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Supplementary figures
1 Supplementary Figure S1

(a)

(b)

(a) Results of the in-vitro RNA extension assay to determine the nucleotide incorporation efficiency by
RNA polymerase II. (b) Lineweaver-Burk diagrams (left: UTP, right: 4sUTP) showing similar kinetics.
The maximal reaction rate vmax is virtually unchanged (vmax ≈ 0.72), the Michaelis-Menten constant KM

increased from 3 nM for UTP to 13 nM for 4sUTP.
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2 Supplementary Figure S2

Comparison of the labeled mRNA fractions in all three replicate measurements for the wild type samples
after 6 min. labeling time (Wild type experiment (see section 12.1)). Sample cultures of replicate 1 and 2
were grown on the same day. Upper triangle: MA plots of the log-intensities (M: intensity ratio, versus A:
average intensity). Lower triangle: respective pairwise Spearman correlations. Plots were produced with the
R package LSD [Schwalb et al., 2010].

L3 R1 L3 R2 L6 R1 L6 R3 L6 R3 L12 R1 L12 R3 L12 R3 L24 R1 L24 R3 L24 R3

L3 R1 1 0.99 0.98 0.98 0.96 0.92 0.92 0.92 0.89 0.89 0.89
L3 R2 0.99 1 0.97 0.97 0.94 0.9 0.91 0.91 0.87 0.87 0.87
L6 R1 0.98 0.97 1 0.99 0.97 0.95 0.96 0.95 0.94 0.93 0.93
L6 R3 0.98 0.97 0.99 1 0.98 0.96 0.96 0.96 0.94 0.94 0.94
L6 R3 0.96 0.94 0.97 0.98 1 0.98 0.98 0.98 0.95 0.95 0.96
L12 R1 0.92 0.9 0.95 0.96 0.98 1 0.99 0.99 0.99 0.99 0.99
L12 R3 0.92 0.91 0.96 0.96 0.98 0.99 1 1 0.98 0.99 0.99
L12 R3 0.92 0.91 0.95 0.96 0.98 0.99 1 1 0.98 0.98 0.99
L24 R1 0.89 0.87 0.94 0.94 0.95 0.99 0.98 0.98 1 1 1
L24 R3 0.89 0.87 0.93 0.94 0.95 0.99 0.99 0.98 1 1 1
L24 R3 0.89 0.87 0.93 0.94 0.96 0.99 0.99 0.99 1 1 1

Assessment of reproducibility for all measurements of labeled mRNA in the Wild type experiment (see
section 12.1). The table shows the pairwise Spearman correlations between unnormalized mRNA abundances.
(Abbreviation: mRNA fraction followed by labeling time and replicate number.)
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Assessment of reproducibility for all measurements of total mRNA in the Wild type experiment (see sec-
tion 12.1). The table shows the pairwise Spearman correlations between unnormalized mRNA abundances.
(Abbreviation: mRNA fraction followed by labeling time and replicate number.)
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3 Supplementary Figure S3
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Design of the RTqPCR experiments. Extracts of total and labeled mRNA were taken (after a labeling
period of 6 min) of wild type samples and during osmotic stress at t = 12, 30 and 36 min. RTqPCR was
performed for a set of selected genes. Moreover, a transcriptional shutoff experiment was performed adding
1,10-Phenanthroline for the wild type samples and after 12 min of osmotic stress. The mRNA decay rates of
selected genes were determined with RTqPCR by an mRNA decay time series taken at t = 0, 2.5, 6, 10, 16
min after transcriptional shut off (see Supplementary methods, Section 15).
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4 Supplementary Figure S4

Comparison of synthesis rates determined by DTA (Dynamic Transcriptome Analysis, see Supplementary
methods, part I) with two alternative measures of transcriptional activity: Pol II occupancy (obtained by
ChIP-chip experiments) [Mayer et al., 2010] and transcription rates as measured with the genomic run-on
(GRO) method [Pelechano & Pérez-Ortín, 2010]. Top left: Scatterplot of GRO transcription rates vs. DTA
synthesis rates. Top right: Scatterplot of Pol II occupancy vs. DTA synthesis rates. Bottom: GRO rates vs.
Pol II occupancy. Highlighted are the ribosomal protein genes. The Pol II occupancy shown is the genewise
mean from start to stop codon, processed by means of the Bioconductor Starr package [Zacher et al., 2010].
Plots were produced with the R package LSD [Schwalb et al., 2010].
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5 Supplementary Figure S5

Scatterplots comparing DTA (Dynamic Transcriptome Analysis, see Supplementary methods, part I) half-life
estimates with literature results obtained by experiments using transcriptional arrest [Holstege et al., 1998,
Wang et al., 2002, Grigull et al., 2004, Shalem et al., 2008]. All four data sets were obtained with a Yeast
strain containing the RNA polymerase II temperature sensitive mutant rpb1-1. Decay rates can be measured
after blocking transcription, but this requires a perturbing heat shock (cells have to be shifted to the non-
permissive temperature of 37°C). The intensity of each mRNA species relative to that observed in a wild
type cell gives their measure for mRNA decay, applying the usual first-order exponential decay model. Three
experiments were conducted using the same Yeast strain. Their median/mean mRNA half-lives are reported
as 16/19 min [Holstege et al., 1998], 20/23 min [Wang et al., 2002], 18/22 min [Grigull et al., 2004], and
30/34 min [Shalem et al., 2008]. The lower panel shows the respective Spearman correlations. Generally, the
estimates show poor agreement. DTA does not correlate with any of the invasive methods, though all show
a typical right-skewed distribution (see main text Figure 2B).
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6 Supplementary Figure S6

The comparison of transcript length and DTA (Dynamic Transcriptome Analysis, see Supplementary
methods, part I) decay rates (estimated with DTA) shows that degradation speed (= decay rate =
log(2)/half-life) is uncorrelated with transcript length. The spearman correlation coefficient is 0.06. It is
noteworthy that a correlation coefficient of 0.64 is obtained, if discrepancies that are due to 4sU/Biotin
labeling are ignored (Supplementary methods 13.2). Without bias removal, the half-lives of 72% of the
mRNAs are artificially elongated by a factor of at least 2, so that the overall ranking of the half-lives is
strongly altered.
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7 Supplementary Figure S7

The coefficient of variation of the total resp. labeled measurements is plotted as a function of the resp.
mean value. Three replicate measurements of the total (black) and the labeled intensities (red) of wild type
yeast after a 6 min labeling period were used to calculate a standard deviation (sd), a mean intensity, and
a coefficient of variation (cv=sd/mean) for each gene. The solid lines are smoothed estimates of the cv
intensities obtained by loess regression.

Sensitivity comparison of the standard transcriptomics measurements (total mRNA, T) to DTA (labeled
mRNA, L). For a precise explanation of the mRNA fractions, see Supplementary methods, section 12. To
compare transcriptional changes in both methods, we calculated “signal-to-noise” ratios after 18 min of osmotic
stress relative to the wild type. One for each gene and each mRNA fraction. The signal-to-noise ratios were
defined as the quotient of the fold of the intensity after 18 min of stress over wild type (as estimated by
standard transcriptomics resp. DTA) and the standard deviation obtained by the analysis above (see upper
figure). The blue line indicates that on average, DTA is 1.85 times more sensitive than the classical method.
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8 Supplementary Figure S8

Volcanoplot for the comparison of the synthesis rates 36 min after osmotic stress induction against wild
type synthesis rates. The x-axis shows the difference of the ranks of a gene in the 36 min synthesis rates
distribution and the wild type synthesis rates distribution. The y-axis shows the significance of a change
in synthesis rates, as measured with limma [Smyth, 2004]. It is given as the log odds (synthesis rate is
different/synthesis rate is unchanged) for each gene. Grey dots: Hog1 and/or Msn2/4 dependent osmotic
stress genes identified by [Capaldi et al., 2008]. The 58 dots in green are novel genes also clearly involved in
the transcriptional response to osmotic stress.

YPR098C DAN3 THO1 PAU2 YMR034C
YLR031W TGL2 SRL3 YNR068C YLR108C
SGF11 YNL040W ECI1 PRM8 UBC5
ARR2 AFR1 YIL055C YIL046W-A FMP23
GIP1 ECM12 YLR285C-A YDL085C-A YBR056W-A
ATH1 YNL211C STF1 CPS1 YKL133C
SPL2 PET10 YET1 GSP2 FSH1
DIA1 PCL1 SPG5 YPR172W SCS22

YER185W RNR3 YJL185C HMX1 REC102
ICT1 YGL010W MAG1 STB2 PEP12
UGX2 YOL024W MST27 LEE1
PFK26 GSM1 YNL130C-A BOP2

List of the 58 genes depicted in green in the figure above, which are involved in the transcriptional response
to osmotic stress.
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9 Supplementary Table T1

profile name fraction time
window

time
point

osmotic
stress

bio rep day exp
series

1 C 00-00 - WT 1 1 WT.CEL C 00-00 0 - 1 1 WT
2 C 00-00 - WT 2 1 WT.CEL C 00-00 0 - 2 1 WT
3 L 00-03 - WT 1 1 WT.CEL L 00-03 3 - 1 1 WT
4 L 00-03 - WT 2 1 WT.CEL L 00-03 3 - 2 1 WT
5 L 00-06 - WT 1 1 WT.CEL L 00-06 6 - 1 1 WT
6 L 00-06 - WT 2 1 WT.CEL L 00-06 6 - 2 1 WT
7 L 00-06 - WT 3 2 WT.CEL L 00-06 6 - 3 2 WT
8 L 00-12 - WT 1 2 WT.CEL L 00-12 12 - 1 2 WT
9 L 00-12 - WT 2 2 WT.CEL L 00-12 12 - 2 2 WT
10 L 00-12 - WT 3 2 WT.CEL L 00-12 12 - 3 2 WT
11 L 00-24 - WT 1 2 WT.CEL L 00-24 24 - 1 2 WT
12 L 00-24 - WT 2 2 WT.CEL L 00-24 24 - 2 2 WT
13 L 00-24 - WT 3 2 WT.CEL L 00-24 24 - 3 2 WT
14 T 00-00 - WT 1 1 WT.CEL T 00-00 0 - 1 1 WT
15 T 00-00 - WT 2 1 WT.CEL T 00-00 0 - 2 1 WT
16 T 00-00 - WT 3 1 WT.CEL T 00-00 0 - 3 1 WT
17 T 00-00 - WT 4 1 WT.CEL T 00-00 0 - 4 1 WT
18 T 00-03 - WT 1 1 WT.CEL T 00-03 3 - 1 1 WT
19 T 00-03 - WT 2 1 WT.CEL T 00-03 3 - 2 1 WT
20 T 00-06 - WT 1 1 WT.CEL T 00-06 6 - 1 1 WT
21 T 00-06 - WT 2 1 WT.CEL T 00-06 6 - 2 1 WT
22 T 00-06 - WT 3 2 WT.CEL T 00-06 6 - 3 2 WT
23 T 00-12 - WT 1 2 WT.CEL T 00-12 12 - 1 2 WT
24 T 00-12 - WT 2 2 WT.CEL T 00-12 12 - 2 2 WT
25 T 00-12 - WT 3 2 WT.CEL T 00-12 12 - 3 2 WT
26 T 00-24 - WT 1 2 WT.CEL T 00-24 24 - 1 2 WT
27 T 00-24 - WT 2 2 WT.CEL T 00-24 24 - 2 2 WT
28 T 00-24 - WT 3 2 WT.CEL T 00-24 24 - 3 2 WT
29 U 00-03 - WT 1 1 WT.CEL U 00-03 3 - 1 1 WT
30 U 00-03 - WT 2 1 WT.CEL U 00-03 3 - 2 1 WT
31 U 00-06 - WT 1 1 WT.CEL U 00-06 6 - 1 1 WT
32 U 00-06 - WT 2 1 WT.CEL U 00-06 6 - 2 1 WT
33 U 00-06 - WT 3 2 WT.CEL U 00-06 6 - 3 2 WT
34 U 00-12 - WT 1 2 WT.CEL U 00-12 12 - 1 2 WT
35 U 00-12 - WT 2 2 WT.CEL U 00-12 12 - 2 2 WT
36 U 00-12 - WT 3 2 WT.CEL U 00-12 12 - 3 2 WT
37 U 00-24 - WT 1 2 WT.CEL U 00-24 24 - 1 2 WT
38 U 00-24 - WT 2 2 WT.CEL U 00-24 24 - 2 2 WT
39 U 00-24 - WT 3 2 WT.CEL U 00-24 24 - 3 2 WT

Table of all produced gene expression arrays of the wild type experiment (see supplementary methods, section
12.1). Profile name column: File name as uploaded to Array Express (accession number E-MTAB-439).
Fraction column: (C) cells lacking the transporter plasmid (control mRNA samples), (L) labeled mRNA,
(T) total mRNA, (U) unlabeled mRNA. Time window column: start and end of the labeling period (4sU).
Timepoint column: extraction timepoint of mRNA. Osmotic stress: (+) addition of sodium chloride to the
sample culture to a concentration of 0.8 M, (-) no addition of sodium chloride. Biorep column: number of
the biological replicate. Day column: Indicator of the experiment date. Sample cultures were grown on two
different days (day 1, day 2). Expseries column: abbreviation for the experiment series (WT: Wild type
experiment (see supplementary methods, section 12.1)).
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10 Supplementary Table T2

profile name fraction time
window

time
point

osmotic
stress

bio rep day exp
series

1 L 00-06 + WT 1 1 SS.CEL L 00-06 6 + 1 1 SS
2 L 06-12 - WT 1 1 SS.CEL L 06-12 6 - 1 1 SS
3 L 06-12 + WT 1 1 SS.CEL L 06-12 6 + 1 1 SS
4 L 12-18 - WT 1 1 SS.CEL L 12-18 6 - 1 1 SS
5 L 12-18 + WT 1 1 SS.CEL L 12-18 6 + 1 1 SS
6 L 18-24 + WT 1 1 SS.CEL L 18-24 6 + 1 1 SS
7 L 24-30 + WT 1 1 SS.CEL L 24-30 6 + 1 1 SS
8 L 30-36 - WT 1 1 SS.CEL L 30-36 6 - 1 1 SS
9 L 30-36 + WT 1 1 SS.CEL L 30-36 6 + 1 1 SS
10 T 00-06 + WT 1 1 SS.CEL T 00-06 6 + 1 1 SS
11 T 06-12 - WT 1 1 SS.CEL T 06-12 6 - 1 1 SS
12 T 06-12 + WT 1 1 SS.CEL T 06-12 6 + 1 1 SS
13 T 12-18 - WT 1 1 SS.CEL T 12-18 6 - 1 1 SS
14 T 12-18 + WT 1 1 SS.CEL T 12-18 6 + 1 1 SS
15 T 18-24 + WT 1 1 SS.CEL T 18-24 6 + 1 1 SS
16 T 24-30 + WT 1 1 SS.CEL T 24-30 6 + 1 1 SS
17 T 30-36 - WT 1 1 SS.CEL T 30-36 6 - 1 1 SS
18 T 30-36 + WT 1 1 SS.CEL T 30-36 6 + 1 1 SS
19 U 06-12 - WT 1 1 SS.CEL U 06-12 6 - 1 1 SS
20 U 06-12 + WT 1 1 SS.CEL U 06-12 6 + 1 1 SS
21 U 12-18 - WT 1 1 SS.CEL U 12-18 6 - 1 1 SS
22 U 12-18 + WT 1 1 SS.CEL U 12-18 6 + 1 1 SS
23 U 30-36 - WT 1 1 SS.CEL U 30-36 6 - 1 1 SS
24 U 30-36 + WT 1 1 SS.CEL U 30-36 6 + 1 1 SS

Table of all produced gene expression arrays of the wild type experiment (see supplementary methods, section
12.1). Profile name column: File name as uploaded to Array Express (accession number E-MTAB-439).
Fraction column: (C) cells lacking the transporter plasmid (control mRNA samples), (L) labeled mRNA,
(T) total mRNA, (U) unlabeled mRNA. Time window column: start and end of the labeling period (4sU).
Timepoint column: extraction timepoint of mRNA. Osmotic stress: (+) addition of sodium chloride to the
sample culture to a concentration of 0.8 M, (-) no addition of sodium chloride. Biorep column: number of
the biological replicate. Day column: Indicator of the experiment date. Sample cultures were grown on two
different days (day 1, day 2). Expseries column: abbreviation for the experiment series (SS: Osmotic stress
experiment (see supplementary methods, section 12.2)).

14



11 Supplementary Table T3

profile name extracts time
point

osmotic
stress

bio rep day exp
series

1 IP 00 - 1 W.CEL IP 0 - 1 1 WT
2 IP 00 - 2 W.CEL IP 0 - 2 1 WT
3 Input 00 - 1 W.CEL Input 0 - 1 1 WT
4 IP 12 + 1 S.CEL IP 12 + 1 2 SS
5 IP 12 + 2 S.CEL IP 12 + 2 2 SS
6 Input 12 + 1 S.CEL Input 12 + 1 2 SS
7 IP 24 + 1 S.CEL IP 24 + 1 2 SS
8 IP 24 + 2 S.CEL IP 24 + 2 2 SS
9 Input 24 + 1 S.CEL Input 24 + 1 2 SS

Table of all produced tiling arrays of the Pol II ChIP-chip experiment. Profile name column: File name as
uploaded to Array Express (accession number E-MTAB-439). Extracts column: (IP) Chromatin immunopre-
cipitation (Input) Genomic Input. Timepoint column: timepoint of ChIP-chip after salt addition. Osmotic
stress: (+) addition of sodium chloride to the sample culture to a concentration of 0.8 M. (-) no addition of
sodium chloride. Biorep column: number of the biological replicate. Day column: Indicator of the experiment
date. Sample cultures were grown on two different days (day 1, day 2). Expseries column: abbreviation for
the experiment series (WT: Occupancy profiles for the Pol II subunit Rpb3 by ChIP-chip analysis for the
wild type, see [Mayer et al., 2010], SS: Occupancy profiles for the Pol II subunit Rpb3 by ChIP-chip analysis
under osmotic stress conditions (see supplementary methods, section 16.1)).

15



Supplementary methods

Part I

Dynamic Transcriptome Analysis (DTA)
12 Preprocessing and Quality Control

12.1 Wild type experiment
We used S. cerevisiae strain BY4741 (MATa, his2Δ1, leu2Δ0, met15Δ0, ura3Δ0). The strain was transformed
with plasmid YEpEBI311 carrying the human equilibrative nucleoside transporter hENT1. Samples for
establishing DTA were grown in SD medium overnight. 4sU (Sigma) was added to the media to a final
concentration of 500 µM at timepoint t = 0, and cells were harvested after different labeling times tr ∈
{3, 6, 12, 24 min}, where r denotes biological samples r ∈ R = {1, ..., 11}. The mRNA of each sample was
split into three fractions (extracts): Total mRNA Tr (total cellular mRNA), labeled mRNA Lr (thiol-labeled
newly transcribed mRNA), and unlabeled mRNA Ur (pre-existing mRNA) (see main text (Materials and
methods)). All mRNA extracts were hybridized to GeneChip Yeast Genome 2.0 microarrays (Affymetrix).
Let G be the set of genes that were measured on the array. The measured gene expression of gene g ∈ G in a
sample r in the fraction Fr ∈ Fwildtype = {Tr, Lr, Ur | r ∈ R} is denoted by Fgr. This notation emphasizes
the fraction from which the mRNA was obtained. Additionally, we created quadruplicates of total mRNA
T for timepoint t = 0. Duplicates of cells lacking the nucleoside transporter (hENT1) are termed control
mRNA samples C. A listing of arrays can be found in (Supplementary Table T1).

12.2 Osmotic stress experiment
Sample cultures were obtained as above and divided in aliquots. 4sU was added at 0, 6, 12, 18, 24, and 30 min
after the addition of sodium chloride to a concentration of 0.8 M. Cells were harvested after the labeling time
of tL = 6 min. Total mRNA T salti and labeled mRNA Lsalti was purified and analyzed to yield expression
profiles for each time window i ∈ I = {0-6, 6-12, 12-18, 18-24, 24-30, 30-36 min}(see main text figure 3A).
Unlabeled mRNA Usalti indeed, was only analyzed for i ∈ {6-12, 12-18, 30-36 min}. Control cultures were also
produced to gain biological triplicate profiles of the wild type Twti ,Uwti and Lwti , i ∈ {6-12, 12-18, 30-36 min}.
By analogy to the notation in the wild type experiment (see Section 12.1), the measured gene expression of
a set of genes G in a sample i in the fraction Fi ∈ Fosmotic = {Ti, Li, Ui | i ∈ I} is denoted by Fgi, g ∈ G.
All mRNA extracts were hybridized to GeneChip Yeast Genome 2.0 microarrays (Affymetrix). A listing of
arrays can be found in (Supplementary Table T2).

12.3 Visual inspection, Quality metrics
Probe signal intensities were captured and processed with GeneChip Operating Software (Affymetrix), and
the resulting CEL files were preprocessed using the GC Robust Multi-array Average (GCRMA) method
[Wu et al., 2004]. However we did not apply quantile normalization, which by default is applied as the last
preprocessing step in GCRMA. This would have been inappropriate, because the expression distributions in
the three fractions are expected to be substantially different.
We needed to develop a novel normalization strategy, that takes into account the particular way in which
the sample fractions Fr were obtained (Section 13.1). To find a set of reliable genes, for which the parameter
estimation is performed as described later (Section 13.2), the following heuristic was used: We excluded all
genes, which are annotated as dubious or silenced by the Stanford Public Database (SGD™: Saccharomyces
Genome Database) [Cherry et al., 1998], and only kept those annotated as verified or uncharacterized. This
leaves 5743 of initially 5976 genes. In a second step we excluded all 137 ribosomal protein genes Grpg
[Nakao et al., 2004]. We noticed that these genes are generally expressed at a level which is considerably
higher than that of the other genes. Therefore, ribosomal protein genes probably do not lie in the linear
measurement range of the scanner and are likely to introduce a bias to our estimation procedure.
Visual inspection of pairwise scatterplots (Supplementary Figure S2) showed no systematic differences other
than variation in noise regarding the day on which sample cultures were grown, and slight variations in the
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Figure 9: Genes that were below a log-intensity of 6 in at least 4 of the 15 total mRNA measurements are discarded.

global spot intensity level on the array. The latter requires normalization which will be discussed in subsection
12.4. Heatscatterplots for visual inspection were produced with the R package LSD [Schwalb et al., 2010].
These colored scatterplots are based on a 2d density to highlight the distribution of the underlying data.
This is essential to recognize systematic biases (see Figure 16 for the assessment of the labeling bias).
The density plots of the (log-)expression distributions have pronounced low intensity tails (Figure 9). For
the same reasons as for ribosomal protein genes, we decided to cut off genes that had an expression value
below a log-intensity of 6 (natural log basis) in at least 4 out of 15 total mRNA measurements. This cutoff
is arbitrary, but it can be chosen even stricter without qualitatively effecting the results (data not shown).
Finally a set Greliable of 4490 genes remained.
The pairwise correlation plot showed a high correlation of the respective mRNA fractions within replicates
(Supplementary Figure S2, Figure 11), but also a surprisingly high correlation between different mRNA
fractions (Figure 10).

12.4 Proportional rescaling of expression profiles
Variations in RNA extraction efficiencies, amplification steps in the biochemical protocol and scanner calibra-
tion of the flourescence readouts introduce slight differences in the global spot intensity levels on the arrays.
This problem is often solved by centering the medians the respective expression profiles to a common value.
This approach however, is only reasonable, if the assumption can be met, that the global level of expression
has not changed. We have done so in Section 12.5. In our DTA procedure, this is not necessary. Proportional
rescaling of expression profiles is completely compensated by the total least squares regression, which is a
feature of our estimation procedure (Section 13.2).

12.5 Detection of differentially expressed genes
We mainly aim to identify genes that behave differently in the comparison of two groups of genome-wide
measurements, be it total mRNA levels, labeled mRNA levels, or synthesis rates. The problem of identify-
ing differentially expressed genes in microarray experiments with arbitrary numbers of groups and mRNA
samples was considered by Gordon K. Smyth [Smyth, 2004]. His model is formulated as a linear regression
problem. The estimators proposed show robust behavior even for small numbers of arrays. The approach is
implemented in the R Bioconductor package “Limma” [Smyth, 2004], which was used in Section 12.6 after
appropriate normalization of the used expression profiles (see Section 12.4). Multiple testing correction was
done by converting p-values into local false discovery rates [Benjamini & Hochberg, 1995]. We consider a
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Figure 10: Upper triangle: scatterplots of the log-intensities Tgr,Ugr and Lgr depicted for the 1st replicate of the 6
min measurement. Lower triangle: respective spearman correlations.

gene significantly differentially expressed if it achieves a local false discovery rate smaller than 5% in the re-
spective two-group comparison. The effect of induction/repression is called relevant if the mean expressions
of the two groups differ by a factor of at least 2. A gene is called induced/repressed if it is significantly and
relevantly up-/downregulated relative to the reference group. (Figure 12).

12.6 Side Effects of 4sU Labeling
At first glance one can only recognize a slight effect after a labeling period of 24 minutes (Figure 11).
This is consistent with the analysis for detecting differential expression: In the comparison of wild type
samples with and without the human nucleoside transporter hENT (T00 versus C00) only one gene is detected
to be induced/repressed (see Section 12.5, and Figure 12). In the comparison of the samples with 24 min of
4sU labeling time (T24) versus wild type control (C00), 117 genes are detected to be induced/repressed (see
Section 12.5, and Figure 12). This is of course not a strong effect, but enough to decide against the 24 min
labeling period.

repressed \ induced C00 T00 T03 T06 T12 T24
C00 - 1 0 2 30 54
T00 0 - 0 5 10 42
T03 0 0 - 0 10 44
T06 1 2 0 - 4 28
T12 26 3 1 0 - 2
T24 63 22 47 24 0 -

Table 4: Counts of induced/repressed genes (upper triangle/lower triangle) among Greliable ∪ Grpg(reliable and ri-
bosomal protein genes). Selection criteria were a multiple testing corrected significance level (local false
discovery rate) of 0.05 and an expression fold of at least 2 between groups. (Abbreviation: mRNA fraction
followed by labeling time.)
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Figure 11: Pairwise scatterplots of log-intensities. The lower panel shows the respective Spearman correlations. The
diagonal contains the abbreviation of the mRNA fraction followed by the length of labeling period in
minutes. Compared fractions are obtained by taking the gene-wise median over all intensities of replicate
measurements. C denotes control samples lacking the nucleoside transporter (hENT1). All other samples
(T) carry the nucleoside transporter.
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Figure 12: Volcano plot of all genes in the yeast transporter strain without labeling (T00) versus wild type control
(C00) (left figure) and of all genes of the yeast transporter strain with 24 min of 4sU labeling (T24)
versus wild type control (C00) (right figure). The x-axis shows the estimated folds in the limma analysis.
The y-axis displays the adjusted p-values, 1 minus the adjusted p-values to be precise. The horizontal
line marks the significance threshold of 0.05. The two vertical lines indicate induction/repression of 2
fold. The genes that are called induced/repressed (Section 12.5) are depicted in green.

The statistical comparison of the samples shows that the measurements are conform with the assumption
(null hypothesis) that no genes are induced/repressed. Although these tests by their nature cannot produce
an affirmative result, i.e. this comparison cannot prove the equality of the expression distributions of the
wild type and t = 6 min 4sU labeling. It ensures that the requirements for the application of our subsequent
procedures are met.

13 mRNA Synthesis and Decay in steady-state conditions
For sections 13.1 and 13.2, we assume that the cells exhibit constant growth under constant environmental
conditions. In particular, this implies that the amount of each mRNA population is constant over time, being
the result of a dynamic equilibrium of a constant mRNA synthesis and decay.

13.1 The steady-state Model
Let r ∈ R be a sample. At time t = 0, we start the mRNA labeling. At the timepoint tr, when the cells
are harvested, the total mRNA amount Cgr(tr) of gene g in the sample r is composed of the amount Bgr(tr)
of (pre-existing) mRNA that has been synthesized before t = 0 and the amount Agr(tr) of mRNA that has
been newly synthesized after t = 0,

Cgr(tr)︸ ︷︷ ︸
total RNA

=
Agr(tr)︸ ︷︷ ︸

newly synthesized mRNA
+

Bgr(tr)︸ ︷︷ ︸
pre-existing mRNA

Let Nr(tr) denote the number of cells in the sample r at time tr. The cells are grown and harvested during
mid-log phase, i.e. the cell number follows an exponential law with growth rate α ≥ 0,

Nr(tr) = Nr(0)eαtr (1)

We assume genes to have a (time averaged) constant cellular expression level mg (transcripts of gene g per
cell) during 4sU labeling. The total mRNA amount of a gene is therefore proportional to the cell number,

Cgr(tr) = mgNr(tr) = mgNr(0)eαtr = Cgr(0)eαtr (2)

We assume that the mRNA population of a gene g decays at a constant rate λg if no other processes interfere.
This means for the pre-existing mRNA fraction that

Bgr(tr) = Bgr(0)e−λgtr = Cgr(0)e−λgtr (3)
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consequently, the newly synthesized mRNA fraction is

Agr(tr) = Cgr(tr)−Bgr(tr) = Cgr(0)eαtr − Cgr(0)e−λgtr = Cgr(0)
[
eαtr − e−λgtr

]
(4)

The very same equation can also be deduced from a comparison of synthesis and decay processes due to the
the newly synthesized mRNA fraction

dAgr(tr)

dt
= µgNr(tr)− λgAgr(tr) = µgNr(0)eαtr − λgAgr(tr) (5)

with a constant synthesis rate µg. The solution of this differential equation yields

Agr(tr) = ce−λgtr +
µgNr(0)eαtr

α+ λg
(6)

with an initial value Agr(0) = 0, and so

0 = c+
µgNr(0)

α+ λg
(7)

This finally leads to

Agr(tr) =
µgNr(0)

α+ λg

[
eαtr − e−λgtr

]
(8)

with
Cgr(0) =

µgNr(0)

α+ λg
(9)

which can be used to express the synthesis rate µg by

µg = mg [α+ λg] (10)

We now have to relate the measured levels of Lgr(tr), Ugr(tr) and Tgr(tr) to the levels of the mRNA fractions
Agr(tr), Bgr(tr) and Cgr(tr). Ideally, these fractions would respectively equal each other. There are however
discrepancies that are due to RNA extraction efficiencies, amplification steps in the biochemical protocol
and scanner calibration of the flourescence readouts (see Section 12.4 and Figure 10). The amount Lgr(tr)
of labeled mRNA for instance is proportional to the amount of labeled mRNA Agr(tr) at the time tr of
sampling,

Lgr(tr) = arAgr(tr) , (11)
with an unknown array-specific constant ar. Analogously, the measured amounts Tgr(tr) and Ugr(tr) ana-
logical depend on the actual amounts Cgr(tr) and Bgr(tr) respectively via

Tgr(tr) = crCgr(tr) , (12)

and
Ugr(tr) = brBgr(tr) = br (Cgr(tr)−Agr(tr)) (13)

where cr and br are array-specific scaling factors.
There are also discrepancies that are due to 4sU/Biotin labeling efficiency (see Figure (13)). mRNAs which
contain less than 500 Uridine residues (approx. 72% of all mRNAs) are not captured efficiently since approxi-
mately only every 200th Uridine residue is replaced by 4sU and afterwards attached to a Biotin molecule. Let
lgr represent the fraction mRNAs of gene g in sample r that are biotinylated. We assume that all biotinylated
mRNAs are captured by the Streptavidin beads. Let pr be the probability that during the labeling process
of sample r, a Uridine is replaced by 4sU and afterwards attached to a Biotin molecule. Denote by #ug
the number of Uridine residues present in the mRNA corresponding to gene g, a number known from the
literature. We can calculate lgr as

lgr = l(pr, ug) = 1− (1− pr)#ug (14)

lgr is thus the probability that at least one Uridine is replaced by 4sU and afterwards attached to a Biotin
molecule. With this circumstance in mind, we have to correct equations (11),(12) and (13) to that effect.
Hence we have the dependencies:

Lgr(tr) = lgrarAgr(tr) , (15)
Tgr(tr) = crCgr(tr) , (16)

and
Ugr(tr) = br (Cgr(tr)− lgrAgr(tr)) . (17)
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13.2 Normalization and Parameter Estimation (steady state case)
Our model contains the parameters Θ = {α, pr, ar, br, cr, λg, µg | r ∈ R, g ∈ G}. It contains an implicit
normalization procedure, because the two sources of experimental bias are part of the model (the parameters
ar, br, cr account for multiplicative bias introduced via sample preparation and array scanning (Section 12.4),
and pr models the labeling bias (Figure 13)). We propose a 5-step procedure for the identification of the
parameters Θ.

1. Estimation of α, the growth rate of the cells. Since the doubling times of the cells are usually known
or can be measured accurately, α is given by α = log 2/(cell cycle length). Cell cycle length is set to
150 min.

2. Estimation of pr. The estimation of the sample-related parameters {pr, ar, br, cr | r ∈ R} is done on
the basis of the reliable genes Greliable (cf. Section 12.3). The quotient of observed total and labeled
mRNA levels can be written as

Lgr
Tgr

=
lgrarAgr(tr)

crCgr(tr)
= lgr

ar
cr

[
1− e−tr(α+λg)

]
(18)

The first equation follows by (15) and (16), the second by (2) and (4). We can visualize this dependence
conveniently by plotting ug versus log

Lgr

Tgr
(see Figure 13). If all decay rates were equal, all points would

lie on the graph given by the relationship of ug versus log lgr + log ar
cr
. The scatter around this graph

is caused by measurement errors and differences in decay rates (see Figure (13),(13)). We can also
calculate the quotient

Ugr
Tgr

=
br
cr

(
1− lgr

[
1− e−tr(α+λg)

])
(19)

This equation follows by (16) and (17). We will predominantly use equation (18) for the estimation of
pr. Taking logs in Equation (18) and rearranging terms, we obtain

log
Lgr
Tgr

= log
ar
cr

+ log l(pr, ug) + log
[
1− e−tr(α+λg)

]
(20)

Assuming p > 1/700 implies that for #ug > 700 say, the approximation lgr = l(pr, ug) ≈ 1 is almost
exact, as one can easily see from the Bernoulli approximation (1 − pr)#ug ≈ 1 − #ug · pr = 0 and
lgr = 1− (1− pr)#ug ≈ 1. Hence Equation (18) simplifies to

log
Lgr
Tgr

= log
ar
cr

+ log
[
1− e−tr(α+λg)

]
for #ug > 700 (21)

If we additionally assume that the distribution of decay rates do not depend on the number of the
uridines, the right-hand side in (21) becomes a constant plus some error term with expectation zero.
Thus, we estimate asymptoter by letting

asymptoter = median
{

log
Lgr
Tgr
| g ∈ Greliable, #ug > 700

}
(22)

Given equation (22), it is relatively easy to compute a good estimate of pr by finding an optimal fit
to (20) (see Figure(13)), for all g ∈ G with #ug < 500. So we optimize the value of pr, r ∈ R, by
minimizing the l1-loss function

pestr = argmin
q∈(0, 1)

loss(q) . with loss(q) =
∑

g∈G,#ug<500

∣∣∣∣ logLgrTgr
− log l(q, ug)− asymptoter

∣∣∣∣ (23)

Here, 500 is an upper bound that ensures that the measurements are still responsive to changes in ug.

3. Estimation of arcr and br
cr
. Notice that for the purpose of half-life estimation it is sufficient to determine

the quotients arcr and br
cr

instead of the individual constants ar, br and cr. We simply multiply equations
(18) and (19) by the inverse of those quotients and add them up to obtain

cr
ar

Lgr
Tgr

+
cr
br

Ugr
Tgr

= 1 or Tgr =
cr
ar
Lgr +

cr
br
Ugr (24)
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Figure 13: Scatterplot shows the dependence of equation (20) for the 6 min measurements. The number of Uridines
is plotted versus the log-ratio of Lgr and Tgr. The black line shows that the estimate for log l(pestr , ug)+
asymptoteestr fits the data. pr = 0.0053 means that approximately only every 200th Uridine residue is
replaced by 4sU and afterwards attached to a Biotin molecule.

Equation 24 describes a plane {(Tgr, Lgr, Ugr) | Tgr = cr
ar
Lgr + cr

br
Ugr} in a3-dimensional Euclidean

space. For error-free measurements, two observations (Tgr, Lgr, Ugr) would be enough to determine the
two coefficients arcr and br

cr
. We encounter variables having measurement errors on both sides of Equation

(24). We therefore perform a total least squares regression of Tgr versus Lgr and Ugr, which accounts
for a Gaussian error in the dependent variable (Tgr) and, in contrast to ordinary linear regression, also
in the independent variables (Lgr, Ugr). The total least squares regression minimizes the orthogonal
distance of the datapoints to the inferred plane as opposed to a linear regression, which minimizes the
distance of Tgr to the inferred linear function of Lgr and Ugr. We use a robust version of total least
squares regression.After the first run, we remove the data points with the 5% largest residues to avoid
the potentially detrimental influence of outlier values on the parameter estimation process (see Figure
(14)). We remark that we also tried to normalize the intensities of the respective fractions to the in
vitro transcribed Bacillus subtilis spike ins, which were routinely added according to ourexperimental
protocol, but this resulted in very inconsistent scaling of the labeled and total fractions (data not
shown).

4. Estimation of λg, g ∈ Greliable ∪Grpg. First, solve equation (18) for an estimate λg,

λg = −α− 1

tr
log

[
1− 1

l(pr, ug)

Lgr
Tgr

cr
ar

]
. (25)

All measured samples r are combined to yield an estimate

λestg = median
{
−α− 1

tr
log

[
1− 1

l(pr, ug)

Lgr
Tgr

cr
ar

]
| r ∈ R

}
, (26)

which in turn is used to calculate the half-life estimates

hlestg =
log(2)

λestg
. (27)

5. Estimation of µg, g ∈ Greliable ∪ Grpg (in molecules per cell and cell cycle). For each replicate exper-
iment r, the number mg of mRNA transcripts per cell of gene g is proportional to its total mRNA
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Figure 14: The upper plots show the two rounds of total least squares regression. The resulting plane is shown
exactly from the side and is colored blue. The x-axis of those plots is chosen in the direction of the
labeled fraction and in logarithmic scale. The y-axis is the normal of the plane. The second round
(shown on the right-hand side) is performed without the 5% largest residues of the first round, depicted
in green and shown in both plots on the left-hand side. It is noteworthy that these are mostly ribosomal
protein genes Grpg. This is a second justification for excluding these genes from parameter estimation,
which is done in the very beginning. The lower plots show the plane which is fitted into the data in a
3D view. Red lines or planes indicate maximal residues.
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Figure 15: Plot ug vs. bias (log2 est.decay/true decay) curves, each curve corresponding to a given half-life (5, 10
or 20 min) and labeling efficiency (p = 0.002, 0, 005 or 0.1).

intensity value Tgr, mg = drTgr. Assuming a total number of #mRNAs = 15.000 mRNAs per cell
[Hereford, 1977], this means that

15.000 = #mRNAs =
∑
g∈G

mg = dr ·
∑
g∈G

Tgr , (28)

thus
dr =

15.000∑
g∈G Tgr

. (29)

Together with equation (10), we may estimate µg as

µg = mg

[
α+ λestg

]
· CCL = median {drTgr | r ∈ R}

[
α+ λestg

]
· CCL . (30)

where the cell cycle length CCL is set to 150 min.

13.3 Improvement over existing methods
There have been attempts to obtain genome-wide synthesis rates and half-lives from RNA labeling in other
organisms, like mouse and human [Dölken et al., 2008, Friedel et al., 2009]. The statistical analysis presented
here is improves over existing approaches in at least two major points:

1. The labeling bias is corrected. Assuming a labeling efficiency of p = 0.005 as has been estimated in
our data, (Figure 18) shows that omitting labeling bias correction results in half-life estimates that are
severely systematically biased towards longer half-lives; 20% of the mRNA half-lives in our experiment
would have been biased more than twofold (Figure 15). The labeling bias is smaller for higher labeling
efficiencies. Therefore we re-analysed the mouse data in [Dölken et al., 2008]. The diagnostic scatterplot
for the assessment of the labeling bias (main text Figure 2A) showed that a bias is also present in their
data (see Figure 16), and it was estimated to p = 0.002 by our method. Consequently, mRNAs of a
length less than 500 (60% of all genes) had an average bias of at 1.7-fold. Labeling bias correction is
done as point 2 of our estimation procedure.

2. Estimation of the normalization constants is done with total least squares regression. For normalization
purposes, the parameters of the regression plane, namely the quotients ar

cr
and br

cr
in Equation (24) need

to be estimated. The straightforward idea is to perform a linear regression (without intercept) of
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Figure 16: Both scatterplots show exactly the same data: the dependence of Equation (20) for the 60 min measure-
ments. The number of Uridines is plotted versus the log-ratio of Lgr and Tgr. Whereas it is hard to recog-
nize a labeling bias in the plot to the left, such is clearly visible in the right hand side plot. The points of
the scatteplot are colored according to the (estimated) point density in that region, which turns out to be
a valuable information. The plot has been generated with the R package LSD [Schwalb et al., 2010]. The
black line shows the estimate for log l(pestr , ug) + asymptoteestr . The labeling bias parameter pr = 0.0019
implies that approximately every 400th Uridine residue is replaced by 4sU and afterwards attached to a
Biotin molecule.

Tgr versus Lgr and Ugr [Dölken et al., 2008, Friedel et al., 2009]. Then, the quotients ar
cr

and br
cr

are
obtained as the inverse of the regression coefficients. In our situation however, we have to deal with
considerable experimental noise in the dependent and the independent variables in Equation (24).
The linear regression model assumes that only the dependent variable Tgr is error-prone, whereas the
independent variables Lgr and Ugr are known without error; an assumption which is clearly not met. As
we mentioned in (Section 12.3), the ribosomal protein genes (Grpg) have expression levels that are way
higher than the overall gene expression levels, thus they are outlier points, and any regression method
that tries to minimize the squared estimation error (like linear regression and total least squares) is very
sensitive to outliers. Thus, a robust version of total least squares needs to remove outliers beforehand
the regression, which has not been done in previous studies. Our outlier removal procedure is described
in (Section 13.2).

13.4 Simulation Study (steady state case)
To examine the estimation procedure described above, we simulated data for 5000 “genes” by providing a
random half-life distribution and a random sample of corresponding size from the uridine numbers of the
S.cerevisiae genes. The half-lives are assumed to have a right skewed distribution. This assumption is based
on literature results. Half-lives are then drawn randomly from a log normal distribution whose logarithm has
mean equal to 14 and standard deviation equal to 0.3.

Hr ∼ LN (14, 0.3) (31)

The "true" amount of log(total mRNA) at timepoint t = 0 is drawn randomly from a normal distribution with
mean equal to 7.5 and standard deviation equal to 1. This gives a microarray-typical intensity distribution
in log-scale. The following steps are now in analogy with our model:

Cgr(tr) = Cgr(0)eαtr (32)

where α is given by α = log 2/(cell cycle length). Cell cycle length is set to 150 min. tr is chosen to be the
timepoint of favor. Tgr(t) does now arise from Cgr(t) by adding noise:

Tgr(tr) = Cgr(tr) + xgr with xgr ∼ N (0, 0.125Cgr(tr)) (33)
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where N (0, 0.125Cgr(tr)) denotes a normal distribution with mean equal to 0 and standard deviation equal
to 0.125Cgr(tr). This is consistent with the fact that the variance of measured data increases with intensity.
We set

cr :=
median(Tgr(tr))

median(Cgr(tr))
(34)

which can be derived from equation (16). The "true" amount of newly synthesised mRNA, called Agr(t) in
our model, is constructed as follows:

Agr(tr) = Cgr(tr)(e
αtr − e−λgtr ) (35)

where λg = log(2)/Hgr. To obtain Lgr we include a labeling bias lgr as in (14), and add noise:

Lgr(tr) = lgrAgr(tr) + ygr with ygr ∼ N (0, 0.125lgrAgr(tr)) (36)

pr is set to 0.005. This value was typically observed in our wild type experiments (see section 12.1).
We set

ar :=
median(Lgr(tr))

median(lgrAgr(tr))
(37)

Further we rescale Lgr to the same range as Tgr:

Lgr =
Lgr ·median(Tgr)

median(Lgr)
(38)

This strategy simulates amplification steps in the biochemical protocol and scanner calibration. Finally, we
need the “true” amount of unlabeled mRNA:

B̃gr(tr) = Cgr(tr)− lgrAgr(tr) (39)

and again we add noise

Ugr(tr) = B̃gr(tr) + zgr with zgr ∼ N (0, 0.125B̃gr(tr)) (40)

Furthermore we also rescale Ugr to the same range as Tgr:

Ugr =
Ugr ·median(Tgr)

median(Ugr)
(41)

and
br :=

median(Ugr(tr))

median(B̃gr(tr))
(42)

We generated an artificial data set which consists of microarray measurements for t = 6 and 12 minutes,
each timepoint measured in duplicates. The “true” coefficients, that are to be recovered in (24) by total least
squares regression, are now just the quotients of the individual constants ar, br and cr. We then applied our
model to estimate the “true” half-lives with our procedure by estimating ar

cr
, brcr ,pr and λg, see (Figure (17)).

We also used our simulated data to recompute the “true” half-lives with the former used first-order exponential
decay model as described in [Dölken et al., 2008]. Briefly: As it is default in GCRMA, quantile-normalization
was performed on all “simulated arrays”. To overcome the problem of similar magnitudes between the different
mRNA fractions, a weighted linear regression of Tgr versus Lgr and Ugr (with no intercept) is fit to obtain
the coefficients to rescale the Lgr and Ugr fractions. Weights were chosen to 1/(Tgr + median(Tgr)). Cell
cycle length was also set to 150 minutes. The ratio of Ugr to Tgr was then used to calculate the half-lives
from the 6 min duplicates. Nevertheless, the bias introduced by the 4sU/Biotin labeling efficiency was not
corrected for, see (Figure (18)).
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Figure 17: Figure compares the estimated vs. the true half-lives or the estimated vs. the true decay rates in
scatterplots of their values or ranks. The lower right plot shows the log-ratio of the estimated vs. the
true half-lives in a histogram. The mode is the maximum of the corresponding density indicated by the
blue line. As a measure for a systematic deviation from zero (depicted in green) we calculated the MRD

(mean relative deviation). The MRD is defined by mean
(
|λest

g −λtrue
g |

λtrue
g

)
, λestg : estimated half-life, λtrueg :

true half-life. Plots were produced with the R package LSD [Schwalb et al., 2010].
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Figure 18: Figure compares the estimated vs. the true half-lives or the estimated vs. the true decay rates in
scatterplots of their values or ranks. The lower right plot shows the log-ratio of the estimated vs. the
true half-lives in a histogram. The mode is the maximum of the corresponding density indicated by the
blue line. As a measure for a systematic deviation from zero (depicted in green) we calculated the MRD

(mean relative deviation). The MRD is defined by mean
(
|λest

g −λtrue
g |

λtrue
g

)
, λestg : estimated half-life, λtrueg :

true half-life. The points in the scatterplots should be located directly and in a symmetric manner around
the blue line to represent a good fit. The histogram is broader than in the results of our procedure, and
it additionally shows a systematic error on the right-hand side. Plots were produced with the R package
LSD [Schwalb et al., 2010].
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Figure 19: Ranks of estimated decay rates obtained from three different groupings of all measured arrays (termed
timelines) compared in pairwise scatterplots. The lower panel shows the respective spearman correlations
of the decay rates. Plots were produced with the R package LSD [Schwalb et al., 2010].
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13.5 Robustness and Reproducibility (steady state case)
To validate our estimation procedure we used all measured arrays and divided them in three groups (termed
timelines). This means we assembled all the first, second and third replicates and used each group to estimate
the half-lives by themselves. Even though they partly differ by small factors (∼ 1.1, 1.5, 1.7), they correlate
well, see (Figure 19).
We also used all measured arrays to calculate the half-lives for all time points each. As expected they also
differed by small factors, and as before they correlated well. To investigate this behavior, we altered the
regression factors on purpose. This approach resulted in half-lives with identical ranks, which differed by a
scaling factor due to the alteration. This shows that the estimation of the regression factors is the sensitive
step in our procedure. And so we can not for sure tell the absolute half-life of a gene, but we can clearly rely
on the rank of it.
We also simulated data using the estimated half-lives and the array intensities of four measured arrays at
time-point 0 to represent Cgr(0). The advantage of this approach is, that the correlation between half-lives
and array intensities can be chosen arbitrarily. The artificial half-lives and expression data were equipped
with a correlation structure a) of zero and b) identical to that in the real experiments. Since the correlations
that were estimated from the simulated data agreed very well with the pre-set correlations, this demonstrates
that the correlation observed in the real data application is not an artefact of the estimation procedure.

14 The Dynamics of mRNA Synthesis- and Decay

14.1 The dynamic Model
In order to use DTA for a time-resolved analysis of the osmotic stress response (see main text figure 3A
and Section 12.2), our static approach (Section 13.1) has to be adapted. The main reason for this is that
mRNA levels can no longer be assumed constant, i.e., synthesis and degradation are not necessarily in a
dynamic equilibrium. Moreover, we did not measure the unlabeled mRNA fraction for all of the time points.
Our aim here was to develop a cost- and time-saving method which works well with only the labeled and
the total mRNA fractions. Prior to the actual normalization, all mRNA fractions were rescaled such that
median(Tgr) = 1, to obtain the so called “median centered” data:

Fgi was replaced by Fgi/ median{Tgi | g ∈ G} for all F ∈ Fosmotic, (43)

where the index i indicates the time window i ∈ I = {0-6, 6-12, 12-18, 18-24, 24-30, 30-36 min} of 4sU-labeling
(see main text, Figure 3A). Total least squares regression (the first step in our steady-state DTA estimation
procedure (section 13.2)) was not applicable in the context of our osmotic stress experiment (section 12.2).
To circumvent this fact, the following approach was used: A set of 480 “stable” genes Gstable was defined,
whose mRNA stability during the osmotic stress response is considered virtually unaltered. This selection
was based upon ranks, since they are more robust than folds. Values of the labeled (L) resp. total (T)
fractions were ranked for each of the time windows i ∈ I. Rank gains were calculated relative to the ranks in
the i = 0-6 min time window as a reference. 480 genes showed a rank gain below 500 for all arrays and were
gathered to build Gstable. This cutoff is arbitrary, but it can be chosen even stricter without qualitatively
effecting the results (data not shown). As λg is a monotonic function of Agi

Cgi
equation 18, and assuming the

decay rate of mRNA g, g ∈ Gstable unchanged, we have

median
{
Ag,i(ti)

Cg,i(ti)
| g ∈ Gstable

}
= median

{
Ag,i+1(ti+1)

Cg,i+1(ti+1)
| g ∈ Gstable

}
(44)

According to equation (18), we write (44) as

median
{
ci
ai

Lg,i(ti)

lg,iTg,i(ti)
| g ∈ Gstable

}
= median

{
ci+1

ai+1

Lg,i+1(ti+1)

lg,i+1Tg,i+1(ti+1)
| g ∈ Gstable

}
(45)

If we define
medianstablei = median

{
Lg,i(ti)

lg,iTg,i(ti)
| g ∈ Gstable

}
, (46)

Equation (45) reads as

31



cwt
awt

medianstablewt =
ci
ai
medianstablei for all i ∈ I (47)

Here, the index wt indicates the wild type experiment. The quotient cwt

awt
can be derived from the steady

state version of DTA (see Section (13.2), Equation(24)). In this manner we can obtain stable estimates for
ai
ci
, i ∈ I. The labeled fraction is then normalized linearly,

Lnormalizedg,i =
ci
ai
Lg,i , g ∈ G, i ∈ I

In contrast to the steady state case of DTA (Section 13.1), the assumption of constant mRNA levels does not
hold in the case of a perturbation with a global impact on transcription. Neither the total mRNA amount
nor any single mRNA population is growing at a constant rate of α. We can account for this by introducing
mRNA-specific and time-dependent “growth rates” αg,i, which can also be negative. The gene-specific mRNA
growth rates αg,i at time ti will replace the global mRNA growth rate α which was introduced in equation
(1). For the estimation of these growth rates, we first need a stable estimate of the time course of the total
mRNA amount of gene g. It is obtained by fitting a cubic smoothing spline to the intensity time course Tg,i.
The resulting spline function is a robust estimate T̃g,i of the total mRNA amount at ti, and it additionally
provides an estimate of its derivative fg,i at ti. Due to the short labeling time, it is justified to model the
local dynamic behavior of the total mRNA at a certain time ti by an exponential function,

Tg,i(ti + t) ≈ Tg,i(ti) · eαg,i for small t; (48)

where Tg,i(ti) is the total mRNA amount of gene g in sample i at time ti. The parameter αg,i is the logarithmic
derivative of the right-hand side of Equation (48); consequently, an estimate of αg,i can be obtained from the
logarithmic derivative of the spline function at ti,

αg,i = fg,i/T̃g,i , (49)

In analogy to equation (25), we obtain a decay rate estimate

λg,i = −αg,i −
1

tL
log

[
1− 1

l(pi, ug)

Lnormalizedg,i

Tg,i

]
(50)

Here, tL = 6 min is the labeling period (which was used for all samples in the time series). The synthesis
rate is then calculated as in (Section 13.2, Equation 30).

15 Half-life Estimation via Quantitative PCR

15.1 Experimental Design
We used rt-qPCR for the validation of the DTA measurements. The following genes were selected for PCR
quantification for the reason indicated behind each gene: act1, tub2 (housekeeping genes), rdn1 (gene with
high transcript abundance), ctt1, gpd1, stl1 (known salt stress responders), kss1, sfg1 (genes with very long
estimated wild type half-lives). First, we repeated the osmotic stress experiment as described in the methods
and took samples of total and labeled mRNA (after a labeling period of 6 min) of the wild type and at t =
12, 30 and 36 min (Supplemental figure S3). qPCR of the selected genes served as a check of the accuracy of
the DTA measurements (see figure 5). Secondly, we performed a transcriptional shutoff experiment, adding
1,10-Phenanthroline in the wild type and after 6 min of osmotic stress. The mRNA decay of the selected
genes was then determined with qPCR in a classical way by an mRNA decay time series taken at t = 0, 2.5, 6,
10, 16 min after transcription shutoff (Supplemental figure S3). Note that the time points of the decay series
were determined such that for the bulk of genes that have a half life of about 11 min, the mRNA amounts
in the decay time series are approximately equally spaced. This maximizes the estimation accuracy of the
method. PCR quantification was always done for two biological samples yielding three technical replicates
each.
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12 min 30 min 36 min
L 0.55 0.92 0.94
T 0.45 0.96 0.97

Table 5: Correlations of mRNA folds derived from DTA (x-axis) vs. PCR (y-axis). Upper/lower panel shows the
labeled/total fraction respectively. Left/middle/right column corresponds to the 12/30/36 min vs. wild
type fold.

15.2 The Decay Model
qPCR experiments determine the abundance of an mRNA by the number of amplification cycles that are
needed to reach a certain threshold concentration. Let ct = ct(g, t, p, r) denote the ct (cycle time) value of
gene g ∈ G in biological or technical replicate r ∈ R that has been measured on plate p ∈ P after a decay
time of t. We assume gene-specific exponential mRNA decay rates λg. The initial mRNA amount in a sample
may vary by a replicate-specific factor αr, and by a plate-specific factor βp. Those quantities relate via

2−ct(g,t,p,r) = c0 · e−λgt · αr · βp (51)

with some unknown constant c0. Let the data be given by a sequence of tuples (ctj , gj , tj , pj , rj)j∈J . Assuming
a Gaussian error on the ct-value measurements, and taking logs in Equation(51), our model can be cast as

ctj = c0 − tjλgj + αrj + βpj + εj εj ∼
iid
N (0, σ2) , j ∈ J (52)

for some variance σ2. We seek to find a good parameter fit {(λg)g∈G, (αr)r∈R, (βp)p∈P } via maximum
likelihood estimation, which is equivalent to solving the least squares regression problem

ctj ∼ c0 +
∑
g∈G

(−tjδg=gj ) · λg +
∑
r∈R

δr=rj · αr +
∑
p∈P

δp=pj · βp , j ∈ J (53)

Note that this system is underdetermined, and each of the three parameter sets (λg),(βr),(αp) can only be
determined up to some additive constant. As a consequence, it is in principle not possible to determine the
absolute decay rates with this approach, however it is well suited for the estimation of relative decay rates
(λg1 − λg2). Usually, each PCR plate contains control RNAs of known concentration that capture plate
effects, but are neither subject to decay nor does their amount vary between replicates. In our setting, it is
easy to incorporate the control measurements (ctk,pk) k ∈ K into the model by adding

ctk ∼ c0 +
∑
p∈P

δp=pk · βp , k ∈ K , (54)

to the regression problem, one for each control measurement (ctk, pk), k ∈ K.

15.3 Results of the PCR experiments, Comparison to DTA
In a first simulation study, we convinced ourselves that the procedure described in (Section 15.2) is able to
recover the decay rates properly, up to some additive constant (Figure20). We then applied the method to
the rt-qPCR measurements (Figure 21). It is possible to treat the ct-values of the PCR experiment like the
(logarithmic) microarray measurements of the unlabeled mRNA fraction, by swapping signs and adding an
arbitrary constant to rescale all values to a positive range. Relevant are only relative differences between two
values (this corresponds to their ratio in absolute scale), because absolute values underlie amplification steps
in the biochemical protocol and can differ by unknown factors. The next section will show these results and
compare them to the corresponding PCR results.
In order to do so, we rescaled the mean half-life of the gene set used for PCR to a common value. The
amount of labeled and total mRNA as quantified by both methods agreed quite well (Table 5), as well as
the estimated decay rates for the wild type (Figure 22). The decay rates at t = 12 min showed only weak
correlation. Since the PCR measurements are obtained by an invasive method, we do not expect them to
agree better than the decay rates from the literature (Supplemental figure S5), which also correlated poorly.

Note that the absolute decay rates cannot be estimated from the PCR profiles, therefore some mRNA amounts
are seemingly increasing in the plot (they are assigned negative decay rates).
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Figure 20: Results of the simulation study. The first plot in the series shows ideal mRNA decay time courses of
8 “genes” with different decay rates (one colored line corresponds to one gene. Data is displayed on a
half-logarithmic scale. x-axis: time, y-axis: log(mRNA amount)). The second plot shows realistic data
on the same scale as the first picture, including measurement noise and plate effects. The third plot
shows the decay profiles as they have been reconstructed by our method. Normalizing both the true
and the estimated decay profiles to the same mean decay rate, the fourth plot demonstrates that the
estimation error is small (circles: true decay rates, dots: estimated decay rates).

Figure 21: Results of the qPCR experiment. Time courses of the 8 genes selected for PCR (each color corresponds
to one gene) were measured in 2 biological samples, each of which was measured in triplicate. The
two leftmost plots show the raw data as in Figure20 (on the absolute resp. the half-logarithmic scale).
The two rightmost plots are the fitted decay profiles, derived from the estimated decay rates (on the
half-logarithmic resp. absolute scale).

Figure 22: Bar plots of the DTA (grey) and PCR (black) decay rate estimates, obtained as described in Section
13.2(DTA) resp. Section 15.2(PCR). The left plot shows the wild type, the right plot shows the situation
after 12 min of osmotic stress.
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Part II

Dynamics of Polymerase II binding and its
relation to mRNA Synthesis during osmotic
Stress
16 Pol II ChIP-chip

16.1 Pol II ChIP-chip experiment
For genomic occupancy profiling by ChIP-chip we used S. cerevisiae strain BY4741 containing a TAP tag
on the Pol II subunit Rpb3. Yeast cells were grown in YPD medium until exponential phase (OD600 ~
0.8). ChIP-chip was performed for biological replicates at timepoint 0 (taken from [Mayer et al., 2010]) and
at 12 and 24 min after the addition of 0.8 M NaCl. Additionally chromatin samples, where the chromatin
immunoprecipitation step was omitted (termed genomic Input), were subjected to array analysis and served
as a reference. All DNA extracts were hybridized to high-density custom-made tiling array (Affymetrix). A
listing of all produced arrays can be found in (Supplementary Table T3).

16.2 Preprocessing of ChIP-chip data
The high-density custom-made tiling arrays used in the experiments contain approx. 3 million perfect
match and mismatch probe pairs tiled through the complete yeast genome at a 4 bp tiling resolution.
Only perfect match probes were used for normalization and analysis. The Bioconductor package Starr
[Gentleman et al., 2004, Zacher et al., 2010] was used for data read-in, processing and all further analyses.
Quality assessment of each measured array was done by inspection of raw image, density-plots, boxplots,
scatter-plots and MA-plots in order to avoid processing awed arrays. This confirmed that there were no
manufacturing defects, etc. (images not shown). It revealed that the first replicate of 12 min measurements
showed a lower intensity range than the other replicates. The scatterplots and pairwise correlations (Figure
23) however revealed, that apart from a global intensity shift this array did not behave qualitatively different
than the other arrays. We therefore included all arrays into the subsequent analysis steps. All time points
were log2 transformed and spererately normalized using loess normalization [Yang et al., 2002]. The median
over the replicates was calculated and the genomic input sample was substracted to remove local genomic
and sequence-dependent bias. To ensure comparability of the three time points regarding the absolute scale,
the normalized ratios were subsequently scale normalized to a common median intensity level. The Median
Absolute Deviations (MADs) for the three time points were calculated to 1.03, 0.96, 1.00 for time points
0, 12, 24 respectively, and give a robust measure of the variability of the underlying ratio distributions
[Smyth & Speed, 2003].
Initially, we excluded all genes, which are annotated as dubious or silenced by the Stanford Public Database
(SGD™: Saccharomyces Genome Database) [Cherry et al., 1998], and only kept those annotated as veri-
fied or uncharacterized (5743 genes). To align gene profiles across entire transcripts, only genes with
available TSS (transcription start site) and pA (poly(A) site) assignments from RNA-seq experiments by
[Nagalakshmi et al., 2008] were taken into account (4366 genes). Genes with TSS (pA) measurements down-
stream (upstream) of the annotated ATG (Stop) codon were excluded. To remove possible wrongly annotated
TSSs and pAs, we only included genes with TSS (pA) annotations showing a distance less than 200 bp to
the corresponding downstream (upstream) ATG (Stop) codon (3465 genes). Furthermore, we restricted our
analysis to transcripts with a length of more than 1000 bp. This leaves 2407 genes to build our geneset of
interest Gchip. The mean profiles for each transcript were calculated as described in the following. First,
the profiles were aligned from 500 bp upstream to 500 bp downstream at each TSS, resp. pA. The region
between TSS and pA of the transcripts were scaled to their median length:
Let len be the median length of all these regions, p the vector of intensities at each position of length l, p∗
the scaled vector and p∗i the ith position in p∗. Then p∗i is defined as

p∗i =

{
mean{pj | d l jlene = i} if l > len

p
round(1+

(i−1) (l−1)
(len−1)

)
else

.
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Figure 23: Pairwise scatterplots of the probe intensities. The lower panel shows the respective pearson correlations.
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Figure 24: Figure shows rank behavior over time of those previously chosen clusters. The numbers above the plots
give the size of the shown clusters. Plots were produced with the R package LSD [Schwalb et al., 2010].

17 Rank-cluster selection
Apart from the global transcriptional shut off in the first minutes of the osmotic stress response (probably due
to an immediate dissociation of most proteins from the chromatin by means of increased ion concentrations
[Proft & Struhl, 2004]), one can observe gene regulation patterns consisting of induction resp. repression of
certain transcripts compared to the whole transcriptome. This provides a view independent of a reaction of
unprepared cells, which are thought to be initially unresponsive due to transcription. This can be addressed
by considering the internal ranking of newly synthesized mRNAs over time to get an idea of “intra-differential”
expressed transcripts (differential behavior referring to the bulk of “unchanged” genes), and hence regulation
that is independent of changes in the global level. This whole procedure is based upon ranks, since they show
much more robustness than typical folds, and are thus much more sensitive in terms of detecting significantly
changed expression. To find these “intra-differential” transcripts, synthesis rates were ranked for each of
the time windows 0-6, 6-12, 12-18, 18-24, 24-30 and 30-36 minutes. This whole approach is similar to the
assumption that most genes do not respond to the stimulus that is set. rank gains are calculated to the 0-6
minutes time window as a reference.
Clusters are chosen due to the rank gains of the transcripts seen in the last timeframe, namely 30-36 minutes.
The “up”-cluster contains transcript that show a rank gain of more than 2000 (corresponding to a 35%
difference in rank percentiles; 2000 of 5743 genes). The “up-even”-cluster contains transcript that show a
rank gain between 1000 and 2000. The “even”-cluster contains transcript that show a rank gain between
-1000 and 1000. The “down-even”-cluster contains transcript that show a rank gain between -2000 and -1000.
And the “down”-cluster contains transcript that show a rank gain lower than -2000. Genes in each cluster
thus show similar behavior due to “intra-differential” expression. We use rank differences to detect really
exceedingly strong effects, namely rank differences that span at least 35% of the rank percentiles of the whole
distribution (“up”- and “down”-cluster). This means that any gene considered relevantly altered by us has to
“jump over” the central region in the distribution (Figure 24).
Each of these clusters shows a specific behavior. It can be claimed that genes that belong to the “up”-cluster
are strongly induced, since they are almost not expressed at the beginning and are among those genes at the
end that are expressed the most. Vice versa for genes that belong to the “down”-cluster. Genes that belong
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Figure 25: 265 Hog1 and/or Msn2/4 dependent genes observed by [Capaldi et al., 2008] to be up-regulated more
than 1.5 fold after 20 min. treatment of 0.4 M KCL. Plot was produced with the R package LSD
[Schwalb et al., 2010].

to the “up-even” or “down-even” -cluster are slightly induced or repressed respectively. Genes that belong to
the “even”-cluster show no “intra-differential” behavior. To assess the rank variability, we calculated a MSD
(mean standard deviation). Since this amounts to approximately 117 ranks among (wild type) replicate
measurements, our previous cutoffs for cluster selection are justified. We further verified our calculated
rank gains by highlighting known genesets from the literature to confirm their expected behavior during the
osmotic stress response (most figures not shown) (Figure 25), and also compared them to typical folds (see
main text figure 3C).

18 Correlation to Pol II ChIP-Chip data obtained under osmotic
stress conditions

Clusters were correlated to Pol II occupancy obtained by our ChIP-chip experiment (see section 16.1) under
wild-type and osmotic stress conditions (Figure 26). The data shown is the genewise mean from start to stop
codon, processed by means of the Bioconductor Starr package [Gentleman et al., 2004], see (section 16.2).
Genes that were selected for gene profile alignment Gchip share 111, 242, 1534, 272 and 248 genes with the
up , up-even, even, down-even and down cluster respectively.

19 Correlation to Proteomics
Clusters were correlated to quantitative proteomics data obtained under wild-type and osmotic stress con-
ditions [Soufi et al., 2009]. Although the overall relationship to our selected clusters is only slightly, there is
an excellent correlation between the subset of osmotic stress up-regulated mRNAs and their corresponding
Protein changes. This poor overall relationship may be attributed to the “uncoupled worlds” of transcription
and translation (Figure 27).
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Figure 26: Left: Mean Pol II occupancy profiles of all selected clusters (see section 16.2,17). Profiles are obtained
after 0, 12 and 24 min of osmotic stress (light blue, blue, dark blue lines). Vertical dotted lines are drawn
at the TSS and the pA site. Right: Heatmaps of the Pol II profiles for all cluster at 0, 12, and 24 min.
Each row corresponds to one gene. The vertical dotted lines mark TSS and pA of each gene. Pol II
occupancy from low to high is coded with colors ranging from dark to bright.

39



Figure 27: The data shown are the log2(folds) of the proteome after 20 min of osmotic stress. Each cluster is
depicted as a boxplot (only the common genes are depicted). Colors correspond to initial color scheme.

20 GO enrichment analysis of selected clusters
GO enrichment analysis was performed with the R Bioconductor package “GOstats” [Falcon & Gentleman, 2007].
All yeast orfs were chosen as the “Gene Universe”. This is the population (the urn) of the Hypergeometric
test, which yields p-values and odd-ratios for overrepresentation of each GO term in the specified category
among the GO annotations for the interesting genes. In this case, the selected clusters.

40



Figure 28: Top 10 GO categories of “up” and “down” mRNAs. Sorted by p-values. GO category annotations can be
accessed in supplementary tables (6,7). Grey bars depict the size of each GO category scaled to 100%.
The red line indicates the percental proportion of each category that is expected by chance. Green bars
show the actual enrichment of each category in percent. Black lines indicate the number of enriched
genes (green bars) in relation to the number of tested genes (# 368 resp. 415). Dashed lines show the
size of each category in proportion to the whole number of genes (Gene Universe #5877).
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Figure 29: rank gain of target genes of TF HSF1. We observe three typical trends: 1) induced genes 2) repressed
genes 3) genes whose expression does not change over time.

Part III

Gene regulation during osmotic stress
21 Transcription factor dynamics in osmotic stress
The majority of transcription factors (TFs) are low abundance transcripts (see main text figure 2B), and
their transcription rates do not behave extraordinarily in osmotic stress compared to the overall transcription
rates (Figure 30). This suggests that most TFs are regulated on the signaling level, by protein modifications,
and not on the transcription level. This is not surprising, since we record the initial phases of the stress
response. Such a fast response cannot be established by transcriptional regulation of TFs. It is much more
likely that TFs reside in the cytoplasm in their inactive form until they are converted, e.g. by Hog1, into
their active counterpart. It is therefore rarely possible to directly detect active TFs by their own expression
rather than by the expression of their target genes.
Likewise the expression of the target genes of a TF do not show a common trend. Rather there are some
genes that are induced, some repressed and some that do not show any major changes in expression. This
leads us to conjecture that TF-TF interaction play a crucial role. (Figure 29) shows this phenomenon for the
target genes of HSF1, a TF that is active during stress response (see main text figure 4A).
In order to discover the main players of transcriptional regulation during osmotic stress we first need to define
a TF-target relation. There are several databases which offer more or less comprehensive lists of TF-target
pairs or motifs [Teixeira et al., 2006, Matys et al., 2006, Bryne et al., 2008]. It is important for our purposes
to have a reliable list with a low number of false positive relations. Therefore, we decided to use the TF-target
relation provided by [MacIsaac et al., 2006]. TFs with less than 20 targets were excluded from subsequent
analysis steps (84 TFs remaining). Among the set G of all genes, let Gup resp. Gdown be the set of genes that
are induced resp. repressed during osmotic stress, i.e. the genes in the up resp. down cluster (see section
17). We used an exact Fisher test for assessing whether the set of induced/repressed genes is significantly
enriched in the target set of a certain TF, relative to the set of non-targets (see main text figure 4A). To
correct for multiple testing we applied a Benjamini-Hochberg correction, selecting adjusted p-values below
5%, i.e., controlling the familywise error rate at the level of 5% [Benjamini & Hochberg, 1995]. This means
that less than 5% of the rejected hypotheses are wrong, which in our case (9 TF) means less than one.
It is noteworthy, that even for the most evidently active TFs, only a fraction of the target genes were induced
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Figure 30: Clusterplot of the rank gain of all genes (5976 genes in grey, left) and genes coding for TF factors (84
genes in purple, right). Blue line indicates median rank gain, black lines show quartiles of the distribution,
shown is the distribution between the 95% and 5% quantiles.

resp. repressed. Therefore, the medians of the TF targets’ synthesis rates do not change considerably with
time. Instead, a plot of the 90% and the 10% quantiles reveals activatory and repressive TFs (see main text
figure 4B). Several possible explanations of this phenomenon need to be discussed: 1) There is a tremendous
amount of false positive TF-target annotations in the MacIsaacs data set. 2) Different targets of one TF
have different response characteristics, e.g., different (active) TF concentration thresholds for being switched
on. 3) TF interactions, either cooperative or antagonistic, play a crucial role in target gene regulation.
ad 1): We consider the TF-target predictions of [MacIsaac et al., 2006] reliable, as they are based on high
quality ChIP-chip experiments [Harbison et al., 2004] in different conditions and are combined in a stringent
and conservative way. ad 2): Although various targets may have various response characteristics, this is
unlikely to play such a dominant role in the early salt stress reaction. It is known that the dynamics of the
Hog1 stress response varies with salt concentration [Muzzey et al., 2009], hence the level of TF activation
is likely to vary as well. Nevertheless, experiments at salt concentrations other than 0.8 M have shown
a very similar behaviour concerning the set of regulated target genes (see, e.g., our comparison to the
[Capaldi et al., 2008] data, figure 25). To us, interactions between TF are the most plausible explanation for
the phenomenon of non-responding target genes. The next section will therefore be devoted to the derivation
of methods for assessing TF interactions.

22 Modeling of transcription factor interactions

22.1 General approach to modeling genetic interactions
Let G be the set of all genes for which our measurements are available. Traditional interaction screens
measure the effects β1,β2 (e.g. growth relative to wild type) of two interventions at T1 ∈ G resp. T2 ∈ G,
say. A function f = f(β1, β2) is assumed which predicts the effects of the combined intervention in T1 and T2
from the observed single interventions. Having measured the actual effect e12 of the combined intervention,
the difference between measured and predicted effect, β12 = e12 − f(β1, β2), is defined as the interaction
effect. For a large set T ⊆ G of genes, (the majority of) all pairwise interactions are measured and typically
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displayed in a heatmap of the resulting T × T interaction matrix. Since there are several plausible choices
for the function f [Mani et al., 2008], which do affect the outcome, and since interaction scores are prone to
large variation, individual interaction scores are generally not very reliable. However, two interventions T1
and T2 may be grouped together by similarity of their interaction profiles, i.e. by the vectors Sj = (sjx)x∈T ,
j = 1, 2. Similarity is typically measured by correlation distance, similarity(T 1, T 2) = 1− corr(S1, S2). The
products of the genes T1, T2 that are similar with respect to correlation distance are very likely to interact
either physically or functionally [Krogan et al., 2006, Pan et al., 2006].

Our aim is to asses interactions of transcription factors, so let T be a set of transcription factors. The data
consists of wild type and osmotic stress expression measurements (sections 12.1, 12.2). Let TF1, TF2 ∈ T ,
throughout the rest of this paper, denote their target sets resp. by M1,M2 ⊆ G. We do not perform
single/double interventions at TF1, TF2, thus the situation is somewhat different from that described above.
Assume that the activity of TF1 and TF2 has changed between the two environmental conditions. Let
Mj = G \Mj , j = 1, 2. The set of all genes can be partitioned disjointly into the four sets

G = (M1 ∩M2) ∪ (M1 ∩M2) ∪ (M1 ∩M2) ∪ (M1 ∩M2)

The genes in M1 ∩M2 are affected by both activity changes, whereas the genes in M1 ∩M2 resp. M1 ∩M2

are affected by TF1 resp. TF2 only. Finally, genes in M1 ∩M2 are affected by neither of the two TFs.
Hence these four gene sets can be used to separate baseline effects from individual effects of TF1, TF2, and
from interaction effects of both. The next two sections will introduce two conceptually distinct approaches
to quantify transcription factor interaction effects. It is a major success of our strategy that both methods
agree remarkably well in terms of their profile similarity-based interaction predictions.

22.2 Logistic Regression Model
For each pair of transcription factors TF1 and TF2 with their target sets M1 and M2 respectively, we fit a
logistic regression of the form:

log

(
P(g is induced)

P(g is not induced)

)
∼ β1Ind(g ∈M1) + β2Ind(g ∈M2) + β12Ind(g ∈M1 ∩M2) , g ∈ G

Here, Ind(.) is the indicator function with values in {0, 1}. The response term is the log-odds for a gene
g to be differentially expressed, β1and β2 measure the first-order effects while β12 is the coefficient of the
interaction term. The response term is obtained by calling the eBayes function from the R package limma
[Smyth, 2004]. As we did not have any replicates we used the last two time points from the osmotic stress
experiment (synthesis rates) (section 12.2). This procedure is justified, because those time points are highly
correlated (Pearson correlation r = 0.95).
It is also possible to use the derived value

β̃12 = 2 · sign(β12) · (0.5− pvalue(β12))+ , with x+ =

{
x if x > 0

0 else

as an interaction measure. This has the advantage of constraining the range of values to the range [−1; 1]
and, emphasizing significant p-values, leads to more stable results. The matrix obtained with this interaction
measure is shown in (Figure 31).

22.3 Odds Ratio Ratio (ORR) model
For two transcription factors TF1, TF2 ∈ T and any set of genes S ⊆ G, the enrichment of common targets
of TF1 and TF2 in S can be measured with the help of the odds ratio (=determinant) ORS of the 2 × 2
contingency table (

|M1 ∩M2 ∩ S| |M1 ∩M2 ∩ S|
|M1 ∩M2 ∩ S| |M1 ∩M2 ∩ S|

)
We expect cooperative transcription factors to have their common targets enriched in the set Gup of induced
genes, compared to the enrichment in the set of non-induced genes, G\Gup . The log-ratio of the odds-ratios
ORR = log ORGup

ORG\Gup
constitutes our interaction measure.

Since generally |Gup| � |G \Gup|, we add pseudocounts to the contingency table by adding the second row
to the first, after scaling with a factor α and adding the second column to the first likewise. Both odds-ratios
are biased towards 1 with this procedure. We found α = 0.001 to yield the best results.
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Figure 31: Synthetic interaction screen using the modified interaction term β̃12 from the logistic regression as inter-
action term.
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22.4 Quality control
We made sure that the effects we are seeing are not due to the target annotation. (Figure 32) shows a
heatmap of the pairwise intersect sizes from our target annotation. The pairwise TF similarities calculated
as the intersect sizes of their target sets yields a TF clustering which is completely different from that obtained
in the synthetic interaction screen (see Figure 31).

H
S

F
1

R
P

N
4

R
T

G
3

C
IN

5
D

A
L8

2
D

A
L8

0
R

E
B

1
B

A
S

1
P

D
R

1
F

K
H

1
S

K
O

1
F

K
H

2
C

B
F

1
G

C
R

1
G

C
R

2
O

P
I1

A
B

F
1

P
H

D
1

G
LN

3
A

C
E

2
S

P
T

2
R

M
E

1
D

IG
1

S
F

P
1

A
R

R
1

S
T

B
2

S
T

B
1

S
T

B
5

P
H

O
2

P
H

O
4

M
B

P
1

G
AT

1
G

AT
3

R
LM

1
IN

O
4

IN
O

2
R

O
X

1
YA

P
1

M
S

N
2

S
U

T
1

M
S

N
4

S
P

T
23

S
O

K
2

F
H

L1
C

S
T

6
H

A
P

4
T

E
C

1
G

C
N

4
YA

P
6

YA
P

7
YA

P
5

N
D

D
1

A
F

T
2

S
U

M
1

S
T

P
1

S
W

I5
S

W
I4

S
W

I6
T

Y
E

7
A

F
T

1
S

T
E

12
A

R
G

81
A

R
G

80
A

S
H

1
X

B
P

1
A

D
R

1
S

N
T

2
M

A
C

1
G

Z
F

3
N

R
G

1
U

M
E

6
A

Z
F

1
LE

U
3

M
C

M
1

M
E

T
32

M
E

T
31

H
A

P
5

C
A

D
1

H
A

P
1

H
A

P
3

H
A

P
2

R
A

P
1

M
O

T
3

S
K

N
7

FHL1
SFP1
RAP1
INO4
INO2
ARG81
ARG80
GCR2
ADR1
CBF1
ABF1
RPN4
REB1
MET31
PHO4
UME6
BAS1
MET32
TYE7
DAL80
SWI5
MSN2
ARR1
CST6
GZF3
HAP4
YAP5
GAT3
PDR1
STB5
HAP3
HAP5
SUM1
PHO2
STB2
MSN4
CAD1
YAP1
HSF1
STP1
YAP7
GCN4
HAP2
SPT23
GAT1
RTG3
GLN3
SNT2
OPI1
GCR1
TEC1
DIG1
RME1
MAC1
AFT2
STE12
LEU3
SPT2
DAL82
ACE2
HAP1
FKH2
MCM1
FKH1
SWI6
NDD1
RLM1
SWI4
STB1
ASH1
MBP1
AFT1
YAP6
MOT3
CIN5
SKN7
SKO1
PHD1
SUT1
SOK2
AZF1
NRG1
XBP1
ROX1

intersect sizes

Figure 32: Heatmap of the pairwise intersect sizes of all transcription factor annotations. The bar on top shows the
absolute size of the target gene annotation. Intersect profiles were clustered according to their correlation
using average linkage clustering. This figure shows substantially different neighborhood relations than in
(Figure 31).
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Part IV

Salt sensitivity screen
Strains were spotted on YPD plates with 0.8 M sodium chloride at 30°C. We started with an OD600 of 0.1
and spotted a 1 : 10 dilution series of length 6.

Figure 33: Dilution series of some of the “up”-cluster genes. Genes were selected for a particularly high rank gain
and unknown biological function.
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Figure 34: Dilution series of 20 of the marked differentially expressed genes in (Supplementary figure S8).
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Figure 35: Dilution series of the transcription factors detected as active (main text Figure 4A).
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