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DNA photodamage recognition by RNA polymerase II
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Abstract During gene transcription, RNA polymerase (Pol) II
encounters obstacles, including lesions in the DNA template.
Here, we review a recent structure–function analysis of Pol II
transcribing DNA with a bulky photo-lesion in the template
strand. The study provided the molecular basis for recognition
of a damaged DNA by Pol II, which is the first step in transcrip-
tion-coupled DNA repair (TCR). The results have general impli-
cations for damage recognition and the TCR mechanism.
� 2007 Federation of European Biochemical Societies.
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1. Structural studies of Pol II elongation

RNA polymerase (Pol) II synthesizes eukaryotic mRNA in

the course of gene transcription. To ensure processive mRNA

chain elongation, Pol II forms a stable elongation complex

(EC) with transcribed DNA and product RNA. The X-ray

structure of Pol II [1–5] enabled structural studies of Pol II-

nucleic acid complexes [6–11]. These studies elucidated many

aspects of the molecular mechanism for mRNA chain elonga-

tion, and suggested how Pol II unwinds DNA, how it separates

the RNA product from the DNA template, how it incorpo-

rates nucleoside triphosphate (NTP) substrates into the grow-

ing RNA chain, and how it can be inhibited by RNA (reviewed

in part in [12,13]).
2. Overcoming a natural obstacle during transcription

Additional structural studies have elucidated how Pol II

deals with a natural obstacle to transcription, intrinsic DNA

arrest sites. At such sites, Pol II moves backwards along

DNA and RNA, resulting in extrusion of the growing RNA

3 0-end through the polymerase pore beneath the active site. Ar-

rested polymerase cannot continue elongation by itself, but

must be reactivated by mRNA cleavage. In such cases the very

weak intrinsic RNA nuclease activity of Pol II is strongly stim-
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ulated by the extrinsic transcript cleavage factor TFIIS [14,15].

TFIIS inserts a hairpin into the polymerase pore and comple-

ments the active site with acidic residues, changes the enzyme

conformation, and repositions the RNA transcript [7,16,17].

These studies suggested a ‘‘tunability’’ of the Pol II active site,

which can apparently catalyze different reactions, including

RNA synthesis and RNA cleavage. RNA cleavage creates a

new 3 0-end directly adjacent to the active site, from which tran-

scription can resume, and the obstacle can be overcome.
3. Damage recognition and TCR

A recent study shows how Pol II deals with another obstacle,

a bulky photo-lesion in the DNA template strand [18] (Fig. 1).

The results not only elucidate an unexpected and complicated

mechanism of damage recognition by Pol II, they also have

implications for understanding how the damage is subse-

quently removed. Ultraviolet light damages DNA by inducing

dimerization of adjacent pyrimidines in a DNA strand. The

resulting cyclobutane pyrimidine dimer (CPD) lesions can

block transcription and replication, and are a major cause of

skin cancer [19]. Cells can eliminate CPDs slowly by gen-

ome-wide nucleotide excision repair (NER). For rapid and effi-

cient repair, however, cells use a NER sub-pathway referred to

as transcription-coupled DNA repair (TCR). TCR specifically

removes lesions such as CPDs from the DNA strand tran-

scribed by Pol II [20]. It is thought that only those lesions trig-

ger TCR that can stably stall Pol II. CPDs are bulky lesions

that lead to Pol II stalling, but other types of damages, such

as oxidative damages, can be bypassed by Pol II, and would

escape TCR [21]. Pol II stalling apparently triggers TCR by

recruitment of a transcription-repair coupling factor (Rad26/

CSB in yeast/human), and factors required for subsequent

steps of nucleotide excision repair, including TFIIH, which un-

winds DNA, and endonucleases, which incise the DNA strand

on either side of the lesion [20,22–25]. The obtained DNA gap

is subsequently filled by DNA synthesis and ligation [26,27].
4. A tool box for studying damage recognition

To study the mechanism of DNA damage recognition by Pol

II, expertise in the synthesis of lesion-containing DNA (group

of T. Carell at the University of Munich) was combined with

expertise in preparing functional crystallization-grade ECs of
blished by Elsevier B.V. All rights reserved.



Fig. 1. Simplified mechanism of CPD DNA damage recognition by Pol II. On the top, a schematic is shown that depicts the last few steps before Pol
II stalling. On the bottom, nucleic acids structures in Pol II ECs containing a thymine–thymine CPD lesion before (left) and in the active site (right)
are shown. DNA template, DNA non-template, and RNA strands are in blue, cyan, and red, respectively. The CPD is shown as a stick model in
orange. The active site magnesium ion (metal A) is depicted as a magenta sphere. Figures prepared with Pymol (www.pymol.org).
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the complete 12-subunit Pol II (our group). CPD lesions were

introduced into the DNA template strand at several different

positions around the polymerase active site and the resulting

Pol II ECs were studied structurally and in RNA elongation

assays. The highly reproducible and clean system for reconsti-

tuting defined, fully functional Pol II ECs will be very useful

for a detailed structure–function analysis of many aspects of

the transcription mechanism in the future.
5. The CPD lesion passes a barrier and enters the active site

Pol II stalls when a CPD in the DNA template strand

reaches the enzyme active site, after nucleotide incorporation

opposite both CPD thymines [18,28,29]. However, it is not

obvious how the CPD can reach the active site since transfer

of a DNA template base from the downstream position +2

to the nucleotide insertion site at +1 over the polymerase

bridge helix normally requires twisting of the base by 90�,

and such twisting is not possible for the CPD thymines, since

they are covalently linked. Indeed, the CPD is not stably

accommodated at positions +1/+2, and has to pass a translo-

cation barrier to get into this position [18].
6. The CPD induces misincorporation that stalls Pol II

A CPD can be stably accommodated at positions �1/+1 of

the template strand in the active site of Pol II. Whereas Pol

II correctly incorporates AMP opposite the 3 0-thymine of the

CPD, only UMP can be incorporated opposite the 5 0-thymine

[18,29]. The UMP misincorporation is very slow, and is the
rate-limiting step in reaching the stalled state [18]. Specific

UMP misincorporation may arise from the unusual location

of the CPD 5 0-thymine that adopts a wobble position with re-

spect to the base in the undamaged complex [18]. The wobbled

5 0-thymine could form two hydrogen bonds with UTP, but not

with other NTPs. Pol II stalls because translocation of the

CPD 5 0-thymine–uracile mismatch base pair from position

+1 to position �1 is strongly disfavored. This translocation

event would move the damage-containing mismatch into the

�1 position of the DNA–RNA hybrid, resulting in a distortion

that likely destabilizes the EC [30]. Replacement of the misin-

corporated UMP by AMP in an artificial scaffold enables CPD

bypass [18]. Thus, Pol II stalling requires CPD-directed misin-

corporation, and distortions due to the CPD alone are insuffi-

cient to cause Pol II stalling. Indeed, a T–U mismatch base

pair alone was sufficient to stall the vast majority of Pol II

complexes [18]. In contrast, DNA polymerases can correctly

incorporate adenine opposite both CPD thymines, and, depen-

dent on the type of polymerase, this can lead to stalling or le-

sion bypass [31,32].
7. A topological model for TCR

What is the cellular signal that indicates to the repair

machinery that a DNA lesion has been detected? In other

words, how does the damage-stalled EC trigger assembly of

the repair machinery? The lesion is deeply buried in the Pol

II active site, thus it cannot be recognized by another factor.

One possibility is that damaged DNA causes a conformational

change in the Pol II EC that triggers recruitment of repair fac-

tors in an allosteric manner. However, the polymerase confor-
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Fig. 2. Topological model for transcription-coupled DNA repair. The lesion-containing Pol II EC is shown schematically. The view and color code
are as in Fig. 1. An orange star and a magenta sphere indicate the CPD lesion and the active site, respectively. The upstream DNA was placed on Pol
II on the basis of its location in the bacterial RNA polymerase–promoter complex [38]. The non-template strand in the bubble region was modeled.
TFIIH helicase subunits XPD and XPB may be involved in extending the transcription bubble in the upstream and downstream direction,
respectively, to enable dual incision. Modeling shows that incisions could occur at the two edges of an extended bubble around 10–15 nucleotides
upstream (3 0) and around 15–20 nucleotides downstream (5 0) of the lesion.
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mation is unchanged in lesion-containing Pol II ECs [18]. This

does not exclude that allostery exists and was simply not ob-

served, but it argues against an allosteric model for TCR. In

addition, all observations are consistent with excision of a le-

sion-containing DNA fragment in the presence of Pol II. Such

a model for eukaryotic TCR combines and extends previous

models [24,33,34] and can explain recognition of the stalled

complex without allostery or exposure of the lesion (Fig. 2).

At a CPD lesion, CSB can counteract TFIIS-induced back-

tracking [35,36], resulting in a stably stalled complex. This

may open a time window for assembly of the repair machinery.

TFIIH may then catalyze extension of the transcription bub-

ble, permitting dual incision of the template strand on the

Pol II surface [23,24]. The lesion-containing DNA fragment

and the RNA transcript could then be removed together with

Pol II, although dual incision is apparently not sufficient to

achieve this [24]. The remaining gapped DNA is repaired.

Pol II may be recycled, circumventing its ubiquitination and

destruction [37].
8. Conclusions and perspectives

The new study shows how a cellular RNA polymerase recog-

nizes a DNA photo-lesion, and explains why the polymerase

stalls when it encounters the lesion. The new data also suggest

a preferred model for TCR that can be tested experimentally.

In addition, the study predicts that DNA damages that have

the potential to direct misincorporation can generally stall
Pol II and trigger TCR. However, given the unexpectedly com-

plicated mechanism of CPD recognition by Pol II, recognition

of different types of lesions must be studied in a detailed man-

ner both structurally and functionally before general conclu-

sions can be drawn. Finally, there are many open questions

on TCR events subsequent to damage recognition, and it will

require a highly interdisciplinary approach to address these

experimentally.
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