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Abstract

Reactive chromatographic processes are investigated theoretically for irreversibleA → B

and reversibleA ↔ B reactions. The models consist of two partial differential equations, ac-

counting for each component convection, longitudinal dispersion, adsorption and first order

chemical reactions. Analytical and numerical solutions ofthe models are needed for ana-

lyzing and optimizing the processes in the fixed-bed column.Analytical solutions are ob-

tained by means of Laplace transformation. Temporal moments are derived from the Laplace-

transformed solutions. For validation, the high resolution upwind finite volume scheme is

applied to solve the model equations numerically. Several case studies are carried out and the
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analytical solutions are compared with the numerical ones.The good agreements between so-

lutions verify both the correctness of the analytical solutions and the accuracy of the suggested

numerical scheme.

Introduction

Chromatography is a family of analytical chemistry techniques for the separation of mixtures.

Common to all chromatographic techniques is the passing of asample (the analyte) in the mobile

phase past a static retentive medium called the stationary phase. The stationary phase provides

resistance to transport via chemical interactions with thecomponents of the sample. Each compo-

nent in the sample has a characteristic separation rate thatcan be used to identify it, and thus the

composition of the original mixture. It is an effective chemical technique for the separation and

purification of life science products such as fine chemicals,pharmaceuticals, food additives and bi-

ological products. This technique is useful for the continuous separation of bulk multi-component

mixtures and can be implemented for the separation of substances that are not feasibly separable

by conventional processes, namely distillation and extraction.1–3

In a chromatographic reactor separation and chemical reactions of products take place simul-

taneously. The process is principally analogous to reactive extraction (or reactive absorption),

reactive distillation and sedimentation or electrophoresis when accompanied by reaction. Chro-

matographic reactors, by virtue of separating products from reactants, can enhance the yield of

reactions that in ordinary reactors are limited by equilibrium.4 Moreover, they have capability to

reduce investment, energy, operational cost, size of equipment, pollution and waste. The coupling

between chemical reaction and chromatographic separationin a pulse-fed catalytic reactor were

investigated by Schweich and Villermaux.5 General transient models of reactive chromatography

with Langmuir adsorption isotherms and mass transfer resistances were studied by Cho et al.6

This theoretical work was experimentally verified by Petroulas at al.7 The theoretical model for

countercurrent chromatographic reactors was also verifiedexperimentally.8–12 The authors found
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that deviation of experimental results from the theoretical ones was due to the assumption of linear

adsorption isotherm. They also showed that these reactors improve the conversion of the product

in reversible reactions such as isomerizations. Later on, the system was reviewed with a reversible

reaction of the typeA ↔ B by Carta.4 The work was extended by Binous and McCoy13 from two

interacting isomers to three-component systems. Several other contributions on chromatographic

reactors with different focal points were also published.1,14–21

The moment analysis has been used in a number of studies of fixed-bed systems. Schneider

and Smith22 used temporal moments to determine adsorption equilibriumconstants, rate constants

and intraparticle diffusivities from experimental measurements. Mehta et al.23 represented the

skewness of experimental elution curves by using their higher moments in the Hermite polyno-

mial expansion. Breakthrough curves for fixed-bed adsorbers and reactors were represented with

moments of the impulse response.24 Recently, Javeed et al.25 used the Laplace transformation to

derive analytical solutions of the equilibrium dispersiveand lumped kinetic models. Moreover, the

authors also derived the first three moments of Laplace transformed solutions for different sets of

boundary conditions (BCs).

This paper is focused on the analytical and numerical investigation of irreversible and re-

versible chromatographic reactions involving two componentsA andB. Analytical solutions are

obtained by means of Laplace transformation and temporal moments are derived from the Laplace-

transformed solutions.25,27–29In the case of no analytical Laplace inversion, the numerical Laplace

inversion is used to get back the solution in actual time domain.30 The high resolution upwind finite

volume scheme is applied to solve the models numerically.17,31Several case studies are carried out

and analytical solutions are compared with the numerical solutions.

The paper is organized as follows. In Section 2, the reactivechromatographic model describing

irreversible reaction is analytically solved. In Section 3, the analysis is extended to the reversible

reaction case. In Section 4, analytical moments are derivedfrom the Laplace transformed solutions

of irreversible and reversible reactions. Section 5, presents numerical test problems to validate

analytical and numerical results. Finally, conclusions are drawn in Section 6.
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Chromatographic Reactor: Irreversible Reaction (A→B)

A one-dimensional reactive transport model of linear chromatography is considered. In this pro-

cess, the componentA (component 1) converts toB (component 2) through a simple irreversible

first order reaction having reaction rate constantk. Analytical solutions of the model are obtained

for different sets of inlet and outlet boundary conditions by means of Laplace transformation. Here,

the elegant solution procedure of Quezada et al.27 is adopted to solve the model equations. Lett de-

notes the time coordinate andz represents the axial coordinate along the column length. Moreover,

it is assumed that both components have the same apparent dispersion coefficientD = D1 = D2.

This assumptions, which is usually well fulfilled for molecules of similar sizes, simplifies the fol-

lowing mathematical analysis. The governing model equations are expressed as

(1+a1F)
∂c1

∂ t
+u

∂c1

∂ z
−D

∂ 2c1

∂ z2 = −kc1 , (1)

(1+a2F)
∂c2

∂ t
+u

∂c2

∂ z
−D

∂ 2c2

∂ z2 = kc1 . (2)

For an initially not preloaded fixed-bed holds

ci(0,z) = 0, i = 1,2. (3)

Appropriate boundary conditions at the column inlet and outlet are also needed which will be

discussed bellow. In above equations,c1 and c2 denote the liquid concentrations for first and

second components of the mixture,a1 anda2 represent the linear adsorption isotherms (or Henry

coefficients),u is the interstitial velocity, andF = (1− ε)/ε is a phase ratio based on the external

porosityε ∈ (0,1). Moreover,k is the rate constant of first order chemical reaction.
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Normalizing eqs 1 and 2 by takingx = z
L ∈ [0,1] and definingPe = Lu

D , we obtain

α1
∂c1

∂ t
+Pe

∂c1

∂x
−

∂ 2c1

∂x2 = −rDc1 , (4)

α2
∂c2

∂ t
+Pe

∂c2

∂x
−

∂ 2c2

∂x2 = rDc1 , (5)

and eq 3 becomes

ci(0,x) = 0, i = 1,2. (6)

Here

αi = (1+aiF)Pe
L
u

, rD = k
L2

D
, i = 1,2. (7)

The Laplace transformation is applied to find the analyticalsolutions of eqs 4 and 5 for the given

initial and boundary conditions. Two sets of boundary conditions are considered as discussed

below. The derivation of analytical solutions of eqs 1 and 2 in the Laplace domain for irreversible

reaction and Dirichlet boundary conditions are presented in the appendix A.

Dirichlet Boundary Conditions at the Column Inlet

In this case, the normalized boundary conditions at the entrance of a not back mixed column of

hypothetically infinite length are given as

ci(t,0) = ci,in j,
∂ci

∂x
(t,∞) = 0, i = 1,2. (8)

Hereci,in j denotes thei-th injected concentration at the left end of the column (i.e. atx = 0).
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For the BCs in eq 8, the Laplace domain solution is given as (see Appendix A)

c̄1(s,x) =
c1,in j

s
M1 , (9)

and

c̄2(s,x) =
c2,in j

s
M2−

rDc1,in j

s[s(α2−α1)− rD]
(M2−M1) , (10)

where

M1 = exp

(
Pe−

√
Pe2+4(rD + sα1)

2
x

)
, M2 = exp

(
Pe−

√
Pe2 +4sα2

2
x

)
. (11)

The solutions in time domainci(t,x) can be obtained by using the exact formula for the back

transformation:

c j(t,x) =
1

2π i

γ+i∞∫

γ−i∞

e−tsc̄ j(s,x)ds , j = 1,2, (12)

where,γ is a real constant that exceeds the real part of all the singularities ofc̄ j(s,x).

By applying eq 12 on eqs 9 and 10, we obtain27–29,32

c1(t,x) = c1,in jE1 , (13)

c2(t,x) = c2,in jE2− c1,in j(E1−E2+F2−F1) , (14)

where

Ei =
e

Pex
2

2

[
e−aibierfc

(
ait−

1
2

2
−bit

1
2

)
+ eaibierfc

(
ait−

1
2

2
+bit

1
2

)]
, (15)
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with

ai = (αi)
1
2 x , b1 =

√
Pe2

4α1
+

rD

α1
, b2 =

√
Pe2

4α2
, i = 1,2. (16)

Moreover

Fi =
1
2

e
( Pex

2 +
rDt

α2−α1
)

[
e−aidierfc

(
ait−

1
2

2
−dit

1
2

)
+ eaidierfc

(
ait−

1
2

2
+dit

1
2

)]
, (17)

with

d1 =

√
Pe2

4α1
+

α2rD

α1(α2−α1)
, d2 =

√
Pe2

4α2
+

rD

α2−α1
. (18)

Here, erfc denotes the complementary error function. This completes the derivation of solutions

for the boundary conditions given by eq 8.

Robin (or Danckwerts) Boundary Conditions at the Column Inlet

In this case, back mixing at the inlet of a column of finite length are considered. The boundary

conditions have the form33

ci(t,0) = ci,in j +
1
Pe

∂ci

∂x
,

∂ci

∂x
(1, t) = 0, i = 1,2. (19)

By adopting the procedure of Appendix A, the Laplace domain solutions for the boundary condi-

tions in 19 are given as

c̄1(s,x) =
c1,in j

s
λ2eλ2+λ1x −λ1eλ1+λ2x

(1− λ1
Pe)λ2eλ2 − (1− λ2

Pe)λ1eλ1
, λ1,2 =

Pe±
√

Pe2+4(rD + sα1)

2
, (20)
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and

c̄2(s,x) =

(
c2,in j

s
−

c1,in j

s
rD

s(α2−α1)− rD

)(
λ4eλ4+λ3x −λ3eλ3+λ4x

(1− λ3
Pe)λ4eλ4 − (1− λ4

Pe)λ3eλ3

)

+
c1,in j

s

(
rD

s(α2−α1)− rD

)(
λ2eλ2+λ1x −λ1eλ1+λ2x

(1− λ1
Pe)λ2eλ2 − (1− λ2

Pe)λ1eλ1

)
. (21)

Here,

λ3,4 =
Pe±

√
Pe2 +4sα2

2
. (22)

In this case, no analytical Laplace inversions is possible.Therefore, numerical Laplace inversions

will be used to get back the solution in the time domain.30 In this technique, the exact integrals of

back transformation (c.f. eq 12) are approximated by using Fourier series.

Reversible ReactionA ↔ B

Now, we present a reactive chromatographic model describing reversible reactions. In this caseA

(component 1) is injected to the column which converts toB (component 2) with a reaction rate

characterized by the constantk1. Because of the reversibility of the reaction,B is also converted

back toA with reaction of rate constantk2. The corresponding model equations are given as

(1+a1F)
∂c1

∂ t
+u

∂c1

∂ z
−D

∂ 2c1

∂ z2 = −k1c1+ k2c2 , (23)

(1+a2F)
∂c2

∂ t
+u

∂c2

∂ z
−D

∂ 2c2

∂ z2 = k1c1− k2c2 , (24)

with initial conditions

ci(0,z) = 0, i = 1,2. (25)
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In normalized form the above equations can be rewritten as

α1
∂c1

∂ t
+Pe

∂c1

∂x
−

∂ 2c1

∂x2 = −rD,1c1 + rD,2c2 ,

α2
∂c2

∂ t
+Pe

∂c2

∂x
−

∂ 2c2

∂x2 = rD,1c1− rD,2c2 , (26)

where

x =
z
L

, Pe =
Lu
D

, αi = (1+aiF)
PeL

u
, rD,i = ki

L2

D
, i = 1,2. (27)

Once again, two different pairs of BCs are considered which are given by eqs 8 and 19. By adopting

the same solution procedure of Appendix A, we get the following solutions in the Laplace domain

for the considered two types of BCs.

Dirichlet Boundary Conditions at the Column Inlet

In this first case, again the boundary conditions in eq 8 are taken into account. The solutions in

Laplace domain are summarized as

c̄1(s,x) =
ξ3(rD,1c1,in j −ξ4c2,in j)

srD,1(ξ3−ξ4)
em2x −

ξ4(rD,1c1,in j −ξ3c2,in j)

srD,1(ξ3−ξ4)
em4x , (28)

c̄2(s,x) =
(rD,1c1,in j −ξ4c2,in j)

s(ξ3−ξ4)
em2x −

(rD,1c1,in j −ξ3c2,in j)

s(ξ3−ξ4)
em4x , (29)

where forW := rD,1− rD,2, R := rD,1+ rD,2, Q := α2−α1 andG := α1+α2,

m1,2 =
Pe±

√
Pe2−4ξ1

2
, m3,4 =

Pe±
√

Pe2−4ξ2

2
, (30)
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and

ξ1,2 = −
1
2

[
R+ sG∓

√
R2 + s2Q2−2sW Q

]
, (31)

ξ3,4 = −
1
2

[
W − sQ∓

√
R2+ s2Q2−2sWQ

]
. (32)

Analytical Laplace inversions of the above equations are very difficult to derive. Therefore, nu-

merical Laplace inversions are used again to get back solutions in time domain.30

Robin (or Danckwerts) Boundary Conditions at the Column Inlet

In this case, the BCs in eq 19 are reconsidered. The solutionsin the Laplace domain are given as

c̄1(s,x) =
ξ3(rD,1c1,in j −ξ4c2,in j)(m1em1+m2x −m2em2+m1x)

rD,1s(ξ3−ξ4)
(
(1− m2

Pe )m1em1 − (1− m1
Pe )m2em2

)

+
ξ4(ξ3c2,in j − rD,1c1,in j)(m3em3+m4x −m4em4+m3x)

rD,1s(ξ3−ξ4)
(
(1− m4

Pe )m3em3 − (1− m3
Pe )m4em4

) , (33)

and

c̄2(s,x) =
(rD,1c1,in j −ξ4c2,in j)(m1em1+m2x −m2em2+m1x)

s(ξ3−ξ4)
(
(1− m2

Pe )m1em1 − (1− m1
Pe )m2em2

)

+
(ξ3c2,in j − rD,1c1,in j)(m3em3+m4x −m4em4+m3x)

s(ξ3−ξ4)
(
(1− m4

Pe )m3em3 − (1− m3
Pe )m4em4

) , (34)

whereξi andmi for i = 1,2,3,4 are given by eqs 31, 32 and 30. Once again, analytical Laplace

inversions of the above equations are not possible. Therefore, numerical Laplace inversions are

used to determine the time domain solutions.

Moments Analysis

Moment analysis is an effective method for deducing important information about the retention

equilibrium and mass transfer kinetics in the column.3,25,34,35The Laplace transformation can be
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used as a basic tool to obtain moments. The numerical inverseLaplace transformation provides

optimum solution, but this solution is not helpful to study the behavior of chromatographic profiles

in the column. The retention equilibrium-constant and parameters of mass transfer kinetics in a

column are related to the moments in Laplace domain. Analytical moments are derived from the

solutions in Laplace domain by using the moment generating property for continuous breakthrough

curves.25 In this case, ¯ci are multiplied withs to transform the step responses to closed pulse

responses that allow calculation of finite moments.

The zeroth moments are defined as

µ(i)
0 = lim

s→0
(sc̄i(s,x = 1)) , i = 1,2 (35)

and then-th moments are given as

µ(i)
n = (−1)n 1

µ(i)
0

lim
s→0

dn(sc̄i(s,x = 1))

dsn , n = 1,2,3, · · · . (36)

Next, we define temporal moments to obtain moments from analytical and numerical solutions in

the actual time domain. The normalizedn-th temporal moments of the band profiles at the exit of

chromatographic column of lengthx = 1 are defined as

µ(i)
n =

∫ ∞
0 ċi(t,x = 1) tndt∫ ∞

0 ci(t,x = 1)dt
, where ˙c =

dc
dt

n = 0,1,2, · · · , i = 1,2. (37)

While, then-th central moments are expressed as

µ ′(i)
n =

∫ ∞
0 ċi(t,x = 1)(t −µ(i)

1 )ndt∫ ∞
0 c(t,x = 1)dt

, n = 0,1,2, · · · , i = 1,2. (38)

The formulas given above use derivatives to approximate themoments and transform the step

response to pulse response which is the requirement of finiteresults of numerical integration.

These moments will be used to compare analytical and numerical moments.
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Complete derivations of the moments up to the third moments are presented in the appendix B,

using the availability of solutions in Laplace domain and the moment generating property of this

transformation for continuous boundary conditions. Moreover, it is assumed thatc2,in j = 0, i.e.

only component A is injected to the column.

Numerical Test Problems

Analytical results of the previous sections are validated by considering selected test problems. For

this, analytical solutions are compared with the numericalsolutions of high resolution flux-limiting

finite volume scheme (FVS).31,36

In all test problems, it is assumed thatc2,in j = 0, i.e. only component A is injected to the

column.

Problem 1: Irreversible Reaction

In this test problem, analytical and numerical results of model equations given by eqs 1 and 2

are compared for Dirichlet and Danckwerts inlet BCs (c.f. eqs 8 and 19). All parameters of the

problems are given in Table 1. The values ofk, k1 andk2 were selected to ensure that significant

degrees of conversion can be achieved within available residence times which is compatable to the

adsorption properties and allow for separating the componentsA andB.37,38It has been proven ex-

perimentally that such a careful match in a chromatographicreactor leads to improved performance

compared to the conventional fixed bed reactor.39,40

Figure 1 (left) shows the comparison of solutions for Dirichlet inlet BCs on a column of infinite

length with outflow BCs at the outlet (c.f. eq 8). In this case,three types of solutions are compared,

such as analytical solutions obtained by analytical Laplace inversions, solutions obtained through

numerical Laplace inversions, and solutions obtained fromthe finite volume scheme. Good agree-

ments of the solution profiles validate the accuracy of numerical Laplace inversion and FVS. From

the results it is clear that the first component with larger value of adsorption coefficienta1 elutes at
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later time from the column compared to the second component with smaller value ofa2. Because

of only a forward reaction, the concentrationc1 of component 1 is decreasing andc2 of component

2 is increasing.

The right plot in Figure 1 (right) depicts the comparison of solutions for Danckwerts inlet BCs

on a column of finite length with outflow BCs at the right end (c.f. eq 19). In this case, two kinds of

solutions are compared, such as analytical solutions obtained through numerical Laplace inversion

and solutions obtained from the FVS. Good agreements of the results validate again the accuracy

of numerical Laplace inversion and the FVS. Moreover, the behaviors of concentration profiles are

exactly the same as observed in the case of Dirichlet BCs.

Figure 2 illustrates the effect of boundary conditions on the solution. Here, we take the in-

terstitial velocityu = 0.6 cm/min. It can be observed that more accurate Danckwerts boundary

conditions are needed for chromatographic model equationswhen the Peclet number is relatively

small, e.g.Pe < 60 (orD > 0.01 cm2/min) in this case. For such values, there are visible differ-

ences between the results obtained by using Dirichlet and Danckwerts boundary conditions. On the

basis of these results, we can conclude in agreement with previous findings, e.g in Danckwerts,33

that the implementation of Dirichlet boundary conditions is not sufficient for larger dispersion

coefficients. However, for large values of Peclet number (Pe ≥ 60) or smaller axial dispersion

coefficients (D ≤ 0.01 cm2/min), typically encountered in chromatographic columns well packed

with small particles, there is not much difference between the solutions of Dirichlet and Danckw-

erts boundary conditions.

Discussion on the Analytically and Numerically DeterminedMoments

Now we present an analysis of analytically and numerically determined temporal moments for

considered BCs. It is an effective strategy to deduce important information about retention time

and mass transfer kinetics in the chromatographic column. The complete derivation of moments

for considered BCs are given in the Appendix B. Some analytical expressions forµ ′(i)
2 andµ ′(i)

3

were very lengthy. Therefore, only plots of these central moments are presented in such situations.
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The numerical moments are obtained from the FVS by using the moment formulas given in eqs

37 and 38 for the zeroth, first, second central, and third central moments, respectively. The trape-

zoidal rule is applied to numerically approximate the integral terms appearing in these equations.

Here, derivatives of the concentration profiles are used to approximate the moments, transforming

the step response to a pulse response which is a requirement for finite results of the numerical

integration.

A quantitative comparison of the zeroth, first, second and third analytical and numerical mo-

ments over different flow rates was made. The zeroth absolutemoments represent the total masses

of the solutes (area underci versust). The first momentsµ(i)
1 denote the retention times (mean

of the concentration pulses). The values of the equilibriumconstantsai can be estimated from the

slopes of a straight lines,µ(i)
1 over 1/u for constant column length and porosity. The second central

momentsµ ′(i)
2 are a measure of the spread of the concentration profiles about the location of the

center of masses (i.e. the variance of the elution curves) and provide suitable information about the

mass transfer processes in the column. The third central momentsµ ′(i)
3 represent the skewness of

the concentration distributions (i.e. they evaluate frontasymmetries).

Figure 3 shows the comparison of moments corresponding to Danckwerts boundary conditions.

Due to the determined dependencies the zeroth, first, second, and third moments are plotted versus

u, 1/u, 1/u3, and 1/u5. The expected linear trends were found. A good agreement of the results

verifies the correctness of analytical moments and also the high precision of our numerical results.

Problem 2: Reversible Reaction

This part focuses on the comparison of analytical and numerical results for the two-component lin-

ear reactive equilibrium dispersive model with Dirichlet and Danckwerts inlet boundary conditions

(c.f. eqs 23, 24, 8 and 19). The reaction is reversible. All parameters of the problems are given in

Table 1.

Figure 4 (left) shows the comparison of analytical and numerical solutions for Dirichlet con-

tinuous inlet boundary conditions. Similarly, Figure 4 (right) shows the solutions for Danckwerts
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BCs. Here, two solutions are compared, such as the analytical solution obtained through numerical

Laplace inversion and solution obtained from the FVS. The expressions of the third analytical mo-

ments for Dirichlet and Danckwerts BCs are very long and complicated. Therefore, third moments

were only calculated from the numerical Laplace inversion solution and the numerical solutions of

FVS. Good agreements of the solution profiles validate the accuracy of numerical Laplace inver-

sion and the FVS. From the results it is clear that the component with larger value of adsorption

coefficientai elutes at later time from the column compared to the component with smaller value

of ai. Because of the reversibility of the reaction, heights of concentrations are changing for both

components. The concentration of first component with larger value of decay rate constantk1 is

decaying while concentration of component 2 is increasing due to smaller value of decay rate con-

stantk2.

Discussion on the Analytically and Numerically DeterminedMoments

A quantitative comparison of the zeroth, first, second and third analytical and numerical mo-

ments over different flow rates was made. Figure 5 shows the moments for Danckwerts BCs. A

good agreement of the results with each other verify the highprecision of our numerical results

and reveal the expected linear trends.

Effects of reaction rate constants on the solution

The effects of the reaction rate constants on breakthrough profiles was investigated for re-

versible reactions using Danckwerts BCs and choosing againc1,in j = 1 andc2,in j = 0. Figure 6

presents the concentration profiles for the flow rate given inTable 1. Moreover, we considered

k1 = 0.4 min−1 and varied values ofk2. As expected due to thermodynamic considerations, it

was found that the trends of the steady state concentrationscorrelate with the ratiosk1/k2. For

k1/k2 = 0.1, the values of concentrations at steady state arec1 = 0.9g/l andc2 = 0.1g/l and for

k1/k2 = 10 they arec1 = 0.67g/l andc2 = 0.33g/l, satisfying alwaysc1 + c2 = 1g/l.
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Conclusion

In this article, reactive chromatographic models were analyzed for linear adsorption isotherms

incorporating irreversible and reversible reactions. Both Dirichlet and Danckwerts inlet boundary

conditions were considered. The Laplace transformation was employed as a basic tool to transform

the linear sub-models of PDEs to linear ODEs which could be solved analytically in the Laplace

domain. In the case of no analytical Laplace inversion, the numerical Laplace inversion technique

produced reliable results to get back the solution in actualtime domain. Moment analysis of the

models was carried out analytically and numerically up to third order orders under linear condi-

tions. The second order flux-limiting finite volume was used to generate the concentration profiles

and the numerical moments. Good agreement between analytical and numerical results ensured

correctness of the analytical results and accuracy of the proposed numerical scheme.

Work is in progress to utilize the analytically determined moments for parameter estimation.

Appendix A

Analytical solution of eqs 1 and 2

In the matrix notation, eqs 4 and 5 are expressed as




α1 0

0 α2




∂
∂ t





c1

c2





+Pe
∂
∂x





c1

c2





−
∂ 2

∂x2





c1

c2





=




−rD 0

rD 0








c1

c2





, (A-1)

where parenthesis[ ] stands for a square matrix and{ } represents column matrix. By applying

the Laplace transformation in time domain, the above equation gives27

s




α1 0

0 α2








c̄1

c̄2





+Pe
d
dx





c̄1

c̄2





−
d2

dx2





c̄1

c̄2





=




−rD 0

rD 0








c̄1

c̄2





, (A-2)
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where in the Laplace domain, ¯c1 andc̄2 are the concentrations of mixture components in the liquid

phase. By rearranging eq A-2, we obtain

Pe
d
dx





c̄1

c̄2





−
d2

dx2





c̄1

c̄2





=




−rD − sα1 0

rD −sα2








c̄1

c̄2





. (A-3)

Thus, a combined reaction coefficient matrix[B] on the right hand side of eq A-3 becomes

B =




−rD − sα1 0

rD −sα2


 . (A-4)

Next, we compute the linear transformation matrix[A]. Note that, the columns of[A] should be the

eigenvectors of the combined reaction coefficient matrix[B]. The eigenvalues and eigenvectors of

[B] are given as:

λ ′ = −rD − sα1, x1 =




A11

rDA11
s(α2−α1)−rD


 and λ ′′ = −sα2, x2 =




0

A22


 . (A-5)

Here,λ ′ andλ ′′ are the eigenvalues andA11 andA22 are the arbitrary constants. For simplicity,

we take the values ofA11 andA22 equal to one. Then, using eq A-5, the diagonal matrixk̃ and the

transformation matrix[A] can be written as

k̃ =




−rD − sα1 0

0 −sα2


 , A =




1 0

rD
s(α2−α1)−rD

1


 . (A-6)

The matrix[A] can be used for the following linear transformation






c̄1

c̄2





=




1 0

rD
s(α2−α1)−rD

1









b1

b2





. (A-7)
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By applying the above linear transformation on eq A-3 we get

Pe
d
dx





b1

b2





−
d2

dx2





b1

b2





=




−rD − sα1 0

0 −sα2








b1

b2





. (A-8)

One can see that eq A-8 represents the two independent, steady state, advection-dispersion equa-

tions with decay term of first order. Next is to find the explicit solutions of these two independent

ordinary differential equations (ODEs)

d2b1

dx2 −Pe
db1

dx
− (rD + sα1)b1 = 0, (A-9)

d2b2

dx2 −Pe
db2

dx
− sα2b2 = 0. (A-10)

The solutions of ODEs in eqs A-9 and A-10 are given as

b1(s,x) = A1eλ1x +B1eλ2x , λ1,2 =
Pe±

√
Pe2+4(rD + sα1)

2
, (A-11)

and

b2(s,x) = A2eλ3x +B2eλ4x , λ3,4 =
Pe±

√
Pe2+4sα2

2
. (A-12)

Here,A1, B1, A2 andB2 are constants of integration which can be obtained by using suitable BCs

at the column inlet and outlet. In this study, we consider twosets of BCs given in eqs 8 and

19. If rD = 0, eqs A-11 and A-12 reduce to the well known non-reactive chromatographic model

equations discussed in Javeed et al.25
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Dirichlet Boundary Conditions at the Column Inlet

In the Laplace domain, the boundary conditions in eq 8 can be expressed as

c̄i(s,0) =
ci,in j

s
,

dc̄i

dx
(s,∞) = 0 i = 1,2. (A-13)

Using the transformation given in eq A-7, we have

c̄1(s,x) = b1(s,x) , (A-14)

which gives

c̄1(s,0) = b1(s,0) =
c1,in j

s
,

db1

∂x
(s,∞) = 0. (A-15)

Similarly

b2(s,x) = c̄2(s,x)−
rDb1(s,x)

[s(α2−α1)− rD]
, (A-16)

so that

b2(s,0) = c̄2(s,0)−
rDb1(s,0)

[s(α2−α1)− rD]
,

db2

dx
(s,∞) = 0. (A-17)

After applying the boundary conditions in eqs A-15 and A-17 on eq A-11, the values ofA1 andB1

become

A1 = 0, B1 =
c1,in j

s
. (A-18)

Thus, eq A-11 takes the following simple form

b1(s,x) =
c1,in j

s
eλ2x . (A-19)
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Using the relation in eq A-14, we get the solution in Laplace domain as

c̄1(s,x) =
c1,in j

s
M2 . (A-20)

Similarly, using eq A-17 in eq A-12, we get the values ofA2 andB2 as

A2 = 0, B2 =
c2,in j

s
−

rDc1,in j

s[s(α2−α1)− rD]
. (A-21)

Thus, eq A-12 together with the values ofA2 andB2 becomes

b2(s,x) =

(
c2,in j

s
−

rDc1,in j

s[s(α2−α1)− rD]

)
eλ4x . (A-22)

After using eq A-16 in eq A-22 we obtain

c̄2(s,x) =
c2,in j

s
M2−

rDc1,in j

s[s(α2−α1)− rD]
(M2−M1) , (A-23)

where according to eqs A-11 and A-12

M1 = exp

(
Pe−

√
Pe2 +4(rD + sα1)

2
x

)
, M2 = exp

(
Pe−

√
Pe2+4sα2

2
x

)
. (A-24)

Appendix B

Analytical moments of the elution profiles

Analytical moments are presented for Dirichlet and Danckwerts boundary conditions. Here,c2,in j =

0 is taken into account, i.e. only component A is injected to the column.
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Irreversible Reaction with Dirichlet inlet BCs

Here, eqs 35 and 36 are used to obtain momentsµ(i)
n of eqs A-20 and A-23 obtained for the

Dirichlet boundary conditions in eq 8 fori = 1,2 andn = 0,1,2,3. Let us define

γ :=
√

Pe2 +4rD , β1,2 := Pe∓ γ , Q := α2−α1 . (A-25)

By using eq 35, the zeroth moments are given as

µ(1)
0 = c1,in j e

β1
2 , µ(2)

0 = c1,in j

[
1− e

β1
2

]
. (A-26)

From eq A-26, it follows thatµ(1)
0 + µ(2)

0 = c1,in j, becausec2,in j = 0.

The first moments are calculated by employing eq 36 forn = 1

µ(1)
1 = Pe

L
uγ

(1+aF) , µ(2)
1 =

Pe
(

γQ− rDα1

)
e

β1
2 − γ

(
QPe− rDα2

)

rDPeγ
(

1− e
β1
2

) , (A-27)

The second moments are expressed as

µ(1)
2 =

L2Pe2

u2γ3 (1+aF)2(γ +2) , (A-28)

µ(2)
2 =

1

1− e
β1
2

[
e

β1
2

(
−

2Q2

r2
D

+
2α1Q
rDγ

−
2α2

1

γ3 −
α2

1

γ2

)
+

2Q2

r2
D

−
2α2Q
rDPe

+
2α2

2

Pe3 +
α2

2

Pe2

]
. (A-29)

The second central moments can be calculated from above moments using the relations

µ ′(i)
2 = µ(i)

2 −
(

µ(i)
1

)2
, i = 1,2. (A-30)
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Thus, the second central moments are given as

µ ′(1)
2 =

2L2Pe2(1+a1F)2

u2γ3 , (A-31)

µ ′(2)
2 =

1

1− e
β1
2

[
e

β1
2

(
−

2Q2

r2
D

+
2α1Q
rDγ

−
2α2

1

γ3 −
α2

1

γ2

)
+

2Q2

r2
D

−
2α2Q
rDPe

+
2α2

2

Pe3 +
α2

2

Pe2

]

−




Pe
(

γQ− rDDα1

)
e

β1
2 − γ

(
QPe− rDα2

)

rDPeγ
(

1− e
β1
2

)




2

. (A-32)

The third moments are given as

µ(1)
3 =

L3Pe3(1+a1F)3

u3γ5 (γ2+6γ +12) . (A-33)

µ(2)
3 =

−1

1− e
β1
2

[
e

β1
2

{
−

6Q3

r3
D

+
6α1Q2

r2
Dγ

−
6α2

1Q

rDγ3 −
3Qα2

1

rDγ2 +
12α3

1

γ5 +
6α3

1

γ4 +
α3

1

γ3

}

+
6Q3

r3
D

−
6Q2α2

r2
DPe

+
6Qα2

2

rDPe3 +
3Qα2

2

rDPe2 −
12α3

2

Pe5 −
6α3

2

Pe4 −
α3

2

Pe3

]
. (A-34)

Finally, the third central moments can be deduced from the relations

µ ′(i)
3 = µ(i)

3 −3µ(i)
1 µ(i)

2 +2
(

µ(i)
1

)3
, i = 1,2. (A-35)

Irreversible Reaction with Danckwerts BCs

Here, the moments of solutions in eqs 20 and 21, obtained for the Robin boundary conditions given

in eq 19, are derived.

The zeroth moments are given as

µ(1)
0 = c1,in j

4γPeePe

β 2
1 e

β1
2 −β 2

2 e
β2
2

, µ(2)
0 = c1,in j


1−

4γPeePe

β 2
1 e

β1
2 −β 2

2 e
β2
2


 . (A-36)

From eq A-36, it follows thatµ(1)
0 + µ(2)

0 = c1,in j, asc2,in j = 0 is considered.
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The first moments have the forms

µ(1)
1 =

2α1

γ2
(
β 2

1 e
β1
2 −β 2

2 e
β2
2
)

[
γ
(
2rD +Pe2)

(
e

β1
2 + e

β2
2

)
+
(

4rD(1+Pe)+Pe3
)(

e
β1
2 − e

β2
2

)]
.

(A-37)

µ(2)
1 =

[(
γPe4 +6γ3Pe2 + γ5−64Per2

D−8Pe5−48rDPe3)(QPe− rDα2)e
β2

+
(
−2(γPe4+ γ3(4rD −Pe2))(QPe− rDα2)e

β1
2 −4Pe2ePe(−Pe2rDα1γ −2QPe4+2rDα1Pe3

−12Pe2QrD +2(γ3Q+4α1r2
D)Pe− ((16Q−8α1)rD +α1γ3))rD

)
e

β2
2 +

(
(QPe− rDα2)

(γ5+ γPe4 +48rDPe3 +6γ3Pe2 +64Per2
D +8Pe5)e

β1
2 −4Pe2(−Pe2rDα1γ +2QPe4

−2rDα1Pe3 +12Pe2QrD +2(γ3Q−4α1r2
D)Pe− ((8α1−16Q)rD +α1γ3)rD)exp(Pe)

)
e

β1
2

]

/
[
−rDPeγ

(
β 2

1 e
β1
2 −β 2

2 e
β2
2 −4γPeePe)(β 2

1 e
β1
2 −β 2

2 e
β2
2

]
, (A-38)

The expressions on analytical second central moments were very lengthy. Therefore, only plots

of analyticalµ ′(i)
2 are presented. Moreover, plots of third central momentsµ ′(i)

3 are only obtained

from the solutions of numerical Laplace inversion and FVS (c.f. Figure 3 and Figure 5).

Reversible Reaction with Dirichlet BCs

Here, the moments of solutions in eqs 28 and 29, obtained for the Dirichlet boundary conditions in

eq 8, are derived. Let us define

Q := α2−α1, R := rD,1+ rD,2, W := rD,1− rD,2, G := α1+α2 , (A-39)

and

β3,4 := Pe∓
√

Pe2 +4R, Y := 2rD,1+3W, Z := 2rD,1+W , δ :=
√

Pe2 +4R. (A-40)
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Then, the zeroth moments are given as

µ(1)
0 =

1
R

[
rD,2+ rD,1eβ3

]
, µ(2)

0 =
rD,1

R

[
1− eβ3

]
. (A-41)

The first moments are expressed as

µ(1)
1 =

rD,2δ [GR2+Q(W −2Pe)R−2WQPe]+ rD,1Pe[4rD,2Qδ −W RQ+GR2]e
β3
2

2δvR2
(

rD,1e
β3
2 + rD,2

) . (A-42)

µ(2)
1 =

−δ [GR2+W QR−2WQPe]+Pe[−2δQW −W RQ+GR2]e
β3
2

2δvR2
(

e
β3
2 −1

) . (A-43)

The second moments are given as

µ(1)
2 =

4

δ 7R4Pe3(rD,1e
β3
2 + rD,2)

[
−

1
8

{
G2(2+Pe)R4+2Q((Q−2G)Pe2+GWPe+2GW )R3

−4Q((Q+G)Pe2−
1
4

WQPe−
1
2

WQ)WR2−6WQ2Pe2(−2Pe+W )R

+12Q2W 2Pe3
}

δ 7

4
(−R+W )eδ/2 +Pe3ePe/2

{(
1
32

R4G2−
1
16

WR3QG

+
1
32

W Q2(−48+W )R2+
3
2

Q2(W −
1
4

Pe2)WR+
3
8

Q2W 2Pe2
)

δ 5

+

(
(G2+8QG−4Q2)R3−

(
10∗ ((

Q
10

−
G
5

)Pe2+W (
4
5

Q+G))

)
QR2

−2WQ

(
(Q+G)Pe2−

13
2

WQ

)
R+3Q2W 2Pe2

)
δ 4

16
R

}
(R+W )

]
. (A-44)
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µ(2)
2 =

8

δ 7R4Pe3(e
β3
2 −1)eδ/2

[
−

δ 7e
δ
2

32

{
G2(2+Pe)R4+2Q(QPe2+GWPe+2GW )R3

+(−4GW QPe2−4Q2Pe3+W 2Q2Pe+2W 2Q2)R2−6W 2Q2Pe2R+12W2Q2Pe3
}

+

{[
1
32

R4G2−
1
16

Q(8Q+GW)R3+(
1
32

W 2Q2−
1
8

Q2v2)R2+
3
2

W 2Q2R

+
3
8

W 2Q2Pe2
]

δ 5+
δ 4

4

(
(−4Q2+G2)R3+(−Q2Pe2−10GWQ)R2

+(13W 2Q2−2GWQPe2)R+3W2Q2Pe2
)

R

}
Pe3e

Pe
2

]
. (A-45)

eq A-30 can be used to obtain the second central moments from the above equations. Moreover,

expressions ofµ ′(i)
3 were very lengthy. Therefore, plots of third central moments are obtained from

the solutions of numerical Laplace inversion and FVS.

Reversible Reaction with Danckwerts BCs

In this case, the moments of solutions in eqs 33 and 34, obtained for the Robin boundary conditions

in eq 19, are derived. The zeroth moments are given as

µ(1)
0 =

rD,2(β3Pe+2R)e
β3
2 − rD,2(β4Pe+2R)e

β4
2 −2rD,1δPeePe

R
[
(β3Pe+2R)e

β3
2 − (β4Pe+2R)e

β4
2

] , (A-46)

µ(2)
0 =

rD,1

[
(β3Pe+2R)e

β3
2 − (β4Pe+2R)e

β4
2 +2δPeePe

]

R
[
(β3Pe+2R)e

β3
2 − (β4Pe+2R)e

β4
2

] . (A-47)

25



The first moments are expressed as

µ(1)
1 =

[
− rD,1Pe2

{(
−

1
2

R3G+(
1
2

WQ−2PeQ−
1
4

Pe2G)R2+
1
4

Qv(−2Pe2 +WPe+8W )R

+
1
2

WPe3Q

)
δ
(

e
2Pe+β3

2 + e
2Pe+β4

2

)
+

[
(G+PeG+4Q)R3+(−PeW Q+

1
4

Pe3G−5WQ

+3Pe2Q)R2+
1
4

QPe2(−2Pe2+W Pe+12W )R−
1
2

W QPe4
](

e
2Pe+β3

2 − e
2Pe+β4

2

)}

+2r2(R
2G+Q(W −2Pe)R−2PeWQ)

{(
−

Pe4

8
−

RPe2

2
−

R2

4

)
δ
(

eβ3 + eβ4

)

+Pe(
Pe2

2
+R)(

Pe2

4
+R)

(
eβ3 − eβ4

)
+

1
2

R2δePe
}]

/

[
δPe

(
rD,2

Peβ3+2R
2

e
β3
2

− rD,2
Peβ4+2R

2
e

β4
2 − rD,1δePePe

)(
Peβ3+2R

2
eβ3 −

Peβ4+2R
2

eβ4

)
R2
]
. (A-48)

µ(2)
1 =−2

[
−

1
2

Pe2
{(

1
2

Pe3W Q−
1
4

R(GR−WQ)Pe2+2PeW QR−
1
2

R2(GR−WQ)

)

δ
(

e
2Pe+β3

2 + e
2Pe+β4

2

)
+

(
−

1
2

WQPe4 +
1
4

R(GR−WQ)Pe3−3Pe2RW Q

+(R3G−R2WQ)Pe−5R2WQ+R3G

)(
e

2Pe+β3
2 − e

2Pe+β4
2

)}
+

(
R2G+RWQ

−2PeWQ

){(
−

1
2

Pe2R−
1
8

Pe4−
1
4

R2
)

δ
(

eβ3 + eβ4

)
+(

1
4

Pe2+R)Pe

(
1
2

Pe2+R))expδ
(

eβ3 + eβ4

)
+

1
2

R2δePe
}]

/

[
δPe

(
Peβ3+2R

2
e

β3
2 −

Peβ4+2R
2

e
β4
2

)

R2
(

Peβ3+2R
2

e
β3
2 −

Peβ4 +2R
2

e
β4
2 +δePePe

)]
. (A-49)

Due to lengthy expressions of analyticalµ(i)
2 andµ ′(i)

2 , only plots of analyticalµ ′(i)
2 are presented.

Moreover, the plots ofµ ′(i)
3 are obtained from the solutions of numerical Laplace inversion and

FVS.

26



Acknowledgement

A partial support by Higher Education Commission (HEC) of Pakistan is gratefully acknowl-

edged.

References

(1) Ganetsos, G.; Barker, P. E.Preparative and Production Scale Chromatography; Marcel

Dekker, Inc.: New York, 1993; pp 375-523.

(2) Guiochon, G.; Lin, B.Modeling for Preparative Chromatography; Academic Press: San

Diego, 2003.

(3) Guiochon, G.; Felinger, A.; Shirazi, D. G.; Katti, A. M.Fundamentals of Preparative and

Nonlinear Chromatography; Elsevier Inc.: San Diego, 2006.

(4) Carta, G. Simultaneous Reaction and Chromatography. InChromatographic and Membrane

Processes in Biotechnology; Costa, C. A., Cabral J. S., Eds.; Kluwer Academic Publishers:

The Netherlands, 1991, pp 429-447.

(5) Schweich, D.; Villermaux, J. The Chromatographic Reactor. A New Theoretical Approach.

Ind. Eng. Chem. Fundamen. 1978, 17, 1.

(6) Cho, B. K.; Aris, R.; Carr, R. W. The Mathematical Theory of a Countercurrent Catalytic

Reactor.Proc. R. Soc. Lond. A 1982, 383, 147.

(7) Petroulas, T.; Aris, R.; Carr, R. W. Analysis of the Counter-Current Moving-Bed Chromato-

graphic Reactor.Comput. Maths. Appl. 1985, 11, 5.

(8) Takeuchi, K.; Uraguchi, Y. Separation Conditions of theReactant and the Product with a

Chromatographic Moving Bed Reactor.J. Chem. Eng. Jpn. 1976, 9, 164.

(9) Takeuchi, K.; Uraguchi, Y. Basic Design of Chromatographic Moving Bed Reactors for Prod-

uct Refining.J. Chem. Eng. Jpn. 1976, 9, 246.

27



(10) Takeuchi, K.; Uraguchi, Y. The Effect of the ExhaustingSection on the Performance of a

Chromatographic Moving Bed Reactor.J. Chem. Eng. Jpn. 1977, 10, 72.

(11) Takeuchi, K.; Uraguchi, Y. Experimental Studies of a Chromatographic Moving-Bed

Reactor-Catalytic Oxidation of Carbon Monoxide on Activated Alumina as a Model Reactor.

J. Chem. Eng. Jpn. 1977, 10, 455.

(12) Takeuchi, K.; Miyauchi, T.; Uraguchi, Y. Computational Studies of a Chromatographic Mov-

ing Bed Reactor for Consecutive and Reversible Reactions.J. Chem. Eng. Jpn. 1978, 11,

216.

(13) Binous, H.; McCoy, B. J. Chromatographic Reactions of the Three Components: Application

to Separations.Chem. Eng. Sci. 1992, 47, 4333.

(14) Borren, T.; Fricke, J.Chromatographic Reactors in Preparative Chromatography: of Fine

Chemicals and Pharmaceutical Agents; Schmidt-Traub, H., Ed.; Wiley-VCH Verlag, Wein-

heim, 2005, pp 371-399.

(15) Fricke, J.; Schmidt-Traub, H.; Schembecker, G. Chromatographic reactor. InUllmann’s En-

cyclopedia of Industrial Chemistry; Wiley-VCH Verlag: Weinheim, 2012, pp 103-130.

(16) Javeed, S.; Qamar, S.; Seidel-Morgenstern, A.; Warnecke, G. A Discontinuous Galerkin

Method to Solve Chromatographic Models.J. Chromatogr. A 2011, 1218, 7137.

(17) Javeed, S.; Qamar, S.; Seidel-Morgenstern, A.; Warnecke, G. Parametric Study of Thermal

Effects in Reactive Liquid Chromatography.Chem. Eng. J. 2012, 191, 426.

(18) Lin, B.; Song, F.; Guiochon, G. Analytical solution of the Ideal, Nonlinear Model of Reaction

Chromatography for a Reaction A→ B and a Parabolic Isotherm.J. Chromatogr. A 2003,

1003, 91.

(19) Yamaoka, K.; Nakagawa, T. Moment Analysis for ReactionChromatography.J. Chromatogr.

A 1976, 117, 1.

28



(20) Sardin, M.; Schweich, D; Villermaux, J.; Ganetsos, G.;Barker, P. E. Preparative Fixed-Bed

Chromatographic Reactor.In Preparative and Production Scale Chromatography; Ganetsos

G., Barker P. E., Eds.; Marcel Dekker Inc.: New York, 1993, pp477-520.

(21) Villermaux, J. The Chromatographic Reactor: InPercolation Processes: Theory and Appli-

cation; Rodrigues, A. E., Tondeur, D., Eds.; Sitjhoff and Noordhoff: The Netherlands, 1981,

pp 539-588.

(22) Schneider, P.; Smith, J. M. Adsorption Rate Constants from Chromatography.AlChE J. 1968,

14, 762.

(23) Mehta, R. V.; Merson, R. L.; McCoy, B. J. Hermite Polynomial Representation of Chro-

matography Elution Curves.J. Chromatogr. A 1974, 88, 1.

(24) Linek, F.; Dudukovíc, M. P. Representation of Breakthrough Curves for Fixed-Bed Adsorbers

and Reactors using Moments of the Impulse Response.Chem. Eng. J. 1982, 23, 31.

(25) Javeed, S.; Qamar, S.; Ashraf, W.; Warnecke, G.; Seidel-Morgenstern, A. Analysis and Nu-

merical Investigation of Two Dynamic Models for Liquid Chromatography.Chem. Eng. Sci.

2013, 90, 17.

(26) Qamar, S.; Abbasi, J. N.; Javeed, S.; Shah, M.; Khan, F. U.; Seidel-Morgenstern. Analytical

Solutions and Moment Analysis of Chromatographic Models for Rectangular Pulse Injec-

tions.J. Chromatogr. A 2013, 1315, 92.

(27) Quezada, C. R.; Clement, T. P.; Lee, K. K. Generalized Solution to Multi-Dimensional Multi-

Species Transport Equations Coupled with a First-Order Reaction Network Involving Distinct

Retardation Factors.Adv. Water Res. 2004, 27, 507.

(28) Abramowitz, M.; Stegun, I. A.Handbook of Mathematical Functions; Dover: New York,

N.Y., 1970.

29



(29) Carslaw, H.S.; Jaeger, J. D.Conduction of Heat in Solids; Oxford Unversity Press: London,

1959.

(30) Rice, R. G.; Do, D. D.Applied Mathematics and Modeling for Chemical Engineers; Wiley-

Interscience: New York, 1995.

(31) Javeed, S.; Qamar, S.; Seidel-Morgenstern, A.; Warnecke, G. Efficient and Accurate Nu-

merical Simulation of Nonlinear Chromatographic Processes.Comput. Chem. Eng. 2011, 35,

2294.

(32) Van Genuchten, M. Th. Analytical Solutions for Chemical Transport with Simultaneous Ad-

sorption, Zeroth-Order Production and First Order Decay.J. Hydrol. 1981, 49, 213.

(33) Danckwerts, P. V. Continuous Flow Systems.Chem. Eng. Sci. 1953, 2, 1.

(34) Ruthven, D. M.Principles of Adsorption and Adsorption Processes; Wiley-Interscience: New

York, 1984.

(35) Suzuki, M.; Smith, J. M. Kinetic Studies by Chromatography.Chem. Eng. Sci. 1971, 26, 221.

(36) Koren, B. A Robust Upwind Discretization Method for Advection, Diffusion and Source

Terms. InNumerical Methods for Advection-Diffusion Problems; Vreugdenhil, C. B., Koren,

B., Eds., Vieweg Verlag: Braunschweig, 1993, pp 117-138.

(37) Falk, T.; Seidel-Morgenstern, A. Comparison Between aFixed-Bed Reactor and a Chromato-

graphic Reactor.Chem. Eng. Sci. 1999, 54, 1479.

(38) Sainio, T.; Zhang, L.; Seidel-Morgenstern, A. Adiabatic Operation of Chromatographic

Fixed-Bed Reactors.Chem. Eng. J. 2011, 168, 861.

(39) Mazzotti, M.; Kruglov, A.; Neri, B.; Gelosa, D.; Morbidelli, M. A Continuous Chromato-

graphic Reactor: SMBR.Chem. Eng. Sci. 1996, 51, 1827.

30



(40) Tien, V. D.; Seidel-Morgenstern, A. Quantifying Temperature and Flow Rate Effects on the

Performance of a Fixed-bed Chromatographic Reactor.J. Chromatogr. A 2011, 1218, 8097.

Table 1: Parameters for linear reaction case.

Parameters values
Column length L = 1.0 cm

Porosity ε = 0.4
Interstitial velocity u = 1 cm/min

Dispersion coefficient of first component D1 = 0.005cm2/min
Dispersion coefficient of second component D2 = 0.005cm2/min

Initial concentrations ci,init = 0g/l
Concentration at inlet for component 1 c1,in j = 1.0g/l
Concentration at inlet for component 2 c2,in j = 0.0g/l

Adsorption equilibrium constant for component 1 a1 = 1.8
Adsorption equilibrium constant for component 2 a2 = 1.0

Irreversible reaction rate constant k = 0.4min−1

Reversible reaction rate constant (component 1) k1 = 0.4min−1

Reversible reaction rate constant (component 2) k2 = 0.2min−1
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Figure 1: Problem 1: Irreversible reaction, left: solutions for Dirichlet BCs atx = 1, right: solution
for Danckwerts BCs atx = 1. All other parameters are given in Table 1.
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Figure 2: Problem 1: Irreversible reaction, effect of BCs onthe breakthrough curves at the column
outlet i.e x = 1 for component 2 considering different values of dispersion coefficientsD and
u = 0.6 cm/min. Other parameters can be found in Table 1.
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Figure 3: Problem 1: Moments of irreversible reaction with Danckwerts BCs considering different
values ofu. Other parameters are presented in Table 1.

33



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time [min]

c 
[g

/l]

Reversible reaction with Dirichlet BCs

 

 

Finite volume scheme
Numerical Laplace inversion

component 2

component 1

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time [min]

c 
[g

/l]

 

 
Reversible reaction with Danckwerts BCs

Finite volume scheme
Numerical Laplace inversion

component 1
component 2

Figure 4: Problem 2: Reversible reaction, top: solution forDirichlet BCs at the column outlet i.e
x = 1, bottom: solution for Danckwerts BCs atx = 1. Parameters can be found in Table 1.
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Figure 5: Problem 2: Moments of reversible reaction with Danckwerts BCs considering different
values ofu. All other parameters are given in Table 1.
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Figure 6: Breakthrough curves at the column outlet,x = 1 using Danckwerts BCs. Effects of
reaction rate constants on reversible reaction keepingk1 = 0.4min−1 fixed. Other parameters can
be found in Table 1.
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