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Abstract

Reactive chromatographic processes are investigatedetiwly for irreversibleA — B
and reversibleA — B reactions. The models consist of two partial differentigi@ions, ac-
counting for each component convection, longitudinal elispn, adsorption and first order
chemical reactions. Analytical and numerical solutionglef models are needed for ana-
lyzing and optimizing the processes in the fixed-bed colummalytical solutions are ob-
tained by means of Laplace transformation. Temporal mosranet derived from the Laplace-
transformed solutions. For validation, the high resohutigpwind finite volume scheme is

applied to solve the model equations numerically. Severs¢ ctudies are carried out and the
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analytical solutions are compared with the numerical ofiég. good agreements between so-
lutions verify both the correctness of the analytical Sohd and the accuracy of the suggested

numerical scheme.

Introduction

Chromatography is a family of analytical chemistry tecluaig| for the separation of mixtures.
Common to all chromatographic techniques is the passingah#ple (the analyte) in the mobile
phase past a static retentive medium called the statiorfaagey The stationary phase provides
resistance to transport via chemical interactions withcthraponents of the sample. Each compo-
nent in the sample has a characteristic separation ratedhate used to identify it, and thus the
composition of the original mixture. It is an effective chieal technique for the separation and
purification of life science products such as fine chemigdiaymaceuticals, food additives and bi-
ological products. This technique is useful for the corimsiseparation of bulk multi-component
mixtures and can be implemented for the separation of sutxss$athat are not feasibly separable
by conventional processes, namely distillation and etitrad 3

In a chromatographic reactor separation and chemicalioggodf products take place simul-
taneously. The process is principally analogous to reaatitraction (or reactive absorption),
reactive distillation and sedimentation or electrophigreéghen accompanied by reaction. Chro-
matographic reactors, by virtue of separating productsfreactants, can enhance the yield of
reactions that in ordinary reactors are limited by equilibr.* Moreover, they have capability to
reduce investment, energy, operational cost, size of egemp, pollution and waste. The coupling
between chemical reaction and chromatographic separatiarpulse-fed catalytic reactor were
investigated by Schweich and VillermadxGeneral transient models of reactive chromatography
with Langmuir adsorption isotherms and mass transferteesies were studied by Cho et®al.
This theoretical work was experimentally verified by Pelasuat al” The theoretical model for

countercurrent chromatographic reactors was also vegfieeérimentally>~2 The authors found



that deviation of experimental results from the theoréticees was due to the assumption of linear
adsorption isotherm. They also showed that these reachqm®ve the conversion of the product
in reversible reactions such as isomerizations. Laterransystem was reviewed with a reversible
reaction of the typé\ < B by Carta® The work was extended by Binous and McCd&jrom two
interacting isomers to three-component systems. Sev#rat oontributions on chromatographic
reactors with different focal points were also publisHéd-21

The moment analysis has been used in a number of studies dflfee systems. Schneider
and Smitl#2 used temporal moments to determine adsorption equilibcomstants, rate constants
and intraparticle diffusivities from experimental measuents. Mehta et &° represented the
skewness of experimental elution curves by using theirdnghoments in the Hermite polyno-
mial expansion. Breakthrough curves for fixed-bed adsserbed reactors were represented with
moments of the impulse respon&eRecently, Javeed et &.used the Laplace transformation to
derive analytical solutions of the equilibrium dispersarel lumped kinetic models. Moreover, the
authors also derived the first three moments of Laplaceftremed solutions for different sets of
boundary conditions (BCs).

This paper is focused on the analytical and numerical inyason of irreversible and re-
versible chromatographic reactions involving two compusad andB. Analytical solutions are
obtained by means of Laplace transformation and temporaients are derived from the Laplace-
transformed solution$>27-2%n the case of no analytical Laplace inversion, the numekiaplace
inversion is used to get back the solution in actual time dor@3The high resolution upwind finite
volume scheme is applied to solve the models numeriéafly Several case studies are carried out
and analytical solutions are compared with the numeridatisms.

The paper is organized as follows. In Section 2, the reactivematographic model describing
irreversible reaction is analytically solved. In Sectigrit® analysis is extended to the reversible
reaction case. In Section 4, analytical moments are defivedthe Laplace transformed solutions
of irreversible and reversible reactions. Section 5, pressaumerical test problems to validate

analytical and numerical results. Finally, conclusiores@mawn in Section 6.



Chromatographic Reactor: Irreversible Reaction (A—B)

A one-dimensional reactive transport model of linear chatwgraphy is considered. In this pro-
cess, the componeAt (component 1) converts ® (component 2) through a simple irreversible
first order reaction having reaction rate constaninalytical solutions of the model are obtained
for different sets of inlet and outlet boundary conditioggieans of Laplace transformation. Here,
the elegant solution procedure of Quezada éf &.adopted to solve the model equations. tLax-
notes the time coordinate amdepresents the axial coordinate along the column lengthreMaeer,

it is assumed that both components have the same apparpatsiis coefficienD = D1 = D».
This assumptions, which is usually well fulfilled for moléesi of similar sizes, simplifies the fol-

lowing mathematical analysis. The governing model equatare expressed as

dc dc d%c
(1+a1F)d—t1+ud—Zl—Dﬁzl:—kc1, 1)
dc dc d%c
(1+a2F)d—t2—|—ud—Zz—Dﬁzzzkcl. )
For an initially not preloaded fixed-bed holds
G(0,2) =0, i=12. 3)

Appropriate boundary conditions at the column inlet andetwdre also needed which will be
discussed bellow. In above equatiows,and ¢, denote the liquid concentrations for first and
second components of the mixtueg,anda, represent the linear adsorption isotherms (or Henry
coefficients)u is the interstitial velocity, an& = (1—¢€) /¢ is a phase ratio based on the external

porositye € (0,1). Moreoverk is the rate constant of first order chemical reaction.



Normalizing egs 1 and 2 by taking= { € [0, 1] and definingPe = %, we obtain

dC]_ dC]_ dZC]_ o
alﬁ—i_PeW_—dXZ = —IpCy, (4)
002 (9C2 (9202 .
GZW + Peﬁ e I'pCi, ©))
and eq 3 becomes
G(0,x)=0, i=12 (6)
Here
L L2

The Laplace transformation is applied to find the analytscdilitions of eqs 4 and 5 for the given
initial and boundary conditions. Two sets of boundary ctiads are considered as discussed
below. The derivation of analytical solutions of eqs 1 and thie Laplace domain for irreversible

reaction and Dirichlet boundary conditions are presemntdtie appendix A.

Dirichlet Boundary Conditions at the Column Inlet

In this case, the normalized boundary conditions at theaané& of a not back mixed column of

hypothetically infinite length are given as

oG

Ci(t,0) = Giinj, M

(t,0)=0, i=12. (8)

Herec; inj denotes thé-th injected concentration at the left end of the column fite = 0).



For the BCs in eq 8, the Laplace domain solution is given as Agpendix A)

Gi(s.X) = 2wy, ©)
and
Ca(5X) = MMy — 1O (m, y), (10)
s[s(az—a1) —rp]
where

2

Mlzexp<Pe_ VPE+4(rp +saz) X) | Mzzexp<Pe—\/P§2+4sa2X> L

The solutions in time domaing;(t,x) can be obtained by using the exact formula for the back

transformation:

y+ico
1 — .
C] (t,X) = 2—7_[' / eﬁtSCj (S, X)dS, J = 1,2, (12)
y—ieo

where,y is a real constant that exceeds the real part of all the sanijab ofc; (s, x).

By applying eq 12 on eqgs 9 and 10, we obfirf?-32

C1(t,X) = C1injE1, (13)
Co(t,X) = CoinjEx — Crinj(Er —E2+Fo—Fy), (14)
where
ePTe( 't*% 1 -t*% 1
E=—- [e“"“b‘er]‘c(a'T — bit7> + efbierfc <a|T +bit7>] : (15)



with

1

a = (a)2x, b= 4#(1 —, b= 402 (16)
Moreover

1 (Pﬂ+r7Dt) o ait_% 1 i di ait_% !
= :ée 2 Tag-ap/ | @ @bigrfe T—dit? +edYerfc T‘f‘ditz ) (17)
with
Pe2 aor Pe? r
dy = + 20 dx = K (18)

4o7  o(az—on)’ 4o, ar— 0o

Here, erfc denotes the complementary error function. Thispietes the derivation of solutions

for the boundary conditions given by eq 8.

Robin (or Danckwerts) Boundary Conditions at the Column Inlet

In this case, back mixing at the inlet of a column of finite léngre considered. The boundary

conditions have the forg?

1 dcg oG

Ci(t,0) =Cijnj + =— P I’ Ix

=0 i=12. (19)

By adopting the procedure of Appendix A, the Laplace domalatgns for the boundary condi-

tions in 19 are given as

Gi(s,X) = C1,inj )\26/\2+)‘1X—Ale/\1+}\2x _ Pe+ \/Pe2+4(rD+sal)
1(S, S (1= &)he— (1_ Ao 12 > ;

(20)



and

_ Coinj  Ciinj r AghatAsx — ) gehatAax
Cg(S,X) :< 2inj  blinj D ) (( 4 3 -

s s s(a—a1)—rp ) \ (1-R)seh— (1-M)Age

+C17inj < ) ) <( Aol tAx _ ), ghrtAxx ) 21)

s \s(a2—a1)—Trp 1—%))\29‘2—(1—%))\19‘1

Here,

Pe+ /Pe? + 4sa- (22)

2

A34 =

In this case, no analytical Laplace inversions is possibiherefore, numerical Laplace inversions
will be used to get back the solution in the time dom#liin this technique, the exact integrals of

back transformation (c.f. eq 12) are approximated by usmgiEr series.

Reversible ReactionA «— B

Now, we present a reactive chromatographic model desgrilgversible reactions. In this ca8e
(component 1) is injected to the column which convert8 t@womponent 2) with a reaction rate
characterized by the constdqt Because of the reversibility of the reactidhjs also converted

back toA with reaction of rate constaks. The corresponding model equations are given as

(9C1 (9C1 (9201

(1+a1F)W+UE_Dﬁ = —kiC1+koCp, (23)
ac ac d%c
(1+a2F>d—t2+ud—zz_ ﬁzz = ki1 — koCp, (24)
with initial conditions
(0,2 =0, i=1,2 (25)



In normalized form the above equations can be rewritten as

dC]_ dC]_ dZC]_ -

alﬁ + PGW T2 —Ip,1C1+TI'p2C2,
(9C2 002 (92C2
=z e e — 2

25+ Pe Ix  a@ —'paci—ro2ce, (26)

where
z Lu Pel L2
X—E, Pe—B, a|—(1+a|F>T, rD7|—k|5, |—1,2 (27)

Once again, two different pairs of BCs are considered whielyaen by eqs 8 and 19. By adopting
the same solution procedure of Appendix A, we get the follggolutions in the Laplace domain

for the considered two types of BCs.

Dirichlet Boundary Conditions at the Column Inlet

In this first case, again the boundary conditions in eq 8 &entanto account. The solutions in

Laplace domain are summarized as

&3(rp,1C1,inj — E4C27inj)emzx _ &alrpaCuinj — €3C27inj)em4x

C1(S,X) = , 28
1($X) S'p.1(é3—&a) S'p.1(é3—éa) (28)
_ (rpaCinj — 4C2inj) mx  ('D.ACLIn] — §3C2inj) myx
Co(S,X) = ——— ’ — 12 gmuX 29
2(8) S(&3—&a) S(&3—¢&a) (29)
where forW :=rp1—rp2, Ri=rp1+rp2, Q:=a,—a; andG := a; + ay,
Pe+ \/Pe?—4 Pe+ /Pe2—4
My, = - ‘2 (30)

, 2 ’ 4 2



and

f10= 3 [R+s6F VRET9Q2-230Q)]. (31)
Esa= — [W QT VRET $Q7 - 230Q]. (32)

Analytical Laplace inversions of the above equations arg déficult to derive. Therefore, nu-

merical Laplace inversions are used again to get back sakith time domairt°

Robin (or Danckwerts) Boundary Conditions at the Column Inlet

In this case, the BCs in eq 19 are reconsidered. The solutidhe Laplace domain are given as

_ &3(rp,1C1inj — E4Czyinj)(m1eml+mZX — mpeMe M)

 1paS(&3— &) ((1—F2)mem — (1— FL)mem)
E4(&3C2inj — D 1CLinj ) (MM HMeX _ myglMemax)
rp,18(é3 — &4) ((l— %)msemg —(1- %)We,m) )

c1(s,X)

(33)

and

S(s.X) = (rp,1C1inj — €4Cojinj ) (MM T M2X — mpelmetmX)

’ S(&3—&4) ((1— F)me™ — (1— T )mpe™)
(&3C2,inj — rD,1C1,inj) (Mg MX — My +msX)
(83— &) ((1— Fe)mge™ — (1— TE)myue™s) ’

_|_

(34)

whereé andm; for i = 1,2,3,4 are given by egs 31, 32 and 30. Once again, analytical Laplac
inversions of the above equations are not possible. Therefmmerical Laplace inversions are

used to determine the time domain solutions.

Moments Analysis

Moment analysis is an effective method for deducing impurtaformation about the retention

equilibrium and mass transfer kinetics in the colu#f¥:343°The Laplace transformation can be

10



used as a basic tool to obtain moments. The numerical inkeygkace transformation provides
optimum solution, but this solution is not helpful to stutt¢ bbehavior of chromatographic profiles
in the column. The retention equilibrium-constant and peaters of mass transfer kinetics in a
column are related to the moments in Laplace domain. Argalythoments are derived from the
solutions in Laplace domain by using the moment generatioggsty for continuous breakthrough
curves?® In this case,c are multiplied withs to transform the step responses to closed pulse
responses that allow calculation of finite moments.

The zeroth moments are defined as

(i)

Ly =lim(sG(s,x=1)), i=12 (35)
s—0
and then-th moments are given as
. N(er. —
u = L g SSEEX=1) s (36)
“(()I) 50 ds"

Next, we define temporal moments to obtain moments from &nalyand numerical solutions in
the actual time domain. The normalizedh temporal moments of the band profiles at the exit of

chromatographic column of lengi= 1 are defined as

(i)_f(j”(:i(t,x:l)t”dt h ._% 012 i—12 7
“”_f(;”ci(t,x:l)dt’ where C_dt n=012---, i=12. (37)

While, then-th central moments are expressed as

/mzfﬁqmXZDﬁ—ume

00 ) 2071727“'7 :172 38
Hn JEctx=1)dt " ' (38)

The formulas given above use derivatives to approximatartbments and transform the step
response to pulse response which is the requirement of fiesiglts of numerical integration.

These moments will be used to compare analytical and nuaieniements.

11



Complete derivations of the moments up to the third momeetpresented in the appendix B,
using the availability of solutions in Laplace domain and thoment generating property of this
transformation for continuous boundary conditions. Meepit is assumed thak j,j = 0, i.e.

only component A is injected to the column.

Numerical Test Problems

Analytical results of the previous sections are validatgddnsidering selected test problems. For
this, analytical solutions are compared with the numesoaltions of high resolution flux-limiting
finite volume scheme (FVS).-36

In all test problems, it is assumed thatihj = 0, i.e. only component A is injected to the

column.

Problem 1: Irreversible Reaction

In this test problem, analytical and numerical results odeleequations given by eqs 1 and 2
are compared for Dirichlet and Danckwerts inlet BCs (c.5 8cand 19). All parameters of the
problems are given in Table 1. The valuekpk; andk, were selected to ensure that significant
degrees of conversion can be achieved within availabldease times which is compatable to the
adsorption properties and allow for separating the compiseandB.37-381t has been proven ex-
perimentally that such a careful match in a chromatogragaictor leads to improved performance
compared to the conventional fixed bed reaétet?

Figure 1 (left) shows the comparison of solutions for Dikatlinlet BCs on a column of infinite
length with outflow BCs at the outlet (c.f. eq 8). In this cabege types of solutions are compared,
such as analytical solutions obtained by analytical Lagplagersions, solutions obtained through
numerical Laplace inversions, and solutions obtained fitearfinite volume scheme. Good agree-
ments of the solution profiles validate the accuracy of nicaékaplace inversion and FVS. From

the results it is clear that the first component with largén@af adsorption coefficierst; elutes at

12



later time from the column compared to the second componghtsmaller value of,. Because
of only a forward reaction, the concentrationof component 1 is decreasing anydof component
2 is increasing.

The right plot in Figure 1 (right) depicts the comparisonaisions for Danckwerts inlet BCs
on a column of finite length with outflow BCs at the right end.(eq 19). In this case, two kinds of
solutions are compared, such as analytical solutionsmdxdahrough numerical Laplace inversion
and solutions obtained from the FVS. Good agreements okihdts validate again the accuracy
of numerical Laplace inversion and the FVS. Moreover, thelb@rs of concentration profiles are
exactly the same as observed in the case of Dirichlet BCs.

Figure 2 illustrates the effect of boundary conditions oa $lolution. Here, we take the in-
terstitial velocityu = 0.6 cm/min. It can be observed that more accurate Danckwerts boundary
conditions are needed for chromatographic model equatuties the Peclet number is relatively
small, e.g.Pe < 60 (orD > 0.01 cm?/min) in this case. For such values, there are visible differ-
ences between the results obtained by using Dirichlet amdkyeerts boundary conditions. On the
basis of these results, we can conclude in agreement witiopiefindings, e.g in Danckwerts,
that the implementation of Dirichlet boundary conditiossniot sufficient for larger dispersion
coefficients. However, for large values of Peclet numliierX 60) or smaller axial dispersion
coefficients D < 0.01 c?/min), typically encountered in chromatographic columns waltked
with small particles, there is not much difference betwdengolutions of Dirichlet and Danckw-

erts boundary conditions.

Discussion on the Analytically and Numerically Determinedvioments

Now we present an analysis of analytically and numericadtgdnined temporal moments for
considered BCs. It is an effective strategy to deduce inapbihformation about retention time
and mass transfer kinetics in the chromatographic colunfre cbmplete derivation of moments
for considered BCs are given in the Appendix B. Some anallyggpressions fop’g) and u’g)

were very lengthy. Therefore, only plots of these centratmaots are presented in such situations.

13



The numerical moments are obtained from the FVS by using t@ent formulas given in egs
37 and 38 for the zeroth, first, second central, and thirdraentoments, respectively. The trape-
zoidal rule is applied to numerically approximate the im&germs appearing in these equations.
Here, derivatives of the concentration profiles are usegpoaximate the moments, transforming
the step response to a pulse response which is a requireoreifmife results of the numerical
integration.

A guantitative comparison of the zeroth, first, second amd @nalytical and numerical mo-
ments over different flow rates was made. The zeroth absolateents represent the total masses
of the solutes (area undey versust). The first momentsuf) denote the retention times (mean
of the concentration pulses). The values of the equilibrm@mstants; can be estimated from the
slopes of a straight Iineﬂ,f) over 1/u for constant column length and porosity. The second central
momentsu’(zi) are a measure of the spread of the concentration profileg #gimlocation of the
center of masses (i.e. the variance of the elution curvaespeovide suitable information about the
mass transfer processes in the column. The third centralentsp’ g) represent the skewness of
the concentration distributions (i.e. they evaluate fasymmetries).

Figure 3 shows the comparison of moments correspondingnolaerts boundary conditions.
Due to the determined dependencies the zeroth, first, seanddhird moments are plotted versus
u, 1/u, 1/u®, and Y/u®. The expected linear trends were found. A good agreemetieafetsults

verifies the correctness of analytical moments and alsoigtegrecision of our numerical results.

Problem 2: Reversible Reaction

This part focuses on the comparison of analytical and nwakmesults for the two-component lin-
ear reactive equilibrium dispersive model with DirichlateDanckwerts inlet boundary conditions
(c.f. egs 23, 24, 8 and 19). The reaction is reversible. Alapeeters of the problems are given in
Table 1.

Figure 4 (left) shows the comparison of analytical and nucaésolutions for Dirichlet con-

tinuous inlet boundary conditions. Similarly, Figure 4yrt) shows the solutions for Danckwerts

14



BCs. Here, two solutions are compared, such as the andlgtikedion obtained through numerical
Laplace inversion and solution obtained from the FVS. Thgressions of the third analytical mo-
ments for Dirichlet and Danckwerts BCs are very long and daraged. Therefore, third moments
were only calculated from the numerical Laplace inversmatson and the numerical solutions of
FVS. Good agreements of the solution profiles validate tlceracy of numerical Laplace inver-
sion and the FVS. From the results it is clear that the commpionéh larger value of adsorption
coefficientg elutes at later time from the column compared to the componih smaller value
of ;. Because of the reversibility of the reaction, heights ofcamtrations are changing for both
components. The concentration of first component with lavgiie of decay rate constakit is
decaying while concentration of component 2 is increasimgtd smaller value of decay rate con-

stantk,.

Discussion on the Analytically and Numerically Determinedvioments

A guantitative comparison of the zeroth, first, second aid @nalytical and numerical mo-
ments over different flow rates was made. Figure 5 shows theants for Danckwerts BCs. A
good agreement of the results with each other verify the piglision of our numerical results

and reveal the expected linear trends.

Effects of reaction rate constants on the solution

The effects of the reaction rate constants on breakthrougtigs was investigated for re-
versible reactions using Danckwerts BCs and choosing again = 1 andcyjnj = 0. Figure 6
presents the concentration profiles for the flow rate givemaible 1. Moreover, we considered
ki = 0.4 min—1 and varied values of,. As expected due to thermodynamic considerations, it
was found that the trends of the steady state concentratimmelate with the ratiok; /kp. For
ki/ko = 0.1, the values of concentrations at steady stateare0.9g/1 andc, = 0.1g/l and for

ki /ko = 10 they arec; = 0.67g/l andc, = 0.33g/I, satisfying alway€; + ¢, = 1g/I.

15



Conclusion

In this article, reactive chromatographic models wereya@l for linear adsorption isotherms
incorporating irreversible and reversible reactions.rBDirichlet and Danckwerts inlet boundary
conditions were considered. The Laplace transformatiagnesmaployed as a basic tool to transform
the linear sub-models of PDEs to linear ODEs which could Iheesloanalytically in the Laplace
domain. In the case of no analytical Laplace inversion, tmaerical Laplace inversion technique
produced reliable results to get back the solution in adioe domain. Moment analysis of the
models was carried out analytically and numerically up fadtlrder orders under linear condi-
tions. The second order flux-limiting finite volume was usedénerate the concentration profiles
and the numerical moments. Good agreement between amédigtid numerical results ensured
correctness of the analytical results and accuracy of thegsed numerical scheme.

Work is in progress to utilize the analytically determinedments for parameter estimation.

Appendix A

Analytical solution of egs 1 and 2

In the matrix notation, eqs 4 and 5 are expressed as

a 0 |9 ) a J | & 92 | & —rp O C1
0 ar C X C X C o O C

where parenthesis | stands for a square matrix afd } represents column matrix. By applying

the Laplace transformation in time domain, the above eqonafives’

a; O C1 d | ¢ d2 | ¢ —rp O C
s 1 1 +Ped— 1 _ﬁ 1 _ D 1 , (A-Z)
0 az | | & X1 & 1 & o 0| G

16



where in the Laplace domaigy andc; are the concentrations of mixture components in the liquid

phase. By rearranging eq A-2, we obtain

d |l o d2 | c —Ip —Ssa 0 C
o Ll s Li_ | b L (A-3)
| & 1 & o —sip | | &

Thus, a combined reaction coefficient matik on the right hand side of eq A-3 becomes

—Ip—Sa 0
B—| ° T . (A-4)

'p —Saz
Next, we compute the linear transformation mafAk Note that, the columns &f] should be the

eigenvectors of the combined reaction coefficient maBjx The eigenvalues and eigenvectors of

[B] are given as:

A = _r _ A1 "n_ _ 0
= —Ip—Sa1, X1 = and A" = —say, Xo = . (A-5)

rpAil A
s(ap—a1)—rp 22

Here,A’ andA” are the eigenvalues ad; andA;, are the arbitrary constants. For simplicity,
we take the values @&;; andAy» equal to one. Then, using eq A-5, the diagonal matraxd the

transformation matri¥A| can be written as

- —Ip —sa 0 1 0
k=| ° A= . (A-6)
0 —Sa> ___™

C1 B 1 0 b1 (A 7)
Co 5(02—rgl)—f b

17



By applying the above linear transformation on eq A-3 we get

b 2 b —Ip—Ssa 0 b
d 1 d 1 _ D 1 1 . (A-8)

dx T dx2
dx b2 dx b2 0 —Sas b2

One can see that eq A-8 represents the two independenty Stiesdie, advection-dispersion equa-
tions with decay term of first order. Next is to find the explsmlutions of these two independent

ordinary differential equations (ODES)

d?b; dby

W_Pe&_(rD‘i‘sal)bl:O, (A-9)
d2b2 db,

The solutions of ODEs in egs A-9 and A-10 are given as

Pe+\/Pe2+4(rp +s07)

5 , (A-11)

bi(s,X) = AieM*+ B2, App=

and

Pei\/Pe2+4sa2' (A-12)

2

bo(s,x) = Aze/\SX + Bze/\d'x, A4 =

Here,A4, B1, A> andB; are constants of integration which can be obtained by usiitglde BCs
at the column inlet and outlet. In this study, we consider sets of BCs given in eqs 8 and
19. Ifrp =0, egs A-11 and A-12 reduce to the well known non-reactivemliatographic model

equations discussed in Javeed et®al.

18



Dirichlet Boundary Conditions at the Column Inlet

In the Laplace domain, the boundary conditions in eq 8 carxpeessed as

Ginj 4G 0 i—12 (A-13)

C_i<s70): s &(Sv )

Using the transformation given in eq A-7, we have

C1(s,x) = by(s.X), (A-14)
which gives
€i(s,0) = by(s,0) = °1—S'f" %(s,oo) _o0. (A-15)
Similarly
bo(s,X) = Ca(S,X) — [s(arzDElS’) >? = (A-16)
so that
ba(s,0) = &(s,0) — [s(arzDEléj’) ‘72 . %(s, ) = 0. (A-17)

After applying the boundary conditions in eqs A-15 and A-h7eq A-11, the values d%; andB;

become

AL=0  By= Cli”" . (A-18)
Thus, eq A-11 takes the following simple form
C . .
by(s,X) = %e‘ﬂ. (A-19)

19



Using the relation in eq A-14, we get the solution in Laplaoendin as

C . .
Ci(s,X) = %Mz.

Similarly, using eq A-17 in eq A-12, we get the valuesfgfandB; as

_ Qinj I'DC1inj

A>=0 B .
2T " s ss(ay—ag)—rp)

Thus, eq A-12 together with the valuesAf andB, becomes

S sis(az—a1)

ba(s,X) = <C27i”i _ 'DC,inj o ) ghax

After using eq A-16 in eq A-22 we obtain

where according to eqs A-11 and A-12

Mlzexp<Pe_ VPE L 4(rp +sa7) X> | Mzzexp<Pe_‘/P§2+4sa2x> |

2

Appendix B

Analytical moments of the elution profiles

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

Analytical moments are presented for Dirichlet and Danaksvgoundary conditions. Herey jnj =

0 is taken into account, i.e. only component A is injectechead¢olumn.
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Irreversible Reaction with Dirichlet inlet BCs

Here, eqs 35 and 36 are used to obtain momﬂrgfsof egs A-20 and A-23 obtained for the

Dirichlet boundary conditions in eq 8 foe= 1,2 andn =0, 1,2,3. Let us define

y:=+Pe?+4rp, Bi2:=PeFy, Q:=0m—-a0;. (A-25)

By using eq 35, the zeroth moments are given as

By

o e [1 _ ez] . (A-26)

1§ 2

A1
=Cinj€2, Ho
From eq A-26, it follows thapél) +“éz) = Cyinj, because; jnj = 0.

The first moments are calculated by employing eq 36ferl
B
2 Pe(VQ— rDal)ez - V(QPe— rDaz)

L
w =Pe(l+aF), = > , (A-27)
y rDPey<1—e7)

The second moments are expressed as

2pg?
s =|'uz—y3(1+aF)2(V+ 2), (A-28)

@_ 1 {eﬁzl (_2(32 N 200Q 207 af) 2Q%  2a2Q N 202 a2

r&  rmy V¥ oy

u + 22 (A-29)
2 1_el3—21 r% rpPe Pe3  Pe?

The second central moments can be calculated from above nerngng the relations

, , o 2
ufg>:ug>_(ug>) L i=12 (A-30)
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Thus, the second central moments are given as

1) 2L2PE(1+aF)?

Ko = u2y3 ) (A-Bl)
2 1 [eﬁ_zl <_2Q2 N 201Q 2a? B a_f) 27 202Q 203 N 01_22
H> _1_eB_21 r% roy y3 y2 r% roPe  Pe3  Pe?
8 2
Pe(yQ— rDDal> er — y(QPe— rDaz)
& (A-32)
rDPey<1—e2)
The third moments are given as
L3Pe3(1+aF)3
ul = Eﬁ v 1F)” 246y 12). (A-33)
@ _ ~1 |:eﬁ21{ 6Q°  6ciQ? 602Q 3Qa? N 1203 N 6a3 N a_f}
) B 3y Y PP
6Q3 6Q%, 6Qa?2 3Qa? 1222 6ad o
et 222 2] (A-34)
r3 riPe  rpPe® rpPe? P Pt Ped
Finally, the third central moments can be deduced from tlatioas
. . . . .\ 3
W = - 2 (W), =12 (A-35)

Irreversible Reaction with Danckwerts BCs

Here, the moments of solutions in eqs 20 and 21, obtainetdédRobin boundary conditions given
in eq 19, are derived.

The zeroth moments are given as

4yPee’™® 4yPee™
H5Y = cuing }fpe 5 Hs? = cuing [1- —pre % | - (A-36)
BZez —Blez BZez —Blez

From eq A-36, it follows thap(()l) + uéz) = Cy,inj,» @SCyinj = O is considered.
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The first moments have the forms

Y = 20{1 5 [y(ZrDJrPeZ) (eﬁzl +e522) + <4rD(1+ Pe)+Pe3> (eﬁz —eﬁzz)]
v2( 1ez —Bje?)

(A-37)

2 = (vPe* +6y°Pe? + P — 64Per} — 8P€° — 4810PE?) (QPe — roary) €2
+ (—2(yPe* + y3(drp — Pe?)) (QPe— rpay)e? — APPe™®(—Perpayy — 2QPe® + 2rpa; Pe?
—12P*Qrp +2(y*Q+4ayrd)Pe— ((16Q — 8ay)rp + a1v3)>rD)eB72 + ((QPe— rpay)
(V5 + yPe® + 48rpPe® + 6y3Pe? 4 64Per? + 8P%)e? — 4P?(—PePrpayy + 2QPe*
— 2rpa;Pe® + 12P“Qrp + 2(y*Q — 4asrg)Pe— ((8a1 — 16Q)rp + a1y*)rp) exp(Pe))eﬁﬂ
/[ -ropey(ple? — pe? — aypee™) (B7e? — pFe? |, (A-38)
The expressions on analytical second central moments vegyelengthy. Therefore, only plots

of analyticalu’(zi) are presented. Moreover, plots of third central mompn‘gé are only obtained

from the solutions of numerical Laplace inversion and FV.$ fgure 3 and Figure 5).

Reversible Reaction with Dirichlet BCs

Here, the moments of solutions in eqs 28 and 29, obtainetiéddirichlet boundary conditions in

eq 8, are derived. Let us define
Q:=0ay—-01, Ri=rpi+rpp, W:=rp1—rp2, G:=a1+0az, (A-39)
and

3374 = Pex Pe2+4R, Y .= 2I’D71+3\N, Z.= 2rD71 +W, 0:= Pe? +4R. (A-40)
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Then, the zeroth moments are given as

i = [rD,2+rD,1eﬁ3} , p ot [1—el33] . (A-41)

R

Tl

The first moments are expressed as

e ' 1p,28[GR? + Q(W — 2Pe)R— 2WQPE] -+ rp 1 Pel4rp ,Q5 — WRQ+ GRZJe’?
1 - .

u2 ~ —3[GR? +WQR— 2WQPe] + Pe[—25QW — WRQ+ GRJe?
1 - .

(A-42)

20VR2 (rme%s + rD72>
B3
(A-43)

26VR2 (eﬁ% - 1)

The second moments are given as

Hy

(L _

4

B {_}{G2(2+Pe)R4+2Q((Q—ZG)Pe2+GWPe-|—ZGW)R3
67R4P6‘3(FD71€_23 +I’D72)

—4Q((Q+G)Pe? - %WQPe— %WQ)WRZ — BWQ?Pe?(—2Pe+W)R
&7 1 1
22pe3 9 5/2 3.Pe/2 2
+12Q%W?Pe } 7 (“RTW)e%/%+Pe e {(sZR"’G —16WR3QG

1. - 3 5 1 3 22 5
+35WQ (—48+W)R2+§Q (W—ZPeZ)WR+ gQW Pez)5

(624806 - 4G - (101 (3 - DI+ W(ZQ+G) QR

—2\NQ<(Q+ G)Pe? — 1—23WQ) R+3Q2W2Pe2) f—;R}(R—l—W)} (A-44)
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7e3
(2) _ 8B [_ o'e {G2(2-|- Pe)R* + 2Q(QPe? + GWPe+ 2GW)R®
S'RPe3(e7 —1)ed/2 32

+ (—4GWQPE? — 4Q%Pe® + W2Q?Pe 4 2W2Q%)R? — 6\N2Q2Pe2R+12\N2Q2Pe3}

{ { RAG? — —Q(8Q +GW)R® + (35 W2Q2 Q2v2) R?+ gWZQZR
+ éwzszeﬂ 5°+ %4 <(—4Q2 +G?)R® + (—Q%Pe? — 10GWQ)R?
+ (13W?Q? — 2GWQPE?) R+ 3\N2Q2Pe2) } ez } (A-45)

eg A-30 can be used to obtain the second central moments fremaltove equations. Moreover,

expressions o;fl’g) were very lengthy. Therefore, plots of third central monsexre obtained from

the solutions of numerical Laplace inversion and FVS.

Reversible Reaction with Danckwerts BCs

In this case, the moments of solutions in eqs 33 and 34, dutdor the Robin boundary conditions

in eq 19, are derived. The zeroth moments are given as

B B
Ll(l) - rsz(BgPeqL ZR)GTS — rsz(B4Pe+ 2R)€74 — 2I'D715P%Pe
0 - B B
R [(33Pe+ 2R)e? — (BaPet 2R)e74]

, (A-46)

B
o 01 [(BPe+2RIET - (BiPer 2R)e* + 25Ped™|
Uy =

B3 Ba (A_47)
R [(BgPe-l— 2R)e? — (BaPe+ 2R)eﬂ
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The first moments are expressed as

Y = [— rD,lpeZ{ (— %R3(3+ (%WQ— 2PeQ — %PeZG)R% %Qv(—ZPeZ +WPe+ 8W)R

n %WPeSQ) 5<eﬁzﬁg +e2pe§ﬁ4) + [(G+ PeG + 4Q) R+ (—PaWQ+ %Pe%— BWQ

+3PQ)R + %{QF’ez(—ZPe2 +WPe+ 12W)R— %WQPe“] <e2"92+l33 B e2P92+B4) }

+2r2(R2(3+Q(W—2Pe)R—2PeWQ){ (— Pet RPE E)<S<e133+el34)

8 2 4
+ Pe(? + R)(? +R) (E‘,ﬁg — eﬁ“) + :—2LR256P6}} / [5P€<FD72weﬁg
_ fD,zweﬁf B rD,15ePePe) (Peﬁsz+ 2R 5, PeB42+ 2Reﬁ4) Rz]. (A-48)

1

u? :—2[— }Pez{ (%P&WQ— %R(GR—WQ)PeZ-l—ZPe\NQR— 5

2

2Pe B 2Pe+ 1
6<e 70 te 24)+<—§WQPe4+

RZ(GR—WQ))
1
4
+ (R3G — RAWQ)Pe— 5RAWQ + R3G) (ezpe?ﬁs - ezpe?ﬁ“) } + (RZG+ RWQ

—2PeWQ) { (— Ipr_ lpet %1R2)5<e33+eﬁ4) +(%P62+R)Pe

R(GR—WQ)Pe® — 3PRWQ

2 8
(%Pe2 +R)) expd (eﬁ3 + eB“) + %RzéePeH / {6Pe< PeB32+ 2Re% _ PeB42-|— ZReBT“)

2R B 2R B
R? <LB 32+ e7 — PeBa+ 2R 42+ er 4 6ePePe)} .

(A-49)
Due to lengthy expressions of analytiqcéi) and u’(zi) , only plots of analyticap’(zi) are presented.

Moreover, the plots op’g) are obtained from the solutions of numerical Laplace irneersnd

FVS.
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Table 1: Parameters for linear reaction case.

Parameters values
Column length L=10cm
Porosity e=04
Interstitial velocity u=21cm/min

Dispersion coefficient of first component | D1 = 0.005cm?/min
Dispersion coefficient of second component D, = 0.005cn?/min

Initial concentrations Ciinit = 09/I
Concentration at inlet for component 1 Cyinj = 1.09/I
Concentration at inlet for component 2 C2,inj = 0.0g/I

Adsorption equilibrium constant for component 1 a; =18

Adsorption equilibrium constant for component 2 a=10
Irreversible reaction rate constant k=0.4min"!
Reversible reaction rate constant (component 1) ki = 0.4min~!
Reversible reaction rate constant (component 2) k, = 0.2min~!
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Figure 1: Problem 1: Irreversible reaction, left: solusdar Dirichlet BCs ak = 1, right: solution
for Danckwerts BCs at = 1. All other parameters are given in Table 1.
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Figure 2: Problem 1: Irreversible reaction, effect of BCslombreakthrough curves at the column
outlet i.,ex = 1 for component 2 considering different values of dispersioefficientsD and
u = 0.6 cm/min. Other parameters can be found in Table 1.
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values ofu. Other parameters are presented in Table 1.
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Figure 4: Problem 2: Reversible reaction, top: solutiondaichlet BCs at the column outlet i.e
X = 1, bottom: solution for Danckwerts BCs»yt= 1. Parameters can be found in Table 1.
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Figure 6: Breakthrough curves at the column outlet; 1 using Danckwerts BCs. Effects of
reaction rate constants on reversible reaction keekirg0.4min—1! fixed. Other parameters can
be found in Table 1.
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