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Improved effective-one-body Hamiltonian for spinning black-hole binaries
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Building on a recent paper in which we computed the canonical Hamiltonian of a spinning test particle
in curved spacetime, at linear order in the particle’s spin, we work out an improved effective-one-body
(EOB) Hamiltonian for spinning black-hole binaries. As in previous descriptions, we endow the effective
particle not only with a mass u, but also with a spin S.. Thus, the effective particle interacts with the
effective Kerr background (having spin Sg.,,) through a geodesic-type interaction and an additional spin-
dependent interaction proportional to S.. When expanded in post-Newtonian orders, the EOB
Hamiltonian reproduces the leading order spin-spin coupling and the spin-orbit coupling through 2.5
post-Newtonian order, for any mass ratio. Also, it reproduces all spin-orbit couplings in the test-particle
limit. Similarly to the test-particle limit case, when we restrict the EOB dynamics to spins aligned or
antialigned with the orbital angular momentum, for which circular orbits exist, the EOB dynamics has
several interesting features, such as the existence of an innermost stable circular orbit, a photon circular
orbit, and a maximum in the orbital frequency during the plunge subsequent to the inspiral. These
properties are crucial for reproducing the dynamics and gravitational-wave emission of spinning black-
hole binaries, as calculated in numerical relativity simulations.
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L. INTRODUCTION

Coalescing black-hole binaries are among the most
promising sources for the current and future laser-
interferometer gravitational-wave detectors, such as the
ground-based detectors LIGO and Virgo [1,2] and the
space-based detector LISA [3].

The search for gravitational waves from coalescing bi-
naries and the extraction of the binary’s physical parame-
ters are based on the matched filtering technique, which
requires accurate knowledge of the waveform of the in-
coming signal. Because black holes in general relativity are
uniquely defined by their masses and spins, the waveforms
for black-hole binaries on a quasicircular orbits depend on
eight parameters, namely, the masses m; and m, and the
spin vectors S; and S,. Because of the large parameter
space, eventually tens of thousands of waveform templates
may be needed to extract the gravitational-wave signal
from the noise, an impossible demand for numerical rela-
tivity alone. Fortunately, recent work at the interface be-
tween analytical and numerical relativity has demonstrated
the possibility of modeling analytically the dynamics and
the gravitational-wave emission of coalescing nonspinning
black holes, thus providing data analysts with analytical
template families [4—7] to be used for the searches (see also
Ref. [8], which considers the cases of extreme mass-ratio
inspirals). The next important step is to extend those
studies to spinning precessing black holes.

1550-7998/2010/81(8)/084024(23)

084024-1

PACS numbers: 04.25.D—, 04.25.dg, 04.25.Nx, 04.30.—w

So far, the analytical modeling of the inspiral, plunge,'
merger,” and ringdown has been obtained within either the
effective-one-body (EOB) formalism [4,6,7,9—-17] or in
Taylor-expanded post-Newtonian (PN) models [13], both
calibrated to numerical-relativity simulations, or in phe-
nomenological approaches [5,18] where the numerical-
relativity waveforms are fitted to templates which resemble
the PN expansion, but in which the coefficients predicted
by PN theory are replaced by many arbitrary coefficients.
Considering the success of the EOB formalism in under-
standing the physics of the coalescence of nonspinning
black holes and modeling their gravitational-wave emis-
sion with a small number of adjustable parameters, in this
paper we will use that technique, adapting it to the case of
spinning black-hole binaries.

The first EOB Hamiltonian which included spin effects
was computed in Ref. [19]. In Ref. [20], the authors used
the nonspinning EOB Hamiltonian augmented with PN
spin terms to carry out the first exploratory study of the
dynamics and gravitational radiation of spinning black-
hole binaries during inspiral, merger and ringdown. More

"We refer to plunge as the dynamical phase starting soon after
the two-body system passes the last stable orbit. During the
plunge the motion is driven mostly by the conservative
dynamics.

*We refer to merger as the dynamical phase in which the two-
body system is described by a single black hole.
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recently, Ref. [21] extended the model of Ref. [19] to
include the next-to-leading-order spin-orbit couplings.
The EOB formalism developed in Refs. [19,21] highlights
several features of the spinning two-body dynamics and
was recently compared to numerical-relativity simulations
of spinning nonprecessing black holes in Ref. [22]. In this
paper we build on Refs. [19,21] and also on Ref. [23], in
which we (in collaboration with Etienne Racine) derived
the canonical Hamiltonian for a spinning test particle in
curved spacetime, at linear order in the particle’s spin, and
work out an improved EOB Hamiltonian for spinning
black-hole binaries. In particular, our EOB Hamiltonian
reproduces the leading order spin-spin coupling and the
spin-orbit coupling through 2.5PN order, for any mass
ratio. Also, it resums all the test-particle limit spin-orbit
terms. Moreover, when restricted to the case of spins
aligned or antialigned with the orbital angular momentum,
it presents several important features, such as the existence
of an innermost stable circular orbit, a photon circular
orbit, and a maximum in the orbital frequency during the
plunge subsequent to the inspiral. All of these features are
crucial for reproducing the dynamics and gravitational-
wave emission of spinning coalescing black holes, as
calculated in numerical relativity simulations.

This paper is organized as follows. After presenting our
notation (Sec. II), in Sec. III we build on Ref. [23] and
derive the Hamiltonian for a spinning test particle in axi-
symmetric stationary spacetimes. In Sec. IV, we specialize
the axisymmetric stationary spacetime to the Kerr space-
time in Boyer-Lindquist coordinates. In Sec. V we work
out the EOB Hamiltonian of two spinning precessing black
holes. In Sec. VI we restrict the dynamics to spins aligned
or antialigned with the orbital angular momentum and
determine several properties of the circular-orbit dynam-
ics. Section VII summarizes our main conclusions. More
details on how the spin-spin sector of the EOB
Hamiltonian is constructed are eventually given in the
appendix.

II. NOTATION

Throughout this paper, we use the signature
(=, +, +, +) for the metric. Spacetime tensor indices
(ranging from O to 3) are denoted with Greek letters, while
spatial tensor indices (ranging from 1 to 3) are denoted
with lowercase Latin letters. Unless stated otherwise, we
use geometric units (G = ¢ = 1), although we restore the
factors of ¢ when expanding in PN orders.

We define a tetrad field as a set consisting of a timelike
future-oriented vector &, and three spacelike vectors
e (I=1,...,3)—collectively denoted as &
(A=0,...,3)—satisfying

E::Eg’g,uv = Mas> (21)
where Nrr = _1, Nrr = 0, ny = 5[] (8]] being the
Kronecker symbol).
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Internal tetrad indices denoted with the uppercase Latin
letters A, B, C, and D always run from O to 3, while internal
tetrad indices with the uppercase Latin letters /, J, K, and
L, associated with the spacelike tetrad vectors, run from 1
to 3 only. The timelike tetrad index is denoted by T

Tetrad indices are raised and lowered with the metric
Nap le.g., & = n,5(85)*]. We denote the projections of a
vector V onto the tetrad with V4 = V# éﬁ, and similarly for
tensors of higher rank. Partial derivatives will be denoted
with a comma or with 0, and covariant derivatives with a
semicolon.

III. HAMILTONIAN FOR A SPINNING TEST
PARTICLE IN AXISYMMETRIC STATIONARY
SPACETIMES

Following Ref. [24], we write a generic axisymmetric
stationary metric in quasi-isotropic coordinates as

ds®> = —e?df* + R%sin’6B%e ?"(d¢p — wdt)?

+ e**(dR* + R*d6?), (3.1

where v, u, B, and w are functions of the coordinates R
and 6. Introducing the Cartesian quasi-isotropic coordi-
nates

X = Rsinf cosd,

Y = Rsinf sing,
Z = Rcos#f,

(3.2a)
(3.2b)
(3.2¢)
we can write Eq. (3.1) as
ds* = e ?’[B?w?(X? + Y?) — e*]dt?
+ 2B?¢ " w(YdX — XdY)dt
BZ —2v _ 2u XY
B T XY vy
X-+Y
X% + B2e 'Y?
X? +Yy?
BZe*ZV)(Z + eZ,u,yZ
X*+ Y2

dax?

dY? + e d7z2.

(3.3)

It is straightforward to see that in the flat spacetime limit
(w=v=pu=0, B=1) Eq. (33) reduces to the
Minkowski metric.

Reference [23] computed the Hamiltonian of a spinning
test particle in curved spacetime at linear order in the
particle’s spin, and showed that it can be written as

H = HNS + Hs, (34)

where Hyg is the Hamiltonian for a nonspinning test
particle of mass m, given by

Hys = B, + oo T PP,

(3.5)
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with
1
a = = (3.6)
-8
) gti
B'== (3.7
4
L gligh
yii = gii -85 (3.8)
8
and

Sk
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Pt _ _BiPi -« ’mz + 7i~"Pin, (3.13)
b= o, =P, —m, (3.14)
&, =, =P, (3.15)

Reference [23] also showed that in order to obtain a
Hamiltonian giving the usual leading-order spin-orbit cou-
pling without gauge effects (or, equivalently, Hg = 0 in flat
spacetime), the reference tetrad field must become
Cartesian in the flat-spacetime limit. We find that the
following choice for the reference tetrad

Hs = —(BiFf( A &l = 81 (—g") 12 = evdl,, (3.16)
m2 + 'ylein
. BeEX*+eY?  (BeTF —e)XY
. ] . e =——5 06§+t ————>—467, (3.16b)
where the coefficients F,, can be expressed in terms of a B(X* + Y?) B(X* +Y?)
reference tetrad field &, as (Be™* — e")XY e’X?> + Be HY?
& =——F—F-—0§ + ————5—0%, (3.16¢c)
. o, ok 2 B(x*+v}) X B(x:+vy) Y
Fu = (2Ew@T + EMJ)E ’ B9 o = onsy, (3.16d)
L aen indeed reduces to the Cartesian tetrad &1, = 1, ¢ = 8¢ in
Eyuw = 3MABCLE N> (3.10) the flat-spacetime limit.
th We can then use the tetrad defined by Eqgs. (3.16a)-
wit (3.16d) to calculate the coefficients F 5 in Eq. (3.9), and
@, =P, —mél, (3.11)  obtain
HS = HSO + Hss, (317)
P,=P, (3.12) with
|
Hyp = ST BIPERIST T g et (B ERND + 1S N
= cosf€ ’ :
% BJOR?E BT + DJORE
+ R(S ' g)[/-LR(P : VR)(\/@ + 1) - IU’COSG(P ' N)fz - ‘\/@(VR(ﬁ ' VR) + (/—Lcosﬂ - Vcosﬂ)(ﬁ : N)fz)]Bz
+ et (P ERNVO + DIVRR(S + V) = veos(S - N)EIB — Bret (P - ER)VOQ + DR(S - V)}, (3.18)
Hss = wS% + e g {=et V(P - VR)(P - £R)(S - £)B + WP - £R)X(S - V)
2B(\JO + 1)/OR¢
+ (1 + JO)WORXS - V)E2B2 + (P - N)R[(P- VR)(S - N) — (P - N)R(S - V)]&*B%}
673'“71/0) R R A
+ o {er (P - N)P - ERR(S - £)B — 2 H(P - ER*(S - N
BT g e P NP ERIRS - £)B — (P RS - N)
+[(S-N)(P-VR)? = (P- N)R(S - V)(P - VR) — e?*(1 + JO)WORX(S - N)é*]B%, (3.19)
. “24(P-VR)> (P - £R)?
Q=1+yiPP,=1+e 2P NP +° (P VRS | (P ¢R) (3.20)

RZ é‘:Z B2R2 é':2 ’
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where we denote

ﬁ=£, (3.21)
m
X
=—, 322
N R ( )
—Yey + X
§=eyx N=—" 0 (3.23)
V =N X§ (3.24)
and
df(R, cosh)
== 7 2
fr IR , (3.25)
df (R, cosh)
=~ 3.26
cosf (")(COSH) ( )

Here, the generic function f can stand for B, w, u, or v.
Note that because w is proportional to g,4 [see Eq. (3.1)]
and thus to the spin of the spacetime, Hgg (which is
proportional to @ and its derivatives) gives the leading-
order coupling between the particle’s spin and the spin of
the background spacetime (together with other higher or-
der terms). Also, because P - &R = 134, in spherical coor-
dinates, Hgg is the part of the Hamiltonian which gives the
leading-order spin-orbit coupling (again, together with
other higher order terms). Moreover, note that Hg = 0 in
a flat spacetime, thus confirming the absence of gauge
effects in the leading order spin-orbit coupling.

As a consistency test, we specialize to the case of a
spherically symmetric spacetime in quasi-isotropic coor-
dinates, which was considered in Ref. [23] (see Sec. V A
therein). Because the metric for such a spacetime is given
by

ds®> = —f(R)df* + h(R)(dX* + dY*> + dZ?), (3.27)

a comparison with Eq. (3.1) immediately reveals that

B = [f(R)A(R) (3.28)

© =0, (329)
v =Lloglf(R)] (3.30)
w = Lloglh(R)]. (331)

Inserting Egs. (3.28)—(3.31) in Egs. (3.17)—(3.20), we find
H = L-S
2mRJF(RIA(RVO(1 + /O)
X {(VOLF'(R)A(R) = F(R)K'(R)] = f(R)'(R)},
(3.32)
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where

1"2
0=1+_F,

N (3.33)

L =XXP, (3.34)
in agreement with Eq. (5.7) in Ref. [23].

Let us now investigate how the Hamiltonian (3.17) is
affected by a change of the radial coordinate R. Denoting
the new radial coordinate by r = |x| and defining

dR

J ="
dr

(3.35)

the radial derivatives of the metric potentials can be reex-
pressed as

fr =1, (3.36)

where again f = B, w, v, . The spin S, the derivatives of
the metric potentials with respect to cosé, and the quanti-
ties

N=n=2% (3.37)

r
£ =e;XN=e,Xn, (3.38)
V=v=nX§¢ (3.39)

are not affected by the coordinate change. The same ap-
plies to the quantities P-VR and P- &R appearing in
Egs. (3.18)—(3.20). In fact, in spherical coordinates, we
have P+ VR = —P,sinf and P - éR = 13¢, hence

P-VR=p-vr (3.40)

P-éR=p- &, (3.41)

where p = p/m and p is the conjugate momentum in the
new coordinate system, i.e., p; = dX//dx'P;. On the con-

trary, since P - N = Py, we have

P-N=(p-n). (3.42)

It is therefore straightforward to compute Hg in a coordi-
nate system related to quasi-isotropic coordinates by a
rescaling of the radius. We have

Hg = Hso + Hss, (3.43)

where
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e’k (et — B)(p - £r)S° eV

Hgo =

B>JOR*& B2 + JOR’
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f2 {Bcos()eﬁﬁ—v(ﬁ ’ f”)(\/@ + 1)(S : n)§:2

+ R(S : g)J[Mr(ﬁ : Ur)(\/—Q— + 1) - /-Lcosﬁ(ﬁ : n)éﬂ - \/—Q—(Vr(ﬁ : U}’) + (/-Lcosﬂ - Vcosé))(ﬁ : n)‘fz)]BZ

+eF (P ENVO + DIJVR(S - v) = veogy(S - n)EX]B — JB.e* ™ (p - £r)(Q + DR(S - v)},

e 7w,

S 3B(JO + 1)JOR

Hssza)

—3u—v
ek Weosh

- 2B(\/O + 1)/JOR

and where R must of course be expressed in terms of the
new radial coordinate r.

(3.44)
e b vn(p - £0(S - §)B + 0 (p - 7S - v)
+ (1 + JO)WORX(S - v)€2B2 + J(p - n)R[(p - vr)(S - n) — J(p - n)R(S - v)]£2B?}
A=W £r)2(S - m) + e*VI(p - n)(p - ENR(S - £)B
+[(S-n)p-vr)? —J(p-n)RES - v)(p - vr) — (1 + JOWORXS - n)£21B%, (3.45)
-2 o, 2 Qv . 2
Q=1+ 9yipp;=1+e#(p-nPP+° Mzggzw) : B(fstir) , (3.46)
[
hole by
= —lsl‘“;”l (4.9)

IV. HAMILTONIAN FOR A SPINNING TEST
PARTICLE IN KERR SPACETIME IN BOYER-
LINDQUIST COORDINATES

In this section, we will specialize the Hamiltonian de-
rived in the previous section to the case of Kerr spacetime
in Boyer-Lindquist coordinates.

We start from the metric potentials appearing in
Eq. (3.1), which in the case of a Kerr spacetime take the
form [25]

A
B= £ (4.1)
R
2aMr
= R 4.2
) A 4.2)
AY
v — T 7
e A “4.3)
>
e ==, 4.4)
with
S = 2 + d%cos?4, 4.5)
A=+ 4% - 2Mr, 4.6)
w? = r* + d? 4.7
A = w* — a?Asin®6, (4.8)

where the parameter a, which has the dimensions of a
length, is related to the spin vector Sk, of the Kerr black

The Boyer-Lindquist coordinate r is related to the quasi-
isotropic coordinate R by

2

Ry
r=R+ M+ —,
R

where Ry = vVM? — a?/2 is the horizon’s radius in quasi-
isotropic coordinates. Note that the inverse of this trans-
formation is given, outside the horizon, by

R=1r—-M+A).

(4.10)

(4.11)

We then obtain that the derivatives of the metric potentials
take the form

B :r—M—\/K

S 4.12a
RVA 12
2aM[3w* — 2173 + w?
w, = 2MZw e G+a)] (4.12b)
r—M r 2rw?— a*(r — M)sin®6
S - 4.12
v, A s A ( c)
r 1
pe=g— T (4.12d)
Beoso =0, (4.12¢)
4a’MrA cosf
Weosh = (AS + ZMrm'z)z’ (4.121)
2a*Mrw? cosf
Veoso = (AE + ZMV’ID'Z)E’ (412g)
a® cosf
Mcoso = 2 (4121’1)

and we also have
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_dR R
dr /A’
Inserting Eqgs. (4.12a)—(4.12h) and (4.13) into Egs. (3.43)—
(3.46), we find that R cancels out both in Q, that is
Ap-n? | (p- &P (p-vrp
3 Asin®6 Ssin%6
and in the Hamiltonian Hg. In conclusion, the Hamiltonian
of a spinning test particle in Kerr spacetime in Boyer-

J! (4.13)

0=1+

(4.14)
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with

Hys = B'pi + ayym®> + y'pip;,

where a, B’ and y"/ are given in Egs. (3.6)—(3.8) and need
to be computed using the Kerr metric coefficients (4.1)—
(4.8), and with

(4.16)

Lindquist coordinates is Hs = Hso * Hss, (.17)
H = Hyg + Hg, (4.15)  where
|
wR(eBtY — BY(p - Er)(S * Skerr) v=241 ~ . A
Hyo = e St T e S O W ) pe(p - wE
- \/E(Vr(ﬁ : ‘UI") + (MCOS@ - Vcosﬂ)(ﬁ : n)é‘:Q)]B'Z + eﬂ+v(ﬁ ' é:r)(z\/@ + 1)[.71/,(5 : ‘U) - Vcos()(s : n)é'—'z]é
— JB, "7 (p - £r)(WQ + 1)(S - v)}, (4.18)
and
R B, N . ~ Bt o)A
Hss = (S * Sger) + zé(f/g " 1)\/@52{—6“ (p-vr)(p- En(S - EB+ 2 F(p - £r)(S - v)
+ (1 + JOWO(S - v)&B2 + J(p - n)(p - vr)(S - n) — J(p - n)(S - v)]E*B%}
M Wo00( oz : A+ §(h - n)(p - P
+m{ e’ (p 57)2(5 n)+e J(p-n)p-E&r)S-EB
+ (S n)(p - vr)? = J(p-n)(S-v)(p - vr) — (1 +JOWO(S - n)é*]B%, (4.19)

where we define

B = BR = VA, (4.20)
~ r—M—+A
B,=BR=-—"— """ 421

Ny @20

et = MR =3, (4.22)

J=JR = A, (4.23)
Fal SKerr

S ker = 4.24

K |SKerr| ( )

and we recall that £2 = sin?§. We stress that because this
Hamiltonian is expressed in terms of quantities which are
scalar under spatial rotations, we can express it in a
Cartesian coordinate system in which the spin of the Kerr
black hole is not directed along the z-axis. For that purpose,
itis sufficient to replace r with (x> + y? + z2)'/2, cos with
SKCH - n, e,with SKC“ in Eq. (3.38), and express the vectors
appearing in Egs. (4.16)—(4.19) in terms of their cartesian
components.

As a consistency check, we can compute the Hamil-
tonian for a spinning test particle in a Schwarzschild space-
time in Schwarzschild spherical coordinates by setting a =
0, and compare the result to the expression computed in
Ref. [23] [see Eq. (5.12) therein]. We find

Hg = W:@[l —%—i- 2(1 —M)\/@](L - §%),

2R 4R
(4.25)
where
S*t=—§, (4.26)
m
¢—<1+M)7 4.27)
2R) '
R=13r—M+~Nr*—2Mr), (4.28)
and
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0=1

>

) (p-v?+(p-&?

sinZ6

y >2(

in agreement with Ref. [23]. Also, it is worth noting that
the Hamiltonian (4.25) is the same as the quasi-isotropic
Schwarzschild Hamiltonian (3.32), expressed in terms of
the Schwarzschild coordinate r. This is because the scalar
product L - § is unaffected by a change of the radial
coordinate.

(4.29)

V. EFFECTIVE-ONE-BODY HAMILTONIAN FOR
TWO SPINNING BLACK HOLES

The EOB approach was originally introduced in
Refs. [9-11,19] to provide us with an improved (re-
summed) Hamiltonian that could be used to evolve a
binary system not only during the long inspiral, but also
during the plunge, and that could supply a natural moment
at which to switch from the two-body description to the
one-body description, in which the system is represented
by a superposition of quasinormal modes of the remnant
black hole.

A crucial ingredient of the EOB approach is the real PN-
expanded Arnowitt-Deser-Misner (ADM) Hamiltonian (or
real Hamiltonian) describing two black holes of masses
m;, my and spins S;, S,. The real Hamiltonian is then
canonically transformed and subsequently mapped to an
effective Hamiltonian H s describing a test particle of mass
M = mym,/(m; + m,) and suitable spin S*, moving in a
deformed Kerr metric of mass M = m; + m, and suitable
spin Ske- The parameter regulating the deformation is the
symmetric mass ratio of the binary, n = /M, which
ensures that the deformation disappears in the case of
extreme mass-ratio binaries. The resulting improved
EOB Hamiltonian then takes the form

HImProved — M\/ 1+ 27 1). (5.1)

The computation of the improved EOB Hamiltonian
consists of several stages. For this reason, we briefly review
here the main steps and the underpinning logic that we will
follow in the rest of this section:

(1) We apply a canonical transformation to the PN-
expanded ADM Hamiltonian using a generating
function which is compatible with the one used in
previous EOB work, obtaining the PN-expanded
Hamiltonian in EOB canonical coordinates (see
Sec. VA);

(i) We compute the effective Hamiltonian correspond-
ing to the canonically transformed PN-expanded
ADM Hamiltonian (see Sec. V B);

(iii) We deform the Hamiltonian of a spinning test
particle in Kerr derived in Sec. IV by deforming
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the Kerr metric (see Sec. VC), and expand this
deformed Hamiltonian in PN orders (see Sec. V D);

(iv) Comparing (iii) and (iii), we work out the mapping
between the spin variables in the real and effective
descriptions, and write the improved EOB
Hamiltonian (see Sec. VE)

A. The ADM Hamiltonian canonically transformed to
EOB coordinates

We denote the ADM canonical variables in the binary’s
center-of-mass frame with r’ and p’. It is convenient to
introduce the following spin combinations:

g = Sl + Sz, (52)

—S1—+S2— (5.3)
my my

oy=0+ 0" 5.4)

Moreover, in order to consistently keep track of the PN
orders, we will restore the speed of light ¢ and rescale the
spins variables as o* — "¢ and o — orc.’ The canonical
ADM Hamiltonian is known through 3PN order [26-30]
and partially at higher PN orders [31,32]. In particular, the
spin-orbit and spin-spin coupling terms agree with those
computed via effective-field-theory techniques at 1.5PN,
2PN, and 3PN order [33-36]. In this paper, we use the spin-
independent part of the ADM Hamiltonian through 3PN
order, but we only use its spin-dependent part through 2.5
PN order, i.e., we consider the leading-order (1.5 PN) and
the next-to-leading order (2.5PN) spin-orbit couplings, but
only the leading-order (2PN) spin-spin coupling. The ex-
pressions for these couplings are [19,27]

1 L’ .
HOM(, pl, o, o) = 3.5 - (g5PMgr + gADMg™),

(5.5)

HYPM(P, p!, o, o) = 735 ,3 [B3(n' - 00)* — 03] (5.6)

with L' = r' X p’, n' = r'/¥, and

*This is appropriate for black holes or a rapidly rotating
compact stars. In the black-hole case, S = yM?/c, with y
ranging from O to 1. In the rapidly spinning star case one has
S = Muv,, v ~ Mcr, ~ M?*/c (where we have assumed that the
rotational velocity v, is comparable to ¢ and that the stellar
radius r is of the order of the Schwarzschild radius r, ~ M/c?).
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1719 3
ADM:2+__ ’\/2+_ . 512
8o ped el 277(n P
M-
—(6+2n)—|, (5.7a)
rJ
3 17/ 5 3
APM:_+_ —Z 42 )AI2+_ . a2
g5 3 c2_< g T 2n)p 4n(n P’
M
—G+2n)—| (5.7b)
rJ

where we have introduced the rescaled conjugate momen-
tum p’ = p'/ .

We now perform a canonical transformation from the
ADM canonical variables ' and p’ to the EOB canonical
variables r and p. Let us first consider the purely orbital
generating function

G(r',p)=r"-p+ Gxs(, p), (5.8)
Gys(r', p) = Gys 1pn (', p) + Grs 2on (7, p)
+ Gns 3en (7, ), (5.9

where the 1PN-accurate generating function Gyg pny Was
derived in Ref. [10],

PN 1, M 1
Gys 1en(F, p) = ar 'PI:_EUP + 7(1 + 577)]
(5.10)
while the 2PN and 3PN accurate generating functions,
Gnsopn and Gygspy, Were derived in Refs. [10,11], re-
spectively. From the definition of generating function, it

follows that the transformation of the phase-space varia-
bles is implicitly given by

o= xli + aGNS(xI’ P)

, (5.11)
ap;
IGxs(', p)
pi= P (5.12)
while the Hamiltonian transforms as H(r, p) =

HAPM(r/ p'). At linear order, which is enough for our
purposes, Egs. (5.11) and (5.12) can be written as y = y' —
{Gns, y'}, where {. . .} are the Poisson brackets and where y
stands for either x or p. The transformation of the
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HAPM(y) + {Gns, HAPM}(y) [21]. Similarly, if one consid-
ers a generating function which depends not only on the
orbital variables, but also on the spins,

G, p,o*,o)=r"-p+ Gy, p) + Gs(t, p, o, o)

(5.13)
the Hamiltonian will again transform as H(y) =
HAPM(y) + {Gns, HAPMHy) +{Gs, HAPM}(y),  where

now the Poisson brackets in the term {Gg, HAPM} will
involve also the spin variables [21]. In particular, let us
consider a spin-dependent generating function

Gs(r', p, o7, ) = Gsopn(r', p, ) + Gso5pn(F, p, 07, 0)

+ Gsss2.sen(r, p, 07, 0). (5.14)

where the 2PN-accurate spin-dependent generating func-
tion Gg,py Was implicitly4 used in Ref. [19],

il = (o a1 p)
+ (o n) X p) - (o X n)

(5.15)

Gs 2PN(r/r D, o) =—

the 2.5PN-accurate generating function Gg, spy linear in
the spin variables was introduced in Ref. [21],

. 1
Gsaspn(r, p o, 0) = W(""P)("I X p)

la(m)o + b(n)o™],

a(n) and b(n) being arbitrary gauge functions; also, for
reasons which will become clear in Sec. VD, we include
the following 2.5PN-accurate generating function, cubic in
the spins,

(5.16)

I

W(O’ -r)o* - (o Xr')].

Gsss 2.5PN("/, p o, o) =
5.17)

When applying the generating function (5.13) to the
ADM 2PN spin-spin Hamiltonian (5.6), we obtain

= HSASD%N("J P) 0-*; 0.)

+ {Gs2pn: Hyewt}(r, P, 0), (5.18)

Hsssz(", p.o, o)

Hamiltonian, again at linear order, is then H(y) = with
|
Mu  p?
Hyewt = ——— + 5— (5.19)
r 210

1
{Gs 2PN> HNeWt}(r’ D, o) =— -

al
o
‘W

J’_
2uM?r’c

A=[p* —2(p - n)*lo? +[(p —2(p - n)n) - olp - o}.

(5.20)

“See discussion in Sec II D of Ref. [19]. The need for this generating function will become apparent with Eq. (5.55) in Sec. VD.
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Similarly, if we apply the same generating function to the ADM spin-orbit Hamiltonian (5.5), the 1.5PN order term remains

unaltered [21], while the 2.5PN order term transforms as [21]

Hso 2.5PN(r, p. o, o)

= H{OM N, p, 0%, 0) +{Gs 5pn, Hnewt}(r, P, 07, 0), H{Gns 1pne HE son (. p. 0%, 0) (5.21)

where
Gy spn = Gssospy T Gsss 2.5pN (5.22)
(Gaspn Hyed(r, .07, ) = 55 L-[b()a” + amr]] =+ 2 = 30 - )]
n [0' (o X n)][o; (P —2(p- n)n)] (L-oo? — §L o)o" - 0') (5.23)
M- r 2M-°r
and
ADM * 3L * M ~2 - 2
{Gns 1pn H Vsp ), p, 07, 00) = 255 \a” + 20 _7(2 + ) + nlp* + 2(p - n)*}. (5.24)
Therefore, the complete real Hamiltonian in the EOB canonical coordinates is
H(r, p, 0", 0) = Hyoipin(r, p, 0, 0) + HEEM(r, p, 07, 0) + HEPM(r, p, 0, &) + {G3 5px, Hyewt )T, P, 07, 0)
+ {Gns 1pne HEYpnJ (1, p, 0%, ) + {Gs 2o, Hxew}(r, P, 0), (5.25)

where Hpin 18 the 3PN ADM Hamiltonian for nonspin-
ning black holes, canonically transformed to EOB coordi-
nates, which can be obtained from Ref. [11].

B. Spin couplings in the effective Hamiltonian

Following Refs. [9,11,19], we map the effective and real
two-body Hamiltonians as

2 2.4 2.4
Heff — Hreal T myc T mac
wc? 2mmyc* ’

(5.26)

where H,., is the real two-body Hamiltonian containing
also the rest-mass contribution Mc2. We denote the non-
relativistic part of the real Hamiltonian by H™R, ie.,
H™R = H_ .. — Mc?. Identifying HNR with H as given in
Eq. (5.25), and expanding Eq. (5.26) in powers of 1/c, we
find that the 1.5PN and 2.5PN order spin-orbit couplings of
the effective Hamiltonian are

Hgg(i‘, P, 0_*’ 0,) — %% (geffo. + geffo,*)
[o" - (o Xn)]o-(p—2(p- n)n)]
+ M3 3 5
(L - o*)o* — (L 0)(0' 0')
+
2M3 4

(5.27)

where [21]

I
gt =24 L {[%n + a(n)]ﬁ2 - [gn + 3a(n)](13 “n)?

M a(n)]},
:

31 5.1
ff ==+ +b ]
85 =3 cZ{[ g 37 (n)
5

—[%1}"‘3'[7(77)]@'")2 M[;+4n+b(n)]}
(5.28b)

(5.28a)

and the 2PN order spin-spin coupling is

Hf(r, p, 0", o) = 453 (3nln 8:j)oho)
1
L2 o~ o]
1
+ W{_[PZ —2(p - n)*]o?

+[(p—2(p-n)n)-olp- o). (529)

C. The Hamiltonian of a spinning test particle in a
deformed Kerr spacetime

We now deform the Hamiltonian of a spinning test
particle in a Kerr spacetime computed in Sec. IV [see
Egs. (4.16)—-(4.19)] by deforming the Kerr metric. The
deformation that we introduce is regulated by the parame-
ter n = /M, and therefore disappears in the test-particle
limit. Also, the deformed Hamiltonian will be such as to
reproduce, when expanded in PN orders, the spin couplings
of the effective Hamiltonian given in Sec. V B.
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When the spin of the Kerr black hole is zero, that is a =
0, we require the metric to coincide with the deformed
Schwarzschild metric used in the EOB formalism for non-
spinning black-hole binaries [10,11]. That deformation
simply amounts to changing the components g, and g,,
of the metric. In the spinning case, following Ref. [21], we
seek an extension of this deformation by changing the
potential A appearing in the Kerr potentials (4.1)—(4.4).

It is worth noting, however, that we are not allowed to
deform the Kerr metric in an arbitrary way. We recall
indeed that the Hamiltonian that we have derived in
Sec. IV is only valid for a stationary axisymmetric metric,
and in coordinates which are related to quasi-isotropic
coordinates by a redefinition of the radius. In other words,
it must be possible for our deformed metric to be put in the
form (3.1) by a coordinate change of the type R = R(r).
For this reason we cannot deform the metric exactly in the
same way as in Ref. [21]. Here we propose to deform the
metric potentials in the following manner

B = R (5.30)

Dgq
= —, 5.31
® A, (5.31)

AS
= 5.32
e A, (5.32)
et = % (5.33)

and

AR R (5.34)

ar B,
where the relation between r and R can be found by
integrating Eq. (5.34):

dr
R = ex ( —) (5.35)
p ,—Ar
The deformed metric therefore takes the form
A
to— _ ’
g AS (5.36a)
A
m=_L 5.36b
8 S ( )
1
00 = 5.36
g S (5.36¢)
1 @2 3
P = (-~ M 4 = ) 5.36d
§ A,( A sin20) ( )
6 _ _ @
g A (5.36e)

which does not depend on R. Therefore, as we will show
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explicitly later in this section, we do not need to compute
the integral (5.35) to write the Hamiltonian. The quantities
A, A,, A,, and @g4 in Egs. (5.36a)—(5.36¢) are given by

a2
A, = r2|:A(u) + Wuz], (5.37)
A, =AD" (u), (5.38)
A, = @* — a’?Asin’6, (5.39)
- aM? - Ma®
@ =2aMr + 0lin =+ ofin=", (540

where u = M/r, o and @ are adjustable parameters
which regulate the strength of the frame-dragging, and
through 3PN order [9,11]

Al) =1 —2u + 2nu® + 77(974 — 424

4 (5.41)

D '(u) =1+ 6mu’ + 2(26 — 3n)nu’. (5.42)

We find that our deformed metric is the same as the
deformed metric of Ref. [21], except for g¢¢ and g'¢.
As we prove below, the differences between our deforma-
tion and the deformation of Ref. [21] appear in the
Hamiltonian at PN orders higher than 3PN.

To obtain the total Hamiltonian (4.15), that is H =
Hys + Hg, we first compute the Hamiltonian Hyg for a
nonspinning particle in the deformed Kerr metric. Using
Eq. (4.16) and Ref. [11], we have

Hys = B'pi + a\/mz +yUpipi+ Qulp),  (543)

where Q,4(p) is a term which is quartic in the space
momenta p; and which was introduced in Ref. [11], and

1
«=—, (5.44)
-
ti
B = %, (5.45)
y o gl
Y=g — PO (5.46)

In Eqgs. (5.44)—(5.46) the metric components have to be
replaced with those of the deformed Kerr metric (5.36a)—
(5.36e). When expanded in PN orders, Eq. (5.43) coincides,
through 3PN order, with the Hamiltonian of a nonspinning
test particle in the deformed Kerr metric given by Ref. [21].

Second, to calculate Hg given by Eqgs. (3.43)—(3.45), we
need to compute the derivatives of the metric potentials.

SReference [21] chooses g#¢ = (—a%sin20 + A,)/(A,Ssin26)
and g'* = a(A, — w?)/(A,S), which are different from our
expressions (5.36d) and (5.36e) even for wf = Wi = 0.
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We obtain

\/A_rA§ — 24,

B =Y=ror oo (5.472)
2JAA R

!~ ~
_ NGy + Adgy

, 5.47b
w, e ( )
r w@(w?A —4rA)
=+ :
v= An 6470
r 1
=, 5.47d
Pr =35 . ( )
Bcost‘) =0, (5476)
2a® cosOA,d
Weos) = A,2 . fdy (5.471)
a’w? cosb(wm> — A,)
= 47
Vieoso Atz > (5 g)
a® cosf
Mecoso — T: (547h)

where the prime denotes derivatives with respect to r. As
already stressed, although the metric potentials B, w, v,
and u depend on R, the factors R cancel out in the
deformed Kerr metric. Therefore, those factors must cancel
out also in Hg. This happens because the reference tetrad
field €, which, together with the metric, completely deter-
mines the Hamiltonian [see Eq. (3.9)], can be defined
independently of R. Indeed, this turns out to be the case,
and if we introduce the rescaled potentials

B=BR=4A, (5.48)
[
B,=B,R= M, (5.49)
2JA A,
e = 2 R> =3, (5.50)
J=JR=4A, (5.51)
and define
A(p-n)* (p-&r>  (p-or)?
=1+ . (552
Q p3 A,sin’6 Ssin’6 (5-52)

the Hamiltonian Hg for the deformed Kerr metric takes
exactly the same form as in the Kerr case [see Eqgs. (4.17)—
(4.19)], where we recall that &> = sin’# and where now
and its derivatives, v and its derivatives, and the derivatives
of w are given by Egs. (5.31), (5.32), and (5.47a)—(5.47h).
Also, as we have already stressed, in order to express the
Hamiltonian Hg in a Cartesian coordinate system in which
the spin of the deformed Kerr black hole is not directed
along the z-axis, it is sufficient to replace r with (x> + y* +
22)1/2, cosh with Sy, - n, e, with Sk, in Eq. (3.38), and
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to express the vectors appearing in the Hamiltonian in
terms of their Cartesian components.

D. PN expansion of the deformed Hamiltonian

We now expand the deformed Hamiltonian H = Hyg +
Hg derived in the previous section into PN orders. We will
denote the spin of the deformed Kerr metric with Sk,
while for the test particle’s spin we introduce the rescaled
spin vector $* = SM/m, S being the physical, unrescaled
spin. Also, we rescale the spins as Sker — Skerc and $* —
S*c, so as to keep track of the PN orders correctly.
Moreover, we set Skerr = XkerrM?» Xkere being the dimen-
sionless spin of the deformed Kerr black hole, with norm
| Xkers| Tanging from O to 1.

As already mentioned, the part of the Hamiltonian which
does not depend on the test particle’s spin, Hyg, agrees
through 3PN order with the corresponding Hyg computed
in Ref. [21]. Moreover, although the metric (5.36a)—(5.36¢)
only coincides with the Kerr metric for n = 0, the depen-
dence on 7 appears neither in the 2PN order coupling of
the deformed Kerr black hole’s spin with itself, nor in its
1.5PN and 2.5PN order spin-orbit couplings. Those cou-
plings are therefore the same as in the case of the Kerr
metric, and they are given by

1 2
HsNg 15PN c—3 FL * Skerrs (5.53)
HIs\Ig 25en = 0, (5.54)
s o 1om ioQi
Hggopn = - WG’H”;‘ - Bij)SKerrSKerr
1 m
1
4+ - I 2 _ 2 . 2 S2
+ [(P - 2(p : n)n) : SKerr]p ' SKerr}' (555)

Expanding then in PN orders the part of the Hamiltonian
that depends on the test particle’s spin, that is Hg, we find

3
HS =
SOLSPN — 5.3 3

LS, (5.56)

17 M/ 5. .
HSOZ.SPN = ﬁ[_f<§+ 3’77) —gpz]L . S

rc r
+ [S* : (SKerr X n)][SKerr : (P - 2(1’ ' n)n)]
M3r3C5
+ (L : S*)SzKerr - (L : SKelrr)(S>1< : SKerr)
2M3rted ’
(5.57)
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m A ;
Hgs 2PN = W (3l’ll'l’lj - Slj)Si(errSi (558)
We recall that the Hamiltonian for a spinning test particle
in curved spacetime from which we started the derivation
of our novel EOB model [see Eq. (3.9)] is only valid at
linear order in the particle’s spin. Therefore, the same
restriction applies to the Hamiltonian derived in
Sec. V C. In particular, that Hamiltonian does not include
the couplings of the particle’s spin with itself. We intro-
duce those couplings by hand, at least at the leading order
(2PN), by adding a quadrupole deformation [19] A*7,
quadratic in the particle’s spin, to the deformed Kerr metric
in Sec. V C [see Egs. (5.36a)—(5.36e)]. The expression for
h*? and the details of the above procedure—together with
a way in which it can in principle be extended to reproduce
also the next-to-leading order coupling of the particle’s
spin with itself—are given in the appendix. For the purpose
of the present discussion, however, it is sufficient to men-
tion that the addition of this quadrupole deformation to the
metric (5.36a)—(5.36e) augments Eq. (5.55) by the term

_m o i QJ
Mt (3nn; — 8;;)SLS4. (5.59)

Therefore, the total leading order spin-spin Hamiltonian is

Hss apx = Hg oo + HYSypn + = (Bmym; — 8;;) LS
SS 2PN SS 2PN SS2PN 5.3 4 i L

o om
2Mr3ct

1 m
- F W[(" : SKf:rr)2 - SzKen-]

(Bnin; — 5[,’)5'65{)

1
+ W{_[P2 = 2(p - n)*]Sken
+ [(P - 2(p “n)n) - SKerr]P ’ SKerr}’
with S = Sk, + Si.

As we will show in Sec. VE, a proper choice of the
vectors Sk., and S* in terms of the vectors o and o,
defined in Eqgs. (5.2) and (5.3), allows us to reproduce the
PN-expanded effective Hamiltonian [see Egs. (5.27)—
(5.29)] using the PN-expanded deformed Kerr
Hamiltonian that we have just derived.

Finally, it is worth noting that the presence of terms
quadratic in the deformed Kerr black hole’s spin in
Eq. (5.57) explains why we introduced the 2.5PN-accurate
canonical transformation (5.17). Indeed, the latter produces
exactly the same terms in the PN-expanded effective
Hamiltonian (5.27) at 2.5PN order. Quite interestingly,
the terms quadratic in Sk, appearing in Eq. (5.57) could
also be eliminated with a suitable choice of the reference
tetrad é,. In fact, as stressed in Sec. III and in Ref. [23], a
choice of the reference tetrad field corresponds to choosing
a particular gauge for the particle’s spin. In agreement with
this interpretation, we find that the terms of Eq. (5.57)
which are quadratic in S, disappear if the initial tetrad

(5.60)
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(3.16a)—(3.16d) is changed to a different tetrad &, related to
the original one by the following purely spatial rotation:

élT = éT, é} = leéj, (561)
where the rotation matrix R ;; is given by
a’XZ a’YZ

R =Ry|———F |Rx| —— | 5.62

Y[ R ] x[ R ] (5.62)

Ry[¢] and Ry[¢] being rotations of angles ¢ and ¢
around the axis X and Y, respectively.

As a consistency check, we have verified that this new
tetrad is the same as that used in Ref. [23] when computing
the Hamiltonian in ADM coordinates, where those terms
quadratic in Sk, do not appear. We have checked this by
transforming the new tetrad (5.61) from quasi-isotropic to
ADM coordinates [which are related by the coordinate
transformation (49) in Ref. [31]], and comparing it to the
tetrad given in Egs. (6.92)—(6.9b) of Ref. [23], and find that
the two tetrads agree through order 1/c¢3.

E. The effective one-body Hamiltonian

In this section we first find the mapping between the
masses u, M and the spins o and o™ of the effective
Hamiltonian derived in Sec V B, and those of the deformed
Kerr Hamiltonian derived in Secs. V C and V D, that is m,
M, Sk, and S*. Then, we derive the improved (resummed)
EOB Hamiltonian.

As shown in Ref. [9], matching the nonspinning parts
Hyg of these Hamiltonians forces us to identify the total
mass M of the two black holes in the PN description with
the deformed Kerr mass M of the test-particle description,
thus justifying our choice of using the same symbol for
these two a priori distinct quantities. Similarly, we find that
m = u [9]. Assuming this mapping between the masses
and imposing that the PN-expanded deformed Kerr
Hamiltonian given by Egs. (5.53)—(5.60) coincides with
the effective Hamiltonian given by Egs. (5.27)—(5.29), we
obtain the following mapping between the spins

1
S*=0"+5A,., (5.63)
C

1
Skerr = 0 + 5 A, (5.64)
c
where we have set for simplicity a(n) = 0 and b(n) =0
and where

1

A = ——
7 16

{12Aa* + n[27M(40' —70%)
+ 6(p - n) (60 + 50%) — p2(ar + 40*)]}. (5.65)

Here, A - is an arbitrary function going to zero at least
linearly in 7 when 1 — 0, so as to get the correct test-
particle limit. In fact, if A - satisfies this condition and if
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we assume, as appropriate for black holes, S, = Xl,zm%,z
(with |x;,] =1 and constant),’ when n, ~0 we have
Skerr = S| + O(m,). Similarly, for m, ~ 0 the physical
unrescaled spin of the effective particle is § = $*m/M =
S, + O(m,)?>. The equations of motion of our initial
Hamiltonian (3.9) coincide with the Papapetrou equations
[23], which describe the motion of a spinning test particle
in a curved spacetime [38,39]. Assuming the canonical
commutation relations between x!, pj» Si, and S, we
obtain that the Hamilton equations for the effective de-
formed Kerr Hamiltonian are y = yp + O(m,). Here, the
dot denotes a time derivative, y is a generic phase-space
variable (x/, pj» Sy orS,), and y = yp are the Papapetrou
equations expressed in Hamiltonian form. Therefore, our
mapping reproduces the correct test-particle limit, and the
remainders Sg., — S, = O(m,) and S — S, = O(m,)?
produce extra acceleratlons of order O(m,) or higher.
This is comparable to the self-force acceleration [40],
which appears at the next order in the mass ratio beyond
the test-particle limit.

Although different choices for the function A
principle possible, we choose here

o+ are in

A, = E[_ (To* — 40) + p*Bo + 407)

— 6(p - n)(60 + 50*)], (5.66)
which gives, when inserted into Eq. (5.65), A, = 0.
Because this form for A« is clearly not covariant under
generic coordinate transformations, we choose instead the
following form for the mapping of the spins, which is
covariant at least as far as the square of the momentum is
concerned:

A,=0, (5.67)
2M
A, — %[7 (7o* — 40) + (O — 1)Geor + 407)
- 6§(ﬁ )60 + 50*)], (5.68)
where we have replaced p* with y7p;p; = Q — 1 [where

Q is given in Eq. (5.52)] and (p-n)> = p2 with
A.(p - n)*/> = g'"p2. This form agrees with the previous
mapping through order 1/c?, but differs from it at higher
orders. Although neither this form is completely covariant,
not even under a rescaling of the radial coordinate (as it
still features a dependence on the radius r), it proved
slightly better as far as the dynamics of the EOB model,
analyzed in the next section, is concerned. In particular, the

©As noted by Ref. [21], a spin mapping such as ours also gives
the correct test particle limit if |S;,|/m,, = const, but this
scaling of the spins with the masses is not appropriate for black
holes [37].
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factor g’”, which becomes zero at the horizon, quenches
the increase of p, at small radii, thus giving a more stable
behavior during the plunge subsequent to the inspiral. (A
similar effect was observed in Ref. [22], where the radial
momentum was expressed in tortoise coordinates to pre-
vent it from diverging close to the horizon.)

Having determined the mass and spin mappings, we can
write down the improved (resummed) Hamiltonian (or
EOB Hamiltonian) for spinning black holes. To this pur-
pose, it is sufficient to invert the mapping between the real
and effective Hamiltonians [Eq. (5.26)]. In units in which
¢ = 1, we obtain

g _ g \/1 b oMo — ) (5.69)
with
He = Hs + B'p; + a\/'“2 +y7pip; + Lalp)
-3 1{;# (87 — 3n'n))S;S". (5.70)

Here, the —u/(2Mr?)(8" — 3n'n/)S; S} term is the quad-
rupole deformation introduced in the previous section to
account for the leading order coupling of the particle’s spin
with itself (see also the appendix); B, a and " are
computed using the deformed Kerr metric, that is inserting
Egs. (5.36a)—(5.36¢) into Egs. (5.44)—(5.46); Hg is obtained
by inserting Egs. (5.31), (5.32), (5.47a)—(5.47h), and
(5.48)—(5.52) into Egs. (4.17)-(4.19). Lastly, the spin
Sker enters this Hamiltonian through the parameter a =
|Sker|/M appearing in the deformed Kerr metric.

Before completing this section, we want to discuss the
deformation of the Kerr potentials A, and A, given in
Eqgs. (5.37) and (5.38), which play an important role in
the EOB Hamiltonian (5.69). It is convenient to rewrite the
function A, as

A, = r?A,(u), (5.71)

2
A, () = Au) + % u? (5.72)
In previous EOB investigations the Padé summation was
applied to the function A, to enforce the presence of a zero,
corresponding to the EOB horizon, both in the nonspinning
[11] and spinning case [19,21]. Reference [22] pointed out
that when including the 4PN and 5PN terms in the function
A(u), the Padé summation generates poles if spins are
present. Also, the Padé summation does not always ensure
the existence of an innermost stable circular orbit (ISCO)
for spins aligned and antialigned with the orbital angular
momentum and, even when it does, the position of the
ISCO does not vary monotonically with the magnitude of
the spins. For these reasons, we propose here an alternative
way of enforcing the existence of the EOB horizons.
Working through 3PN order, we write
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Au(u) = Au(u)[l + 77A0
+ nlog(l + Aju + Ayu? + Ayud + Ayu?)],

(5.73)
where
- a® M M
A (u) = —(u - —)(u - —) (5.74)
M? P B
2.2 2 1
=2 uz - T 5 (5.75)
M nK—1 (»nK-—-1)
OB = (M =VM? - a®)(1 — Kn). (5.76)

Here, ri°8 are the EOB horizons, which differ from the
Kerr horizons when the adjustable parameter K is different
from zero, and where the log is introduced to quench the
divergence of the powers of u at small radii. We could in
principle replace the logarithm with any other analytical
function with no zeros (e.g., an exponential). However,
when studying the dynamics of the EOB model (see
Sec. VI) the results are more sensible if we choose a
function, such as the logarithm, which softens the diver-
gence of the truncated PN series.

The coefficients Ay, A, A,, As, and A, can be derived
by inserting Eq. (5.73) into Eq. (5.71), expanding through
3PN order, and equating the result to Egs. (5.71) and (5.72),
with A(u) given by its PN expansion (5.41). Doing so, we
obtain

Ay = K(nK — 2), (5.77)

A, = —2(nK — 1)(K + Ay), (5.78)

1 a’
A2 - EAI(_“-T]K + A] + 4) - _M2 (’T]K - l)on,
(5.79)

1
Ay = g[—A{ +3(nK — A2 + 30,4, — 6(nK — 1)

2
X(=mK + 8y + 1) = 30 (K — 1)2A1],

(5.80)
_ 1 a 2 2 4
A, = E{6W(A1 —20,)(nK — 1) + 34
— 8(nK — 1A} — 12A,A2
94 41
+ 22 —1)2
12( 3 " )(nK 1)
+ 6[A2 — 4A4(nK — 1)]}. (5.81)
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By construction, if we expand Eq. (5.73) in PN orders, K
can only appear at 4PN and higher orders, because we must
recover the PN expansion (5.37)—(5.41) through 3PN order.
In this sense, K parameterizes our ignorance of the PN
expansion at orders equal or higher than 4PN (i.e., K
would not play any role if the PN series were known in
its entirety). Similarly, we rewrite the potential A,
[Eq. (5.38)] as

A, =AD" (u), (5.82)

D '(u) =1+ log[1 + 6mu* + 2(26 — 3n)nu®]. (5.83)

The coefficients in the above function D~ !(u) are such
that, when PN expanded, it gives the PN result (5.42), and
the logarithmic dependence is once again chosen to quench
the divergence of the truncated PN series.

Finally, let us stress that if we included PN orders higher
than 3PN in the functions A(«) and D(u), we would need to
add higher order coefficients A; with i > 4 in Eq. (5.73).

VI. EFFECTIVE ONE-BODY DYNAMICS FOR
CIRCULAR, EQUATORIAL ORBITS

In this section we study the dynamics of the novel EOB

model that we developed in Sec. V E. We will show that

(1) Our EOB model has the correct test-particle limit,
for both nonspinning and spinning black holes, for
generic orbits and arbitrary spin orientations;

(i) There exist an ISCO when the spins are aligned or
antialigned with the orbital angular momentum L;

(ii1) The radius, energy, total angular momentum, orbi-
tal angular momentum, and frequency at the ISCO
exhibit a smooth dependence on the binary mass-
ratio and spins. Also, this dependence looks rea-
sonable based on what we expect from the test-
particle limit and from numerical-relativity simu-
lations;

(iv) The frequency at the ISCO for an extreme mass-
ratio nonspinning black-hole binary agrees with the
exact result computed by Ref. [41];

(v) During the plunge subsequent to the ISCO, the
orbital frequency of black-hole binaries with spins
aligned or antialigned with L grows and reaches a
maximum, after which it decreases. The radius at
which the frequency peaks is very close to the radius
of the equatorial, circular light ring (or photon or-
bit). This feature generalizes the nonspinning be-
havior [9], and it has a clear physical interpretation
in terms of frame-dragging. As in the nonspinning
case [9], it provides a natural time at which to match
the two-body description of the inspiral and plunge
to the one-body description of the merger and
ringdown.

We stress that only (i) applies to generic orbits and spin
orientations, while (ii), (ii1), (iv), and (v) are true for