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Using a Legendre transformation, we compute the unconstrained Hamiltonian of a spinning test particle

in a curved spacetime at linear order in the particle spin. The equations of motion of this unconstrained

Hamiltonian coincide with the Mathisson-Papapetrou-Pirani equations. We then use the formalism of

Dirac brackets to derive the constrained Hamiltonian and the corresponding phase space algebra in the

Newton-Wigner spin supplementary condition, suitably generalized to curved spacetime, and find that the

phase space algebra ðq;p;SÞ is canonical at linear order in the particle spin. We provide explicit

expressions for this Hamiltonian in a spherically symmetric spacetime, both in isotropic and spherical

coordinates, and in the Kerr spacetime in Boyer-Lindquist coordinates. Furthermore, we find that our

Hamiltonian, when expanded in post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner

canonical Hamiltonian computed in PN theory in the test particle limit. Notably, we recover the known

spin-orbit couplings through 2.5PN order and the spin-spin couplings of type SKerrS (and S2Kerr) through

3PN order, SKerr being the spin of the Kerr spacetime. Our method allows one to compute the PN

Hamiltonian at any order, in the test particle limit and at linear order in the particle spin. As an application

we compute it at 3.5PN order.
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I. INTRODUCTION

The dynamics of spinning bodies in general relativity is
a complicated problem which has been investigated in
several papers during the last 70 years, starting from the
pioneering work by Mathisson [1], Papapetrou [2–4],
Pirani [5], Tulczyjew [6,7], and Dixon [8]. Spin effects
on the free motion of a test particle were first derived in the
form of a coupling to the spacetime curvature in Refs. [2–
4]. The computation assumes that the test particle can be
described by a pole-dipole energy-momentum tensor [6,7],
thus neglecting the quadrupole moment (and higher multi-
pole moments) and providing spin couplings only at linear
order in the test particle’s spin.

The two-body dynamics of spinning objects can also be
computed in post-Newtonian (PN) theory [9], which is
basically an expansion in powers of v=c and GM=ðc2rÞ,
where v is the characteristic velocity of the system and r is
the binary’s separation. Currently, spin couplings have
been computed in the two-body equations of motion
through 2.5PN order [10–15], and in the Arnowitt-Deser-
Misner (ADM) canonical Hamiltonian through 3PN order
[16–20] and partially at higher PN orders [21,22]. These
coupling terms agree with those computed via effective-
field-theory techniques at 1.5PN, 2PN, and 3PN order [23–
26].

The main motivation for describing as accurately as
possible the dynamics of a binary system of spinning
compact bodies in general relativity comes from the forth-
coming observation of gravitational waves with ground
and space-based detectors. In particular, LIGO, Virgo,
and GEO could observe signals emitted by stellar-mass
black-hole and neutron-star binaries, and LISA could de-

tect signals from supermassive black-hole binaries and
extreme-mass ratio binaries.
In this paper we compute the Hamiltonian of a test

particle in a curved background spacetime, including all
couplings linear in the test particle’s spin. Starting from the
Lagrangian given in Ref. [27], we apply a Legendre trans-
formation to derive the unconstrained Hamiltonian. The
Hamiltonian is unconstrained in the sense that the test
particle’s spin variables are given by an antisymmetric
tensor S��, which a priori contains 6 degrees of freedom
instead of 3. It is well known that in order to fix the
unphysical degrees of freedom associated with the arbitra-
riness in the definition of S��, a choice must be made for
the so-called spin supplementary condition (SSC). The
arbitrariness can be interpreted, in the case of extended
bodies,1 as the freedom of choosing the point, internal to
the body, whose motion is followed [29].
Building on the work by Hanson and Regge [30] and

generalizing the Newton-Wigner (NW) SSC to curved
spacetime, we then derive the constrained Hamiltonian
and the corresponding Dirac brackets, which should re-
place the Poisson brackets when computing the equations
of motion from that Hamiltonian. Quite interestingly, we
find that the NW SSC leads, at least at linear order in the
particle spin, to canonical Dirac brackets, i.e. the standard
sympletic structure for a set of dynamical variables

1It should be stressed that any spinning ‘‘particle’’ must
actually have a small nonfinite size. An intuitive argument for
this can be found in Ref. [28], Ex. 5.6, where it is shown that any
spinning body must have a minimal size in order not to rotate at
velocities larger than c. A more rigorous proof can be found in
Ref. [29], Sec. 2.
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ðq;p;SÞ. As a consistency check of our results we also
compare our constrained Hamiltonian with the ADM ca-
nonical Hamiltonian for spinning bodies, as computed in
PN theory through 3PN order. In addition we provide
explicit expressions for the Hamiltonian of a spinning
particle moving in a generic spherically symmetric space-
time (using both isotropic and spherical coordinates), as
well as in the Kerr spacetime (in Boyer-Lindquist
coordinates).

Another important application of this work will be de-
veloped in a subsequent paper, where we will use the
Hamiltonian derived here to build a new effective-one-
body Hamiltonian [31–34] for spinning objects. This ap-
plication is crucial to take full advantage of the analytical
and numerical treatment of the dynamics of spinning
bodies throughout the inspiral, merger, and ringdown,
and build accurate templates for the search of gravitational
waves with ground-based and space-based detectors.

The paper is organized as follows. In Sec. II we briefly
summarize our notations. In Sec. III we apply a Legendre
transformation to compute the unconstrained Hamiltonian
and show that the equations of motion that follow from it
coincide with the well-known Mathisson-Papapetrou-
Pirani (MPP) equations of motion. In Sec. IV, after review-
ing the Dirac bracket formalism, we derive the constrained
Hamiltonian and the corresponding Dirac brackets using
the generalized NW SSC. In Sec. V, we specialize our
results to spherically symmetric spacetimes and to the
Kerr spacetime in Boyer-Lindquist coordinates. In
Sec. VI we restrict ourselves to the Kerr spacetime in
ADM coordinates, expand the Hamiltonian computed in
the NW SSC in a PN series through 3.5PN order and find
agreement with the ADM canonical Hamiltonian in the test
particle limit through 3PN order. Section VII summarizes
our main conclusions.

II. NOTATIONS

Throughout this paper, we will use the signature
ð�;þ;þ;þÞ for the metric. Spacetime tensor indices
(ranging from 0 to 3) will be denoted with Greek letters,
while spatial tensor indices (ranging from 1 to 3) will be
denoted with lowercase Latin letters. Also, we will often
use t as alternate for the timelike index 0.

We define a tetrad field as a set consisting of a timelike
future-oriented vector ~e

�
T and three spacelike vectors ~e

�
I

(I ¼ 1; . . . ; 3)—collectively denoted as ~e
�
A (A ¼ 0; . . . ;

3)—satisfying2

~e
�
A ~e

�
Bg�� ¼ �AB; (2.1)

where �TT ¼ �1, �TI ¼ 0, �IJ ¼ �IJ (�IJ being the
Kronecker symbol). Thus the internal tetrad space is
Lorentz-invariant, i.e. one can obtain any tetrad from an
existing one by applying a Lorentz transformation ~e0A ¼
�A

B~eB, where

�A
C�C

B ¼ �C
A�

B
C ¼ �B

A: (2.2)

Internal tetrad indices denoted with the uppercase Latin
letters A, B,C, andD always run from 0 to 3, while internal
tetrad indices with the uppercase Latin letters I, J, K, and
L, associated with the spacelike tetrad vectors, run from 1
to 3 only. The timelike tetrad index is denoted by T.
Tetrad indices are raised and lowered with the metric

�AB [e.g., ~e�A ¼ �ABð~eBÞ�]. With this convention the rela-

tion (2.1) can be easily shown to be equivalent to the
completeness relation

~e �
A ~e

A
� ¼ ��

� : (2.3)

We will denote the projections of a vector V onto the tetrad
with VA � V�~eA�, and similarly for tensors of higher rank,

as well as Christoffel symbols. Partial derivatives will be
denoted with a comma or with @, covariant derivatives with
a semicolon, while total covariant derivatives with respect
to a parameter � will be denoted by D=D�. Finally, we
will denote the operation of antisymmetrization with re-

spect to the indices � and � as A...½�B��... � ðA...�B�... �
A...�B�...Þ=2.
We use geometric units G ¼ c ¼ 1 throughout the pa-

per, except in Sec. VI where the factors of c are restored,
playing the role of PN bookkeeping parameters.

III. UNCONSTRAINED HAMILTONIAN

In this section we derive the unconstrained Hamiltonian
by applying a Legendre transformation to the Lagrangian
describing the motion of a spinning particle in a generic
curved spacetime.

A. The Lagrangian and the Mathisson-Papapetrou-
Pirani equations

Building on the classic work of Hanson and Regge [30]
which analyzes the dynamics of a relativistic top in a flat
spacetime, Porto showed in Ref. [27] that the equations of
motion of a spinning particle in curved spacetime can be
obtained from the action

S ¼
Z

Lða1; a2; a3; a4Þd�; (3.1)

� being a parameter along the representative worldline.
The Langrangian L is a function of the four Lorentz-
invariant scalars

a1 ¼ u�u
�; (3.2)

2We use the notation ~e
�
A to denote any choice of tetrad given a

background spacetime. The tetrad without the tilde e�A refers to a
special tetrad, namely, the one carried by the test particle. The
tetrad e

�
A is special in the sense that it is a dynamical variable

whose evolution along the worldline is prescribed by some
Lagrangian.
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a2 ¼ ����
��; (3.3)

a3 ¼ u��
�����u

�; (3.4)

a4 ¼ ����
������

��; (3.5)

where u� � dx�=d� is the tangent vector to the represen-
tative worldline, and where the antisymmetric tensor ���

describes how the tetrad e�A carried by the particle rotates

along the worldline

��� ¼ �ABe
�
A

De�B
D�

¼ eA�
de�A
d�

þ �
�
�	g

��u	: (3.6)

Moreover, the action (3.1) is assumed to be
reparametrization-invariant (i.e. its form must be indepen-
dent of the particular parameter used to follow the parti-
cle’s worldline), which translates in the requirement that
the Lagrangian L be a homogeneous function of degree
one in the ‘‘velocities’’ u� and��� [30]. Porto then shows
that if one defines the four-momentum vector and the spin
tensor of the particle as3

p� � @L

@u�

���������
; (3.7)

S�� � 2
@L

@���

��������u
(3.8)

[note that p� is not the momentum conjugate to the coor-

dinates x� because ��� depends on u�, as can be seen in
Eq. (3.6)], then a variation of the action with respect to e�A
which preserves the defining property (2.1) of a tetrad gives
the precession equation for the spin tensor

DS��

D�
¼ S����

� ����S�� ¼ p�u� � p�u�: (3.9)

The second equality in Eq. (3.9) follows from definitions
(3.7) and (3.8), and from the fact that the Lagrangian in the
action (3.1) depends only on a1, a2, a3, and a4 [30].
Moreover, a variation of the action with respect to the
particle’s position x� gives [27]

Dp�

D�
¼ � 1

2
R�

�	
u
�S	
: (3.10)

Thus one precisely recovers the well-known MPP equa-
tions from the action (3.1), which therefore encodes the
dynamics of a spinning test particle in curved spacetime, at
linear order in the particle’s spin.

Notice however that the set of Eqs. (3.9) and (3.10)
consists of ten equations and 13 independent variables
(p�, u�, and S��, subject to the normalization constraint4

of the tangent vector u�) and is therefore not closed. This
underdetermination can be addressed by imposing an SSC,
which is typically expressed as

S��!� ¼ 0; (3.11)

where !� is some suitably chosen timelike vector.
Equation (3.11) contains three independent constraints,
and is therefore expected to reduce the number of inde-
pendent variables from 13 to 10, thus closing the system of
Eqs. (3.9) and (3.10). This is indeed what happens, as the
requirement that Eq. (3.11) be valid at all points along the
worldline implies the following implicit relationship be-
tween p� and u�:

p� ¼ 1

!�u
�

�
ð!�p

�Þu� � S�� D!�

D�

�
: (3.12)

It should be stressed once again that it is the under-
determination of the unconstrained MPP system that al-
lows one to impose any constraint of the form (3.11), and
that the constraint will be automatically conserved by the
time evolution of the system because of Eq. (3.12). Of
course different constraints of the form (3.11) will produce
different systems of equations describing the evolution of
the particle’s worldline. The physical reason for this is easy
to understand: the SSC (3.11) binds the test particle de-
scribed by the Lagrangian to a specific, SSC-dependent
worldline lying inside the worldtube spanned by the spin-
ning body, namely, the center of energy of the body as seen
by an observer with four-velocity parallel to !� (see e.g.
Ref. [29] for a lucid discussion of the physical meaning of
SSCs).

B. Deriving the Hamiltonian through a Legendre
transformation

It is convenient to rewrite the action (3.1) as

S ¼
Z

L

�
x�; u�;�a;

d�a

d�

�
d�; (3.13)

where the Langrangian L can be now considered as a
function of the coordinates x�, the four-vector u� ¼
dx�=d�, the six parameters �a, and their time derivatives.
The set f�ag consists simply of the parameters of the
internal Lorentz transformation describing the orientation
of the tetrad field e�A carried by the particle with respect to

an arbitrary, but fixed, reference tetrad field ~e�A ðxÞ covering

3Because of reparametrization invariance of the action (3.1),
these definitions maintain the same form whatever parameter �
is chosen along the wordline, as appropriate for physical quan-
tities like the four-momentum and the spin.

4For example one is free to select a parameter � ¼ � such that
u�u

� ¼ �1, since the action (3.1) is reparametrization-
invariant. Any other choice of parameter simply yields a differ-
ent normalization constraint u�u

� ¼ �ðd�=d�Þ�2.
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the whole spacetime.5 Therefore, the tetrad carried by the
particle is given by

e
�
A ð�; xÞ ¼ �A

Bð�Þ~e�B ðxÞ; (3.14)

where �A
B is a Lorentz transformation. We also note that

the parameters �a and their time derivatives enter the
Lagrangian only through the antisymmetric tensor ���,
which we write explicitly as

��� ¼ �ABe
�
A ð�; xÞ

�
d�a

d�

@e�B
@�a ð�; xÞ þ u	e�B;	ð�; xÞ

�
þ ��

�	g
��u	: (3.15)

To construct the Hamiltonian we need to choose a particu-
lar 3þ 1 decomposition of the background metric. We take
� ¼ t, where t is the time coordinate of that particular
decomposition. Using reparametrization invariance, we
can write

S ¼
Z

L

�
x�; u�;�a;

d�a

d�

�
d�;

¼
Z

Lðxi; vi; �a; _�a; tÞdt; (3.16)

where x0 ¼ t, u0 ¼ 1, ui ¼ vi ¼ dxi=dt, and _�a ¼
d�a=dt. The configuration space of the spinning particle
therefore consists of the set fxi; �ag. The total variation of

the Lagrangian considered as function of xi, vi,�a, and _�a

is

�L ¼ @L

@xi
�xi þ @L

@vi �v
i þ @L

@�a ��
a þ @L

@ _�a
� _�a;

� @L

@xi
�xi þ Pi�v

i þ @L

@�a ��
a þ P�a� _�a; (3.17)

where we denoted by Pi and P�a the momenta conjugate to

xi and �a, respectively. The total variation of the
Lagrangian considered as function of xi, vi, and ��� is
instead

�L ¼ @L

@xi

���������
�xi þ @L

@vi

���������
�vi þ @L

@���

��������x;v
����:

(3.18)

Using Eq. (3.15), Eq. (3.18) can be rewritten as

�L ¼
�
@L

@xi

���������
þ @L

@���

��������x;v

@���

@xi

��������v;�; _�

�
�xi

þ
�
@L

@vi

���������
þ @L

@���

��������x;v

@���

@vi

��������x;�; _�

�
�vi

þ @L

@���

��������x;v

@���

@�a

��������x;v; _�
��a

þ @L

@���

��������x;v

@���

@ _�a

��������x;v;�
� _�a: (3.19)

Comparing Eq. (3.17) with Eq. (3.19), and using
Eqs. (3.7), (3.8), and (3.15), we obtain the conjugate mo-
menta

Pi ¼ pi þ 1
2�

ABS��e
�
A e

�
B;i;

¼ pi þ 1
2�

ABS��~e
�
A ~e

�
B;i;

� pi þ Ei��S
�� ; (3.20)

and

P�a ¼ 1

2
�ABS��e

�
A

@e�B
@�a ;

¼ 1

2
S���

AB
a ~e�A ~e

�
B; (3.21)

where we have introduced the tensor

E��� � 1
2�AB~e

A
�~e

B
�;� ; (3.22)

which is antisymmetric in the last two indices, and the
antisymmetric tensor [30]

�AB
a ð�Þ � �C

A @�
CB

@�a : (3.23)

A necessary condition to go from the Lagrangian for-
malism to the Hamiltonian one in the usual way (i.e. by
means of a Legendre transformation) is that the
Langrangian is regular [35], i.e. it satisfies6

det

�
@2L

@ _qi@ _qj

�
� 0; (3.24)

where q ¼ ðxi; �aÞ. Under this condition, we can perform
the usual Legendre transformation to get the Hamiltonian

H ¼ Piv
i þ P�a _�a � L: (3.25)

Since L is homogeneous of degree one in the ‘‘velocities’’
[because of the reparametrization invariance of the action

5In what follows we will prove that the equations of motion are
independent of the choice of this tetrad field. This had to be
expected, based on Refs. [27,30].

6While this condition is sufficiently generic to leave our
Lagrangian essentially undetermined, it should be noticed that
there are famous examples in physics where this regularity
condition does not hold, such as the electromagnetic field (see
for instance Ref. [36], chapter 5), the Dirac field (see for instance
Ref. [37], problem 9.2d), the Schrodinger equation (see Ref. [38]
and references therein) and general relativity (see for instance
Ref. [36], chapter 9).
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(3.1)], Euler’s theorem implies that

u�
@L

@u�

���������
þ��� @L

@���

��������u
¼ vipi þpt þ 1

2
S���

�� ¼ L;

(3.26)

where we have used the definitions (3.7) and (3.8), as well
as the fact that with our time slicing u0 ¼ 1 and ui ¼ vi.
Using now Eqs. (3.26), (3.20), (3.21), and (3.15) (with u0 ¼
1 and ui ¼ vi) in Eq. (3.25), simple algebra allows one to
write the Hamiltonian as

H ¼ �pt � 1
2�

ABS�	e
�
Ae

	
B;t ; (3.27a)

¼ �pt � 1
2�

ABS�	~e
�
A~e

	
B;t ; (3.27b)

� �pt � Et��S
��; (3.27c)

where the covariant derivative with respect to t in the
second term of Eq. (3.27a) above is a shorthand for cova-
riant derivative with respect to x0 ¼ t, i.e. one can pull the
Lorentz transformation �A

Bð�Þ outside the covariant de-
rivative as it is independent of x0. It should be noted that
using the tensor E��� defined in Eq. (3.22), one can com-

bine H and Pi into a four-vector P� such that

P� ¼ ð�H;PiÞ ¼ p� þ E���S
��: (3.28)

The MPP equations of motion can be derived from the
Hamiltonian (3.27c) as follows. On one hand we have

dP�a

dt
¼ � @H

@�a ¼ @L

@�a

��������x;u; _�
¼ @L

@���

��������x;u

@���

@�a ;

(3.29)

where the second equality follows from the definition of
the Hamiltonian (3.25) with the regularity condition (3.24).
[One could also derive the second equality by comparing
the Hamiltonian and Lagrange equations, but it should be
stressed that these two sets of equations are equivalent only
if the regularity condition (3.24) is satisfied [35].] Using
then Eqs. (3.15) and (3.21), as well as the definition (3.8), a
straightforward computation gives the precession equation

DS��

Dt
¼ S����

� ����S��: (3.30)

The translational equations of motion can be obtained
following a similar procedure. In the neighborhood of
any event located on the particle’s worldline we can choose
Riemann normal coordinates and write

dPi

dt
¼ dpi

dt
þ 1

2

d

dt
ðS���

ABe
�
Ae

�
B;iÞ;

¼ � @H

@xi
¼ @L

@xi

��������u;�; _�
;

¼ @L

@���

��������x;u

@���

@xi
; (3.31)

where the last equality follows from the compatibility of

the metric with the connection, i.e. g��;i ¼ 0, which be-

comes g��;i ¼ 0 in Riemann normal coordinates.7 Making

use of Eq. (3.15) and using the fact that in Riemann normal
coordinates ��

�� ¼ 0, while their derivatives are nonzero,

we get

dpi

dt
¼ � 1

2
Ri�	
u

�S	
; (3.32)

where the Riemann tensor term arises from the derivatives
of the Christoffel symbols appearing in Eq. (3.15).
Rewriting Eq. (3.32) in a generic coordinates system, we
immediately get the spatial part of the translational MPP
equations

Dpi

Dt
¼ � 1

2
Ri�	
u

�S	
: (3.33)

The unconstrained equation of motion for pt is obtained as
follows. One starts from the formal expression

dpt

dt
¼ fpt; Hg þ @pt

@t
: (3.34)

In Riemann normal coordinates, the left-hand side is equal
to Dpt=Dt. To evaluate the right-hand side, one makes use
of Eq. (3.27c) to eliminate pt in favor of the Hamiltonian
and other quantities whose explicit expressions in terms of
the phase space variables fxi; Pi; �

a; P�ag are known.

Straightforward algebra then yields

Dpt

Dt
¼ � 1

2
Rt�	
u

�S	
; (3.35)

which can be combined with Eqs. (3.33) in the well-known
equation translational MPP equations

Dp�

Dt
¼ � 1

2
R��	
u

�S	
: (3.36)

Before concluding this section, we provide explicit expres-
sions for the Poisson brackets of the variables xi, Pi, S

��,
and ��� � �AB~e�A ~e

�
B. Using the definition of Poisson

bracket,

ff; gg � @f

@q
� @g
@�

� @g

@q
� @f
@�

; (3.37)

where q ¼ ðxi; �aÞ and � ¼ ðPi; P�aÞ, we trivially have

fxi; Pjg ¼ �i
j; (3.38a)

fxi; xjg ¼ fPi; Pjg ¼ 0: (3.38b)

To compute the Poisson brackets involving S��, let us first
invert Eq. (3.21) [30]:

7We stress that one is allowed to set g��;i ¼ 0 in this equation
as we do not need to take derivatives of it (in which case, of
course, the terms containing g��;i would give a contribution, as
in general g��;ij � 0 even in Riemann normal coordinates).
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S�	 ¼ ~e�A~e
	
B�

AB
a P�a; (3.39)

where �AB
a ð�Þ satisfies

�AB
a �bAB ¼ 2�ab; (3.40)

�AB
a �CD

a ¼ �AC�BD � �AD�BC: (3.41)

Using these relations together with the identity

@�AB
a

@�b
� @�AB

b

@�a ¼ �AC
a �bC

B � �AC
b �aC

B; (3.42)

which can be immediately derived [30] by taking the
derivative of Eq. (3.23), it is straightforward to prove that
�AB
a is a realization of the Lie algebra of the Lorentz group:

�AB
b

@�CD
a

@�b
� �CD

b

@�AB
a

@�b
¼ ��AC

a �BD � �BD
a �AC

þ �AD
a �BC þ �BC

a �AD: (3.43)

Simple algebra then yields

fS��; S�	g ¼ S��g�	 þ S�	g�� � S�	g�� � S��g�	;

(3.44a)

while using Eqs. (2.3) and (3.39) we easily obtain

fS��; Pig ¼ S��~eA�~e
�
A;i þ S��~eA�~e

�
A;i; (3.44b)

fS��; xig ¼ 0: (3.44c)

Finally, it is straightforward to show that �AB satisfies
[30]

f�AB; xig ¼ f�AB; Pig ¼ f�AB;�CDg ¼ 0; (3.45)

f�AB; SCDg ¼ �AC�BD ��AD�BC; (3.46)

or, in terms of ��� � �AB~e�A ~e
�
B

f���; xig ¼ f���;��	g ¼ 0; (3.47)

f���; Pig ¼ ���~eA�~e
�
A;i þ���~eA�~e

�
A;i; (3.48)

f���; S�	g ¼ ���g�	 ���	g��: (3.49)

IV. CONSTRAINED HAMILTONIAN

A. Imposing constraints in phase space: a Dirac bracket
primer

Let us briefly recall how constraints are imposed in the
Hamiltonian formalism (a very detailed review on the
subject can be found in Ref. [39]). Let us consider a
Hamiltonian Hðq;�; tÞ living in a 2n-dimensional phase
space and a binary ‘‘bracket’’ operation f. . . ; . . .g which is
antisymmetric, bilinear, and which satisfies the Leibniz
rule, as well as the Jacobi identity, i.e.

fA; Bg ¼ �fB; Ag; (4.1a)

faAþ bB; Cg ¼ afA;Cg þ bfB;Cg; (4.1b)

fAB;Cg ¼ fA;CgBþ AfB;Cg; (4.1c)

and

fA; fB;Cgg þ fB; fC; Agg þ fC; fA; Bgg ¼ 0: (4.1d)

In Eqs. (4.1), A, B, and C are arbitrary phase space func-
tions, while a and b are constants. Let us also assume that
the bracket operation gives the equations of motion for a
generic phase space function A through the Hamilton
equations

dA

dt
¼ @A

@t
þ fA;Hg: (4.2)

If we consider now a set of constraints i ¼ 0, i ¼
1; . . . ; 2m (with m< n) such that the matrix

Cij � fi; jg (4.3)

is not singular,8 these constraints can be imposed simply by
replacing the original brackets with the so-called Dirac
brackets. The Dirac brackets are in essence the projection
of the original symplectic structure onto the phase space
surface defined by the constraints. For two arbitrary phase
space functions A and B, the Dirac brackets are given by

fA; BgDB ¼ fA; Bg þ fA; igfB; jg½C�1�ij: (4.4)

It can be shown (see e.g. Secs. 1.3.2, 1.3.3, and Ex. 1.12 in
Ref. [39]), that the Dirac brackets are bilinear, antisym-
metric, that they satisfy the Leibniz rule and the Jacobi
identity, and that they provide the correct equations of
motion for the constrained system through the Hamilton
equations

dA

dt
¼ @A

@t
þ fA; �HgDB; (4.5)

where A is an arbitrary phase space function, and where the
new Hamiltonian �H is obtained simply by inserting the
constraints in the original Hamiltonian H.
In summary, given a Hamiltonian H and a bracket

operation (e.g., the Poisson brackets in the case of an
unconstrained Hamiltonian), in order to impose a set of
constraints satisfying detðCijÞ � 0 [with C given by

Eq. (4.3)], we need to replace the original bracket operation
with the Dirac bracket operation (4.4), and insert the con-
straints directly in the original Hamiltonian.
In Secs. IVB and IVC we start from the unconstrained

Hamiltonian (3.27c) and the unconstrained algebra (3.38a),
(3.38b), (3.44a)–(3.44c), (3.47), (3.48), and (3.49), and use
the procedure outlined in this subsection to impose the
generalized NW SSC. In particular, in Sec. IVB we com-

8In the literature, constraints satisfying this condition are
known as second class constraints [39].
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pute the Dirac brackets in the NW SSC, showing that they
are canonical (i.e., they reduce to the usual Poisson brack-
ets) at linear order in the particle’s spin, while in Sec. IVC
we explicitly write the constrained Hamiltonian.

B. Dirac brackets in the generalized Newton-Wigner
spin supplementary condition

In this section, we consider the NW SSC generalized to
curved spacetime,

V� � S��!� ¼ 0; (4.6)

with

!� ¼ p� �m~eT�; (4.7)

where m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�p�p
�p
is a function of phase space varia-

bles that we define as the mass of the particle.9 We stress
that the vector! is the sum of two timelike future-oriented
vectors and is therefore timelike itself, which implies that
Eqs. (4.6) and (4.7) do indeed yield a legitimate SSC [29].
(We recall that with our notation one has ~eT ¼ �~eT , and
that ~eT is future-oriented.)

While the NW SSC is well known to be the only SSC
condition which yields canonical variables in flat space-
time10 [30,40,41], there is no a priori guarantee that this is
the case in curved spacetime. In this section we show that
the NWSSC does indeed yield canonical variables at linear
order in the particle’s spin.

Because V�!� ¼ 0, only three of the four constraints

(4.6) are independent. Since ! is a timelike vector, it is
natural to take the three independent constraints to be the
spatial components Vi. The constraints Vi may be viewed
as constraints on the momenta P�a , as there is a one-to-one

mapping between the spin tensor S�� and the six momenta
conjugate to the �a’s. This implies that by themselves, the
constraints Vi do not form a consistent set of constraints on
phase space: an additional set of three constraints must be
imposed on the configuration coordinates�a themselves in
order to retain a symplectic structure, i.e. that the constraint
hypersurface contains the same number of configuration
coordinates and conjugate momenta. The additional con-
straints we choose to impose are given by [23,30]

�� ¼ ðeTÞ� � p�

m
¼ �T

Að~eAÞ� � p�

m
¼ 0: (4.8)

It is worth pointing out once again that the mass m is a
function on phase space, and therefore its Poisson brackets
with coordinates and momenta are nonvanishing. It will
acquire a special status as a constant of motion (at linear

order in spin) only at the end of this subsection. Equa-
tion (4.8) may be alternatively rewritten as

�T
A ¼ 1

m
p�ð~eAÞ� ¼ pA

m
; (4.9)

which shows explicitly that it constrains the three velocity
parameters, say �4;5;6, of the Lorentz transformation that
relates the tetrad carried by the particle to the background
tetrad. Since �T

T is fully determined by �T
I, only three of

the four constraints given in Eqs. (4.8) or (4.9) are inde-
pendent.11 We will take the spatial components �i ¼ 0 as
our three independent constraints on the coordinates �a.
In summary, for the generalized NW SSC, the vector of

constraints is

� � ðV1; V2; V3; �1; �2; �3Þ: (4.10)

In principle, the computation of the matrix C defined
in Eq. (4.3) can be performed directly using the uncon-
strained symplectic algebra (3.38a), (3.38b), (3.44a)–
(3.44c), (3.47), (3.48), and (3.49). However, since the con-
straints are formulated in terms of the momentum four-
vector p� rather than the conjugate momenta Pi and the

Hamiltonian H, it turns out to be quite useful to first
compute Poisson brackets between p� and other phase

space quantities, and then make use of these results to
compute the matrix C. The relevant Poisson brackets are
EQ-TARGET;temp:intralink-;d4.11,d4.11a,d4.11b,d4.11c,d4.11d,d4.11e,d4.11f,d4.11g,d4.11h,d4.11i,d4.11j,d4.11k,d4.11l,d4.11m,d4.11n,d4.11o;316;430 fxi; pjg ¼ �i

j; (4.11a)

fxi; ptg ¼ �vi; (4.11b)

fxi; mg ¼ �1
mðpi � ptviÞ; (4.11c)

fpi; pjg ¼ �1
2Rij��S

��; (4.11d)

fpi; ptg ¼ 1
2Rik��v

kS�� � ��
i�p�u

�; (4.11e)

fpi; mg ¼ �1
mp��

�
ikðpk � ptvkÞ; (4.11f)

fpt; mg ¼ 1
mp��

�
k�ðp�vk � pku�Þ; (4.11g)

fpi; ðeTÞjg ¼ ��
�
ijðeTÞ�; (4.11h)

fpt; ðeTÞjg ¼ 1
mð��j�p

� þ ��
jkp�v

kÞ; (4.11i)

fS��; pig ¼ 2S�½����
i�; (4.11j)

fS��; ptg ¼ �2p½�u�� � 2S�½����
�kv

k; (4.11k)

fS��;mg ¼ 2p½�u��; (4.11l)

fS��; ðeTÞjg ¼ 2�
½�
j e��T ; (4.11m)

fðeTÞi; mg ¼ � 1

m2
pt½p��i� þ p��

�
ijðpj � ptvjÞ�;

(4.11n)

fð~eTÞ�;mg ¼ �1
mð~eTÞ�;kðpk � ptvkÞ; (4.11o)

where the Poisson bracket between an arbitrary phase
9Note that at this stage there is no guarantee that this function

on phase space is a constant of motion. We will show later that it
is indeed the case, but we emphasize that this is a nontrivial
result.
10We note that in quantum mechanics and flat spacetime the
NW SSC holds a special place [40,41].

11One can also see this from the fact that � is orthogonal to the
timelike vector eT þ p=ðmcÞ. Hence only its three spacelike
components are independent.
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space function A and the quantity pt is obtained as follows:

fA; ptg ¼
�
A;�H� 1

2
�ABð~eAÞ�ð~eBÞ	;tS�	

�
;

¼ @A

@t
� dA

dt
� 1

2
�ABfA; ð~eAÞ�ð~eBÞ	;tS�	g: (4.12)

The total time derivative dA=dt is then evaluated with the
help of the unconstrained equations of motion. The Poisson
brackets (4.11) along with Eqs. (3.12) and (3.44a) yield

fVi; Vjg ¼ !�!
�Sij þOðS2Þ; (4.13)

fVi; �jg ¼
!�p

�

m

�
�i
j �

pi!j

!�p
�

�
þ Si�~eT�;�

�
��
j þ

p�pj

m2

�
þOðS2Þ; (4.14)

f�i; �jg ¼ 1

2m4
ðpiRj��� � pjRi���Þp�S��

� 1

2m2
Rij��S

�� þOðS2Þ; (4.15)

The remainders scaling as the square of the particle’s spin
are dropped, since the pole-dipole particle model is valid
only at linear order in the particle’s spin. The matrix C
defined in Eq. (4.3) is therefore given by

C ¼ Kþ�þOðS2Þ (4.16)

where the matrices K and � are defined as

K ¼ O3 Q
�QT O3

� �
; (4.17)

with

Qi
j ¼

!�p
�

m

�
�i
j �

pi!j

!�p
�

�
; (4.18)

and

�ij � !�!
�Sij Si�~eT�;�ð��

j þ p�pj

m2 Þ
�Sj�~eT�;�ð��

i þ p�pi

m2 Þ � 1
2m2 Rk���S

��½�k
i �

�
j þ p�

m2 ð�k
i pj � �k

jpiÞ�

0
@

1
A: (4.19)

The inverse matrix C�1 can be easily computed at linear
order in the spin, the result being

C�1 ¼ K�1 � K�1�K�1 þOðS2Þ; (4.20)

where

K �1 ¼ O3 �ðQ�1ÞT
Q�1 O3

� �
; (4.21)

with

½Q�1�ij ¼
m

!�p
�

�
�i
j þ

!jp
i

!tp
t

�
: (4.22)

To compute the Dirac brackets between two phase space
functions, one also needs the Poisson brackets between
those phase space functions and the constraints. For our
purposes, the relevant brackets are given by

fxi; Vjg ¼ �Sij � Sjt
pi

pt þOðS2Þ; (4.23a)

fxi; �jg ¼ � 1

m

�
�i
j þ

pj

m2
ðpi � ptuiÞ

�
þOðS2Þ; (4.23b)

fPi; V
jg ¼ pAS

j�~eA�;i � Sjt�
�
�i

p�p�

pt þOðS2Þ ¼ pA~e
A
k;i

�
Sjk � Sjt

pk

pt

�
þOðS2Þ; (4.23c)

fPi; �jg ¼ � 1

m
pA~e

A
j;i þ

2pj

m3
p½�u��ðEi�� � p��

�
i��

t
�Þ þ S��

�
1

2m2
Rij�� � 1

m
ðEi��;j þ ��

ijE�ijÞ
�
þOðS2Þ; (4.23d)

fSAB; Vig ¼ SAi!B � SBi!A þOðS2Þ; (4.23e)

fSAB; �ig ¼ � 2

m
p½A~eB�i þ 2pi

m3
p½AuB� � 2

m
S�½A�B�

i� þOðS2Þ: (4.23f)

The matrix (4.20) and (4.23), together with the unconstrained algebra given by Eqs. (3.38) and (3.44), is all one needs to
compute the Dirac brackets according to Eq. (4.4). Our results for the Dirac brackets involving xi and Pj are given by
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fxi; xjgDB ¼
�
!�!� � 2p�!�

ðp�!�Þ2
��

Sij � Sit
pj

pt þ Sjt
pi

pt

�
þOðS2Þ ¼ OðS2Þ; (4.24a)

fxi; PjgDB ¼ �i
j þ

�
Sik � Sit

pk

pt þ Skt
pi

pt

��
!�!� � 2p�!�

ðp�!�Þ2
�
p�~e

�
A~e

A
k;j þOðS2Þ ¼ �i

j þOðS2Þ; (4.24b)

fPi; PjgDB ¼
�
Skl � Skt

pl

pt þ Slt
pk

pt

��
!�!� � 2p�!�

ðp�!�Þ2
�
p�~e

�
A~e

A
k;ip	~e

	
B~e

B
l;j þOðS2Þ ¼ OðS2Þ: (4.24c)

The crucial point now is that Eq. (4.7) implies!�!� ¼ 2p�!�, and therefore all terms linear in the particle’s spin on the
right-hand side of Eqs. (4.24) vanish. Hence the Dirac bracket algebra between xi and Pj is canonical up to terms quadratic
in the particle’s spin.

The Dirac brackets involving the spin variables are most effectively computed by considering the projection of the spin
tensor onto the spacelike background tetrad vectors, i.e. SIJ ¼ S��~eI�~e

J
�. We find

fxi; SKLgDB ¼
�
!�!� � 2p�!�

ðp�!�Þ2
��

Si� þ S�t
pi

pt

�
p	ð~eK	~eL� � ~eL	~e

K
�Þ þOðS2Þ ¼ OðS2Þ (4.25a)

fPi; S
KLgDB ¼

�
!�!� � 2p�!�

ðp�!�Þ2
��

S
k � S
t
pk

pt

�
p�p	~e

	
C~e

C
k;ið~eL�~eK
 � ~eL
~e

K
�Þ þOðS2Þ ¼ OðS2Þ; (4.25b)

fSIJ; SKLgDB ¼
�
!�!� � 2p�!�

ðp�!�Þ2
�
S
�p�p	ð~eL�~eK� � ~eL�~e

K
�Þð~eJ	~eI
 � ~eJ
~e

I
	Þ þ SIK�JL þ SJL�IK � SIL�JK

� SJK�IL þOðS2Þ ¼ SIK�JL þ SJL�IK � SIL�JK � SJK�IL þOðS2Þ; (4.25c)

where we have used !I ¼ pI, which follows directly from
Eq. (4.7). Again the terms proportional to!�!

� � 2p�!�

disappear. Defining a three-dimensional spin vector by

SI ¼ 1
2�

IJKSJK (4.26)

one can immediately rewrite Eqs. (4.25) as

fxi; SJgDB ¼ OðS2Þ; (4.27a)

fPi; S
JgDB ¼ OðS2Þ; (4.27b)

fSI; SJgDB ¼ �IJKS
K þOðS2Þ: (4.27c)

Equations (4.27) imply that the phase space variables
fxi; Pj; S

Kg provided by the generalized NW SSC are ca-
nonical at linear order in the particle’s spin.

C. Hamiltonian in the generalized Newton-Wigner SSC

In this section, we provide an explicit expression for the
Hamiltonian (3.27c) in the NW SSC, at linear order in the
particle’s spin. As explained in Sec. IVA, this is simply
obtained by inserting the NW SSC directly into the uncon-
strained Hamiltonian. Also, we express this constrained
Hamiltonian in terms of the variables xi, Pj, S

K, which

have been proven in Sec. IVB to be canonical at linear
order in the particle spin.

We begin by rewriting the quantity pt appearing in the
unconstrained Hamiltonian (3.27c) in terms of the mass

m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�p�p
�p
and the spatial components pi of the mo-

mentum four-vector. The result is

pt ¼ �	ipi � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 
ijpipj

q
; (4.28)

where

� ¼ 1ffiffiffiffiffiffiffiffiffiffi�gtt
p ; (4.29a)

	i ¼ gti

gtt
; (4.29b)


ij ¼ gij � gtigtj

gtt
: (4.29c)

The crucial usefulness of Eq. (4.28) resides in the fact that
the canonical phase space variables fxi; Pj; S

Kg have van-

ishing Dirac brackets with the mass at linear order in the
particle spin. We have established this result by explicit
computation. As an illustration, we provide the details of
the computation of the Dirac bracket between xi and the
mass (the other brackets involving the mass are computed
in a similar fashion). We start from

fxi; mgDB ¼ fxi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p�p

�
q

gDB;

¼ � 1

2m
fxi; g��p�p�gDB;

¼ � 1

m
p�fxi; p�gDB; (4.30)

the last line following from fxi; xjgDB ¼ OðS2Þ. Using
Eq. (3.28) together with the fact that the Dirac bracket
with the Hamiltonian gives the constrained equations of
motion yields
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fxi; mgDB ¼ �1
mp

�fxi; P� � E��	S
�	gDB;

¼ �1
mðpi � ptviÞ þ 1

mp
�E��	fxi; S�	gDB;

(4.31)

where Eq. (3.12) must be employed to express the four-
velocity components vi in terms of canonical variables.
Substituting Eq. (4.7) into Eq. (3.12), it is straightforward
to show that

pi � ptvi ¼ � m

!�p
� ~e

T
�;�p

�

�
Si� � St�

pi

pt

�
: (4.32)

Next the Dirac bracket between xi and S�	 at linear order
in spin can be computed directly following the procedure
outlined in Sec. IVB, the result being

fxi; S�	gDB ¼ � 2mð~eTÞ½�
!�p

�

�
S	�i þ S	�k

!kp
i

!tp
t

�
: (4.33)

Hence, since E��	 is antisymmetric in � $ 	, we get

E��	fxi; S�	gDB ¼ E��	

2mð~eTÞ�
!�p

�

�
S	i þ S	k

!kp
i

!tp
t

�

¼ m

!�p
� ð~eTÞ	;�

�
S	i þ S	k

!kp
i

!tp
t

�
;

(4.34)

the second line following from the definition 2E��	 ¼
�ABð~eAÞ�ð~eBÞ	;�. Substituting Eqs. (4.32), (4.33), and

(4.34) into Eq. (4.31) one obtains

fxi; mgDB ¼ 1

!�p
�

�
ð~eTÞ�;�p�

�
Si� � St�

pi

pt

�

þ p�ð~eTÞ	;�
�
S	i þ S	k

!kp
i

!tp
t

��
: (4.35)

Renaming dummy indices and making use of the NW SSC
to rewrite St� ¼ �Sk�!k=!t, one can see that all terms
cancel, therefore showing that the mass commutes with xi

under the Dirac brackets.
Since the constrained Hamiltonian depends only on

fxi; Pj; S
Kg and the mass m, it follows that the mass may

be treated as a constant when taking the Dirac bracket
between an arbitrary function of constrained phase space
variables and the Hamiltonian.

Our Hamiltonian (3.27c) now takes the form

�H ¼ 	ipi þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 
ijpipj

q
� EtABS

AB: (4.36)

Equation (4.26) implies SIJ ¼ �IJKSK, while the NW SSC
[Eqs. (4.6) and (4.7)] implies

STI ¼ SIJ!J

!T

; (4.37)

where

!T ¼ !�~e
�
T ¼ p�~e

�
T �m; (4.38a)

!I ¼ !�~e
�
I ¼ p�~e

�
I : (4.38b)

The canonical momenta Pi are related to the linear mo-
menta pi by Eq. (3.20), which may be rewritten in terms of
the canonical spin variables as

Pi ¼ pi þ EiABS
AB;

¼ pi þ
�
2EiTJ

!K

!T

þ EiJK

�
�JKLSL: (4.39)

In principle, in order to express the Hamiltonian (4.36) in
terms of the canonical momenta Pi, one must invert
Eq. (4.39) to obtain pi as function of canonical variables
(recall that !� depends on p�). However, because our

Hamiltonian is valid only at linear order in the test parti-
cle’s spin, it is sufficient to write

pi ¼ Pi �
�
2EiTJ

�!K

�!T

þ EiJK

�
�JKLSL þOðS2Þ; (4.40)

where

�!� ¼ �P� �m~eT� (4.41a)

�Pi ¼ Pi; (4.41b)

�Pt ¼ �	iPi � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 
ijPiPj

q
; (4.41c)

�!T ¼ �!�~e
�
T ¼ �P�~e

�
T �m; (4.41d)

�!I ¼ �!�~e
�
I ¼ �P�~e

�
I : (4.41e)

We may now write the constrained Hamiltonian (4.36) as

�H ¼ 	ipi þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 
ijpipj

q
� FK

t SK þOðS2Þ;
(4.42)

where

FK
� ¼

�
2E�TI

�!J

�!T

þ E�IJ

�
�IJK: (4.43)

By substituting expression (4.40) for pi into Eq. (4.42) and
expanding to linear order in spin, one arrives at last at the
following Hamiltonian:

�H ¼ �HNS �
�
	iFK

i þ FK
t þ �
ijPiF

K
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 
ijPiPj

q �
SK;

(4.44)

where �HNS is the Hamiltonian for a nonspinning particle,
simply given by

�H NS ¼ 	iPi þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 
ijPiPj

q
: (4.45)
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V. EXPLICIT HAMILTONIAN FOR SPECIFIC
BACKGROUND SPACETIMES

A. Spherically symmetric spacetime in isotropic
coordinates

The line element for a generic spherically symmetric
spacetime in isotropic coordinates is given by

ds2 ¼ �fð�Þdt2 þ hð�Þðdx2 þ dy2 þ dz2Þ; (5.1)

where �2 ¼ x2 þ y2 þ z2. The natural tetrad associated
with this spacetime and coordinate system is

~e
�
T ¼ 1ffiffiffi

f
p �

�
0 ; (5.2a)

~e
�
I ¼ 1ffiffiffi

h
p �

�
I ; (5.2b)

where the symbol ��
I is equal to 0 when � ¼ 0 and it is

equal to 1 when � ¼ I numerically.12 With a metric and a
convenient tetrad in hand, one may now compute the
quantity E�AB as follows:

E�AB ¼ � 1

2
½ð~eAÞ�ð~e�BÞ;� þ ð~eAÞ���

�
~e


B�: (5.3)

The algebra is straightforward and the result is

E�TI ¼ f0

4
ffiffiffiffiffiffi
fh

p �0
�nI; (5.4a)

E�JK ¼ � h0

2h
��½JnK�; (5.4b)

where the prime symbol denotes a derivative with respect
to �, and where nI ¼ ðx=�; y=�; z=�Þ. The last ingredients
needed in order to obtain the explicit Hamiltonian are �!T

and �!K defined in Eqs. (4.41d) and (4.41e). A quick
computation yields

�!T ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 
ijPiPj

q
�m;

� �mð1þ ffiffiffiffi
Q

p Þ; (5.5a)

�!K ¼ 1ffiffiffi
h

p PK; (5.5b)

where Q ¼ 1þ 
ijPiPj=m
2 and PK ¼ Pj�

j
K. By substi-

tuting Eqs. (5.4) and (5.5) into Eq. (4.43), we obtain the
following expression for the quantity FI

�:

FI
0 ¼ � 1

mð1þ ffiffiffiffi
Q

p Þ
f0

2
ffiffiffi
f

p
h
�IJKnJPK; (5.6a)

FI
j ¼ � h0

2h
�IJK�JjnK: (5.6b)

Finally, by substituting Eq. (5.6) into the Hamiltonian

(4.44) and performing simple algebra, we arrive at

�H ¼ �HNS þ
� ffiffiffiffi

Q
p ðf0h� fh0Þ � fh0

2M�
ffiffiffi
f

p
h2

ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
�
ðL � S�Þ; (5.7)

where �HNS is the Hamiltonian for a nonspinning particle,
and where

Q ¼ 1þ 1

h
P̂2; (5.8)

P̂ 2 ¼ �JK PJPK

m2
¼ �jk

PjPk

m2
; (5.9)

L � S� ¼ ��IJKnIPJ

�
MSK
m

�
: (5.10)

The quantity M in Eqs. (5.7) and (5.10) is introduced in
anticipation of specialization to the Schwarzschild metric
below. Since a spherically symmetric spacetime possesses
an SOð3Þ symmetry (associated with rotation of the x, y, z
coordinates among themselves) that is shared by the inter-
nal tetrad space, one may accompany any coordinate rota-
tion by the corresponding tetrad rotation, thereby
preserving the functional form of the Hamiltonian (5.7),
as well as the quantities (5.9) and (5.10). Thus one may
meaningfully identify the vectors LI ¼ ��IJKnJPK and SI
(which really live in the tetrad internal space) with space-
time vectors Li and Si which transform accordingly under
rotations of the coordinates x, y, z.
In the limit of flat spacetime, the Hamiltonian reduces to

�HNS as expected, since the Cartesian components of the
spin are all constants of motion. For the Schwarzschild
spacetime in isotropic coordinates, we have

ds2 ¼ �
�
1�M=ð2�Þ
1þM=ð2�Þ

�
2
dt2

þ
�
1þ M

2�

�
4ðdx2 þ dy2 þ dz2Þ: (5.11)

Substituting these explicit expressions for fð�Þ and hð�Þ in
the Hamiltonian (5.7), one finds

�H ¼ �HNS þ c 6

�3
ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
�
�
1� M

2�
þ 2

�
1� M

4�

� ffiffiffiffi
Q

p �
ðL � S�Þ; (5.12)

where c ¼ ð1þM=2�Þ�1.

B. Spherically symmetric spacetime in spherical
coordinates

In this case, the metric takes the form

ds2 ¼ �fðrÞdt2 þ hðrÞdr2 þ r2d�2 þ r2sin2�d�2:

(5.13)

Note that the functions f and h appearing above are not the

12More precisely, even though the spacetime index � and the
internal tetrad index I are completely different in character, both
indices may take on the same numerical value (1, 2, or 3
associated with x, y, and z, respectively).
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same as in the isotropic case. However we follow here
generally accepted notation conventions. The natural tetrad
associated with this spacetime and coordinate system is

~e
�
T ¼ 1ffiffiffi

f
p �

�
t ; (5.14a)

~e
�
1 ¼ 1ffiffiffi

h
p �

�
r ; (5.14b)

~e
�
2 ¼ 1

r
�
�
� ; (5.14c)

~e�3 ¼ 1

r sin�
��
�: (5.14d)

The metric (5.13) and the tetrad (5.14) then lead to the
following result

EtAB ¼ f0

2
ffiffiffiffiffiffi
fh

p �T
½A�

1
B�; (5.15a)

ErAB ¼ 0; (5.15b)

E�AB ¼ 1ffiffiffi
h

p �1
½A�

2
B�; (5.15c)

E�AB ¼ sin�ffiffiffi
h

p �1
½A�

3
B� þ cos��2

½A�
3
B�: (5.15d)

Next the computation of �!T and �!K yields

�!T ¼ �mð1þ ffiffiffiffi
Q

p Þ; (5.16a)

�!1 ¼ 1ffiffiffi
h

p Pr; (5.16b)

�!2 ¼ 1

r
P�; (5.16c)

�!3 ¼ 1

r sin�
P�; (5.16d)

Equations (5.15) and (5.16) then allow us to obtain FI
�. The

result is

F1
� ¼ cos���

�; (5.17a)

F2
� ¼

�
f0

2r sin�
ffiffiffiffiffiffi
fh

p
��

P̂�

1þ ffiffiffiffi
Q

p
�
�t
� � sin�ffiffiffi

h
p ��

�; (5.17b)

F3
� ¼ �

�
f0

2r
ffiffiffiffiffiffi
fh

p
��

P̂�

1þ ffiffiffiffi
Q

p
�
�t
� þ 1ffiffiffi

h
p ��

�; (5.17c)

where again P̂i ¼ Pi=m. The Hamiltonian then follows
immediately

�H ¼ �HNS þ f0

2ð1þ ffiffiffiffi
Q

p Þr ffiffiffiffiffiffi
fh

p
�
� 1

sin�
P̂�S2 þ P̂�S3

�

�
ffiffiffiffi
f

Q

s �
cos�

r2sin2�
P̂�S1 �

P̂�S2

r2
ffiffiffi
h

p
sin�

þ P̂�S3

r2
ffiffiffi
h

p
�
: (5.18)

The spin terms in the first line of the Hamiltonian (5.18) are
the spherical coordinate equivalent of the L � S� terms of
the isotropic Hamiltonian (5.7). The spin terms in the
second line of Eq. (5.18) do not vanish in the flat space

limit f ¼ h ¼ 1, and therefore represent coordinate effects
related to the fact that the components of the spin in
spherical coordinates and its associated tetrad must evolve,
even in the absence of spin-orbit coupling. Such spin terms
in the Hamiltonian represent therefore a type of gauge
terms.
Notice, however, that one could in principle eliminate

these gauge terms in the Hamiltonian by picking a
‘‘Cartesian’’ tetrad, even though the coordinate system
chosen is the spherical one. For example one could pick
the ‘‘isotropic’’ tetrad (5.2), taking care of transforming the
components of ~eA from isotropic to spherical coordinates.
In that case the spin degrees of freedom SK, which live in
the internal tetrad space, behave as the components of the
spin in Cartesian coordinates, and in that case the flat space
limit of the Hamiltonian should be free of gauge terms and
should reduce to the nonspinning Hamiltonian.
For the Schwarzschild spacetime, f ¼ 1=h ¼

1� 2M=r, and we obtain

�H ¼ �HNS þ M

r3ð1þ ffiffiffiffi
Q

p Þ
�
� 1

sin�
P̂�S2 þ P̂�S3

�

� 1� 2M=rffiffiffiffi
Q

p
�

cos�

r2sin2�

�
1� 2M

r

��1=2
P̂�S1

� P̂�S2

r2 sin�
þ P̂�S3

r2

�
; (5.19)

where

Q ¼ 1þ
�
1� 2M

r

�
P̂2
r þ 1

r2
P̂2
� þ

1

r2sin2�
P̂2
�: (5.20)

C. Kerr spacetime in Boyer-Lindquist coordinates

Not surprisingly the computation of the Hamiltonian is
much more involved in Kerr spacetime, whose line ele-
ment, in Boyer-Lindquist coordinates, is given by

ds2 ¼
�
�1þ 2Mr

�

�
dt2 � 4aMrsin2�

�
dtd�

þ�sin2�

�
d�2 þ �

�
dr2 þ �d�2; (5.21)

where

� ¼ r2 þ a2cos2�; (5.22a)

� ¼ r2 þ a2 � 2Mr; (5.22b)

$2 ¼ r2 þ a2; (5.22c)

� ¼ $4 � a2�sin2�: (5.22d)

For sake of shortening some further formulas, we also
introduce the quantity

�2 ¼ r2 � a2cos2�: (5.23)

Our choice for the reference tetrad is given by the ‘‘sphe-
roidal’’ tetrad
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~eT� ¼ �t
�

ffiffiffiffiffiffiffiffi
��

�

s
; (5.24a)

~e1� ¼ �r
�

ffiffiffiffi
�

�

s
; (5.24b)

~e2� ¼ ��
�

ffiffiffiffi
�

p
; (5.24c)

~e3� ¼ � 2aMr sin�ffiffiffiffiffiffiffiffi
��

p �t
� þ ��

� sin�

ffiffiffiffi
�

�

s
; (5.24d)

which reduces to the ‘‘spherical’’ tetrad (5.14) for a ¼ 0.
This tetrad then leads to the following components for the
quantities E�AB:

EtT1 ¼ M$2�2

2
ffiffiffiffi
�

p
�2

; (5.25a)

EtT2 ¼ �a2
ffiffiffiffi
�

p
Mr cos� sin�ffiffiffiffi
�

p
�2

; (5.25b)

EtT3 ¼ 0; (5.25c)

Et12 ¼ 0; (5.25d)

Et13 ¼ a
ffiffiffiffi
�

p
M�2 sin�

2
ffiffiffiffi
�

p
�2

; (5.25e)

Et23 ¼ �aMr$2 cos�ffiffiffiffi
�

p
�2

; (5.25f)

ErT1 ¼ 0; (5.26a)

ErT2 ¼ 0; (5.26b)

ErT3 ¼ �aMð2r2�þ$2�2Þ sin�
2

ffiffiffiffi
�

p
��

; (5.26c)

Er12 ¼ a2 cos� sin�

2
ffiffiffiffi
�

p
�

; (5.26d)

Er13 ¼ 0; (5.26e)

Er23 ¼ 0; (5.26f)

E�T1 ¼ 0; (5.27a)

E�T2 ¼ 0; (5.27b)

E�T3 ¼ a3
ffiffiffiffi
�

p
Mr cos�sin2�

��
; (5.27c)

E�12 ¼
ffiffiffiffi
�

p
r

2�
; (5.27d)

E�13 ¼ 0; (5.27e)

E�23 ¼ 0; (5.27f)

E�T1 ¼ � aMsin2�

2
ffiffiffiffi
�

p
�2

ð2r2�þ$2�2Þ; (5.28a)

E�T2 ¼ a3
ffiffiffiffi
�

p
Mr cos�sin3�ffiffiffiffi
�

p
�2

; (5.28b)

E�T3 ¼ 0; (5.28c)

E�12 ¼ 0; (5.28d)

E�13 ¼
ffiffiffiffi
�

p
sin�

2
ffiffiffiffi
�

p
�2

ðr�2 � a2M�2sin2�Þ; (5.28e)

E�23 ¼ ð2Mr$4 þ ��2Þ cos�
2

ffiffiffiffi
�

p
�2

; (5.28f)

while �!T and �!K are easily found to be

�!T ¼ �mð1þ ffiffiffiffi
Q

p Þ; (5.29a)

�!1 ¼ Pr

ffiffiffiffi
�

�

s
; (5.29b)

�!2 ¼ P�

ffiffiffiffi
1

�

s
; (5.29c)

�!3 ¼ P�

ffiffiffiffi
�

p

sin�
ffiffiffiffi
�

p ; (5.29d)

where

Q ¼ 1þ 
ijP̂iP̂j

¼ 1þ�

�
P̂2
r þ 1

�
P̂2
� þ

�

�sin2�
P̂2
�; (5.30)

with P̂i � Pi=m. The coefficients FK
� are finally given by

F1
t ¼ 2aMr cos�

�
a

ffiffiffiffi
�

p

�ð1þ ffiffiffiffi
Q

p Þ�3=2
P̂� � $2ffiffiffiffi

�
p

�2

�
;

(5.31a)

F1
r ¼ � aMð2r2�þ$2�2Þ sin�ffiffiffiffi

�
p

�ð1þ ffiffiffiffi
Q

p Þ�3=2
P̂�; (5.31b)

F1
� ¼ 2a3Mr cos�sin2�

�ð1þ ffiffiffiffi
Q

p Þ

ffiffiffiffiffiffi
�

�3

s
P̂�; (5.31c)

F1
� ¼ cos�

�
2Mr$4 þ ��2ffiffiffiffi

�
p

�2
� 2a3Mrsin2�

�ð1þ ffiffiffiffi
Q

p Þ

ffiffiffiffiffiffi
�

�3

s
P̂�

�
;

(5.31d)
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F2
t ¼ M�2

�2

�
$2

ffiffiffiffi
�

p
�ð1þ ffiffiffiffi

Q
p Þ sin� P̂� � a

ffiffiffiffi
�

�

s
sin�

�
; (5.32a)

F2
r ¼ aMð2r2�þ �2$2Þ sin�

�ð1þ ffiffiffiffi
Q

p Þ�3=2
P̂r; (5.32b)

F2
� ¼ � 2a3Mr�cos�sin2�

�ð1þ ffiffiffiffi
Q

p Þ�3=2
P̂r; (5.32c)

F2
� ¼ � sin�

�
aMð2r2�þ$2�2Þ
�ð1þ ffiffiffiffi

Q
p Þ�3=2

P̂�

þ
ffiffiffiffi
�

�

s �
r�2 � a2M�2sin2�

�2

��
; (5.32d)

F3
t ¼� Mffiffiffiffi

�
p ð1þ ffiffiffiffi

Q
p Þ�5=2

ð�2$2P̂� þ 2a2r�sin�cos�P̂rÞ;

(5.33a)

F3
r ¼ a2 cos� sin�ffiffiffiffi

�
p

�
; (5.33b)

F3
� ¼

ffiffiffiffi
�

p
r

�
; (5.33c)

F3
� ¼ aMsin2�ffiffiffiffi

�
p ð1þ ffiffiffiffi

Q
p Þ�5=2

½2a2r�cos� sin�P̂r

þð2r2�þ�2$2ÞP̂��: (5.33d)

Inserting these results into the Hamiltonian (4.44), a long
but straightforward computation yields

�H ¼ �HNS þ �HIS
I; (5.34)

where

�H 1 ¼ �
� ffiffiffiffi

�
p

cos�

�2
ffiffiffiffi
�

p ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þsin2�
�
½ð1þ ffiffiffiffi

Q
p Þð��2 þ 2Mr$4Þ þ 2a2Mr$2

ffiffiffiffi
Q

p
sin2��P̂�

þ
�
aM�ð2r2�þ$2�2Þ sin�
�3=2�2

ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
�
P̂rP̂� þ

�
2a3Mr�cos�sin2�

�3=2�
ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
��

1þ ffiffiffiffi
Q

p þ 2�

�sin2�
P̂2
� þ �

�
P̂2
r

�
; (5.35)

�H 2 ¼
�
�ð1þ ffiffiffiffi

Q
p Þðr�2 � a2M�2sin2�Þ �M

ffiffiffiffi
Q

p ð�2$4 � 4a2Mr3sin2�Þ
�2

ffiffiffiffi
�

p ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ sin�
�
P̂� þ

�
2a3Mr�3=2 cos�sin2�

�3=2�2
ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
�
P̂rP̂�

þ
�
aM

ffiffiffiffi
�

p ð2r2�þ$2�2Þ sin�
�3=2�

ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
��

1þ ffiffiffiffi
Q

p þ 2�

�sin2�
P̂2
� þ 1

�
P̂2
�

�
; (5.36)

�H3 ¼ �
�

a2� cos� sin�

ð��Þ3=2 ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
�
ð�þ ffiffiffiffi

Q
p

��ÞP̂r �
�
r��þ$2�

ffiffiffiffi
Q

p ðr��Mðr2 � a2ÞÞ
ð��Þ3=2 ffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p Þ

�
P̂�

�
�

aM
ffiffiffiffi
�

p

�2�
ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p Þ
�
½2a2r�cos� sin�P̂r þ ð2r2�þ$2�2ÞP̂��P̂�: (5.37)

Setting a ¼ 0 in this result and noting that for a ¼ 0 one
has � ¼ r4, � ¼ r2, and � ¼ rðr� 2MÞ, it is easy to
check that this Hamiltonian reduces to the Schwarzschild
result (5.19) in the nonspinning case.

VI. COMPARING THE HAMILTONIAN IN THE
GENERALIZED NEWTON-WIGNER SSC WITH
THE ADM CANONICAL HAMILTONIAN OF PN

THEORY

In this section we specialize our results to the case of the
Kerr spacetime, but this time using ADM transverse trace-
less coordinates. By expanding our Hamiltonian (4.42)
following the prescription of PN theory, we verify explic-
itly that we recover the known test particle limit results of
the Arnowitt-Deser-Misner (ADM) canonical Hamiltonian
computed within PN theory alone. The latter is currently

known through 2.5PN order for the terms linear in the spin
[17], and through 3PN order for the terms quadratic in the
spin [18–20,23–25,42]. We cannot reproduce the PN cou-
plings of the test particle’s spin with itself because the MPP
equations, as we have already stressed, are only valid to
linear order in the particle’s spin. In addition we also obtain
the terms linear in the spins at 3.5PN order of the canonical
ADM Hamiltonian in the test particle limit. Those contri-
butions have never been computed before.
In order to make the PN expansion as clear as possible,

we restore factors of c in this section. However these
factors of c must be viewed purely as dimensionless PN
bookkeeping parameters, and as such we are still formally
employing geometric units.
First, let us introduce the Kerr metric in ADM-TT

coordinates [21],
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g�� ¼ ��2 þ 	i	
i �	i

�	j 
ij

 !
; (6.1)

g�� ¼ �1=�2 �	i=�2

�	j=�2 
ij � 	i	j

�2

 !
; (6.2)

where 
ik
kj ¼ �i
j and 	i ¼ 
ik	k. Defining ni � xi=r

and introducing a dimensionless three-vector � defined as

� � SKerr

M2
; (6.3)

where M is the mass of the Kerr black hole and SKerr its
spin, the lapse function is given by [21]

� ¼ c�M

rc
þ 1

2

M2

r2c3
� 1

4

M3

r3c5
þ 1

8

M4

r4c7

þ 1

2

M3½3ð� � nÞ2 � �2�
r3c5

þ 1

2

M4½5�2 � 9ð� � nÞ2�
r4c7

þOð9Þ; (6.4)

the shift vector is given by

	i ¼
�
2M2

r2c3
� 6M3

r3c5
þ 21

2

M4

r4c7

�M4½5ð� � nÞ2 � �2�
r4c7

�
�ijk�jnk þOð9Þ; (6.5)

and the spatial metric 
ij is given by


ij ¼ 1
A�

i
j � �ik�jlhTTkl þOð10Þ; (6.6)

where �ijk ¼ �ijk is the Levi-Civita symbol (with �123 ¼
�123 ¼ 1), and where the quantities A and hTTkl are defined

as

A ¼
�
1þ M

2rc2

�
4 þM3½�2 � 3ð� � nÞ2�

r3c6
þ 1

2

M4�2

r4c8

� 3M4ð� � nÞ2
r4c8

; (6.7)

hTTij ¼ � 7

2

M4�2

r4c8
�ij þ 7

M4ð� � nÞ2
r4c8

�ij þ 7
M4�2ninj

r4c8

� 21
M4ð� � nÞ2ninj

r4c8
þ 7

2

M4�i�j

r4c8
: (6.8)

For the reference tetrad appearing in the Hamiltonian, we
chose

~eT� ¼ �t
��; (6.9a)

~e
�
I ¼ ��

Iffiffiffiffi
A

p þOð8Þ: (6.9b)

It turns out, however, that we only need the spatial triad ~eI
through order 1=c7 for our purposes. (This makes the
spatial triad very simple because the spatial metric is
diagonal at that order).
The canonical spin SI appearing in the Hamiltonian

(4.42) scales as the physical spin of the test particle. To
conform with standard power counting in PN theory, this
spin variable carries a power of 1=c. Therefore when
restoring the factors of 1=c for the purpose of PN book-
keeping, we make the replacement13

SI ! SI

c
: (6.10)

Finally we define the orbital angular momentum as

Li � �ijkxjPk; (6.11)

and rescaled momentum and spin as

P̂ ¼ 1

m
P; (6.12a)

S� ¼ M

m
S; (6.12b)

which are useful to abbreviate formulas below. With these
tools it is straightfroward to expand the Hamiltonian (4.42)
in powers of 1=c as

�H ¼ mc2 þ �HN þ 1

c2
�H1PN þ 1

c3
�H1:5PN þ 1

c4
�H2PN

þ 1

c5
�H2:5PN þ 1

c6
�H3PN þ 1

c7
�H3:5PN þOð8Þ þOðS2Þ;

(6.13)

where

�H N ¼ m

�
P̂2

2
�M

r

�
; (6.14)

�H 1PN ¼ m

�
� P̂4

8
� 3M

2r
P̂2 þM2

2r2

�
; (6.15)

13This is appropriate if the particle is a black hole or a rapidly
rotating compact star. In the black hole case, S ¼ am2=c, with a
ranging from 0 to 1 [see Eq. (6.3)]. In the rapidly spinning star
case one has S ¼ mvrotR�mcRs �m2=c (where we have as-
sumed that the rotational velocity vrot is comparable to c and that
the stellar radius R is of order of the Schwarzschild radius Rs ¼
m=c2).
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�H 1:5PN ¼ 1

r3

�
2SKerr þ 3

2
S�
�
�L; (6.16)

�H2PN ¼ m

�
P̂6

16
þ 5M

8r
P̂4 þ 5M2

2r2
P̂2 �M3

4r3

�

þ m

2Mr3
ð3nij � �ijÞSiKerrðSjKerr þ 2S�j Þ; (6.17)

�H 2:5PN ¼ 1

r3

�
�M

r
ð6SKerr þ 5S�Þ � 5

8
P̂2S�

�
� L;
(6.18)

�H3PN ¼m

�
�5P̂8

128
� 7M

16r
P̂6 � 27M2

16r2
P̂4 � 25M3

8r3
P̂2 þM4

8r4

�

þ m

2Mr3
SijKerr

�
3

2
P̂2ð3nij ��ijÞ�M

r
ð9nij � 5�ijÞ

�

þ 3mnij

2Mr3
½2P̂iSkKerrP̂

½jS�k� � ðP̂�S�ÞiðP̂�SKerrÞj�

þ 6m

r4
S�iSjKerrð�ij � 2nijÞ; (6.19)

where nij ¼ ninj and SijKerr ¼ SiKerrS
j
Kerr. The nonspinning

terms in the Hamiltonian (6.13) coincide with the corre-
sponding terms computed in PN theory in the test particle
limit [32]; the linear terms in the spins at 1.5PN and 2.5PN
order agree with the terms computed in the test particle
limit in PN theory [16,17]; the terms quadratic in the spin
of the larger body coincide with what derived in PN theory
at 2PN [33] and 3PN order [19,20]. We find that the
contributions at 3.5PN are given by

�H3:5PN ¼ 9m

2M2r4
ðSKerr � nÞðS� � SKerrÞ � P̂ � 1

4M2r5

� ½5ðSKerr � nÞ2 � S2
Kerr�ð9S� þ 4SKerrÞ � L

þ 21M2

2r5
SKerr � L

þ
�

7

16r3
P̂4 þ 27M

8r4
P̂2 þ 105

8

M2

r5

�
ðS� �LÞ:

(6.20)

While the terms of this expression which are cubic in the
spins (S3Kerr and S2KerrS

�) have already been calculated for
generic mass ratios in Refs. [21,22], with which we agree
in the test particle limit, the terms linear in the spins are, as
far as we are aware, a new result. Of course, because our
Hamiltonian is only valid at linear order in the particle’s
spin, this result is still incomplete as it does not include
terms ðS�Þ3 and SKerrðS�Þ2, which are still unknown.

Finally, we stress that at leading order our generalized
NW SSC reduces to the so-called baryonic SSC of
Refs. [11,16]. In fact, at leading order pi � mvi, pt �

�mc2, and ~eT� � c�t
�, which yields !t � �2mc2 and

!i � mvi. Therefore, our generalized NW SSC becomes

Sit � 1

2
Sij

vj

c2
; (6.21)

in agreement with Refs. [11,16].

VII. CONCLUSIONS

In summary: starting from the Lagrangian put forward in
Ref. [27] building on the classical work of Ref. [30] on the
relativistic spherical top dynamics, we derived the uncon-
strained Hamiltonian for a spinning test particle in a curved
spacetime, at linear order in the particle’s spin. The equa-
tions of motion for this Hamiltonian coincide with the MPP
equations of motion. The latter are well known to describe
the motion and spin-precession of a test particle, but are
expressed in terms of the spin tensor S�� carrying 6
degrees of freedom. In order to eliminate three of these
degrees of freedom (which can be shown to correspond to
the choice of the point internal to the spinning body whose
worldline is followed [29]), we impose the so-called NW
spin supplementary condition, suitably generalized to
curved spacetime. Using the formalism of Dirac brackets
[39] we computed the Hamiltonian and phase space alge-
bra of the constrained system. In particular, we showed
that, in a generic curved spacetime, the resulting phase
space algebra is canonical, i.e. it has the standard sympletic
structure for the set of dynamical variables ðq;p;SÞ, at
least at linear order in the particle’s spin. As a conse-
quence, the equations of motion can be derived from our
constrained Hamiltonian by means of the usual well-
known Hamilton equations.
As an application, making specific choices of the tetrad

field, we computed explicitly the constrained Hamiltonian
for a spherically symmetric spacetime, both in isotropic
and in spherical coordinates, as well as for the Kerr space-
time in Boyer-Lindquist coordinates. We notice that differ-
ent choices of the tetrad field would lead to different
Hamiltonians connected by canonical transformations.
Also, we expanded our Hamiltonian in PN orders and
showed explicitly that it reduces to the test particle limit
of the ADM canonical Hamiltonian computed in PN theory
[16,17,19,20,33]. Notably, we recover the known spin-
orbit couplings through 2.5PN order and the spin-spin
couplings of type SKerrS through 3PN order, SKerr being
the spin of the Kerr spacetime. Our method allows one to
compute the PN Hamiltonian, in the test particle limit and
at linear order in the particle’s spin, at any PN order, and as
an application we computed it at 3.5PN order.
Another application of this work will be developed in a

follow-up paper, where we will use our Hamiltonian to
build a new effective-one-body Hamiltonian for spinning
bodies [31–34]. Such work will be important to build
templates for the search of gravitational waves with ground
and space-based detectors, as it will permit taking full
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advantage of the analytical and numerical treatment of the
dynamics of spinning black hole binaries throughout the
inspiral, merger, and ringdown phases.
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