actomyosin activity with ATP.

4.2 Contractile Behavior of Actomyosin on Phase Sep-

arated Membranes

We were able to observe a slow hopping rate of DSPE across the boundary of liquid

ordered and disordered phases with FRAP experiments. The faster mobility of a

rearranging actin cortex bound to the membrane by the biotinylated Lipid DSPE

was therefore assumed to excite force to the boundary of the macroscopic lipid

phases as we were able to observe with TIRFM eventually.

4.2.1 Mechanistic Observations at the Phase Boundary

Aster formation at the phase boundary might be explained by the hindered dif-

fusion of actin filaments crossing the boundary. Freely diffusing F-actin without

boundary affiliation are dragged towards the hindered F-actin by ATP-hydrolyzing

myofilaments leading to the accumulation at boundaries as net result. If, on the

30
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other hand, both F-actin asters are hindered by phase boundaries, the contraction

leads to deformation events (see figure 4.1, upper image). The spatial distribution

of F-actin poles depends therefore highly on the association to phase boundaries.

The mean length of actin filaments and the average interspace between domains

are certainly the most meaningful parameters for this model. Controlling these

parameters is very difficult and may be pursued in a future study.

Figure 4.1: Schematic illustration of actomyosin contraction on phase separated mem-

brane. Small F-actin asters forming at the boundary of liquid ordered and disordered

phases. In case of hindered F-actin aster is connected to freely diffusing aster, the contrac-

tion leads to further accumulation at the phase boundary. If on the other hand both asters

are associated with phase boundaries, the contraction results in phase deformation. Aster

displacement was observed to be constrained by the boundary. Unlike concave profiles

(left profile of liquid ordered domain), convex phase profiles disperse actomyosin activity

along the phase boundary and reduces the path energy as indicated by arrows on the right

side of illustrated Lo domain.

Liquid ordered phase indentation was observed rarely (10% of all deformation

events) in comparison to extrusion events (90% of all deformation events). The

motion of asters towards convex profiles might lead to the dispersion of force or
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to the redirection of actin movement along the boundary minimizing the path

energy. Concave shapes however concentrate force at the boundary and constrain

F-actin movement leading to the accumulation of actomyosin activity at domain

poles (see figure 4.1, lower image). We therefore concluded that the asymmetric

deformation occurrence rate is rather explained by the domains geometrical shape

and not by a asymmetric hopping rate of the biotinylated lipid across the boundary

of liquid disordered and liquid ordered phases.

If additional domains were present in the closer vicinity, the boundary defor-

mation eventually led to the fusion of liquid ordered phases as observed for 61%

of all extrusion events. Indented or extruded domain boundaries appeared to

minimize their boundary length after F-actin dissociation due to line tension. It

was however only observed twice after deformation events. The displacement of

F-actin asters appeared to be less then the distance that is needed to deform the

phase boundary and dissociate on a regular basis.

4.2.2 Models for Area Growth of Phases

We believe that the area increase of liquid ordered domains by actomyosin defor-

mation can be explained by at least two mechanism. The change of area per lipid

by the transition from the liquid ordered to liquid disordered state would describe

a certain increase in area. Opposing the transition is the increase in energy that

would result if lipids change their packing state within the liquid ordered phase.

The magnitude of approximately 70% as we observed for one case is therefore

hardly explained by the phase transition exclusively.

The influx of lipids from the vicinity may therefore explain further area growth.

Membrane deformation introduces a non-equilibrium state in the membrane, in-

creasing the affinity for lipids which are able to counterbalance the intrusion. We

were able to observe small domains vanishing in the closer vicinity during de-

formation which may be explained by the fusion of domains compensating high-

energy lipid ordering transitions.
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4.3 Biological Implications & Future Investigations

The rearranging actin cortex by motor proteins describes a new approach for mem-

brane organization. Clustering of rafts might be induced not only by hydrogen

bonding via sphingomyelin or protein crosslinking [11], but also by the directed

displacement of raft proteins attached to dynamic F-actin polymers. Active re-

organization of membrane proteins might further lead to a constant spatial and

temporal synchronization of lipid/protein rafts and actin cortex remodeling.

In order to approximate minimal system closer to the biological cell, the fric-

tion coupling of lipids as observed in supported lipid membranes has to be avoided

[15]. Future experiments should therefore consider free-standing membranes, e.g.

giant unilamellar vesicles for the assembly of a minimal actin cortex on phase sep-

arated membranes. Unlike the focused deformation of phase boundaries in sup-

ported phase separated membranes, the boundary of lipid phases in free-standing

membranes might promote the displacement of entire domains leading to the ac-

cumulation of phases at the aster formation site.
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